学术论文百科

论文传感器在智慧车站的应用实例分析

发布时间:2024-07-04 23:00:19

论文传感器在智慧车站的应用实例分析

首先,要写出汽车有哪些传感器,然后写公用,测量方法及位置。如果某个传感器坏了,会对汽车带来哪些故障,怎么排除故障。你都要知道。按照你所学的,所知道的去写。

接近传感器在火车铁轨上的应用: 为了解决火车的安全性问题,需要用传感器来检验列车车轮是否经过,从而显示车辆位置。接近传感器是一种用来“感知”物体接近的元件,利用磁感应原理,将距离物理量转化为电信号。将接近传感器卡在铁轨上,当车轮经过传感器上方时,传感器感应出输出信号霍尼韦尔接近传感器设计用来满足要求条件很高的温度、振动、震动和电磁干扰/电磁脉冲(EMI/EMP)接口检测规范要求。霍尼韦尔接近传感器在航空、军械、海洋、以及离岸设备中有很多潜在应用相关方案 : 倾角传感器在轨距尺上的应用:倾角传感器在轨距尺上的应用:轨道道岔电子检测尺及管理系统 新一代轨道道子检测尺及管统,吸取国外先术及进口的高传感器集成电术和计算机数技术,用科技手段提升铁路线路检测的科学性、可靠性和应效率,该系统超高测量精度:±0°(即在1435mm标准轨距下线路超高理论精度为±24mm)、轨距测量理论精度:±05能实现自动检测、自动存储、查询、打印输出,弥补了旧式水准泡平尺读数费时、测量结果性和人为误差的缺点。对测量工作实施有效的管理,杜绝漏测、误测发生。主要功能 本系统主要用于对路轨的超高及轨距测量,可以测量标准轨距未1435的路轨的轨距、超高及道岔的测量。并可连续保存通过与计算机数据通讯后,可在计算机上用专用软件查询分析所有测量数据,并可打印报表。主要由处理器、水平传感器、位移传感器组成相关方案: 倾角传感器在铁路铁轨上的应用:轨检仪——目前的轨道测量方式智能程度差,测量精度低,操作时间长,迫切需要设计一种适用于一般使用的便携式智能化轨道检测仪倾角传感器用于轨检仪,用于实时检测铁道的倾斜度和高度差。输电线铁塔倾斜智能监测——输电线铁塔的倒塌事件时有发生,一旦发生倒塌,将会造成巨大的损失,倾角传感器应用于输电线铁塔倾斜角度监测,可以实时监测输电线倾斜角度,一旦因为大风等自然灾害导致倾斜角度过大,实时发出预警信号,由工作人员维修减少损失。倾角传感器可以用来测量相对于水平面的倾角变化量。相关方案:-0001,0044-shtml

1、氧传感器:当氧传感器故障时,ECU无法获取这些信息,就不知道喷射的汽油量是否正确,而不合适的油气空燃比会导致发动机功率降低,增加排放污染;2、轮速传感器:它主要是收集汽车的转速来判断汽车有没有打滑的征兆,所以,就有一一个专门收集汽车轮速的传感器来完成这项工作,一般安装在每个车轮的轮毂上,而一旦传感器损坏,ABS会失效;3、水温传感器:当水温传感器故障后,往往冷车启动时显示的还是热车时的温度信号,ECU得不到正确的信号,只能供给发动机较稀薄的混合气,所以发动机冷车不易启动,且还会伴随怠速运转不稳定,加速动力不足的问题;4、电子油门踏板位置传感器:当传感器失效后,ECU无法测得油门位置信号,无法获得油门门踏板的正确位置,所以会出现发动机加速无力的现象,甚至出现发动机不能加速的情况;5、进气压力传感器:进气压力传感器顾名思义就是随着发动机不同的转速负荷,感应一系列的电阻和压力变化,转换成电压信号,供ECU修正喷油量和点火正时角度。一般安装在节气门边上,假如故障了会引起点火困难、怠速不稳、加速无力等问题。

论文传感器在智慧车站的应用实例

汽车应用相关的传感器除光照度、图像传感器和主动探测的超声波、微波、毫米波雷达外,还包括压力、液位、流量、位置、高度、距离、速度、转速、转矩、加速度、温度、湿度、气体浓度等传感器,以及适合汽车总线的CAN总线式智能传感器。霍尼韦尔公司汽车电子部工程师陈阳表示,业界正在应用非接触的位置测量、磁阻、磁变、霍尔效应、显微加工的硅芯片、热覆膜、Piezo陶瓷等技术方式,采用通用化、标准化的设计理念来提供切合市场需求的汽车传感器。 各种各样的产品已经深刻地融入到汽车的各个功能系统,包括发动机管理系统、底盘与传动系统、安全系统、车身电子系统、空调环境系统等等。从汽车传感器的发展趋势来看,它将不仅仅局限在发动机管理系统,而是越来越多地与环境保护、安全和智能化联系在一起。未来几年,汽车引擎和驱动部分的应用仍然是智能传感器的最大应用领域,虽然其增长趋势将没有其它应用那么明显;尾气排放控制传感器的需求的增长前景仍然被看好,世界各国有关汽车尾气排放限制的法规逐渐严格,这将大力推动排放控制传感器市场的增长。 此外,随着汽车安全技术的重心正由被动安全转向主动安全,安全应用将是一个有着巨大增长潜力的市场。据Du Pont Automotive的一项调查结果显示,对于汽车消费者来说,安全至上,其重要性排在性能、娱乐功能和燃油效率之上。政府的直接推动和影响是汽车安全应用得以快速发展的一个主要原因。例如,对于轮胎压力监测来说,根据联邦汽车安全标准138 (FMVSS138),美国正在执行强制规定,要求为美国市场生产的汽车必须在2007年以前100%安装直接胎压监测解决方案。 中国政府目前也在考虑强制重型车辆配备ABS系统,以改善道路安全状况。虽然目前中国没有要求采用胎压监测系统(TPMS)的相关规定,但这种应用也出现了增长的趋势。对此,飞思卡尔半导体公司亚太区汽车电子总监杨飞评论说:“轮胎压力传感器只是其中的一个例子。我们将看到安全和保安领域将有越来越多的应用,能够使汽车自行变得更加安全、更加舒适和更有效率。”英飞凌科技亚太(私人)有限公司汽车与工业电子市场部高级经理蔡志雄也强调,现代汽车必须采用更多的传感器,以提高智能化程度。他还坚信,安全应用将是关键的增长领域之一。 市场调研公司Strategy Analytics预计,汽车半导体市场在2008年以前的平均增长速度为2%,到2008年将由2003年的139亿美元增长到215亿美元。中国是其中的关键增长动力之一,增长速度最快。飞思卡尔的杨飞指出,作为一个发展中的市场,中国的多数汽车配置都非常基本,但随着中国经济的迅速增长,以及客户对于安全问题的日益重视,市场将需要更多的功能强大的汽车。他说:“因此我们可以预见,一方面半导体增长将因汽车产量增长而倍增;另一方面,客户对于汽车安全功能的期望越来越高,将为中国汽车传感器市场创造出巨大的潜力。”陈阳也透露,中国是霍尼韦尔汽车传感器增长速度最快的市场,该公司的汽车电子部门正在为不同车型定制各种各样的解决方案。 层出不穷的新型智能安全方案 在业界厂商以构建最高级别的安全驾乘环境为最终目的的技术竞赛中,各种新兴的安全系统解决方案争奇斗艳、层出不穷,可以说“没有做不到,只有想不到”。可以预见,将来最先进的智能传感系统将使汽车拥有像人类“第六感”一样的高度智慧和神奇,从而将汽车的安全性能提高到一个前所未有的高度。从目前看来,正在逐渐开始被导入高档轿车的智能传感器系统有: 酒精检测MEMS系统:如意法半导体的新型信号处理电路集成酒精传感器,该酒精传感器采用二氧化锡MEMS元件可根据环境中的氧气浓度吸附氧气并使得电阻值改变的特性。正常状况下,元件在吸附空气中的氧气后会保持某个电阻值不发生变化,而一旦空气中含有酒精,元件表面的氧元素便会与酒精发生反应,使电阻值下降。通过测定电阻值,便可检测出呼气中含有的酒精浓度。酒精检测MEMS传感器将可以植入在直径8mm的密封外壳内、连同信号处理电路等一起嵌入方向盘内,一旦检测出驾驶员呼出的气体含有酒精,便发出安全警报。 自动雨刷系统:以发光二极管对前挡风玻璃发出光束,当雨滴打在感应区的玻璃上时,光束所反射的光线强度,会因玻璃上的雨量或湿气含量而有所变化,改变雨刷的刷动频率;或透过红外线电子雨量传感器感应雨量的多寡,并随车速的变化自动调整雨刷速度,增进驾驶人的驾驶方便性,让驾驶更有安全性。 电子式自动照明系统:电子式感应头灯可透过车外的光线明暗感应器自动监测外界的光线,在天色有变化或是进入山洞时,电子式感应器将头灯自动打开,减少驾驶人操作的时间,增加行车安全性。 胎压监测系统:在每个轮胎上安装高灵敏度的传感器,于行车状态下随时监测轮胎状况,并透过传感器以无线方式发射到接收器,让驾驶人能随时掌握漏气与温度升高等轮胎状况,以确保汽车行驶中的安全,并延长轮胎的使用寿命与降低燃油的消耗。最先进的直接轮胎压力监测解决方案的特点包括高级预警系统和压力、温度、电压和动作探测等。 安全气囊触发系统:如飞思卡尔推出的卫星加速度传感器,可扩展到整个汽车周围以探测碰撞。通过加速度传感器与SmartMOS技术集成,专门用于探测碰撞和触发汽车正面和侧面的安全气囊。一个集成式器件提供加速度探测、电压调节、MCU功能和有线通讯协议。飞思卡尔提供种类众多的加速度传感器,从5g到250g,覆盖X、XY、XYZ和Z轴方向。 据杨飞介绍,目前还正在出现一种趋势,而且预计它将在未来几年扩散,有关机构将要求采用汽车动态控制(VDC)系统,也被称作“电子稳定控制(ESC)系统”。他说,目前这种系统是高档汽车的一个标准配置,但将继续向更多的车款扩散。“稳定控制系统尤其令SUV运动休闲车受益,因为这种车重心较高,更容易发生侧翻。”此外,随着图像传感和处理技术的发展,还有更多的用于道路分离报警和引导、司机睡意探测、道路障碍传感、智能气囊部署、盲点探测等基于传感器的智能系统将逐渐进入新一代的汽车应用中。 智能传感器的技术要求 汽车应用通常被视为最困难的领域之一,因为它具有极端的工作温度范围和强烈的机械振动。汽车电子操控系统的动作必须快速、正确、可靠,传统通过分立电子元器件搭建的电路监测控制系统已经不能满足现代汽车的要求,需要通过硬件集成、直接交换数据和简化电路,并提高智能化程度来确保控制单元动作的正确性、可靠性和适时性。而且现在几乎所有的汽车的机械结构部件都已受电子装置控制,但汽车车体内的空间有限,构件系统的空间更是极其有限。理想的情况是,电子感应、控制单元应与受控制部件紧密结合,形成一个整体,这就要求新一代传感器件和控制电路尽可能地微型化、集成化。 汽车的各种功能部件都有各自的运动、操控特性,对汽车传感器而言,大多处于非常恶劣的运行环境中,而且各不相同。诸如工作状态时的高温,静止待命时的低温,高浓度的油蒸汽和活性(毒性)气体,以及高速运动和高强度的冲击和振动等。因此,传感器和电路必须要有高稳定、抗环境干扰和自适应、自补偿调整的能力。据霍尼韦尔的陈阳介绍,汽车传感器在出厂之前要经过高低温存放、恒定湿热、热冲击、泥浆喷溅、盐水喷溅、振动和电磁干扰等严格测试,确保产品性能不受周围环境的影响。 与上述要求同样重要甚至更关键的一个条件是,汽车电子用的电子元器件、模块必须要能大规模工业生产,并能将成本降低到可接受的程度。新一代智能传感器就是这方面的典范。例如智能加速度传感器,它不仅能较好地满足现代汽车的各项需要,而且因为可以在集成电路标准硅工艺线上批量生产,生产成本较低,所以在汽车工业中找到了自己最大的应用市场,反过来也有力地促进了汽车产品的智能化

