学术论文百科

中国载人航天工程论文总结报告怎么写

发布时间:2024-07-05 22:11:12

中国载人航天工程论文总结报告

中国,本是在这个世界上最先发明了火箭的国家,但由于长期的闭关锁国加上苦不堪言的百年挨打史,最终却落个火箭几乎为零的下场。多少人在着急!多少人在渴盼:火箭,你何时才能重返故乡? 终于,1960年,中国的火箭将士们,忍着饥饿的肚子,开始了从仿制苏联导弹到自己设计导弹的艰难跋涉,当中国宣布导弹核武器发射成功的消息时,全世界都被震动了。从此,中国航天在艰难中步向辉煌!1992年,我国载人飞船正式列入国家计划进行研制,这项工程后来被定名为“神舟”号飞船载人航天工程。仅仅7年后,北京时间1999年11月21日凌晨3时41分,我国发射的第一艘试验飞船“神舟”号在完成了空间飞行试验后在内蒙古自治区中部地区成功着陆。作为我国航天史上的又一里程碑,神舟一号试验飞船的成功发射与回收,标志着我国载人航天技术获得了新的重大突破。2003年10月16日6时23分,“神舟”五号载人飞船在内蒙古主着陆场成功着陆,实际着陆点与理论着陆点相差8公里。返回舱完好无损。航天英雄杨利伟自主出舱。我国首次载人航天飞行圆满成功。全世界震动了! 中国的航天事业在蒸蒸日上,在中国航天几十年的发展历程中,取得了辉煌业绩,使我国成为世界上有重要影响的大国,在长期奋斗中,我国航天工作者不仅创造了非凡的业绩,而且铸就了特别能吃苦、特别能战斗、特别能攻关、特别能奉献的载人航天精神。载人航天精神是“两弹一星”精神在新时期的发扬光大,是我们伟大民族精神的生动体现,永远值我们学习。 看到我国的航天事业,这么突飞猛进,做为一个二十一世纪的小主人,我们更应该好好学习,长大了为祖国航天事业的发展做出贡献。

