学术论文百科

数学思想在小学数学中的应用论文怎么写

发布时间:2024-07-07 06:38:35

数学思想在小学数学中的应用论文怎么写

摘 要 小学数学教育旨在让学生掌握和理解基本的数学知识,掌握正确的数学思想和应用方法,从而开拓数学学习的思维模式,提高学习能力。数学思想是一种文化,是数学教育的核心思想。作为数学教育工作者,对于数学思想在小学数学教育教学中的实践应用做出以下几点分析。关键词 数学思想;小学;教学;浅析数学知识广泛存在于人们的生产和生活当中。小学数学知识初级简单,却离不开数学思想方法的应用。小学数学思想方法有很多种。能够用不同的方法去解决数学问题,对于培养学生的数学基础,提高学习能力有很大的帮助。一、数学思想方法的课堂应用状况许多从事小学数学教育的老师,虽然意识到了数学思想方法在教学过程中应用的重要性,但是实际应用起来往往概念模糊,不够到位。大部分人依赖教材,缺乏变通,没有将数学思想方法融汇到知识当中,影响了数学知识的有效传授。学生对数学理论与内容的本质没有深刻体会,对于知识也不能全部吸收,无法付诸实践准确解决数学问题。运用正确的数学思想方法对学生进行教育,使其能够理解并且运用,需要老师持之以恒的教育影响。这是一个缓慢的渗透过程,也是对于数学教学质量的有效提高过程。二、数学思想方法课堂应用的分析研究(一)分类思想方法在数学教学中的应用数学的分类思想方法体现在对数学对象的分类及其分类标准。例如人教版四年级《三角形的分类》一课,三角形按角分让学生认识直角三角形、锐角三角形、钝角三角形。三角形按边分让学生认识等腰三角形和等边三角形的各个部分,以及等腰三角形两底角关系和等边三角形的三个内角的关系。通过分类的数学思想方法,使得学生经过观察、操作、比较、概括,体会每一类三角形角的特点和边的特点。不同的分类标准有不同的分类结果,从而产生新的概念。(二)假设思想方法在数学教学中的应用假设是先对题目中的已知条件或问题做出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。比如,在人教版小学五年级方程式的教学当中,老师通过等式保持不变的规律来教学生解方程。教学案例:一个盒子里的皮球和外面的皮球加起来一共有九个,求盒子里有几个皮球。那么用假设法,假设盒子里有X个皮球,得出方程式X+3=9。这里同时也用到了符号化思想方法,即用X作为符号化的语言来推导演算。那么利用等式保持不变的等量关系求方程式的解,方程两边同时减去一个3,左右两边仍然相等,得出:X+3-3=9-3。则最后算出答案X=6。假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。同时小小的字母表示数,以符号的浓缩形式表达了大量的信息,如定律、公式等。(三)统计思想方法在数学教学中的应用小学数学统计表是一些基本的统计方法,求平均数应用题是体现数据处理的思想方法。例如,人教版小学六年级教材《扇形统计图》的教学中,老师给出一组数据,比如,课外活动中不同的运动项目,分别参加的人数不同,占全班的百分比也不同。乒乓球12人占30%;足球8人占20%;跳绳5人5%;踢毽子6人15%;其他9人5%;可以看出如果用条形统计图的话,并不能直观地表示出百分比。老师在黑板上画出扇形统计图,告诉学生用扇形统计图的整个圆表示全班人数,也就是单位“1”,圆内大小不同的扇形表示百分比,引导学生通过直观的图标,思考百分比是怎么算出来的?即各项运动的人数除以全班人数,所有百分比的和是100%。最后总结扇形统计图的特点:(1)整个圆代表总数量,扇形代表各部分数量。(2)从扇形的大小可以看出各部分数量占百分比的大小。(3)圆和扇形关系表示出了总数量与部分数量的关系。教师应将统计思想方法应用到数学教学当中,教会学生在生活中有很多问题可以用统计法来解决,并且能够运用各种统计方法来解决生活中的问题。(四)类比思想方法在数学教学中的应用类比思想方法是依据两类数学对象的相似性,由可能已知的一类数学对象的性质迁移到另一类数学对象的思想。例如人教版小学四年级教材《加法交换律》中例题:李叔叔准备骑车旅行一个星期,今天上午骑了40千米,下午骑了56千米。一共是多少千米?让学生用加法交换的方式列式,得出公式a+b=b+a。总结规律:两个加数交换位置,和不变。这就是数学类比思想的教学应用。另外类比思想在乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式的教学中都有应用。类比思想不仅使得学生们对于数学课本知识更加容易理解,而且让枯燥的数学公式在记忆上更加容易和方便。小学数学思想在数学教育教学中广泛应用,占有非常重要的地位。除了今天的几项实践研究外,还有很多思想方法,比较思想方法、转化思想方法、集合思想方法等等很多教学形式。为了跟上不断改革的小学教育教学发展的节奏,让学生们能够获得更多的数学思想方法,掌握数学知识,作为教育工作者应该在不断地教学实践中研究总结。为学生持续的学习和发展奠定基础,从而有效提高小学数学教育教学质量。