我靠,一个曲轴位置传感器,写一万字?你不会是让写制造应用技术吧~!那就不是论文了~!成制造原理了

1、氧传感器:当氧传感器故障时,ECU无法获取这些信息,就不知道喷射的汽油量是否正确,而不合适的油气空燃比会导致发动机功率降低,增加排放污染;2、轮速传感器:它主要是收集汽车的转速来判断汽车有没有打滑的征兆,所以,就有一一个专门收集汽车轮速的传感器来完成这项工作,一般安装在每个车轮的轮毂上,而一旦传感器损坏,ABS会失效;3、水温传感器:当水温传感器故障后,往往冷车启动时显示的还是热车时的温度信号,ECU得不到正确的信号,只能供给发动机较稀薄的混合气,所以发动机冷车不易启动,且还会伴随怠速运转不稳定,加速动力不足的问题;4、电子油门踏板位置传感器:当传感器失效后,ECU无法测得油门位置信号,无法获得油门门踏板的正确位置,所以会出现发动机加速无力的现象,甚至出现发动机不能加速的情况;5、进气压力传感器:进气压力传感器顾名思义就是随着发动机不同的转速负荷,感应一系列的电阻和压力变化,转换成电压信号,供ECU修正喷油量和点火正时角度。一般安装在节气门边上,假如故障了会引起点火困难、怠速不稳、加速无力等问题。

安徽工贸职业技术学院毕业设计(论文) 7 在一个封装中,把一只微机械压力传感器与模拟用户接口、8位模-数转换器(SAR)、微处理器(摩托罗拉69HC08)、存储器和串行接口 (SPI)等集成在一个芯片上。其前端的硅压力传感器是采用体硅微细加工技术制作的。制备硅压力传感器的工序既可安排在集成 CMOS 电路工艺流程之前,亦可在后。这种智能压力传感器的技术和市场都已成熟,已广泛用于汽车(机动车)所需的各式各样的压力测量和控制单元中,诸如各种气压计、喷嘴前集流腔压力、废气排气管、燃油、轮胎、液压传动装置等。智能压力传感器的应用很广,不局限于汽车工业。目前,生产智能压力传感器的厂商已不少,市售商品的品种也很多,已经出现激烈的竞争。结果是智能压力传感器体积越来越小,随之控制单元所需的外围接插件和分立元件越来越少,但功能和性能却越来越强,而且生产成本降低很快(现在约为几美元一只)。 顺便需要说说的是,在一些中文资料中,尤其是一些产品宣传性材料中,笼统地将Smart Sensor(或device)和Intelligent sensor(或device)都称之为智能传感器,但在欧美文献中是有所差别的。西方专家和公众通常认为,Smart(智能型)传感器比Intelligent(知识型)的智慧层次和能力更高。当然,知识型的内涵也在不断进化,但那些只能简单响应环境变化,作一些相应补偿、调整工作状态的,特别是不需要集成处理器的器件,其知识等级太低,一般不应归入智能器件范畴。 相信大多数读者能经常接触到的,最贴近生活的智能传感器可能要算是用于摄像头、数码相机、摄像机、手机摄像中的CCD图像传感器了。这是一种非智能型传感器莫属的情况,因为CCD 阵列中每个硅单元由光转 换成的电信号极弱,必须直接和及时移位寄存、并处理转换成标准的图像格式信号。还有更复杂一些的,在中、高档长焦距(IOX)光学放大数码相机和摄像机上装备的电子和光学防抖系统,特别是高端产品中的真正光学防抖系统。它的核心是双轴向或3轴向的微加速度计或微陀螺仪,通过它监测机身的抖动,并换算成镜头的各轴向位移量,进而驱动镜头中可变角度透镜的移动,使光学系统的折射光路保持稳定。 微系统(Microsystem)和MEMS(微机电系统)——由微传感器、微电子学电路(信号处理、控制电路、通信接品等)和微执行器构成一个三级级联系统、集成在一个芯片上的器件称之为微系统。如果其中拥有机械联动或机械执行机构等微机械部件的器械则称之为MEMS。 微传感器合乎逻辑的发展延伸是智能传感器,智能传感器自然延伸则是微系统和MEMS,MEMS 的进一步发展则是能够自主接收、分辨外界信号和指令,进而能独立、正确动作的安徽工贸职业技术学院毕业设计(论文) 8 微机械(Micromachines)。现在,开发成功、并已有商业产品的MEMS品种已不少,涵盖图4所示的各大领域。其中包括全光光通信和全光计算机的关键部件之一的二维、三维MEMS光开关。 图3是一只二维8×8路MEMS光开关 通过控制芯片上的微反射镜阵列,实现光输入/输出的交叉互联。这是目前全光交换技术的成熟的最佳方案。市场上可买到的MEMS光开关已达1296路,开关转换时间约为20ms。 微机械(也称为纳米机械)则尚处于开发试验阶段,但已有许多很重要的实验室产品涌现,如著名的纳米电机、微昆虫、微直升机和潜水艇等。技术产业界普遍认为,它们的开发成功和投入实际应用将对工业技术和生活质量产生深远的影响。 安徽工贸职业技术学院毕业设计(论文) 9 结 论 通过这次毕业设计让我收获到了很多,首先,锻炼了我的耐力因为设计是环环相扣的,做设计时要特别的谨慎。 其次,通过这次毕业设计巩固了我的专业技术知识,锻炼了我综合运用专业基础知识解决实际问题的能力,同时也提高了我查阅文献资料、设计手册、设计规范以及电脑三维制图等其他专业能力水平,而且通过对整体的掌控,对局部的取舍,以及细节的斟酌处理,都使我的能力得到了锻炼,经验得到了丰富,并且意志力、抗压能力及耐性也都得到了不同程度的提升。这是我们都希望看到的,也是我们进行毕业设计的目的和最终归宿。 再者,由于在设计方面我们没有经验,理论知识学的不牢固,在设计中难免会出现这样那样的问题,如:在选择计算标准件是可能会出现误差,如果是联系紧密或者循序渐进的计算误差会更大,在查表和计算上精度不够准。 在设计的过程中还培养出了我们的团队精神,大家共同解决了许多个人无法解决的问题,在这些过程中我们深刻地认识到了自己在知识的理解和接受应用方面的不足,在今后的学习过程中我们会更加努力和团结。