是小鬼耶~居然偶尔看到你这个问题了……

神舟一号 神舟一号飞船是中华人民共和国载人航天计划中发射的第一艘无人实验飞船,飞船于1999年11月20日凌晨6点在酒泉航天发射场发射升空,承担发射任务的是在长征-2F捆绑式火箭的基上改进研制的长征2号F载人航天火箭。在发射点火十分钟后,船箭分离,并准确进入预定轨道。 神舟二号 北京时间1月16日19时22分,我国第一艘无人飞船“神舟二号”在内蒙古中部地区成功着陆。至此,飞船按预定计划,在太空飞行了7天。围绕着飞船的测控和回收,我国航天测控人员决战太空,展开了紧张的工作。 “神舟二号”飞船1月10日1时零分发射升空后,所进入的是距地球表面高度近地点为200公里、远地点为340公里的椭圆轨道。 神舟三号 2002年3月25号晚上10时15分,我国研制的“神舟”三号飞船在酒泉卫星发射中心发射升空并成功进入预定轨道。 这次发射成功标志着我国载人航天工程取得了新的重要进展,为不久的将来把中国的航天员送上太空打下了坚实的基础。 这次发射的“神舟”三号是一艘正样无人飞船,飞船技术状态与载人状态完全一致。这次发射试验,运载火箭、飞船和测控发射系统进一步完善,提高了载人航天的安全性和可靠性。 神舟四号 神舟四号飞船总长约4米,最大直径8米,总质量7794公斤。在推进舱和轨道舱的II、IV象限各安装一个太阳电池翼,推进舱的两个太阳电池翼总面积48平方米,展开后的翼展宽度约17米。轨道舱的两个太阳电池翼总面积24平方米,展开后的翼展宽度约4米。神舟四号飞船配置有13个分系统及供配电与电缆网。结构与机构分系统保证飞船的构型,并为航天员提供生活的结构空间。 神舟五号 1999年11月20日~21日,中国载人航天工程第一艘“神舟”无人试验飞船飞行试验获得了圆满成功。2001年初至2002年底又相继研制并发射成功了神舟1~4无人试验飞船,获得了宝贵的试验数据,为实施载人航天打下了坚实的基础。神舟-5飞船是在无人飞船基础上研制的我国第1艘载人飞船,乘有1名航天员,在轨运行1天。整个飞行期间为航天员提供必要的生活和工作条件,同时将航天员的生理数据、电视图像发送地面,并确保航天员安全返回。 神舟六号 神舟六号载人飞船是中国神舟飞船系列之一。“神舟六号”与“神舟五号”在外形上没有差别,仍为推进舱、返回舱、轨道舱的三舱结构,重量基本保持在8吨左右,用长征二号F型运载火箭进行发射。它是中国第二艘搭载太空人的飞船,也是中国第一艘执行“多人多天”任务的载人飞船。 神舟七号 全国政协委员、载人航天火箭系统顾问组组长、“神舟”五号火箭总指挥黄春平表示,“神舟”七号发射时间将推迟半年左右,原定2007年的发射计划将拖后到2008年。与“神舟五号”、“神舟六号”不同,“神舟”七号火箭在研制上的关键点是宇航服和气门闸。因为“神舟”七号将实现太空行走,航天员能否从舱内气压骤然适应真空环境,气门闸和宇航服扮演了重要角色。虽然“天宫一号”在太空中孤独地等待新“主人”的到来,但它却早早就为“主人”们准备好了一切家当。航天员太空训练的器材、各类服装鞋袜、睡袋、诊疗箱以及大量航天医学实验设备等都已布置妥当,内部环境也很舒适。此次航天员的太空停留时间比以往要长,他们要在“天宫一号”生活13天,以往在“神舟”飞船里最多是生活5天。而“天宫一号”的生命保障系统和环境控制系统能提供60天的生活工作环境,也就是说一个人可以生活60天,3个人可以生活20天。与以往不同的是,“神舟九号”任务中,航天员在太空的生活节奏比较接近地球。以前飞行天数短,任务安排得相对紧密,航天员的作息节奏和地面上不一样。但随着飞行时间延长,航天员的太空生活节奏会越来越趋向于地面。否则航天员生活节奏、工作节律被打乱,会感觉到不舒服,地面的支持团队也不能长期维持这种节奏。在10天左右的组合体生活期间,航天员工作、生活和地面基本同步,吃饭也是早中晚一日三餐,8点钟之前吃饭、打扫卫生,然后天地通话、医学检查,把一天的工作计划和地面协调好之后就开始干活。航天员按北京时间休息,晚上要锻炼身体,睡前把完成的计划和感受传回地面。为保证睡眠,有专门的设计确保航天员抗“昼夜交替”干扰,可以把窗帘拉上,睡觉灯光也是可调的。“天宫一号”的有效活动空间是15立方米,包括两个睡眠区,一个仪表显示区,一个空间科学实验区,一个在轨锻炼区。为了保证航天员有充足的睡眠和旺盛的精力,睡眠区设计了两个“房间”,以保证航天员在太空里也能睡上单间。三名航天员在太空的时候,不能一起睡觉,总要留下一个人值班,因此两个“单间”足够保证同时有两个人休息。他们还有3个睡袋,每人都有自己的“被子”。此外,“天宫一号”里还有一个专门的“密室”,在这个密室里航天员和家人说悄悄话,旁人无法“偷听”。不过,航天员的餐厅并不是在“天宫一号”里,而是在“神舟九号”的轨道舱内。“神舟九号”在天上停留的时间较长,所以航天食品更加丰富。在“神舟七号”时,航天员已经可以吃到醋、辣椒之类的调味品了,而“神舟九号”“厨房”里可储藏至少80种食品,航天员每天能吃到不同种类的饭菜。在“神舟九号”飞船里,还有一位神秘“乘客”,那就是海尔集团研发的航天冰箱,它不是用来存储食物的,而是要完成保存医学试剂的使命,为飞船返回后航天医学研究提供重要的样本支持。

中国航天事业是在50年代中期开始的,1956年,中国制定了12年科 学发展远景规划,把火箭和喷气技术列为重点发展项目。同年建立了第 一个导弹、火箭研究机构,1958年把发射人造地球卫星列入国家科学规 划,组建机构开展空间物理学研究和探空火箭研制工作,并开展星际航 行的学术活动和实验设备的筹建工作。中国航天事业在创业之初经历了 经济上、技术上的种种困难,经过艰苦奋斗,终于在1960年2月发射成 功第一枚探空试验火箭,同年11月又发射成功第一枚自制的运载火箭, 在60年代后期又研制成功中程和中远程运载火箭,为中国航天事业的发 展奠定了基础。中国于60年代中期制定了研制和发射人造地球卫星的空 间计划。1968年组建了中国空间技术研究院。1970年4月24日,中国第 一颗人造地球卫星“东方红”1号发射成功,使中国成为继苏、美、法 、日之后世界上第五个用自制运载火箭成功地发射卫星的国家。1971年 3月3日发射成功的第二颗人造地球卫星向地面发回了各项科学实验数据 ,正常工作了多年。1975年11月26日首次发射成功返回型人造地球卫星 ,中国成了继美、苏之后世界上第三个掌握卫星返回技术的国家。1980 年5月,向南太平洋发射大型运载火箭取得成功,1981年9月20日首次用 一枚大型运载火箭把三颗空间物理探测卫星送入地球轨道,1982年10月 从水下潜艇发射运载火箭成功。1984年4月,发射一颗对地静止轨道试 验通信卫星“东方红”2号,4月16日卫星定点于东经125度赤道上空, 至1985年10月,中国依靠自己的力量共发射了17颗不同类型的人造地球 卫星。这些卫星为地质、测绘、地震、海洋、农林、环境保护等国民经 济部门和空间科学研究提供了十分有价值的资料。第一颗试验通信卫星 已用于国内通信广播和电视节目传输,对改善边远地区的通信和广播状 况发挥了重要作用。通过一系列航天活动中国已建立了各类人造卫星、 运载火箭、发射设备和测量控制系统的研究、设计、试验和生产的基地 ,建成了能发射近地卫星和对地静止轨道卫星,拥有光测、遥测和雷达 等多种跟踪测量手段的酒泉和西昌航天器发射场;组成了由控制中心地 面台站和测量船构成的卫星测控网,造就了一支富有经验的航天科学技 术队伍,从而有能力不断开拓航天活动。 10月15日到16日神州5号载人飞船发射成功,是中国高科技领域继 “两弹一星”之后又一座光辉的里程碑,中国由此成为世界上继俄罗斯 和美国之后第三个有能力将航天员送上太空的国家