数学思想在小学数学中的应用论文

为加强小学生的数学思维逻辑,提高数学课堂的教学效率,教师需采用科学有效的教学方法保证数学思想的有效渗透,从而激发学生的学习热情,强化学生的数学意识,带领学生运用数学思维解决实际生活问题。教师在以往数学课堂内注重学生的数学成绩,未将学生在实际学习过程的数学方法进行充沛的指导,使得学生对数学问题具有一定的思想偏颇,加大教师的教学难度,无法全方位培养学生的综合能力。因此,教师应结合时代潮流教学方法,根据教材具体内容展开相应的教学手段,充分加强学生的数学素养,进而提高学生对数学抽象性概念的理解,强化学生的数学意识,保证数学教学任务的有效进行。一、小学生学习特点由于小学生的年龄较低,对事物具有极强的好奇心,无法在数学课堂上集中注意力,继而导致自身的学习效率有所下降。所以,教师应结合学生在课上的学习状态,设计丰富的教学内容,调动学生积极性,激发学生的主观能动性,加强学生对数学基础知识的理解。教师应升华自身的教学素养,充分利用专业知识强化对学生数学思想的教育,联系实际生活内容,活跃课堂氛围,进而保证数学课堂的实效性[1]。二、小学数学思想方法介绍(一)数形结合法教师要改变传统教模式中填鸭式教学方法,发挥学生的主观能动性,加强学生对事物的空间想象能力,培养学生的创新能力,使学生全面了解教师所讲的数学知识,从而激发学生的学习热情。基于此,教师可采取数形结合的教学模式帮助学生更好掌握基础知识要义,培养学生的良好学习习惯。在讲解具体内容时,教师要将抽象化概念转换为具体形象,加强学生实际的运算能力,提高数学思想在课堂上的渗透。(二)总结法总结法是教师常用的教学手段,通过课上最后的时间带领学生复习巩固相应的知识内容,增强学生的数学素养。因此,数学教师可将此方法融入课堂教学,加强学生对数学知识的运用能力,帮助学生建立相应的数学体系,使其能够正确解答有关数学问题,逐步培养学生的自主学习能力。由于小学阶段是学生学习的黄金时期,教师要从多方面加强对学生综合能力的培养,实现数学课堂的有效教学,保证教学进度。(三)转化法学生作为独立个体听取教师讲解的数学内容会产生不同的学习效果。教师要改变传统教学氛围,创设科学有效的教学环境,保持学生整节课的充沛精力,激发学生的学习兴趣。利用转化的教学方法增强学生对抽象概念的理解能力,时刻与学生沟通交流,根据学生的具体学习情况设计丰富的教学内容,继而增强学生对数学知识后的实际运用。三、在小学数学教学中渗透数学思想方法的途径(一)在课后总结中提炼数学思想小学数学教材将学生所学的重点知识内容进行充分的整理,使得学生在每章完结之后都能有效复习相应概念,因此,教师应注重小学教材的布置内容,灵活运用课后知识增强学生的数学意识,完善学生的学习方法,逐步加强对学生数学问题的灵活运用。比如在学习《图形的运动(二)》内容时,教师就要逐步引导学生对数学公式的理解能力,通过课后复习强化学生对数学问题的计算。首先教师要通过激趣导入吸引学生注意力,带领学生观察多媒体课件,明确抽对称的定义及性质,带领学生回顾相应的数学问题后,教师要让学生进行动手实践,将教材附页上的图形剪下,先折一折,再画出图形的对称轴,并让学生观察每个图形可以画多少对称轴,在学生实践过程中增强学生的数学思想。通过课后总结带领学生明确长方形、正方形、等腰梯形、等腰三角形、等边三角形、线段、菱形等图形的对称轴具有多少条,加强学生的学习效果,逐步培养学生的理性思维模式。(二)在课堂教学中挖掘可利用的数学思想为加强学生对数学思想的理解能力,教师应紧跟时代潮流发展,改变教学理念,摒弃传统教学思想,根据教材的具体内容与学生上课的实际情况,逐步挖掘可利用的数学思想,强化学生的逻辑思维,使得学生的学习效率不断增强[2]。比如在学习《可能性》内容时,教师就要摒弃传统教学手法,采用科学有效的教学手段加强对学生的数学思想教育。首先通过问题引导引发学生的思考能力“抛硬币决定谁先开球公平吗?”带领学生初步体验事件发生的确定性与不确定性,并让学生列出简单的随机现象中所有可能发生的结果。其次教师要创设相应的问题情景,带领学生发现实际生活问题,如:哥哥弟弟都很想去电影院看电影,但是爸爸只有一张儿童票,只能给其中一个人,这时就要让学生充分思考课题采取什么样的方法保证公平,从而加深学生的可能性知识概念的运用能力,保证数学课堂的教学质量,加强学生对实际问题的数学思想。(三)活跃数学思想氛围,调动学生积极性。教师应明确数学思想存在于教材与学生的方方面面,需带领学生不断进行数学实践活动,侧面提高学生的数学思维逻辑,强化学生的学习方法,从多角度激发学生的学习积极性。教师要结合教材具体内容,发挥学生的主观意识,营造良好的数学思想学习氛围,采用循序渐进的教学方法,根据教材重难点知识内容,合理设计教学过程,加强学生的数学教育,发散学生的创新思维,全方位培养学生综合能力[3]。比如在学习《百分数(一)》内容时,教师不应根据教材体现的内容进行教学,应以学生的数学思想为中心,发挥学生的创新能力。首先借用多媒体技术让学生观察每个人的不同情况,并思考如何派遣队员进行足球运动,加强学生的思考逻辑。其次,教师应让学生针对具体问题进行小组间的合作交流,强化学生的语言表达能力,活跃课堂氛围,营造良好的学习环境,激发学生对数学的学习兴趣。教师应及时了解学生所提的数学问题时刻与学生沟通交流。优化师生之间的关系,加强对学生逻辑思维的培养,实现数学思想的深度教学作用,从而提高小学数学课堂的教学质量,全面落实数学思想教育,利用丰富的教学资源提高学生自主学习意识。结束语:综上所述,为强化学生的数学意识,教师应全方位认识数学教材内容,利用抽象性知识体系提高学生的自主学习能力,从而实现小学课堂的有效教学。通过在课后、课时挖掘数学思想,不断加强学生对数学的认知能力,培养学生良好的学习习惯。教师应以学生为主体地位,升华自身的教学素质,使用专业的知识水平保证小学数学课堂的教学进度。