论文传感器在智慧车站的应用实例简述

基于DDA物联网无线通讯技术的智慧停车整体解决方案,在智慧停车这一块,地磁感应有无车辆,物联网的发展要求更准确、更智能,更高效以及兼容性更强的传感器技术。

曲轴位置传感器工作原理如下: 曲轴传感器主要有三种类型:磁电感应式、霍尔效应式和光电式。三种类型的工作原理分别为:1、磁电感应式: 磁电感应式转速传感器和曲轴位置传感器分上、下两层安装在分电器内。传感器由永磁感应检测线圈和转子(正时转 子和转速转子)组成,转子随分电器轴一起旋转 正时转子有一、二或四个齿等多种形式转速转子为24个齿。永磁感应检测线圈固定在分电器体上。若已知转速传感器信号和曲轴位置传感器信号,以及各缸的工作顺序,就可知道各缸的曲轴位置。磁电感应式转速传感器和曲轴位置传感器的转子信号盘也可安装在曲轴或凸轮轴上。2、霍尔效应式: 霍尔效应式转速传感器和曲轴位置传感器是一种利用霍尔效应的信号发生器。霍尔信号发生器安装在分电器内,与分火头同轴,由封装的霍尔芯片和永久磁铁作成整体固定在分电器盘卜。触发叶轮H的缺体固定在分电器盘上。触发叶轮上的缺口数和发动机气缸数相同。当触发叶轮上的叶片进入永久磁铁与霍尔元件之间,霍尔触发器的磁场被叶片旁路,这时不产生霍尔电压,传感器无输出信号;当触发叶轮上的缺口部分进入永久磁铁和霍尔元件之间时,磁力线进入霍尔元件,霍尔电压升高,传感器输出电压信号。3、光电式:光电式曲轴位置传感器一般装在分电器内,由信号发生器和带光孔的信号盘组成。其信号盘与分电器轴光电式一起转动,信号盘外圈有360条光刻缝隙,产生曲轴转角1 °的信号;稍靠内有间隔60 °均布的6个光孔,产生曲轴转角120 °的信号,其中1个光孔较宽,用以产生相对于1缸上止点的信号。信号发生器安装在分电器壳体上 由二只发光二极管、二只光敏二极管和电路组成。发光二极管正对着光敏二=极管。信号盘位于发光二极管和光敏二极管之间,由于信号盘上有光孔,则产生透光和遮光交替变化现象。当发光二极管的光东遮光交替变化现象。当发光二极管的光束照到光敏二极管时,光敏二极管产生电压;当发光二极管光束被档住时,光敏二极管电压为0。这些电压信号经电路部分整形放大后,即向电子控制单元输送曲轴转角为1。和120时的信号,电子控制单元根据这些信号计算发动机转速和曲轴位置。曲轴位置传感器通常安装在分电器内,是控制系统中最重要的传感器之—。其作用有:检测发动机转速,因此又称为转速传感器;检测活塞上止点位置,故也称为上止点传感器,包括检测用于控制点火的各缸上止点信号、用于控制顺序喷油的第-缸上止点信号。