中国载人航天工程论文总结报告怎么写

是小鬼耶~居然偶尔看到你这个问题了……

你应该先查下相关的文献资料呀~看看我国航天事业的发展现状,可以参考下国际航空航天科学,从发展现状入手应该是可以的~

引用jbp190ae8db7f的回答:中国,本是在这个世界上最先发明了火箭的国家,但由于长期的闭关锁国加上苦不堪言的百年挨打史,最终却落个火箭几乎为零的下场。多少人在着急!多少人在渴盼:火箭,你何时才能重返故乡? 终于,1960年,中国的火箭将士们,忍着饥饿的肚子,开始了从仿制苏联导弹到自己设计导弹的艰难跋涉,当中国宣布导弹核武器发射成功的消息时,全世界都被震动了。从此,中国航天在艰难中步向辉煌!1992年,我国载人飞船正式列入国家计划进行研制,这项工程后来被定名为“神舟”号飞船载人航天工程。仅仅7年后,北京时间1999年11月21日凌晨3时41分,我国发射的第一艘试验飞船“神舟”号在完成了空间飞行试验后在内蒙古自治区中部地区成功着陆。作为我国航天史上的又一里程碑,神舟一号试验飞船的成功发射与回收,标志着我国载人航天技术获得了新的重大突破。2003年10月16日6时23分,“神舟”五号载人飞船在内蒙古主着陆场成功着陆,实际着陆点与理论着陆点相差8公里。返回舱完好无损。航天英雄杨利伟自主出舱。我国首次载人航天飞行圆满成功。全世界震动了! 中国的航天事业在蒸蒸日上,在中国航天几十年的发展历程中,取得了辉煌业绩,使我国成为世界上有重要影响的大国,在长期奋斗中,我国航天工作者不仅创造了非凡的业绩,而且铸就了特别能吃苦、特别能战斗、特别能攻关、特别能奉献的载人航天精神。载人航天精神是“两弹一星”精神在新时期的发扬光大,是我们伟大民族精神的生动体现,永远值我们学习。 看到我国的航天事业,这么突飞猛进,做为一个二十一世纪的小主人,我们更应该好好学习,长大了为祖国航天事业的发展做出贡献。