数学课程标准总体目标的第一条就明确提出:“让学生获得适应未来社会生活和进一步发展所必需的重要数学知识(包括数学事实、数学活动经验)以及基本的数学思想方法和必要的应用技能。”美国教育心理家布鲁纳也指出:掌握基本的数学思想方法,能使数学更易于理解和更利于记忆,领会基本数学思想和方法是通向迁移大道的“光明之路”。在人的一生中,最有用的不仅是数学知识,更重要的是数学的思想方法和数学的意识,因此数学的思想方法是数学的灵魂和精髓。掌握科学的数学思想方法对提升学生的思维品质,对数学学科的后继学习,对其它学科的学习,乃至对学生的终身发展都具有十分重要的意义。在小学数学教学中,教师有计划、有意识地渗透一些数学思想方法,是实施素质教育,发展学生能力,提高数学能力,减轻学生课业负担的重要举措,在课程数学改革中有举足轻重的位置。那么,在小学数学教学中,究竟应如何渗透数学思想方法呢?一、转变观念,重视挖掘数学思想方法。数学概念、法则、公式、性质等知识都明显地写在教材中,是有“形”的,而数学思想方法却隐含在数学知识体系里,是无“形”的,并且不成体系地散见于教材各章节中。教师讲不讲,讲多讲少,随意性较大,常常因教学时间紧而将它作为一个“软任务”挤掉。对于学生的要求是能领会多少算多少。因此,作为教师首先要更新观念,从思想上不断提高对渗透数学思想方法重要性的认识,把掌握数学知识和渗透数学思想方法同时纳入教学目的,把数学思想方法教学的要求融入备课环节。其次要深入钻研教材,努力挖掘教材中可以进行数学思想方法渗透的各种因素,对于每一章每一节,都要考虑如何结合具体内容进行数学思想方法渗透,渗透哪些数学思想方法,怎么渗透,渗透到什么程度,应有一个总体设计,提出不同阶段的具体教学要求。在小学数学教学中,教师不能仅仅满足于学生获得正确知识的结论,而应该着力于引导学生对知识形成过程的理解。让学生逐步领会蕴涵其中的数学思想方法。也就是说,对于数学教学重视过程与重视结果同样重要。教师要站在数学思想方面的高度,对其教学内容,用恰当的语言进行深入浅出的分析,把隐蔽在知识内容背后的思想方法提示出来。例如,圆的认识概念教学,可以按下列程序进行:(1)由实物抽象为几何图形,建立圆的表象;(2)在表象的基础上,指出圆的半径、直径及其特点,使学生对圆有一个更深层次的认识;(3)利用圆的各种表象,分析其本质特征,抽象概括为用文字语言表达的圆的概念;(4)使圆的有关概念符号化。显然,这一数学过程,既符合学生由感知到表象再到概念的认知规律,又能让学生从中体会到教师是如何应用数学思想法,对有联系的材料进行对比的,对空间形式进行抽象概括的,对教学概念进行形式化的。二、 相机而动,及时引入数学思想方法。为了更好地在小学数学教学中渗透数学思想方法,教师不仅要对教材进行研究,潜心挖掘,而且还要讲究思想渗透的手段和方法。小学阶段,数学思想方法的渗透一般常用直观法、问题法、反复法和剖析法。所谓直观法就是以图表形式将数学思想方法直观化、形象化。直观法的观点是能将高度抽象的数学思想方法变成学生容易感知具体材料,特别是生动有趣的图画给学生留下鲜明的印象。问题法是指学生在教师的启发下,在探究问题答案的过程中,通过回顾、思考、总结,逐步领会数学问题的规律性,进而加深对解题方法、技巧的认识。反复法是指通过同一类情景的多次出现,让学生持续接受某一数学思想方法的熏陶。剖析法是解剖典型的范例,从方法论的角度用儿童能理解的数学语言去描述数学现象,解释数学规律。在教学过程中,教师应掌握方法,不失时机的向学生渗透数学思想方法。教师可以通过以下途径渗透:(1)在知识的形成过程中渗透。如概念的形成过程,结论的推导过程等,都是向学生渗透数学思想和方法,训练思维,培养能力的极好机会。(2)在问题的解决过程中渗透。如:教学“倒过来推想” 这一课时,在解决问题的过程中,用图表、摘录条件等方法让学生逐步领会“倒过来推想”这种策略的奥妙所在。(3)在复习小结中渗透。在章节小结、复习的数学教学中,我们要注意从纵横两个方面,总结复习数学思想与方法,使师生都能体验到领悟数学思想,运用数学方法,提高训练效果,减轻师生负担,走出题海误区的轻松愉悦之感。如教学完“圆的认识”这一单元之后,可及时帮助学生依靠圆的面积的推导过程回忆多边形面积公式的推导方法,使学生能清楚地意识到:“转化”是解决问题的有效方法。(4)在数学讲座等教学活动中渗透。数学讲座是一种课外教学活动形式,它不仅为广大学生所喜爱,而且是数学教师普遍选用的数学活动方式。特别是在数学讲座等活动中适当渗透数学思想和方法,给数学教学带来了生机,使过去那死水般的应试题海教学一改容颜,焕发了青春,充满了活力。三、千锤百炼——自觉运用数学思想方法。数学思想方法的教学,不仅是为了指导学生有效地运用数学知识、探寻解题的方向和入口,更是对培养人的思维素质有着特殊不可替代的意义。它在新授中属于“隐含、渗透”阶段,在练习与复习中进入明确、系统的阶段,也是数学思想方法的获得过程和应用过程。这是一个从模糊到清晰的飞跃。而这样的飞跃,依靠着系统的分析与解题练习来实现。学生做练习,不仅对已经掌握的数学知识以及数学思想方法会起到巩固和深化的作用,而且还会从中归纳和提炼出新的数学思想方法。数学思想方法的教学过程首先是从模仿开始的。学生按照例题师范的程序与格式解答和例题相同类型的习题,实际上是数学思想方法的机械运用。此时,并不能肯定学生已领会了所用的数学思想方法,只当学生将它用于新的情景,解决其他有关的问题并有创意时,才能肯定学生对这一教学本质、数学规律有了深刻的认识。我们知道,对于学习者来说,最好的学习效果是主动参与,亲自发现,数学思想方法的学习也不例外。在教学中,通过数学思想方法的广泛应用,让学生从主观上重视数学思想方法的学习,进而增强自觉提炼数学思想方法的意识。教师对习题的设计也应该从数学思想方法的角度加以考虑,尽量多安排一些能使各种学习水平的学生深入浅出地作出解答的习题,它既有具体的方法或步骤,又能从一类问题的解法去思考或从思想观点上去把握,形成解题方法,进而深化为数学思想。如在教学完圆环面积的计算以后,可以由易到难,出几题运用移动、割补等方法解决的实际问题,这样做不仅可以让学生领会到转化的数学思想方法,对提高学生的学习兴趣也大有好处。让学生在操作中掌握,在掌握后领悟,使数学思想方法在知识能力的形成过程中共同生成。数学思想方法是一项系统工程,受诸多因素的影响和制约。我们小学数学教师只有重视对数学思想方法的学习研究,探讨其教学规律,才能适应课程教学改革需要。当然应该看到,数学思想方法的渗透具有长期性、反复性。对学生进行数学思想方法的渗透必定要经历一个循环往复、螺旋上升的过程,往往是几种思想方法交织在一起,在教学过程中教师要依据具体情况,在某一段时间内重点渗透与明确一种数学思想方法,这样反复训练,才能使学生真正地有所领悟。