汽车应用相关的传感器除光照度、图像传感器和主动探测的超声波、微波、毫米波雷达外,还包括压力、液位、流量、位置、高度、距离、速度、转速、转矩、加速度、温度、湿度、气体浓度等传感器,以及适合汽车总线的CAN总线式智能传感器。霍尼韦尔公司汽车电子部工程师陈阳表示,业界正在应用非接触的位置测量、磁阻、磁变、霍尔效应、显微加工的硅芯片、热覆膜、Piezo陶瓷等技术方式,采用通用化、标准化的设计理念来提供切合市场需求的汽车传感器。 各种各样的产品已经深刻地融入到汽车的各个功能系统,包括发动机管理系统、底盘与传动系统、安全系统、车身电子系统、空调环境系统等等。从汽车传感器的发展趋势来看,它将不仅仅局限在发动机管理系统,而是越来越多地与环境保护、安全和智能化联系在一起。未来几年,汽车引擎和驱动部分的应用仍然是智能传感器的最大应用领域,虽然其增长趋势将没有其它应用那么明显;尾气排放控制传感器的需求的增长前景仍然被看好,世界各国有关汽车尾气排放限制的法规逐渐严格,这将大力推动排放控制传感器市场的增长。 此外,随着汽车安全技术的重心正由被动安全转向主动安全,安全应用将是一个有着巨大增长潜力的市场。据Du Pont Automotive的一项调查结果显示,对于汽车消费者来说,安全至上,其重要性排在性能、娱乐功能和燃油效率之上。政府的直接推动和影响是汽车安全应用得以快速发展的一个主要原因。例如,对于轮胎压力监测来说,根据联邦汽车安全标准138 (FMVSS138),美国正在执行强制规定,要求为美国市场生产的汽车必须在2007年以前100%安装直接胎压监测解决方案。 中国政府目前也在考虑强制重型车辆配备ABS系统,以改善道路安全状况。虽然目前中国没有要求采用胎压监测系统(TPMS)的相关规定,但这种应用也出现了增长的趋势。对此,飞思卡尔半导体公司亚太区汽车电子总监杨飞评论说:“轮胎压力传感器只是其中的一个例子。我们将看到安全和保安领域将有越来越多的应用,能够使汽车自行变得更加安全、更加舒适和更有效率。”英飞凌科技亚太(私人)有限公司汽车与工业电子市场部高级经理蔡志雄也强调,现代汽车必须采用更多的传感器,以提高智能化程度。他还坚信,安全应用将是关键的增长领域之一。 市场调研公司Strategy Analytics预计,汽车半导体市场在2008年以前的平均增长速度为2%,到2008年将由2003年的139亿美元增长到215亿美元。中国是其中的关键增长动力之一,增长速度最快。飞思卡尔的杨飞指出,作为一个发展中的市场,中国的多数汽车配置都非常基本,但随着中国经济的迅速增长,以及客户对于安全问题的日益重视,市场将需要更多的功能强大的汽车。他说:“因此我们可以预见,一方面半导体增长将因汽车产量增长而倍增;另一方面,客户对于汽车安全功能的期望越来越高,将为中国汽车传感器市场创造出巨大的潜力。”陈阳也透露,中国是霍尼韦尔汽车传感器增长速度最快的市场,该公司的汽车电子部门正在为不同车型定制各种各样的解决方案。 层出不穷的新型智能安全方案 在业界厂商以构建最高级别的安全驾乘环境为最终目的的技术竞赛中,各种新兴的安全系统解决方案争奇斗艳、层出不穷,可以说“没有做不到,只有想不到”。可以预见,将来最先进的智能传感系统将使汽车拥有像人类“第六感”一样的高度智慧和神奇,从而将汽车的安全性能提高到一个前所未有的高度。从目前看来,正在逐渐开始被导入高档轿车的智能传感器系统有: 酒精检测MEMS系统:如意法半导体的新型信号处理电路集成酒精传感器,该酒精传感器采用二氧化锡MEMS元件可根据环境中的氧气浓度吸附氧气并使得电阻值改变的特性。正常状况下,元件在吸附空气中的氧气后会保持某个电阻值不发生变化,而一旦空气中含有酒精,元件表面的氧元素便会与酒精发生反应,使电阻值下降。通过测定电阻值,便可检测出呼气中含有的酒精浓度。酒精检测MEMS传感器将可以植入在直径8mm的密封外壳内、连同信号处理电路等一起嵌入方向盘内,一旦检测出驾驶员呼出的气体含有酒精,便发出安全警报。 自动雨刷系统:以发光二极管对前挡风玻璃发出光束,当雨滴打在感应区的玻璃上时,光束所反射的光线强度,会因玻璃上的雨量或湿气含量而有所变化,改变雨刷的刷动频率;或透过红外线电子雨量传感器感应雨量的多寡,并随车速的变化自动调整雨刷速度,增进驾驶人的驾驶方便性,让驾驶更有安全性。 电子式自动照明系统:电子式感应头灯可透过车外的光线明暗感应器自动监测外界的光线,在天色有变化或是进入山洞时,电子式感应器将头灯自动打开,减少驾驶人操作的时间,增加行车安全性。 胎压监测系统:在每个轮胎上安装高灵敏度的传感器,于行车状态下随时监测轮胎状况,并透过传感器以无线方式发射到接收器,让驾驶人能随时掌握漏气与温度升高等轮胎状况,以确保汽车行驶中的安全,并延长轮胎的使用寿命与降低燃油的消耗。最先进的直接轮胎压力监测解决方案的特点包括高级预警系统和压力、温度、电压和动作探测等。 安全气囊触发系统:如飞思卡尔推出的卫星加速度传感器,可扩展到整个汽车周围以探测碰撞。通过加速度传感器与SmartMOS技术集成,专门用于探测碰撞和触发汽车正面和侧面的安全气囊。一个集成式器件提供加速度探测、电压调节、MCU功能和有线通讯协议。飞思卡尔提供种类众多的加速度传感器,从5g到250g,覆盖X、XY、XYZ和Z轴方向。 据杨飞介绍,目前还正在出现一种趋势,而且预计它将在未来几年扩散,有关机构将要求采用汽车动态控制(VDC)系统,也被称作“电子稳定控制(ESC)系统”。他说,目前这种系统是高档汽车的一个标准配置,但将继续向更多的车款扩散。“稳定控制系统尤其令SUV运动休闲车受益,因为这种车重心较高,更容易发生侧翻。”此外,随着图像传感和处理技术的发展,还有更多的用于道路分离报警和引导、司机睡意探测、道路障碍传感、智能气囊部署、盲点探测等基于传感器的智能系统将逐渐进入新一代的汽车应用中。 智能传感器的技术要求 汽车应用通常被视为最困难的领域之一,因为它具有极端的工作温度范围和强烈的机械振动。汽车电子操控系统的动作必须快速、正确、可靠,传统通过分立电子元器件搭建的电路监测控制系统已经不能满足现代汽车的要求,需要通过硬件集成、直接交换数据和简化电路,并提高智能化程度来确保控制单元动作的正确性、可靠性和适时性。而且现在几乎所有的汽车的机械结构部件都已受电子装置控制,但汽车车体内的空间有限,构件系统的空间更是极其有限。理想的情况是,电子感应、控制单元应与受控制部件紧密结合,形成一个整体,这就要求新一代传感器件和控制电路尽可能地微型化、集成化。 汽车的各种功能部件都有各自的运动、操控特性,对汽车传感器而言,大多处于非常恶劣的运行环境中,而且各不相同。诸如工作状态时的高温,静止待命时的低温,高浓度的油蒸汽和活性(毒性)气体,以及高速运动和高强度的冲击和振动等。因此,传感器和电路必须要有高稳定、抗环境干扰和自适应、自补偿调整的能力。据霍尼韦尔的陈阳介绍,汽车传感器在出厂之前要经过高低温存放、恒定湿热、热冲击、泥浆喷溅、盐水喷溅、振动和电磁干扰等严格测试,确保产品性能不受周围环境的影响。 与上述要求同样重要甚至更关键的一个条件是,汽车电子用的电子元器件、模块必须要能大规模工业生产,并能将成本降低到可接受的程度。新一代智能传感器就是这方面的典范。例如智能加速度传感器,它不仅能较好地满足现代汽车的各项需要,而且因为可以在集成电路标准硅工艺线上批量生产,生产成本较低,所以在汽车工业中找到了自己最大的应用市场,反过来也有力地促进了汽车产品的智能化