中国载人航天工程论文总结怎么写

在我国革命、建设和改革的壮丽进程中,我们党和人民创造了伟大的井冈山精神、长征精神、延安精神、“两弹一星”精神、九八抗洪精神、抗击非典精神等。今天,载人航天精神又为我们伟大的民族精神增添了一笔新的宝贵财富。这笔精神财富荣耀神州,弥足珍贵,是激励中国人民奋发进取的强大精神力量。 载人航天精神的思想内涵 伟大的事业孕育伟大的精神。新一代航天人在攀登科技高峰的伟大征程中,以特有的崇高境界、顽强意志和杰出智慧,铸就了载人航天精神。 不辞辛劳、艰苦创业———特别能吃苦的精神中国航天事业是在极其艰苦和困难的条件下起步的。茫茫戈壁、浩瀚海洋,洒下几代航天工作者辛勤的汗水,留下几代航天工作者奋斗的足迹。广大航天工作者为了早日实现飞天梦想,栉风沐雨,不辞辛劳,克服了无数困难,付出了巨大牺牲,以昂扬奋发的精神状态,创造了中华民族科技进步的奇迹。 一往无前、勇攀高峰———特别能战斗的精神载人航天是当今世界高新科技最具挑战性的领域之一,广大航天人不畏艰险,顽强拼搏,不因遇到挫折而气馁,不因取得成功而懈怠,表现了坚韧不拔的革命意志和义无反顾的战斗精神。科研人员一次次向艰难险阻发起进攻,航天员一次次向生理和心理极限发起冲击,表现了钢铁般的意志和坚韧不拔的毅力。 自主创新、求真务实———特别能攻关的精神中国载人航天事业的进展,靠的正是自主创新的勇气、智慧和精神。我国载人航天工程在一代又一代航天人艰苦创业、奋力攻关的基础上,始终坚持高起点发展,瞄准当今航天科技发展前沿,进行大量卓有成效的自主创新,突破和掌握了一批核心技术,取得了一次又一次重大进展。中国的载人航天走的是一条与世界上任何航天大国都不同的、具有中国特色的道路———投入少、效益高的道路。速度与效益,需要极高标准的工作质量。“零缺陷,零故障,零疑点”、“严上加严、细上加细、慎之又慎、精益求精”、“一丝不苟、分秒不差”……这些看似极端的口号,从一个侧面反映了中国航天人严谨求实的作风。 团结协作、无私奉献———特别能奉献的精神中国载人航天事业的突破,靠的是社会主义大协作,靠的是发挥社会主义制度集中力量办大事的政治优势。作为一项规模宏大、高度集成的系统工程,载人航天工程包括了飞船、火箭、测控通信等七大系统,涉及力学、地球科学、空间科学、自动控制、微电子等众多领域。投入研制、试验和协调配合的单位多达3000多个。在党的集中统一领导下,万众一心的凝聚力又一次空前迸发。无论科研人员还是保障人员,无论火箭、飞船的研制者,还是发射场、着陆场的建设者,情系载人航天事业的千军万马用齿轮咬合般的协作精神,汇聚成了助推神舟飞天的强大力量。 载人航天精神的时代价值 时代需要榜样,时代呼唤英雄。先进人物用自己的行动,引领时代的方向,他们的精神影响着一代又一代后来人,他们的事迹是一个时代为祖国乃至全人类留下的宝贵精神财富,他们展现出的精神是一个时代的最强音。 大力弘扬特别能吃苦的精神 大力弘扬载人航天精神,就是要像他们那样,为了祖国和人民的事业,以苦为荣,以苦为乐,埋头苦干,艰苦创业。 今天,在市场大潮的冲击下,有些人迷失了方向,在他们眼中,人生的目标就是金钱。而航天员们的成功,则从正面向社会昭示:人生价值的实现,靠的是坚定正确的人生方向和艰苦奋斗的作风意志,离开正确的事业发展方向,单纯以金钱作为追求的目标,只会走入歧途。建设中国特色社会主义,需要艰苦奋斗,反腐倡廉,保持旺盛的革命精神,需要大力弘扬特别能吃苦的载人航天精神。 大力弘扬特别能战斗的精神 大力弘扬载人航天精神,就是要像他们那样,面对困难和挑战,不畏艰险,知难而进,一往无前,敢于胜利。 建设中国特色社会主义是一项开创性的事业,当前的社会主义改革进入了一个攻坚阶段,我们将面临着许多的困难和挑战,此时更应该大力弘扬特别能战斗的载人航天精神,以与时俱进的精神不懈登攀。 大力弘扬特别能攻关的精神 大力弘扬载人航天精神,就是要像他们那样,在攀登科学高峰的征途上,刻苦钻研,严细慎实,不懈探索,勇于创新。 对于即将执行第十一个五年规划的中国来说,发展科技教育和壮大人才队伍,是提升国家竞争力的决定性因素。实施载人航天工程,不仅创造了举世瞩目的伟大成就,而且为我们更好地实施科教兴国战略和人才强国战略、加快推进经济社会发展积累了重要经验,提供了十分重要的启示。 建设中国特色社会主义,必须坚持以科技进步和创新为先导,努力实现技术发展的跨越;必须坚持自主创新的方针,牢牢掌握尖端技术发展的主动权。 大力弘扬特别能奉献的精神 大力弘扬载人航天精神,就是要像他们那样,为了一个共同目标,淡泊名利,甘于奉献,团结一心,共创伟业。 团结就是力量,协作凝聚希望。综合国力的竞争,不仅是经济实力、科学技术和军事水平的竞争,更是民族精神力量的竞争。我们应当把一切可以团结的力量都团结起来,和衷共济,风雨同舟,充分发挥自己的主观性、能动性和创造性,共同面对中国特色社会主义建设中的各种挑战和困难。勇于奉献、不怕牺牲是中华民族的光荣传统,同样也是建设全面小康社会不可缺少的精神保证。 伟大的实践催生伟大的精神,伟大的精神推动伟大的事业。一代代航天人艰苦奋进的动人业绩和英雄精神,正成为我们民族一笔极为宝贵的精神财富,这是实施载人航天工程给我们民族带来的最大收获。