数学思想在小学数学中的应用论文题目

摘 要 小学数学教育旨在让学生掌握和理解基本的数学知识,掌握正确的数学思想和应用方法,从而开拓数学学习的思维模式,提高学习能力。数学思想是一种文化,是数学教育的核心思想。作为数学教育工作者,对于数学思想在小学数学教育教学中的实践应用做出以下几点分析。关键词 数学思想;小学;教学;浅析数学知识广泛存在于人们的生产和生活当中。小学数学知识初级简单,却离不开数学思想方法的应用。小学数学思想方法有很多种。能够用不同的方法去解决数学问题,对于培养学生的数学基础,提高学习能力有很大的帮助。一、数学思想方法的课堂应用状况许多从事小学数学教育的老师,虽然意识到了数学思想方法在教学过程中应用的重要性,但是实际应用起来往往概念模糊,不够到位。大部分人依赖教材,缺乏变通,没有将数学思想方法融汇到知识当中,影响了数学知识的有效传授。学生对数学理论与内容的本质没有深刻体会,对于知识也不能全部吸收,无法付诸实践准确解决数学问题。运用正确的数学思想方法对学生进行教育,使其能够理解并且运用,需要老师持之以恒的教育影响。这是一个缓慢的渗透过程,也是对于数学教学质量的有效提高过程。二、数学思想方法课堂应用的分析研究(一)分类思想方法在数学教学中的应用数学的分类思想方法体现在对数学对象的分类及其分类标准。例如人教版四年级《三角形的分类》一课,三角形按角分让学生认识直角三角形、锐角三角形、钝角三角形。三角形按边分让学生认识等腰三角形和等边三角形的各个部分,以及等腰三角形两底角关系和等边三角形的三个内角的关系。通过分类的数学思想方法,使得学生经过观察、操作、比较、概括,体会每一类三角形角的特点和边的特点。不同的分类标准有不同的分类结果,从而产生新的概念。(二)假设思想方法在数学教学中的应用假设是先对题目中的已知条件或问题做出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。比如,在人教版小学五年级方程式的教学当中,老师通过等式保持不变的规律来教学生解方程。教学案例:一个盒子里的皮球和外面的皮球加起来一共有九个,求盒子里有几个皮球。那么用假设法,假设盒子里有X个皮球,得出方程式X+3=9。这里同时也用到了符号化思想方法,即用X作为符号化的语言来推导演算。那么利用等式保持不变的等量关系求方程式的解,方程两边同时减去一个3,左右两边仍然相等,得出:X+3-3=9-3。则最后算出答案X=6。假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。同时小小的字母表示数,以符号的浓缩形式表达了大量的信息,如定律、公式等。(三)统计思想方法在数学教学中的应用小学数学统计表是一些基本的统计方法,求平均数应用题是体现数据处理的思想方法。例如,人教版小学六年级教材《扇形统计图》的教学中,老师给出一组数据,比如,课外活动中不同的运动项目,分别参加的人数不同,占全班的百分比也不同。乒乓球12人占30%;足球8人占20%;跳绳5人5%;踢毽子6人15%;其他9人5%;可以看出如果用条形统计图的话,并不能直观地表示出百分比。老师在黑板上画出扇形统计图,告诉学生用扇形统计图的整个圆表示全班人数,也就是单位“1”,圆内大小不同的扇形表示百分比,引导学生通过直观的图标,思考百分比是怎么算出来的?即各项运动的人数除以全班人数,所有百分比的和是100%。最后总结扇形统计图的特点:(1)整个圆代表总数量,扇形代表各部分数量。(2)从扇形的大小可以看出各部分数量占百分比的大小。(3)圆和扇形关系表示出了总数量与部分数量的关系。教师应将统计思想方法应用到数学教学当中,教会学生在生活中有很多问题可以用统计法来解决,并且能够运用各种统计方法来解决生活中的问题。(四)类比思想方法在数学教学中的应用类比思想方法是依据两类数学对象的相似性,由可能已知的一类数学对象的性质迁移到另一类数学对象的思想。例如人教版小学四年级教材《加法交换律》中例题:李叔叔准备骑车旅行一个星期,今天上午骑了40千米,下午骑了56千米。一共是多少千米?让学生用加法交换的方式列式,得出公式a+b=b+a。总结规律:两个加数交换位置,和不变。这就是数学类比思想的教学应用。另外类比思想在乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式的教学中都有应用。类比思想不仅使得学生们对于数学课本知识更加容易理解,而且让枯燥的数学公式在记忆上更加容易和方便。小学数学思想在数学教育教学中广泛应用,占有非常重要的地位。除了今天的几项实践研究外,还有很多思想方法,比较思想方法、转化思想方法、集合思想方法等等很多教学形式。为了跟上不断改革的小学教育教学发展的节奏,让学生们能够获得更多的数学思想方法,掌握数学知识,作为教育工作者应该在不断地教学实践中研究总结。为学生持续的学习和发展奠定基础,从而有效提高小学数学教育教学质量。

1转化思想在小学数学教学中,转化思想是一种常见的数学运用方法,其主要功能是将不同类型的元素转化为相同类型的元素。转化思想的运用能够将数学题型化繁为简、化难为易,使学生快速解答题型。在小学数学中,转化思想被经常应用,如:异分母加减法。14+23,教师应引入转化思想,教育学生异分母转化法,将数学题转化为同分母加减法:312+812,使答案一目了然。除此外,分数与小数的加减法也需要渗透转化思想,如:0.5+14就可转化为0.5+25,使问题更加容易解决,提高学生问题解答能力。2.分类思想分类思想主要是将某问题视为整体,并在一定分类标准上将整体划分为相应部分,以此达到快速解答问题的目的。如:在小学几何教学中的三角形教学中,将所有三角形分为锐角三角形、直角三角形与钝角三角形,此三类三角形直接囊括了所有三角形的特征。分类方法是小学数学中的重要数学思想方法,为确保分类方法的合理性,教学应教育学生在采用此方法解题时遵循以下几项原则:统一性原则、不重复与遗漏原则、层次性原则等。3数形结合数形结合是将抽象的知识转化为直观概念,提高学生理解能力,实现解决问题的目标。小学思维正处于过度其,形象思维较强而逻辑思维较差,数形结合能够巧妙引导学生结合形象思维与抽象逻辑,提高学生的思维能力。如分数的算式14×15可借用图形达到结果直观的目的。将矩形分为数个1×1cm的格子,并用/表示整个矩形的14,用/表示整个矩形的15,可直观看出两者间的公共部分,即为两者之积。

相关如下:1、数形结合思想方法在“数与代数”知识领域中的渗透与应用。2、数形结合思想方法在“图形与几何”知识领域中的渗透与应用。3、数形结合思想方法在“统计与概率”知识领域中的渗透与应用。4、数形结合思想方法在“综合与实践”知识领域中的渗透与应用。相关介绍:数形结合思想就是通过数和形之间的对应关系和互相转化来解决问题的思想方法。数形结合既是一种重要的数学思想,又是-种常用的数学方法,在小学数学教学与解决问题中广泛应用,包含“以形助数”和“以数解形”两个方面:前者借助形的直观性来阐明抽象的数之间的关系;后者是利用数的精确性、规范性与严密性来阐明形的某些属性。数形结合思想方法使数与形两种信息互相转换并且优势互补,从而能够将复杂的问题简单化,抽象的问题具体化。