生物传感器的研究现状及应用摘要:简述了生物传感器尤其是微生物传感器近年来在发酵工业及环境监测领域中的研究与应用,对其发展前景及市场化作了预测及展望。生物电极是以固定化生物体组成作为分子识别元件的敏感材料,与氧电极、膜电极和燃料电极等构成生物传感器,在发酵工业、环境监测、食品监测、临床医学等方面得到广泛的应用。生物传感器专一性好、易操作、设备简单、测量快速准确、适用范围广。随着固定化技术的发展,生物传感器在市场上具有极强的竞争力。 关键词:生物传感器;发酵工业;环境监测。中图分类号:3 文献标识码:a 文章编号:1006-883x(2002)10-0001-06一、 引言 从1962年,clark和lyons最先提出生物传感器的设想距今已有40 年。生物传感器在发酵工艺、环境监测、食品工程、临床医学、军事及军事医学等方面得到了深度重视和广泛应用。在最初15年里,生物传感器主要是以研制酶电极制作的生物传感器为主,但是由于酶的价格昂贵并不够稳定,因此以酶作为敏感材料的传感器,其应用受到一定的限制。近些年来,微生物固定化技术的不断发展,产生了微生物电极。微生物电极以微生物活体作为分子识别元件,与酶电极相比有其独到之处。它可以克服价格昂贵、提取困难及不稳定等弱点。此外,还可以同时利用微生物体内的辅酶处理复杂反应。而目前,光纤生物传感器的应用也越来越广泛。而且随着聚合酶链式反应技术(pcr)的发展,应用pcr的dna生物传感器也越来越多。二、 研究现状及主要应用领域 1、 发酵工业各种生物传感器中,微生物传感器最适合发酵工业的测定。因为发酵过程中常存在对酶的干扰物质,并且发酵液往往不是清澈透明的,不适用于光谱等方法测定。而应用微生物传感器则极有可能消除干扰,并且不受发酵液混浊程度的限制。同时,由于发酵工业是大规模的生产,微生物传感器其成本低设备简单的特点使其具有极大的优势。(1) 原材料及代谢产物的测定微生物传感器可用于原材料如糖蜜、乙酸等的测定,代谢产物如头孢霉素、谷氨酸、甲酸、甲烷、醇类、青霉素、乳酸等的测定。测量的原理基本上都是用适合的微生物电极与氧电极组成,利用微生物的同化作用耗氧,通过测量氧电极电流的变化量来测量氧气的减少量,从而达到测量底物浓度的目的。在各种原材料中葡萄糖的测定对过程控制尤其重要,用荧光假单胞菌(psoudomonas fluorescens)代谢消耗葡萄糖的作用,通过氧电极进行检测,可以估计葡萄糖的浓度。这种微生物电极和葡萄糖酶电极型相比,测定结果是类似的,而微生物电极灵敏度高,重复实用性好,而且不必使用昂贵的葡萄糖酶。当乙酸用作碳源进行微生物培养时,乙酸含量高于某一浓度会抑制微生物的生长,因此需要在线测定。用固定化酵母(trichosporon brassicae),透气膜和氧电极组成的微生物传感器可以测定乙酸的浓度。此外,还有用大肠杆菌(li)组合二氧化碳气敏电极,可以构成测定谷氨酸的微生物传感器,将柠檬酸杆菌完整细胞固定化在胶原蛋白膜内,由细菌―胶原蛋白膜反应器和组合式玻璃电极构成的微生物传感器可应用于发酵液中头孢酶素的测定等等。(2) 微生物细胞总数的测定在发酵控制方面,一直需要直接测定细胞数目的简单而连续的方法。人们发现在阳极表面,细菌可以直接被氧化并产生电流。这种电化学系统已应用于细胞数目的测定,其结果与传统的菌斑计数法测细胞数是相同的[1]。(3) 代谢试验的鉴定传统的微生物代谢类型的鉴定都是根据微生物在某种培养基上的生长情况进行的。这些实验方法需要较长的培养时间和专门的技术。微生物对底物的同化作用可以通过其呼吸活性进行测定。用氧电极可以直接测量微生物的呼吸活性。因此,可以用微生物传感器来测定微生物的代谢特征。这个系统已用于微生物的简单鉴定、微生物培养基的选择、微生物酶活性的测定、废水中可被生物降解的物质估计、用于废水处理的微生物选择、活性污泥的同化作用试验、生物降解物的确定、微生物的保存方法选择等[2]。2、 环境监测(1) 生化需氧量的测定生化需氧量(biochemical oxygen demand ?bod)的测定是监测水体被有机物污染状况的最常用指标。常规的bod测定需要5天的培养期,操作复杂、重复性差、耗时耗力、干扰性大,不宜现场监测,所以迫切需要一种操作简单、快速准确、自动化程度高、适用广的新方法来测定。目前,有研究人员分离了两种新的酵母菌种spt1和spt2,并将其固定在玻璃碳极上以构成微生物传感器用于测量bod,其重复性在±10%以内。将该传感器用于测量纸浆厂污水中bod的测定,其测量最小值可达2 mg/l,所用时间为5min[3]。还有一种新的微生物传感器,用耐高渗透压的酵母菌种作为敏感材料,在高渗透压下可以正常工作。并且其菌株可长期干燥保存,浸泡后即恢复活性,为海水中bod的测定提供了快捷简便的方法[4]。 除了微生物传感器,还有一种光纤生物传感器已经研制出来用于测定河水中较低的bod值。该传感器的反应时间是15min,最适工作条件为30°c,ph=7。这个传感器系统几乎不受氯离子的影响(在1000mg/l范围内),并且不被重金属(fe3+、cu2+、mn2+、cr3+、zn2+)所影响。该传感器已经应用于河水bod的测定,并且获得了较好的结果[4]。现在有一种将bod生物传感器经过光处理(即以tio2作为半导体,用6 w灯照射约4min)后,灵敏度大大提高,很适用于河水中较低bod的测量[5]。同时,一种紧凑的光学生物传感器已经发展出来用于同时测量多重样品的bod值。它使用三对发光二极管和硅光电二极管,假单胞细菌(pseudomonas fluorescens)用光致交联的树脂固定在反应器的底层,该测量方法既迅速又简便,在4℃下可使用六周,已经用于工厂废水处理的过程中[5]。(2) 各种污染物的测定常用的重要污染指标有氨、亚硝酸盐、硫化物、磷酸盐、致癌物质与致变物质、重金属离子、酚类化合物、表面活性剂等物质的浓度。目前已经研制出了多种测量各类污染物的生物传感器并已投入实际应用中了。测量氨和硝酸盐的微生物传感器,多是用从废水处理装置中分离出来的硝化细菌和氧电极组合构成。目前有一种微生物传感器可以在黑暗和有光的条件下测量硝酸盐和亚硝酸盐(nox-),它在盐环境下的测量使得它可以不受其他种类的氮的氧化物的影响。用它对河口的nox-进行了测量,其效果较好[6]。硫化物的测定是用从硫铁矿附近酸性土壤中分离筛选得到的专性、自养、好氧性氧化硫硫杆菌制成的微生物传感器。在ph=5、31℃时一周测量200余次,活性保持不变,两周后活性降低20%。传感器寿命为7天,其设备简单,成本低,操作方便。目前还有用一种光微生物电极测硫化物含量,所用细菌是sp,与氢电极连接构成[7]。最近科学家们在污染区分离出一种能够发荧光的细菌,此种细菌含有荧光基因,在污染源的刺激下能够产生荧光蛋白,从而发出荧光。可以通过遗传工程的方法将这种基因导入合适的细菌内,制成微生物传感器,用于环境监测。现在已经将荧光素酶导入大肠杆菌(li)中,用来检测砷的有毒化合物[8]。水体中酚类和表面活性剂的浓度测定已经有了很大的发展。目前,有9种革兰氏阴性细菌从西西伯利亚石油盆地的土壤中分离出来,以酚作为唯一的碳源和能源。这些菌种可以提高生物传感器的感受器部分的灵敏度。它对酚的监测极限为5 ´10-9mol。该传感器工作的最适条件为:ph=4、35℃,连续工作时间为30h[9]。还有一种假单胞菌属(pseudomonas rathonis)制成的测量表面活性剂浓度的电流型生物传感器,将微生物细胞固定在凝胶(琼脂、琼脂糖和海藻酸钙盐)和聚乙醇膜上,可以用层析试纸gf/a,或者是谷氨酸醛引起的微生物细胞在凝胶中的交联,长距离的保持它们在高浓度表面活性剂检测中的活性和生长力。该传感器能在测量结束后很快的恢复敏感元件的活性[10]。还有一种电流式生物传感器,用于测定有机磷杀虫剂,使用的是人造酶。利用有机磷杀虫剂水解酶,对硝基酚和二乙基酚的测量极限为100´10-9mol,在40℃只要4min[11]。还有一种新发展起来的磷酸盐生物传感器,使用丙酮酸氧化酶g,与自动系统cl-fia台式电脑结合,可以检测(32~96)´10-9mol的磷酸盐,在25°c下可以使用两周以上,重复性高[12]。最近,有一种新型的微生物传感器,用细菌细胞作为生物组成部分,测定地表水中壬基酚(nonyl-phenol etoxylate --np-80e)的含量。用一个电流型氧电极作传感器,微生物细胞固定在氧电极上的透析膜上,其测量原理是测量毛孢子菌属(trichosporum grablata)细胞的呼吸活性。该生物传感器的反应时间为15~20min,寿命为7~10天(用于连续测定时)。在浓度范围5~0mg/l内,电信号与np-80e浓度呈线性关系,很适合于污染的地表水中分子表面活性剂的检测[13]。除此之外,污水中重金属离子浓度的测定也是不容忽视的。目前已经成功设计了一个完整的,基于固定化微生物和生物体发光测量技术上的重金属离子生物有效性测定的监测和分析系统。将弧菌属细菌(vibrio fischeri)体内的一个操纵子在一个铜诱导启动子的控制下导入产碱杆菌属细菌(alcaligenes eutrophus (ae1239))中,细菌在铜离子的诱导下发光,发光程度与离子浓度成正比。将微生物和光纤一起包埋在聚合物基质中,可以获得灵敏度高、选择性好、测量范围广、储藏稳定性强的生物传感器。目前,这种微生物传感器可以达到最低测量浓度1´10-9mol[14]。还有一种专门测量铜离子的电流型微生物传感器。它用酒酿酵母(saccharomyces cerevisiae)重组菌株作为生物元件,这些菌株带有酒酿酵母cup1基因上的铜离子诱导启动子与大肠杆菌lacz基因的融合体。其工作原理,首先是cup1启动子被cu2+诱导,随后乳糖被用作底物进行测量。如果cu2+存在于溶液中,这些重组体细菌就可以利用乳糖作为碳源,这将导致这些好氧细胞需氧量的改变。该生物传感器可以在浓度范围(5~2)´10-3mol范围内测定cuso4溶液。目前已经将各类金属离子诱导启动子转入大肠杆菌中,使得大肠杆菌会在含有各种金属离子的的溶液中出现发光反应。根据它发光的强度可以测定重金属离子的浓度,其测量范围可以从纳摩尔到微摩尔,所需时间为60~100min[15][16]。用于测量污水中锌浓度的生物传感器也已经研制成功,使用嗜碱性细菌alcaligenes cutrophus,并用于对污水中锌的浓度和生物有效性进行测量,其结果令人满意[17]。估测河口出水流污染情况的海藻传感器是由一种螺旋藻属蓝细菌( cyanobacterium spirlina subsalsa)和一个气敏电极构成的。通过监测光合作用被抑制的程度来估测由于环境污染物的存在而引起水的毒性变化。以标准天然水为介质,对三种主要污染物(重金属、除草剂、氨基甲酸盐杀虫剂)的不同浓度进行了测定,均可监测到它们的有毒反应,重复性和再生性都很高[18]。近来由于聚合酶链式反应技术(pcr)的迅猛发展及其在环境监测方面的广泛应用,不少科学家开始着手于将它与生物传感器技术结合应用。有一种应用pcr技术的dna压电生物传感器,可以测定一种特殊的细菌毒素。将生物素酰化的探针固定在装有链酶抗生素铂金表面的石英晶体上,用1´10-6mol的盐酸可以使循环式测量在同一晶体表面进行。用细菌中提取的dna样品进行同样的杂交反应并由pcr放大,产物为气单胞菌属(aeromonas hydrophila)的一种特殊基因片断。这种压电生物传感器可以鉴别样品中是否含有这种基因,这为从水样中检测是否含带有这种病原的各种气单胞菌提供了可能[19]。还有一种通道生物传感器可以检测浮游植物和水母等生物体产生的腰鞭毛虫神经毒素等毒性物质,目前已经能够测量在一个浮游生物细胞内含有的极微量的psp毒素[20]。dna传感器也在迅速的得到应用,目前有一种小型化dna生物传感器,能将dna识别信号转换为电信号,用于测量水样中隐孢子和其他水源传染体。该传感器着重于改进核酸的识别作用和加强该传感器的特异性和灵敏性,并寻求将杂交信号转化为有用信号的新方法,目前研究工作为识别装置和转换装置的一体化[21]。微藻素是一种从蓝藻细菌引起的水华中产生的细菌肝毒素,一种固定有表面细胞质粒基因组的生物传感器已经制得,用于测量水中微藻素的含量,它直接的测量范围是50~1000 ´10-6g/l[22]。 一种基于酶的抑制性分析的多重生物传感器用于测量毒性物质的设想也已经提出。在这种多重生物传感器中,应用了两种传导器―对ph敏感的电子晶体管和热敏性的薄膜电极,以及三种酶―尿素酶、乙酰胆碱酯酶和丁酰胆碱酯酶。