神舟一号 神舟一号飞船是中华人民共和国载人航天计划中发射的第一艘无人实验飞船,飞船于1999年11月20日凌晨6点在酒泉航天发射场发射升空,承担发射任务的是在长征-2F捆绑式火箭的基上改进研制的长征2号F载人航天火箭。在发射点火十分钟后,船箭分离,并准确进入预定轨道。 神舟二号 北京时间1月16日19时22分,我国第一艘无人飞船“神舟二号”在内蒙古中部地区成功着陆。至此,飞船按预定计划,在太空飞行了7天。围绕着飞船的测控和回收,我国航天测控人员决战太空,展开了紧张的工作。 “神舟二号”飞船1月10日1时零分发射升空后,所进入的是距地球表面高度近地点为200公里、远地点为340公里的椭圆轨道。 神舟三号 2002年3月25号晚上10时15分,我国研制的“神舟”三号飞船在酒泉卫星发射中心发射升空并成功进入预定轨道。 这次发射成功标志着我国载人航天工程取得了新的重要进展,为不久的将来把中国的航天员送上太空打下了坚实的基础。 这次发射的“神舟”三号是一艘正样无人飞船,飞船技术状态与载人状态完全一致。这次发射试验,运载火箭、飞船和测控发射系统进一步完善,提高了载人航天的安全性和可靠性。 神舟四号 神舟四号飞船总长约4米,最大直径8米,总质量7794公斤。在推进舱和轨道舱的II、IV象限各安装一个太阳电池翼,推进舱的两个太阳电池翼总面积48平方米,展开后的翼展宽度约17米。轨道舱的两个太阳电池翼总面积24平方米,展开后的翼展宽度约4米。神舟四号飞船配置有13个分系统及供配电与电缆网。结构与机构分系统保证飞船的构型,并为航天员提供生活的结构空间。 神舟五号 1999年11月20日~21日,中国载人航天工程第一艘“神舟”无人试验飞船飞行试验获得了圆满成功。2001年初至2002年底又相继研制并发射成功了神舟1~4无人试验飞船,获得了宝贵的试验数据,为实施载人航天打下了坚实的基础。神舟-5飞船是在无人飞船基础上研制的我国第1艘载人飞船,乘有1名航天员,在轨运行1天。整个飞行期间为航天员提供必要的生活和工作条件,同时将航天员的生理数据、电视图像发送地面,并确保航天员安全返回。 神舟六号 神舟六号载人飞船是中国神舟飞船系列之一。“神舟六号”与“神舟五号”在外形上没有差别,仍为推进舱、返回舱、轨道舱的三舱结构,重量基本保持在8吨左右,用长征二号F型运载火箭进行发射。它是中国第二艘搭载太空人的飞船,也是中国第一艘执行“多人多天”任务的载人飞船。 神舟七号 全国政协委员、载人航天火箭系统顾问组组长、“神舟”五号火箭总指挥黄春平表示,“神舟”七号发射时间将推迟半年左右,原定2007年的发射计划将拖后到2008年。与“神舟五号”、“神舟六号”不同,“神舟”七号火箭在研制上的关键点是宇航服和气门闸。因为“神舟”七号将实现太空行走,航天员能否从舱内气压骤然适应真空环境,气门闸和宇航服扮演了重要角色。虽然“天宫一号”在太空中孤独地等待新“主人”的到来,但它却早早就为“主人”们准备好了一切家当。航天员太空训练的器材、各类服装鞋袜、睡袋、诊疗箱以及大量航天医学实验设备等都已布置妥当,内部环境也很舒适。此次航天员的太空停留时间比以往要长,他们要在“天宫一号”生活13天,以往在“神舟”飞船里最多是生活5天。而“天宫一号”的生命保障系统和环境控制系统能提供60天的生活工作环境,也就是说一个人可以生活60天,3个人可以生活20天。与以往不同的是,“神舟九号”任务中,航天员在太空的生活节奏比较接近地球。以前飞行天数短,任务安排得相对紧密,航天员的作息节奏和地面上不一样。但随着飞行时间延长,航天员的太空生活节奏会越来越趋向于地面。否则航天员生活节奏、工作节律被打乱,会感觉到不舒服,地面的支持团队也不能长期维持这种节奏。在10天左右的组合体生活期间,航天员工作、生活和地面基本同步,吃饭也是早中晚一日三餐,8点钟之前吃饭、打扫卫生,然后天地通话、医学检查,把一天的工作计划和地面协调好之后就开始干活。航天员按北京时间休息,晚上要锻炼身体,睡前把完成的计划和感受传回地面。为保证睡眠,有专门的设计确保航天员抗“昼夜交替”干扰,可以把窗帘拉上,睡觉灯光也是可调的。“天宫一号”的有效活动空间是15立方米,包括两个睡眠区,一个仪表显示区,一个空间科学实验区,一个在轨锻炼区。为了保证航天员有充足的睡眠和旺盛的精力,睡眠区设计了两个“房间”,以保证航天员在太空里也能睡上单间。三名航天员在太空的时候,不能一起睡觉,总要留下一个人值班,因此两个“单间”足够保证同时有两个人休息。他们还有3个睡袋,每人都有自己的“被子”。此外,“天宫一号”里还有一个专门的“密室”,在这个密室里航天员和家人说悄悄话,旁人无法“偷听”。不过,航天员的餐厅并不是在“天宫一号”里,而是在“神舟九号”的轨道舱内。“神舟九号”在天上停留的时间较长,所以航天食品更加丰富。在“神舟七号”时,航天员已经可以吃到醋、辣椒之类的调味品了,而“神舟九号”“厨房”里可储藏至少80种食品,航天员每天能吃到不同种类的饭菜。在“神舟九号”飞船里,还有一位神秘“乘客”,那就是海尔集团研发的航天冰箱,它不是用来存储食物的,而是要完成保存医学试剂的使命,为飞船返回后航天医学研究提供重要的样本支持。