数学思想史在小学数学教学中的应用论文

数学悖论与三次数学危机陈基耿摘要:数学发展从来不是完全直线式的,而是常常出现悖论。历史上一连串的数学悖论动摇了人们对数学可靠性的信仰,数学史上曾经发生了三次数学危机。数学悖论的产生和危机的出现,不单给数学带来麻烦和失望,更重要的是给数学的发展带来新的生机和希望,促进了数学的繁荣。危机产生、解决、又产生的无穷反复过程,不断推动着数学的发展,这个过程也是数学思想获得重要发展的过程。关键词:数学悖论;数学危机;毕达哥拉斯悖论;贝克莱悖论;罗素悖论数学历来被视为严格、和谐、精确的学科,纵观数学发展史,数学发展从来不是完全直线式的,他的体系不是永远和谐的,而常常出现悖论。悖论是指在某一一定的理论体系的基础上,根据合理的推理原则,推出了两个互相矛盾的命题,或者是证明了这样一个复合命题,它表现为两个互相矛盾的命题的等价式[1]。数学悖论在数学理论中的发展是一件严重的事,因为它直接导致了人们对于相应理论的怀疑,而如果一个悖论所涉及的面十分广泛的话,甚至涉及到整个学科的基础时,这种怀疑情绪又可能发展成为普遍的危机感,特别是一些重要悖论的产生自然引起人们对数学基础的怀疑以及对数学可靠性信仰的动摇。数学史上曾经发生过三次数学危机,每次都是由一两个典型的数学悖论引起的。本文回顾了历史上发生的三次数学危机,重点介绍了三次数学危机对数学发展的重要作用。1毕达哥拉斯悖论与第一次数学危机1第一次数学危机的内容公元前六世纪,在古希腊学术界占统治地位的毕达哥拉斯学派,其思想在当时被认为是绝对权威的真理,毕达哥拉斯学派倡导的是一种称为“唯数论”的哲学观点,他们认为宇宙的本质就是数的和谐[2]。他们认为万物皆数,而数只有两种,就是正整数和可通约的数(即分数,两个整数的比), 除此之外不再有别的数,即是说世界上只有整数或分数。毕达哥拉斯学派在数学上的一项重大贡献是证明了毕达哥拉斯定理[3],也就是我们所说的勾股定理。勾股定理指出直角三角形三边应有如下关系,即a2=b2+c2,a和b分别代表直角三角形的两条直角边,c表示斜边。然而不久毕达哥拉斯学派的一个学生希伯斯很快便发现了这个论断的问题。他发现边长相等的正方形其对角线长并不能用整数或整数之比来表示。假设正方形边长为1,并设其对角线长为d,依勾股定理应有d2=12+12=2,即d2=2,那么d是多少呢?显然d不是整数,那它必是两整数之比。希伯斯花了很多时间来寻找这两个整数之比,结果没找着,反而找到了两数不可通约性的证明[4],用反证法证明如下:设Rt△ABC,两直角边为a=b,则由勾股定理有c2=2a2,设已将a和c中的公约数约去,即a、c已经互素,于是c为偶数,a为奇数,不妨令c=2m,则有(2m)2=2a2,a2=2m2,于是a为偶数,这与前面已证a为奇数矛盾。这一发现历史上称为毕达哥拉斯悖论。2第一次数学危机的影响毕达哥拉斯悖论的出现,对毕达哥拉斯学派产生了沉重的打击,“数即万物”的世界观被极大的动摇了,有理数的尊崇地位也受到了挑战,因此也影响到了整个数学的基础,使数学界产生了极度的思想混乱,历史上称之为第一次数学危机。第一次数学危机的影响是巨大的,它极大的推动了数学及其相关学科的发展。首先,第一次数学危机让人们第一次认识到了无理数的存在,无理数从此诞生了,之后,许多数学家正式研究了无理数,给出了无理数的严格定义,提出了一个含有有理数和无理数的新的数类——实数,并建立了完整的实数理论[5],为数学分析的发展奠定了基础。再者,第一次数学危机表明,直觉和经验不一定靠得住,推理证明才是可靠的,从此希腊人开始重视演绎推理,并由此建立了几何公理体系。欧氏几何就是人们为了消除矛盾,解除危机,在这时候应运而生的[6]。第一次数学危机极大地促进了几何学的发展,使几何学在此后两千年间成为几乎是全部严密数学的基础,这不能不说是数学思想史上的一次巨大革命。 2贝克莱悖论与第二次数学危机1第二次数学危机的内容公元17世纪,牛顿和莱布尼兹创立了微积分,微积分能提示和解释许多自然现象,它在自然科学的理论研究和实际应用中的重要作用引起人们高度的重视。然而,因为微积分才刚刚建立起来,这时的微积分只有方法,没有严密的理论作为基础,许多地方存在漏洞,还不能自圆其说。例如牛顿当时是这样求函数y=xn的导数的[7]:(x+△x)n=xn+n•xn-1•△x+[n(n+1)/2]•xn-2•(△x)2+……+(△x)n,然后用自变量的增量△x除以函数的增量△y ,△y/△x=[(x+△x)n-xn ]/△x=n•xn-1+[n(n-1)/2] •xn-2•△x+……+n•x•(△x)n-2+(△x)n-1,最后,扔掉其中含有无穷小量△x的项,即得函数y=xn的导数为y′=nxn-1。对于牛顿对导数求导过程的论述,哲学家贝克莱很快发现了其中的问题,他一针见血的指出:先用△x为除数除以△y,说明△x不等于零,而后又扔掉含有△x的项,则又说明△x等于零,这岂不是自相矛盾吗?因此贝克莱嘲弄无穷小是“逝去的量的鬼魂”,他认为微积分是依靠双重的错误得到了正确的结果,说微积分的推导是“分明的诡辩”。[8]这就是著名的“贝克莱悖论”。确实,这种在同一问题的讨论中,将所谓的无穷小量有时作为0,有时又异于0的做法,不得不让人怀疑。无穷小量究竟是不是零?无穷小及其分析是否合理?贝克莱悖论的出现危及到了微积分的基础,引起了数学界长达两个多世纪的论战,从而形成了数学发展史中的第二次危机。2第二次数学危机的影响[8]第二次数学危机的出现,迫使数学家们不得不认真对待无穷小量△x,为了克服由此引起思维上的混乱,解决这一危机,无数人投入大量的劳动。在初期,经过欧拉、拉格朗日等人的努力,微积分取得了一些进展;从19世纪开始为彻底解决微积分的基础问题,柯西、外尔斯特拉斯等人进行了微积分理论的严格化工作。微积分内在的根本矛盾,就是怎样用数学的和逻辑的方法来表现无穷小,从而表现与无穷小紧密相关的微积分的本质。在解决使无穷小数学化的问题上,出现了罗比达公理:一个量增加或减少与之相比是无穷小的另一个量,则可认为它保持不变。而柯西采用的ε-δ方法刻画无穷小,把无穷小定义为以0为极限的变量,沿用到今,无穷小被极限代替了。后来外尔斯特拉斯又把它明确化,给出了极限的严格定义,建立了极限理论,这样就使微积分建立在极限基础之上了。极限的ε-δ定义就是用静态的ε-δ刻画动态极限,用有限量来描述无限性过程,它是从有限到无限的桥梁和路标,它表现了有限与无限的关系,使微积分朝科学化、数学化前进了一大步。极限理论的建立加速了微积分的发展,它不仅在数学上,而且在认识论上也有重大的意义。后来在考查极限理论的基础中,经过代德金、康托尔、海涅、外尔斯特拉斯和巴门赫等人的努力,产生了实数理论;在考查实数理论的基础时,康托尔又创立了集合论。