该生物传感器的性能已经得到测试,效果较好[23]。除了发酵工业和环境监测,生物传感器还深入的应用于食品工程、临床医学、军事及军事医学等领域,主要用于测量葡萄糖、乙酸、乳酸、乳糖、尿酸、尿素、抗生素、谷氨酸等各种氨基酸,以及各种致癌和致变物质。三、 讨论与展望 美国的harold weetal指出,生物传感器商品化要具备以下几个条件:足够的敏感性和准确性、易操作、价格便宜、易于批量生产、生产过程中进行质量监测。其中,价格便宜决定了传感器在市场上有无竞争力。而在各种生物传感器中,微生物传感器最大的优点就是成本低、操作简便、设备简单,因此其在市场上的前景是十分巨大和诱人的。相比起来,酶生物传感器等的价格就比较昂贵。但微生物传感器也有其自身的缺点,主要的缺点就是选择性不够好,这是由于在微生物细胞中含有多种酶引起的。现已有报道加专门抑制剂以解决微生物电极的选择性问题。除此之外,微生物固定化方法也需要进一步完善,首先要尽可能保证细胞的活性,其次细胞与基础膜结合要牢固,以避免细胞的流失。另外,微生物膜的长期保存问题也待进一步的改进,否则难于实现大规模的商品化。 总之,常用的微生物电极和酶电极在各种应用中各有其优越之处。若容易获得稳定、高活性、低成本的游离酶,则酶电极对使用者来说是最理想的。相反的,若生物催化需经过复杂途径,需要辅酶,或所需酶不宜分离或不稳定时,微生物电极则是更理想的选择。而其他各种形式的生物传感器也在蓬勃发展中,其应用也越来越广泛。随着固定化技术的进一步完善,随着人们对生物体认识的不断深入,生物传感器必将在市场上开辟出一片新的天地。--------------------------------------------------------------------------------参考文献[1]韩树波,郭光美,李新等伏安型细菌总数生物传感器的研究与应用[j]华夏医学,2000,63(2):49-52 [2]蔡豪斌微生物活细胞检测生物传感器的研究[j] 华夏医学,2000,13(3):252-256[3] trosok sp, driscoll bt, luong jht mediated microbial biosensor using a novel yeast strain for wastewater bod measurement[j] applied micreobiology and biotechnology,2001, 56 (3-4): 550-554 [4] 张悦,王建龙,李花子等生物传感器快速测定bod在海洋监测中的应用[j]海洋环境科学,2001,20(1):50-54[5] yoshida n, mcniven sj, yoshida a,a compact optical system for multi-determination of biochemical oxygen demand using disposable strips[j] field analytical chemistry and technology,2001,5 (5): 222-227[6] meyer rl, kjaer t, revsbech use of nox- microsensors to estimate the activity of sediment nitrification and nox- consumption along an estuarine salinity, nitrate, and light gradient[j] aquatic microbial ecology, 2001,26 (2): 181-193[7]王晓辉,白志辉,孙裕生等硫化物微生物传感器的研制与应用[j] 分析试验室,2000,19(3):83-86[8] alexander d c,costanzo m a, guzzo j, cai j, blazing towards the next millennium: luciferase fusions to identify genes responsive to environmental stress[j]water, air and soil pollution, 2000,123(1-4):81-94[9] makarenko aa, bezverbnaya ip, kosheleva ia, development of biosensors for phenol determination from bacteria found in petroleum fields of west siberia[j]applied biochemistry and microbiology, 2002,38 (1): 23-27[10]semenchuk in, taranova la, kalenyuk aa, effect of various methods of immobilization on the stability of a microbial biosensor for surfactants based on pseudomonas rathonis t[j] applied biochemistry and microbiology, 2000, 36 (1): 69-72[11]yamazaki t, meng z, mosbach k, a novel amperometric sensor for organophosphotriester insecticides detection employing catalytic polymer mimicking phosphotriesterase catalytic center[j] electrochemistry,2001,69 (12): 969-97[12] nakamura phosphate ion determination in water for drinking using biosensors[j] bunseki kagaku,2001,50 (8): 581-582[13] a, lucaciu i, fleschin s, magearu microbial biosensor for nonyl-phenol etoxylate (np-80e) [j]south african jounal of chemistry-suid-afrikaanse tydskrif vir chemie , 2000,53 (1): 14-17[14] leth s, maltoni s, simkus r, engineered bacteria based biosensors for monitoring bioavailable heavy metal[j]lectroanalysis, 2002,14 (1): 35-42 [15] lehmann m, riedel k, adler k, amperometric measurement of copper ions with a deputy substrate using a novel saccharomyces cerevisiae sensor[j] biosensors and bioelectronics, 2000, 15 (3-4): 211-219[16] riether kb, dollard ma, billard assessment of heavy metal bioavailability using escherichia coli zntap lux and copap lux-based biosensors[j] applied microbiology and biotechnology,2001,57 (5-6): 712-716[17] karlen c, wallinder io, heijerick d, runoff rates and ecotoxicity of zinc induced by atmospheric corrosion[j] science of the total environment,2001,277 (1-3): 169-180[18] campanella l,cubadda f,sammartino m p,an algal biosensor for the monitoring of water toxicity in estuarine enviraonments[j]wate research, 2001,35(1):69-76[19] tombelli sara,mascini marco,soca cristiana,a dna piezoelectric biosensor assay coupled with a polyerase chain reaction for bacterial toxicity determination in environmental samples[j] analytica chimica acta,2000,418(1):1-9[20] lee hae-ok,cheun byeung soo,yoo jong su,application of a channel biosensor for toxicity measurements in cultured alexandrium tamarense[j] journal of natural toxins,2000, 9(4):341-348[21] wang,iniaturized dna biosensor for detecting cryptosporidium in water technical comletion-311, 2000(3), 26p [22]nakamura c, kobayashi t, miyake m, usage of a dna aptamer as a ligand targeting microcystin[j] molecular crystals and liquid crystals, 2001, 371: 369-374 [23]arkhypova vn, dzyadevych sv, soldatkin ap, multibiosensor based on enzyme inhibition analysis for determination of different toxic substances[j] talanta,2001, 55 (5): 919-927the recent research and application of biosensorabstract: in this article, the recent research progress and application of biosensors ,especially the micro- biosensors, are reviewed, and the prospect of biosensors development is also biosensors are made up of bioelectrode , using immobile organism as sensitive material for molecule recognition, together with oxygen-electrode, membrane -eletrode and fuel- biosensors are broadly used in zymosis industry, environment monitor, food monitor and clinic fast, accurate, facilitate as biosensors is,there will be an excellent prospect for biosensors in the marketkeywords:biosensor, zymosis -industry, environment-monitor作者简介:何星月:中国科学技术大学生命科学院,合肥230027刘之景,中国科学技术大学天文与应用物理系教授,合肥230026电话:0551―3601895