载人航天是集国家政治、军事、科技实力为一体的高难度系统工程。要真正把人送入太空乃至使人长时期在太空生活,必须要突破三大技术难题。   第一个难题是,研制出推力足够大,可靠性极端好的运载工具。 前苏联发射东方号、上升号、联盟号等载人飞船的运载火箭都是运载能力5吨以上,而且在发射中极少发生事故的优秀运载工具。为了确保发射时万无一失,运载火箭及飞船的关键部件必须是双备份或三备份,火箭、飞船在上天前,必须经过一系列极严格的地面测试和模拟飞行,直到没有一丝隐患才能放行上天。据记载,苏/俄近百次发射载人飞船,运载火箭出现问题宇航员使用逃逸塔救生设备的仅1次。美国航天飞机的近百次飞行,也只有挑战者号爆炸一次灾难性事故。难怪有专家说,由于对可靠性的重视,实际上,与航海、航空及陆上各种交通运输工具比较,航天器的活动有着最好的安全记录。   第二个难题是,获得空间环境对人体影响的足够信息,了解人体所能承受的极限条件并找到防护措施。   空间环境与陆地环境有着天壤之别。太空中高度真空,没有氧气没有水,如果没有任何保护,人体暴露在这样的环境里,不消一分钟,就会由于身体内外的巨大压差而爆炸,体液会迅速沸腾汽化。太空中温差极大,由于没有空气对流,航天器朝阳面温度可达100℃以上,而背阴面则会在-100℃以下,在远离地球的深空中,温度则达到人体根本无法耐受的-273℃。太空中还充满了有害的宇宙辐射。另外太空失重环境,特别是飞船上升、返回阶段的加速度和减速度会使人体发生平衡功能紊乱、体内组织位移、肌肉萎缩、骨质脱钙等病变。   要在这种环境里保证人的生存,就必须研制出密封的防辐射飞船,飞船中要配备能供人正常生活的空气、水、温度等基本生命保障条件。同时还要为宇航员装备上宇航服,一旦宇航员要走出飞船座舱到太空中工作,所有的生命保障系统便全由宇航服提供。   在近40年的载人航天实践中,苏/俄研制出了东方号、上升号、联盟号三代载人飞船,美国也成功使用了水星号、双子星座号和阿波罗号三代载人飞船以及航天飞机。乘坐这些航天器,截至1997年4月世界上已有727人次宇航员成功地进入了太空。   第三个难题是,可靠的救生技术及安全返回技术。 载人航天与不载人航天最大的区别就在于救生技术的应用和安全返回的绝对可靠。   载人航天的救生装置有弹射座椅、逃逸塔、分离座舱和载人机动装置等。它们在飞行的不同高度发挥各自的作用。   一般来说,飞行高度在10公里左右时,宇航员可以采用弹射座椅的方式弹出发生危险的航天器,跳伞救生。也可以启动逃逸塔,让逃逸塔拉着飞船甩掉出毛病的火箭另行降落救生。如果火箭高空发生问题,宇航员跳伞不行了,逃逸塔已按飞行程序抛掉了,则只有采取分离飞船座舱的办法,让飞船座舱自己返回救生。飞船入轨后,一旦自身遭到损坏或宇航员生病,需营救时,那么只有暂时采用船上救生装置等待地面发射飞船救生的办法。   飞船的安全返回也不容易,它需要启动反推火箭减速、调姿、进入返回轨道等技术,还要闯过三道"鬼门关":一是过载关,飞船高速进入稠密大气层时会产生巨大的冲击过载,就像飞机撞山一般;二是火焰关,飞船返回与空气的剧烈摩擦会产生几千度的高温,没有防护,钢筋 铁骨也会化为灰烬;三是撞击关,飞船降落尽管有降落伞,但它的降落速度仍达每秒14米,不采取措施,就是壮汉也会被摔死。此外,落点的精度也是大问题,前苏联的一艘飞船返回时出现落点偏差,结果营救人员找不到宇航员,而宇航员却被困在冰天雪地的森林里差点冻死。   尽管载人航天困难重重,但人类正在一步步地掌握它的规律。中国航天科学家已经具备了解决三大难题的能力,中国的载人航天工程已经蓄势待发。