这样有了极限理论、实数理论和集合论三大理论后,微积分才算建立在比较稳固和完美的基础之上了,从而结束了二百多年的纷乱争论局面,进而开辟了下一个世纪的函数论的发展道路。3罗素悖论与第三次数学危机1第三次数学危机的内容在前两次数学危机解决后不到30年即19世纪70年代,德国数学家康托尔创立了集合论,集合论是数学上最具革命性的理论,初衷是为整个数学大厦奠定坚实的基础。1900年,在巴黎召开的国际数学家会议上,法国大数学家庞加莱兴奋的宣布[9]:“我们可以说,现在数学已经达到了绝对的严格。”然而,正当人们为集合论的诞生而欢欣鼓舞之时,一串串数学悖论却冒了出来,又搅得数学家心里忐忑不安,其中英国数学家罗素1902年提出的悖论影响最大,“罗素悖论”的内容是这样的:设集合B是一切不以自身为元素的集合所组成的集合,问:B是否属于B?若B属于B,则B是B的元素,于是B不属于自身,即B不属于B;反之,若B不属于B,则B不是B的元素,于是B属于自己,即B属于B。这样,利用集合的概念,罗素导出了——集合B不属于B当且仅当集合B属于B时成立的悖论。之后,罗素本人还提出了罗素悖论的通俗版本,即理发师悖论[10]。理发师宣布了这样一条原则:他只为村子里不给自己刮胡子的人刮胡子。那么现在的问题是,理发师的胡子应该由谁来刮?。如果他自己给自己刮胡子,那么他就是村子里给自己刮胡子的人,根据他的原则,他就不应给自己刮胡子;如果他不给自己刮胡子,那么他就是村子里不给自己刮胡子的人,那么又按他的原则他就该为自己刮胡子。同样有产生了这样的悖论:理发师给自己刮胡子当且仅当理发师不给自己刮胡子。这就是历史上著名的罗素悖论。罗素悖论的出现,动摇了数学的基础,震撼了整个数学界,导致了第三次数学危机。2第三次数学危机的影响罗素悖论的出现,动摇了本来作为整个数学大厦的基础——集合论,自然引起人们对数学基本结构有效性的怀疑。罗素悖论的高明之处,还在于它只是用了集合的概念本身,而并不涉及其它概念而得出来的,使人们更是无从下手解决。罗素悖论导致的第三次数学危机,使数学家们面临着极大的困难。数学家弗雷格在他刚要出版的《论数学基础》卷二末尾就写道[11]:“对一位科学家来说,没有一件比下列事实更令人扫兴:当他工作刚刚完成的时候,它的一块基石崩塌下来了。在本书的印刷快要完成时,罗素先生给我的一封信就使我陷入这种境地。”可见第三次数学危机使人们面临多么尴尬的境地。然而科学面前没有人会回避,数学家们立即投入到了消除悖论的工作中,值得庆幸的是,产生罗素悖论的根源很快被找到了,原来康托尔提出集合论时对“集合”的概念没有做必要的限制,以至于可以构造“一切集合的集体”这种过大的集合而产生了悖论。为了从根本上消除集合论中出现的各种悖论,特别是罗素悖论,许多数学家进行了不懈的努力。如以罗素为主要代表的逻辑主义学派[12],提出了类型论以及后来的曲折理论、限制大小理论、非类理论和分支理论,这些理论都对消除悖论起到了一定的作用;而最重要的是德国数学家策梅罗提出的集合论的公理化,策梅罗认为,适当的公理体系可以限制集合的概念,从逻辑上保证集合的纯粹性,他首次提出了集合论公理系统,后经费兰克尔、冯•诺伊曼等人的补充形成了一个完整的集合论公理体系(ZFC系统)[5],在ZFC系统中,“集合”和“属于”是两个不加定义的原始概念,另外还有十条公理。ZFC系统的建立,使各种矛盾得到回避,从而消除了罗素悖论为代表的一系列集合悖论,第三次数学危机也随之销声匿迹了。尽管悖论消除了,但数学的确定性却在一步一步丧失,现代公理集合论一大堆公理是在很难说孰真孰假,可是又不能把它们一古脑消除掉,它们跟整个数学是血肉相连的,所以第三次危机表面上解决了,实质上更深刻地以其它形式延续[7]。为了消除第三次数学危机,数理逻辑也取得了很大发展,证明论、模型论和递归论相继诞生,出现了数学基础理论、类型论和多值逻辑等。可以说第三次数学危机大大促进了数学基础研究及数理逻辑的现代性,而且也因此直接造成了数学哲学研究的“黄金时代”。4结语历史上的三次数学危机,给人们带来了极大的麻烦,危机的产生使人们认识到了现有理论的缺陷,科学中悖论的产生常常预示着人类的认识将进入一个新阶段,所以悖论是科学发展的产物,又是科学发展源泉之一。第一次数学危机使人们发现无理数,建立了完整的实数理论,欧氏几何也应运而生并建立了几何公理体系;第二次数学危机的出现,直接导致了极限理论、实数理论和集合论三大理论的产生和完善,使微积分建立在稳固且完美的基础之上;第三次数学危机,使集合论成为一个完整的集合论公理体系(ZFC系统),促进了数学基础研究及数理逻辑的现代性。数学发展的历史表明对数学基础的深入研究、悖论的出现和危机的相对解决有着十分密切的关系,每一次危机的消除都会给数学带来许多新内容、新认识,甚至是革命性的变化,使数学体系达到新的和谐,数学理论得到进一步深化和发展。悖论的存在反映了数学概念、原理在一定历史阶段会存在很多矛盾,导致人们的怀疑,产生危机感,然而事物就是在不断产生矛盾和解决矛盾中逐渐发展完善起来的,旧的矛盾解决了,新的矛盾还会产生,而就是在其过程中,人们便不断积累了新的认识、新的知识,发展了新的理论。数学家对悖论的研究和解决促进了数学的繁荣和发展,数学中悖论的产生和危机的出现,不单是给数学带来麻烦和失望,更重要的是给数学的发展带来新的生机和希望。数学中悖论和危机的历史也说明了这一点:已有的悖论和危机消除了,又产生新的悖论和危机。但是人的认识是发展的,悖论或危机迟早都能获得解决。“产生悖论和危机,然后努力解决它们,而后又产生新的悖论和危机。”这是一个无穷反复的过程,也就不断推动着数学的发展,这个过程也是数学思想获得重要发展的过程。参考文献:[1] 师琼,王保红悖论及其意义[J]中共山西省委党校学报,2005,28(4):76~[2] 赵院娥,乔淑莉悖论及其对数学发展的影响[J]延安大学学报(自然科学版),2004,2(1):21~[3] 李春兰试论数学史上的第一次危机及其影响[J]内蒙古师范大学学报(教育科学版),2006,19(1):88~[4] 梁伟试析悖论与数学史上三次危机及其方法论意义[J]科技资讯,2005,(27):187~[5] 王方汉历史上的三次数学危机[J]数学通报,2002,(5):42~[6] 胡作玄第三次数学危机[M]四川:四川人民出版社,1985,1~[7] 黄燕玲,代贤军悖论对数学发展的影响[J]河池师专学报,2003, 23(4):62~ [8] 周勇第2次数学危机的影响和启示[J]数学通讯,2005,(13):[9] 王庚数学怪论[A]数学文化与数学教育——数学文化报告集[C]北京:科学出版社,13~[10] 兰林世三次数学危机与悖论[J]集宁师专学报,2003,25(4):47~[11] 王风春数学史上的三次危机[J]上海中学数学,2004,(6):42~[12] 张怀德数学危机与数学发展[J]甘肃高师学报,2004,9(2):60~