论文传感器在智慧车站的应用实例怎么写

汽车应用相关的传感器除光照度、图像传感器和主动探测的超声波、微波、毫米波雷达外,还包括压力、液位、流量、位置、高度、距离、速度、转速、转矩、加速度、温度、湿度、气体浓度等传感器,以及适合汽车总线的CAN总线式智能传感器。霍尼韦尔公司汽车电子部工程师陈阳表示,业界正在应用非接触的位置测量、磁阻、磁变、霍尔效应、显微加工的硅芯片、热覆膜、Piezo陶瓷等技术方式,采用通用化、标准化的设计理念来提供切合市场需求的汽车传感器。 各种各样的产品已经深刻地融入到汽车的各个功能系统,包括发动机管理系统、底盘与传动系统、安全系统、车身电子系统、空调环境系统等等。从汽车传感器的发展趋势来看,它将不仅仅局限在发动机管理系统,而是越来越多地与环境保护、安全和智能化联系在一起。未来几年,汽车引擎和驱动部分的应用仍然是智能传感器的最大应用领域,虽然其增长趋势将没有其它应用那么明显;尾气排放控制传感器的需求的增长前景仍然被看好,世界各国有关汽车尾气排放限制的法规逐渐严格,这将大力推动排放控制传感器市场的增长。 此外,随着汽车安全技术的重心正由被动安全转向主动安全,安全应用将是一个有着巨大增长潜力的市场。据Du Pont Automotive的一项调查结果显示,对于汽车消费者来说,安全至上,其重要性排在性能、娱乐功能和燃油效率之上。政府的直接推动和影响是汽车安全应用得以快速发展的一个主要原因。例如,对于轮胎压力监测来说,根据联邦汽车安全标准138 (FMVSS138),美国正在执行强制规定,要求为美国市场生产的汽车必须在2007年以前100%安装直接胎压监测解决方案。 中国政府目前也在考虑强制重型车辆配备ABS系统,以改善道路安全状况。虽然目前中国没有要求采用胎压监测系统(TPMS)的相关规定,但这种应用也出现了增长的趋势。对此,飞思卡尔半导体公司亚太区汽车电子总监杨飞评论说:“轮胎压力传感器只是其中的一个例子。我们将看到安全和保安领域将有越来越多的应用,能够使汽车自行变得更加安全、更加舒适和更有效率。”英飞凌科技亚太(私人)有限公司汽车与工业电子市场部高级经理蔡志雄也强调,现代汽车必须采用更多的传感器,以提高智能化程度。他还坚信,安全应用将是关键的增长领域之一。 市场调研公司Strategy Analytics预计,汽车半导体市场在2008年以前的平均增长速度为2%,到2008年将由2003年的139亿美元增长到215亿美元。中国是其中的关键增长动力之一,增长速度最快。飞思卡尔的杨飞指出,作为一个发展中的市场,中国的多数汽车配置都非常基本,但随着中国经济的迅速增长,以及客户对于安全问题的日益重视,市场将需要更多的功能强大的汽车。他说:“因此我们可以预见,一方面半导体增长将因汽车产量增长而倍增;另一方面,客户对于汽车安全功能的期望越来越高,将为中国汽车传感器市场创造出巨大的潜力。”陈阳也透露,中国是霍尼韦尔汽车传感器增长速度最快的市场,该公司的汽车电子部门正在为不同车型定制各种各样的解决方案。 层出不穷的新型智能安全方案 在业界厂商以构建最高级别的安全驾乘环境为最终目的的技术竞赛中,各种新兴的安全系统解决方案争奇斗艳、层出不穷,可以说“没有做不到,只有想不到”。可以预见,将来最先进的智能传感系统将使汽车拥有像人类“第六感”一样的高度智慧和神奇,从而将汽车的安全性能提高到一个前所未有的高度。从目前看来,正在逐渐开始被导入高档轿车的智能传感器系统有: 酒精检测MEMS系统:如意法半导体的新型信号处理电路集成酒精传感器,该酒精传感器采用二氧化锡MEMS元件可根据环境中的氧气浓度吸附氧气并使得电阻值改变的特性。正常状况下,元件在吸附空气中的氧气后会保持某个电阻值不发生变化,而一旦空气中含有酒精,元件表面的氧元素便会与酒精发生反应,使电阻值下降。通过测定电阻值,便可检测出呼气中含有的酒精浓度。酒精检测MEMS传感器将可以植入在直径8mm的密封外壳内、连同信号处理电路等一起嵌入方向盘内,一旦检测出驾驶员呼出的气体含有酒精,便发出安全警报。 自动雨刷系统:以发光二极管对前挡风玻璃发出光束,当雨滴打在感应区的玻璃上时,光束所反射的光线强度,会因玻璃上的雨量或湿气含量而有所变化,改变雨刷的刷动频率;或透过红外线电子雨量传感器感应雨量的多寡,并随车速的变化自动调整雨刷速度,增进驾驶人的驾驶方便性,让驾驶更有安全性。 电子式自动照明系统:电子式感应头灯可透过车外的光线明暗感应器自动监测外界的光线,在天色有变化或是进入山洞时,电子式感应器将头灯自动打开,减少驾驶人操作的时间,增加行车安全性。 胎压监测系统:在每个轮胎上安装高灵敏度的传感器,于行车状态下随时监测轮胎状况,并透过传感器以无线方式发射到接收器,让驾驶人能随时掌握漏气与温度升高等轮胎状况,以确保汽车行驶中的安全,并延长轮胎的使用寿命与降低燃油的消耗。最先进的直接轮胎压力监测解决方案的特点包括高级预警系统和压力、温度、电压和动作探测等。 安全气囊触发系统:如飞思卡尔推出的卫星加速度传感器,可扩展到整个汽车周围以探测碰撞。通过加速度传感器与SmartMOS技术集成,专门用于探测碰撞和触发汽车正面和侧面的安全气囊。一个集成式器件提供加速度探测、电压调节、MCU功能和有线通讯协议。飞思卡尔提供种类众多的加速度传感器,从5g到250g,覆盖X、XY、XYZ和Z轴方向。 据杨飞介绍,目前还正在出现一种趋势,而且预计它将在未来几年扩散,有关机构将要求采用汽车动态控制(VDC)系统,也被称作“电子稳定控制(ESC)系统”。他说,目前这种系统是高档汽车的一个标准配置,但将继续向更多的车款扩散。“稳定控制系统尤其令SUV运动休闲车受益,因为这种车重心较高,更容易发生侧翻。”此外,随着图像传感和处理技术的发展,还有更多的用于道路分离报警和引导、司机睡意探测、道路障碍传感、智能气囊部署、盲点探测等基于传感器的智能系统将逐渐进入新一代的汽车应用中。 智能传感器的技术要求 汽车应用通常被视为最困难的领域之一,因为它具有极端的工作温度范围和强烈的机械振动。汽车电子操控系统的动作必须快速、正确、可靠,传统通过分立电子元器件搭建的电路监测控制系统已经不能满足现代汽车的要求,需要通过硬件集成、直接交换数据和简化电路,并提高智能化程度来确保控制单元动作的正确性、可靠性和适时性。而且现在几乎所有的汽车的机械结构部件都已受电子装置控制,但汽车车体内的空间有限,构件系统的空间更是极其有限。理想的情况是,电子感应、控制单元应与受控制部件紧密结合,形成一个整体,这就要求新一代传感器件和控制电路尽可能地微型化、集成化。 汽车的各种功能部件都有各自的运动、操控特性,对汽车传感器而言,大多处于非常恶劣的运行环境中,而且各不相同。诸如工作状态时的高温,静止待命时的低温,高浓度的油蒸汽和活性(毒性)气体,以及高速运动和高强度的冲击和振动等。因此,传感器和电路必须要有高稳定、抗环境干扰和自适应、自补偿调整的能力。据霍尼韦尔的陈阳介绍,汽车传感器在出厂之前要经过高低温存放、恒定湿热、热冲击、泥浆喷溅、盐水喷溅、振动和电磁干扰等严格测试,确保产品性能不受周围环境的影响。 与上述要求同样重要甚至更关键的一个条件是,汽车电子用的电子元器件、模块必须要能大规模工业生产,并能将成本降低到可接受的程度。新一代智能传感器就是这方面的典范。例如智能加速度传感器,它不仅能较好地满足现代汽车的各项需要,而且因为可以在集成电路标准硅工艺线上批量生产,生产成本较低,所以在汽车工业中找到了自己最大的应用市场,反过来也有力地促进了汽车产品的智能化