你们才七百字啊?我们让写三千字

载人航天论文总结报告怎么写

。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。

我们知道,人类的家园是地球,而地球的外面覆盖着一层大气,如果没有水和大气以及适宜的温度和环境,生物是很难生存的。通常,在人们的眼中,“天”很高,要想冲出厚厚的大气层,进入太空非常非常困难。其实,与地球相比,大气层是很稀薄的。人们知道,地球的直径大约为12700千米,而大气层的厚度只有100 -800千米。如果将地球比作一个苹果的话,那么,我们可以把大气层看成是苹果的皮,可这层“苹果皮”本身却是变化多端的。比如最贴近地球表面的一层,叫作对流层,其高度从海平面起一直到大约11000米止,其顶界是随纬度、季节等情况而变化的,在赤道地区为17000米,在中纬度地区(如北京、天津地区)为11000米,在地球两极地区则为7000-8000米。对流层的主要特点是,空气温度随着高度的增加而降低,因而又称为变温层,平均而言高度每上升1000米,气温约下降5℃。与此同时,气压也随高度的增加而降低。由于地球引力的作用,在 5500米的高度范围内,包含了大气总量的一半,而整个对流层,大约占了全部大气质量的四分之三。由于几乎所有的水蒸气都集中在这一层大气内,再加上大量的微粒,因而,这里也是风云变幻最为剧烈的一层。从大约11000米的高度起,直到 30500米左右,其大气温度基本不变,平均保持在-5℃上下,因此被称为同温层(实际情况是:在25000米以下,气温随高度的升高而上升。在同温层顶,气温约升至-43至-33℃)。同温层的气温之所以具有这样的特点,是因为该层大气离地球表面较远,受地面温度的影响较小,并且其顶部存在着臭氧,能够直接吸收太阳的辐射热等。同温层所包含的空气质量大约占整个大气的四分之一弱。在这一层大气内,没有上下对流,只有水平方向的风,所以又叫作平流层。另外,该层大气几乎不存在水蒸气,基本上没有云、雾、雨、雹等气象变化的现象,这对飞行器的平稳飞行是非常有利的。不过,由于空气密度很小,飞机在这一高度层上又不适宜机动飞行。人类的航空活动差不多都集中在对流层和同温层内。为了保证飞机和发动机的工作效率,飞机飞行的高度一般不超过30千米的界限。从30千米到80-100千米的高度范围,被称为中间层。这一层空气的特点是:以 45千米为界,温度先升后降。由于大量的臭氧存在,其气温先由同温层顶的-33℃提高到17至40℃左右;从45千米起,随着高度的升高,气温又开始下降,一直降低到-5℃至-113℃。中间层的空气已经很稀薄了,其空气质量约只占整个大气层的1/3000。在80千米高度上,空气的密度只有地面的五万分之一;而在100千米高度上,空气的密度仅为地面的一千万分之八。由于空气非常稀薄,并且气体开始呈现电离现象,因此,人们一般把飞行高度达到80—100千米的飞行器,看成是不依靠大气飞行的航天器。1967年10月,美国试飞员约瑟夫·沃尔克驾驶X-15A火箭飞机飞出了 7297千米/小时的惊人速度,创造了有人驾驶飞机速度的世界纪录。而且,他还曾多次飞到了80千米以上的高空,成为美国第一个“驾驶飞机的宇航员”。按照美国航空航天局规定:飞行高度超过80千米的飞行员即可称为宇航员在中间层之上直至800千米高空的范围,称作电离层。其特点是:含有大量的带正电或负电的离子,空气具有导电性。并且,其温度随高度的增大而迅速升高,在200千米高度时,气温可达400℃。所以,这里又被人们叫作“暖层”。在电离层顶端之外,便是大气的最外层——“散逸层”了。由于地球引力的减弱,气体分子和等离子体与地球已若即若离。电离层和散逸层的空气密度极低,对太空飞行器的影响已很小,因此,人类大部分的航天活动都是在它们之内(或之外)进行的。航空与航天的区别:航空与航天是人们经常接触的两个技术名词,两者虽然仅一字之差,却被称为两大技术门类,这是为什么呢?您稍加注意即可发现,航空技术主要是研制军用飞机、民用飞机及吸气发动机,航天技术主要是研制无人航天器、载人航天器、运载火箭和导弹武器,最能集中体现两者成果的是航空器和航天器。从航空器与航天器的重大区别上即可看出两个技术领域的显著差异。第一,飞行环境不同。所有航空器都是在稠密大气层中飞行的,其工作高度有限。现代飞机最大飞行高度也就是距离地面30多千米。即使以后飞机上升高度提高,它也离不开稠密大气层。而航天器冲出稠密大气层后,要在近于真空的宇宙空间以类似自然天体的运动规律飞行,其运行轨道的近地点高度至少也在100 千米以上。