语文培训专家组情况介绍湘版新课程实验教材语文学科培训专家组共9人,其中教材主编2人,占培训专家总人数的23%;编委7人,占培训专家总人数的77%。具体构成如下:教材主编:杨再隋、李少白教材编委:曾果伟、李庄、余宪、皮朝晖、米仁顺、陶佳喜、罗佳鑫教材主编简介:杨再隋:华中师范大学教授,教育部师范司继续教育教材特聘评审专家,全国语文继续教育研究会副理事长,全国小语会学术委员会副主任。进15年来,参与《小学语文教学大纲》(1987、1992年)的修订和审查工作,参与多套小学语文教材的审查工作。在《学科教育》、《光明日报》等报刊上发表《切实打好基础全面提高素质》(1992年小学语文教学大纲审查意见)、《小学语文教材建设亟待加强》、《面向二十一世纪的小学语文教材建设》等有关论文,著有《小学语文求索集》、《语文教学探新》、《当代中国作文教学风格》等书,主编《中国著名特级教师教学思想录》(小学语文卷)、《小学语文教育学》、《语文课程建设的理论与实践》等。李少白:著名儿童文学家,诗人,中国作家协会会员,国家一级作家,曾任长沙市文联主席。已出版儿童诗集10本、童话故事集11本、社科读物10多本、影视文学3部(20余集)。作品曾获“全国优秀少儿读物奖”“中宣部全国五个一工程奖”“冰心图书奖”等奖项40余次。李庄:中学高级教师,特级教师,长沙市小语会理事长,长沙市雨花区教研中心教研员。曾获全国第一届阅读教学竞赛一等奖,“华天奖”,被评为“湖南优秀教师。”余宪:中学高级教师,特级教师,湖南省优秀教师。中国小学语文教学专业委员会理事,湖南省小学语文教学专业委员会理事长。主持多项教改实验,语文阅读和作文课堂教学曾多次荣获国家奖。撰写教育教学论文20多篇,其中《浅谈小学作文教学与思维训练》等三篇论文获国家级奖。皮朝晖:儿童文学家,中国作家协会会员,二级作家。曾获第三、第四届全国优秀少儿读物奖、冰心儿童文学图书奖等10多次省级、国家级文学奖,创作出版过10本儿童文学作品。现任职于湖南教育报刊社。米仁顺:教材作者,湖南省教科院基础教育研究所语文室副主任,湖南省小语会副理事长。陶佳喜:教材作者,华中师范大学附小高级教师。罗佳鑫:教材作者,湖南教育出版社小学语文室主任。数学培训专家组情况介绍湘版新课程实验教数学学科培训专家组共24人,其中教材主编13人,占培训专家总人数的2%;编委9人,占培训专家总人数的5%;外省专家2人,占培训专家总人数的3%。具体构成如下:教材主编:张景中、郑志明、李尚志、王树禾、查建国、何书元、朱华伟、徐明曜、王长平、文志英、蒋星耀、丘维声、严士健教材编委:袁宏喜、张华、肖果能、沈文选、罗培基、周大明、李求来、孟实华、沈文选外省专家:李尚志、赵贺芳教材主编简介张景中:中国科学院院士。中科院成都计算机应用研究所副所长及名誉所长,广州大学教育软件研究所所长。中国数学会理事,中国计算机学会理事,中国科普作家协会理事长,中国高等教育学会教育数学专业委员会理事长。郑志明:毕业于哈佛大学,现任北京航空航天大学副校长,北京数学会秘书长,是教育部数学高考命题组成员之一。李尚志:北京航空航天大学理学院院长,博士生导师。中国培养的首批18位博士之一,国务院学位委员会数学学科评议组成员。教育部高等学校数学与统计学教学指导委员会委员,非数学类专业数学基础课程教学分委员会副主任。中国数学会理事,中国工业与应用数学学会理事。2003年教育部授予的首届“高等学校国家级教学名师奖”100名获奖者之一。王树禾:中国科技大学教授,博士生导师。出版了《微分方程与混沌》、《图论》、《经济与管理科学的数学模型》、《离散数学引论》、《数学思想史》、《数学聊斋》等著作19种。曾获中国科学院优秀教学成果一等奖,和国家级教学成果二等奖等奖项。查建国:上海同济大学教授,博士生导师。在科研工作方面,同中国科技大学李尚志教授合作,科研项目“李型单群的子群体系”获1984年中国科学院优秀科技成果二等奖,一直承担国家自然科学基金项目的研究工作,迄今为止,在国内外各级学术刊物上发表论文20余篇,著作多本。何书元:北京大学数学学院副院长,博士生导师。在时间序列,随机场,概率极限定理方面的工作中发表论文20篇。在不完全数据的统计分析方面的工作中发表论文16篇。98年获教育部科技进步三等奖。2002年获教育部优秀主干教授表彰。现主持国家自然科学重点基金项目“复杂数据的统计建模,推断及其应用”。朱华伟:广州大学软件所所长,中国数学奥林匹克教练、组委会副主任,中国数学奥林匹克珠海培训中心主任,全国华罗庚金杯赛主试委员会委员。徐明曜:北京大学教授,博士生导师。王长平:北京大学数学学院副院长,博士生导师,德国数学杂志ResultsinMathematics编委,中国数学会理事。文志英:清华大学数学系主任,博士生导师。蒋星耀:上海工业大学教授,曾发表论文30篇,担任《数学辞海》第一卷副主编兼布尔代数主编。地理培训专家组情况介绍湘版新课程实验教材地理学科培训专家组共40人,其中教材主编15人,占培训专家总人数的5%;编委8人,占培训专家总人数的5%;外地专家18人,占培训专家总人数的45%。具体构成如下:教材主编:朱翔、蔡运龙、汤建中、王缉慈、张亚南、范恩源、申玉铭、班武奇、段玉山、周跃云、夏志芳、李晖、刘春平、贺清云、周宏伟、陈德斌教材编委:仇奔波、刘易平、李光辉、汪文达、梁良梁、刘新民、胡茂永、宋城杰外省专家:尹恒、周顺彬、姚雁、孙宗宝、毛翔宇、汪际、喻金水、冯忠跃、李大明、郭彦强、董艳云、阚智、李智、刑继德、杨顺才、董彩霞、王黎、陈芸先教材主编简介朱翔:湖南师范大学资源与环境科学学院教授,教育部初、高中地理课程标准研制组核心成员,全国高等学校地理教学指导委员会委员,教育部国家考试中心兼职研究员,新课程地理高考考试大纲研制组组长,2001年度全国模范教师。《义务教育课程标准实验教科书·地理》(湖南教育出版社)主编。张亚南:教育部国家考试中心研究员、地理学科秘书,中国地理学会地理教育委员会委员,新课程地理高考考试大纲研制组成员,《义务教育课程标准实验教科书·地理》(湖南教育出版社)副主编。蔡运龙:北京大学资源环境学院首席科学家、教授、自然地理学专业博士生导师。中国地理学会副理事长,中国土地学会常务理事,全国综合自然地理学教学与科学研究会理事长,教育部国家考试中心兼职研究员。汤建中:华东师范大学西欧北美地理研究所前所长、教授、博士生导师。中国地理学会世界地理专业委员会主任,《世界地理研究》杂志主编,美国MSU高级访问学者。王缉慈:北京大学城市与区域规划系教授、博士生导师。中国地理学会经济地理专业委员会副主任,国际地理联合会工业地理专业委员会常务委员,教育部国家考试中心兼职研究员。段玉山:华东师范大学地理系副教授、博士,国家高中地理课程标准研制组核心成员,中国教育学会地理教学委员会副秘书长,教育部考试中心兼职研究员。班武奇:首都师范大学资源与旅游学院教授,长期从事中学地理教学与评价研究,教育部考试中心兼职研究员,新课程地理高考考试大纲研制组成员。夏志芳:华东师范大学课程与教学系教授,博士生导师,教育部初中、高中地理课程标准研制组核心成员,中国教育学会地理教学研究会常务理事,《地理教学》副主编。范恩源:天津师范大学继续教育学院院长、教授,长期从事中学地理教学与评价研究,教育部考试中心兼职研究员,新课程地理高考考试大纲研制组成员。申玉铭:首都师范大学资源与旅游学院教授,长期从事中学地理教学与评价研究,教育部考试中心兼职研究员。李晖:湖南师范大学资源环境科学学院土地科学系副教授,硕士生导师,中国地理教学研究会湖南省地理教学研究分会理事,湖南省土地科学学会理事。杜德斌:高中地理课程标准研制组核心成员,华东师范大学城市与经济系系主任。刘春平:湖南师范大学资源环境科学学院院长。贺清云:湖南师范大学资源环境科学学院教授。周宏伟:湖南师范大学资源环境科学学院教授、博士生导师。