论文传感器在智慧车站的应用情况分析

基于DDA物联网无线通讯技术的智慧停车整体解决方案,在智慧停车这一块,地磁感应有无车辆,物联网的发展要求更准确、更智能,更高效以及兼容性更强的传感器技术。

曲轴位置传感器的作用就是确定曲轴的位置,也就是曲轴的转角。它通常要配合凸轮轴位置传感器一起来工作——确定基本点火时刻。曲轴位置传感器通常安装在分电器内,是控制系统中最重要的传感器之一。其作用有:检测发动机转速,因此又称为转速传感器;检测活塞上止点位置,故也称为上止点传感器,包括检测用于控制点火的各缸上止点信号、用于控制顺序喷油的第一缸上止点信号。曲轴传感器一般主要有三种类型:磁电感应式、霍尔效应式和光电式。

室内空气质量检测与传感器的应用    [摘要]室内空气品质对人的影响至关重要,利用传感器检测空气质量是当今流行的一种方法,本文介绍了传感器在空气质量检测方面的原理应用,分析了当前气体传感器的优点和不足,以及气体传感器的发展趋势和前景。   [关键词]空气质量 气体传感器 室内环境污染      一、空气对于人的重要性   人们每时每刻都离不开氧,并通过吸入空气而获得氧。一个成年人每天需要吸入空气达6500升以获得足够的氧气,因此,被污染了的空气对人体健康有直接的影响。人的一生中有90%以上时间在室内度过,可见,室内空气品质对人的影响更是至关重要。   二、室内环境污染背景   当今,人类正面临“煤烟污染”、“光化学烟雾污染”之后,又出现了“室内空气污染”为主的第三次环境污染。美国专家检测发现,在室内空气中存在500多种挥发性有机物,其中致癌物质就有 20多种,致病病毒 200多种。危害较大的主要有:氡、甲醛、苯、氨以及酯、三氯乙烯等。大量触目惊心的事实证实,室内空气污染已成为危害人类健康的“隐形杀手”,也成为全世界各国共同关注的问题。据统计,全球近一半的人处于室内空气污染中,室内环境污染已经引起7%的呼吸道疾病,22%的慢性肺病和15%的气管炎、支气管炎和肺癌。   三、关于开展室内空气质量服务的几点设想   着手调查国内家庭和办公室内空气质量的基本情况。   了解并着手引进室内空气质量检测设备。   进行规模较大的宣传活动,首先应由气象主管部门与环保主管部门联合建立室内空气质量问题的管理机制。   对国际环保部门有关室内空气质量的法规、技术标准、室内污染测定方法及对测定仪器等问题进行专门的调查和研究。   四、空气检测仪的强力武器——传感器   检测技术是人们认识和改造世界的一种必不可少的重要技术手段。而传感器是科学实验和工业生产等活动中对信息资源的开发获取、传输与处理的一种重要工具。下面将介绍六种在空气质量检测方面发挥重要作用的传感器。   金属氧化物半导体式传感器。金属氧化物半导体式传感器利用被测气体的吸附作用,改变半导体的电导率,通过电流变化的比较,激发报警电路。由于半导体式传感器测量时受环境影响较大,输出线形不稳定。金属氧化物半导体式传感器,因其反应十分灵敏,故目前广泛使用的领域为测量气体的微漏现象。   催化燃烧式传感器。催化燃烧式传感器原理是目前最广泛使用的检测可燃气体的原理之一,具有输出信号线形好、指数可靠、价格便宜、无与其他非可燃气体的交叉干扰等特点。催化燃烧式传感器采用惠斯通电桥原理,感应电阻与环境中的可燃气体发生无焰燃烧,是温度使感应电阻的阻值发生变化,打破电桥平衡,使之输出稳定的电流信号,再经过后期电路的放大、稳定和处理最终显示可靠的数值。   定电位电解式传感器。定电位电解式传感器是目前测毒类现场最广泛使用的一种技术,在此方面国外技术领先,因此此类传感器大都依赖进口。定电位电解式气体传感器的结构:在一个塑料制成的筒状池体内,安装工作电极、对电极和参比电极,在电极之间充满电解液,由多孔四氟乙烯做成的隔膜,在顶部封装。前置放大器与传感器电极的连接,在电极之间施加了一定的电位,使传感器处于工作状态。气体与的电解质内的工作电极发生氧化或还原反应,在对电极发生还原或氧化反应,电极的平衡电位发生变化,变化值与气体浓度成正比。   迦伐尼电池式氧气传感器。迦伐尼电池式氧气传感器的结构:在塑料容器的一面装有对氧气透过性良好的、厚10-30μm的聚四氟乙烯透气膜,在其容器内侧紧粘着贵金属(铂、黄金、银等)阴电极,在容器的另一面内侧或容器的空余部分形成阳极(用铅、镉等离子化倾向大的金属)。用氢氧化钾。氧气在通过电解质时在阴阳极发生氧化还原反应,使阳极金属离子化,释放出电子,电流的大小与氧气的多少成正比,由于整个反应中阳极金属有消耗,所以传感器需要定期更换。目前国内技术已日趋成熟,完全可以国产化此类传感器  红外式传感器。红外式传感器利用各种元素对某个特定波长的吸收原理,具有抗中毒性好,反应灵敏,对大多数碳氢化合物都有反应。但结构复杂,成本高。   PID光离子化气体传感器。PID由紫外灯光源和离子室等主要部分构成,在离子室有正负电极,形成电场,待测气体在紫外灯的照射下,离子化,生成正负离子,在电极间形成电流,经放大输出信号。PID具有灵敏度高,无中毒问题,安全可靠等优点。   五、气体检测仪器仪表产业发展现状深度分析   近年来,随着中国经济的高速发展,仪器仪表产业也得到了快速发展,自2004年产销首次突破千亿元大关,行业发展进入了快车道,2006年行业总产值突破两千亿元;2007年仪器仪表行业总产值达3078亿元,增长率高达5%;据仪器仪表行业协会统计,08年上半年仪器仪表行业总产值实现 9亿元,同比增长8%,其中分析仪器、环境监测仪器仪表增长率高达32%。   科学技术的进步为气体检测仪器仪表行业的发展提供了条件,市场和政府政策的推动、人们安全意识的提高、相关法规法律的完善是气体检测行业发展的核心动力,这些推动使气体检测仪器仪表行业处于产业高速增长期。   从技术发展的角度看,根据使用传感器原理的不同,常见的气体检测仪器仪表各自有适用气体及应用领域,新技术新产品正在成为未来气体检测仪器仪表的主流。   六、对未来空气质量检测的展望   随着人们生活水平的不断提高和对环保的日益重视,对各种有毒、有害气体的探测,对大气污染、工业废气的监测以及对食品和居住环境质量的检测都对气体传感器提出了更高的要求。纳米、薄膜技术等新材料研制技术的成功应用为气体传感器集成化和智能化提供了很好的前提条件。气体传感器将在充分利用微机械与微电子技术、计算机技术、信号处理技术、传感技术、故障诊断技术、智能技术等多学科综合技术的基础上得到发展。研制能够同时监测多种气体的全自动数字式的智能气体传感器将是该领域的重要研究方向。      参考文献:   [1]陈艾敏感材料与传感器[M]北京:高等教育出版社   [2]高晓蓉传感器技术[M]成都:西安交通大学出版社   [3]彭军传感器与检测技术[M]北京:高等教育出版社   [4]王元庆新型传感器原理及应用[M]北京:机械工业出版社   [5]赵茂泰智能仪器原理及应用[M]北京:电子工业出版社

我靠,一个曲轴位置传感器,写一万字?你不会是让写制造应用技术吧~!那就不是论文了~!成制造原理了

相关百科
热门百科
首页
发表服务