‍‍读这本书我个人觉得,应该首重体会这些数学思想的提出,发展和应用。几年来,《古今数学思想》一直是我的枕边书,日日读,日日新,随着自己数学知识的增加,觉得这本书一定程度上,弥补了一些课堂教学在数学思想传播上的缺陷,对于学习数学是有帮助的。。可惜其中对于中国古代数学的发展那部分没有怎么叙说。我斗胆说一句话,读这本书,如果不动脑,不去仔细体会数学思想,仅当数学史看,那你必定会觉得其枯燥无味,而且读了也白读。‍‍

数形结合思想在小学数学中的应用论文

一、研究背景:数学是研究客观世界的空间形式与数量关系的科学,数是形的抽象概括,形是数的直观表现华罗庚先生指出,数缺形时少直观,形少数时难入微数形结合既是一个重要的数学思想,又是一种常用的数学方法数形结合在数学解题中有重要的指导意义,这种“数”与“形”的信息转换,相互渗透,即数量问题和图象性质是可以相互转化的,这不仅可以使一些题目的解决简捷明快,同时还可以大大开拓我们的解题思路,为研究和探求数学问题开辟了一条重要的途径长期以来,在教学中数学知识是一条明线,得到数学教师的重视;数学思想方法是一条暗线,容易被教师所忽视在我们的小学数学教学中,如果教师能有意识地运用数形结合思想来设计教学,那将非常有利于学生从不同的侧面加深对问题的认识和理解,提供解决问题的方法,也有利于培养学生将实际问题转化为数学问题的能力“数形结合”对教师来说是一种教学方法、教学策略,对学生来说是一种学习方法,如果长期渗透,运用恰当,则使学生形成良好的数学意识和思想,长期稳固地作用于学生的数学学习生涯中作为一线教师,如何系统的运用数形结合思想进行数学教学,是我们面临的一个极富实践价值的重要课题二、研究价值:1、通过组织、实施本课题的研究,提高教师对数形结合思想的理解,加深对教材中数形结合思想的分析能力能在平时的教学中,时刻注意渗透数形结合思想,提升教师自身的专业素养2、通过组织、实施本课题的研究,提升学生的思维水平,提高学生应用数形结合思想解决实际问题的能力,以适应未来社会发展的需要三、研究目标: 1、教师有意识地运用数形结合思想进行教学设计,化抽象为形象,创造性地开发课程资源,有效地提高课堂教学质量 2、研究“数形结合”在小学数学四至六年级领域中的应用,分阶段、有层次的渗透数形结合思想 3、通过“数形结合”有效地提高学生学习数学的兴趣,使数形结合成为学生重要的学习方法,能运用数形结合创造性地解决抽象的数学问题在不断地“探索”与“创造”中构建属于个人的数学思想四、概念界定:1、数形结合:“数”和“形”是数学中两个最基本的概念,“数”,属于数学抽象思维范畴,是人的左脑思维的产物;而“形”主要指几何图形,属于形象思维范畴,是人的右脑思维的产物它们既是对立的,又是统一的,每一个几何图形中都蕴含着与它们的形状、大小、位置密切相关的数量关系;反之,数量关系又常常可以通过几何图形做出直观地反映和描述数形结合的实质就是将抽象的数学语言与直观的图形结合起来,使抽象思维和形象思维结合起来,化难为易,化抽象为直观.使人充分运用左、右脑的思维功能,相互依存、彼此激发,全面、协调、深入发展人的思维能力2、数形结合思想:所谓数形结合思想,其实质是将抽象的数学语言与直观的图像结合起来,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想,是一种可使复杂问题简单化、抽象问题具体化的常用的数学思想方法主要有以下几种解题思路:(1)以“数”变“形”;(2)以“形”变“数”;(3)“形”“数”互变“渗透”指某种思想方法在某个实践过程中逐渐的渗入利用,这里主要指在小学数学课堂教学中逐步渗透数形结合思想方法五、研究内容:1、数形结合思想在“数与代数”知识领域中的应用2、数形结合思想在“空间与图形”知识领域中的应用3、数形结合思想在“统计与概率”知识领域中的应用4、数形结合思想在“实践与综合运用”知识领域中的应用六、研究思路:1、学习查找相关理论资料;2、开始分年级教师进行具体研究;3、在具体的实践中进一步完善研究内容和研究措施;4、最后对研究效果进行提升,形成课题成果报告七、研究方法:调查法:调查当前小学数学教师对数形结合思想在教学中渗透的认识,调查当前学生对数形结合思想来解题的认识状态2、文献研究法:收集、学习、整理有关渗透数学思想方法以及数形结合思想的相关文献资料并加以分析,以供实验研究3、案例研究法:选择不同领域的教学内容(数与代数、空间与图形、统计与概率、实践与综合运用)中的素材,作为案例进行分析研究,寻求在不同数学学习领域中有效渗透数形结合思想的途径与模式4、经验总结法:把实验过程中积累的经验加以总结、归纳并在实验过程中加以论证

相关如下:1、数形结合思想方法在“数与代数”知识领域中的渗透与应用。2、数形结合思想方法在“图形与几何”知识领域中的渗透与应用。3、数形结合思想方法在“统计与概率”知识领域中的渗透与应用。4、数形结合思想方法在“综合与实践”知识领域中的渗透与应用。相关介绍:数形结合思想就是通过数和形之间的对应关系和互相转化来解决问题的思想方法。数形结合既是一种重要的数学思想,又是-种常用的数学方法,在小学数学教学与解决问题中广泛应用,包含“以形助数”和“以数解形”两个方面:前者借助形的直观性来阐明抽象的数之间的关系;后者是利用数的精确性、规范性与严密性来阐明形的某些属性。数形结合思想方法使数与形两种信息互相转换并且优势互补,从而能够将复杂的问题简单化,抽象的问题具体化。

相关百科
热门百科
首页
发表服务