对在运行中的航天器来讲,还要研究太空飞行环境。第二,动力装置不同。航空器都应用吸气发动机提供推力,吸收空气中的氧气作氧化剂,本身只携带燃烧剂。而航天器其发射和运行都应用火箭发动机提供推力,既带燃烧剂又带氧化剂。吸气发动机离开空气就无法工作,而火箭发动机离开空气则阻力减小有效推力更大。吸气发动机包括燃烧剂箱在内都可随飞机多次使用,而发射航天器的运载火箭都是一次性使用。虽然航天飞机的固体助推器经过回收可以重复使用20次,其轨道器液体火箭发动机可以重复使用50次,但与航空器使用的吸气发动机比较起来,使用次数仍然是很少的。吸气发动机所用的燃烧剂仅为航空汽油和航空煤油,而火箭发动机所用的推进剂却是多种多样的,既有液体的,也有固体的,还有固液型的。第三,飞行速度不同。现代飞机最快速度也就是音速的三倍多,且是军用飞机。至于目前正在使用的客机,都是以亚音速飞行的。而航天器为了不致坠地,都是以非常高的速度在太空运行的。如在距地面600千米高的圆形轨道上运行的航天器,其速度是音速的22倍。所有航天器正常运行时都处于失重状态,若长期载人会使人产生失重生理效应,并影响健康。正因如此,航天员与飞机驾驶员比较起来,其选拔和训练要严格得多。一般人买票即可坐飞机,而花重金到太空遨游的人还必须通过专门培训。第四,工作时限不同。无论是军用还是民用飞机,最大航程计约2万千米,最长飞行时间不超过一昼夜。其活动范围和工作时间都很有限,主要用于军事和交通运输。虽然通用轻型飞机应用广泛,但每次活动范围相对更小。而航天器在轨道上可持续工作非常长时间,如目前仍在使用的联盟TM号载人飞船,可与空间站对接后在太空运行数月之久。再如航天飞机,能在轨道上飞行7-30天,约5小时即可围绕地球飞行一周。载人航天器运行时间最长的当属和平号空间站,它在太空飞行了整整15个年头。至于无人航天器,如各种应用卫星,一般都在绕地轨道上工作多年。有的深空探测器,如先驱者10号,已在太空飞行了32年,正在飞出太阳系向银河系遨游。航空器的优点是能多次重复使用,而航天器除航天飞机外,只能一次性使用,载人宇宙飞船也不例外。第五,升降方式不同。飞机的升空是从起飞线开始滑跑到离开地面,加速爬升到安全高度为止的运动过程。它返回地面降落时只要经过下滑和着陆即可。只有个别飞机如英国的“鹞”型战斗机采用发动机喷口转向的方式使飞机能够垂直起落,但机身并未竖起,仍处于水平位置。而至今为止的航天器发射,包括地面和海上的发射,顶部装着航天器的运载火箭都是垂直腾空的。在完成发射过程中,运载火箭要按程序掉头转向和逐级脱离,最终将航天器送入预定轨道运行。有的航天器发射,中间还要经过多次变轨,情况更为复杂。航天飞机虽然也能施放航天器,但它本身亦是垂直发射升空的。至于返回式航天器,其回归地面必须经历离轨、过渡、再入和着陆四个阶段,远比飞机降落困难。航空器的起飞、飞行和降落与航天器的发射、运行和返回,虽然都离不开地面中心的指挥,但两者的地面设施和保障系统及其工作性能与内容也是大有区别的。世界航空航天大事件:风筝起源古代中国,约14世纪传到欧洲公元前500-400年中国人就开始制作木鸟并试验原始飞行器1909年世界第一架轻型飞机在法国诞生1903年12月14日至17日,由莱特兄弟设计制造的“飞行者”1号飞机,在人类航空史上首次实现了自主操纵飞行这次试飞成功成为一个划时代的事件,人类航空史从此进入新的纪元1947年10月14日美国著名试飞员查尔斯·耶格尔驾驶X—1飞机实现了突破音障飞行1969年7月20日22时56分20秒,阿姆斯特迈出一小步成为全体地球人类的一大步1957年10月4日前苏联发射世界第一颗人造地球卫星。半年后,美国的人造卫星上天1959年9月12日前苏联发射“月球”2号探测器,为世界上第一个撞击月球表面的航天器1961年4月12日前苏联宇航员加加林成为世界第一位飞入太空的人1969年7月20日美国宇航员阿姆斯特朗乘坐“阿波罗”11号飞船,成为人类踏上月球的第一人1970年12月15日前苏联“金星”7号探测器首次在金星上着陆1971年4月9日前苏联“礼炮”1号空间站成为人类进入太空的第一个空间站。两年后,美国将“天空实验室”空间站送入太空1971年12月2日前苏联“火星”3号探测器在火星表面着陆。5年后,美国的“海盗”火星探测器登陆火星1981年4月12日世界第一架航天飞机---美国“哥伦比亚”号航天飞机发射成功1986年1月28日美国航天飞机“挑战者”号在升空73秒后爆炸1986年2月20日前苏联发射“和平”号空间站,服役已经超期8年,至今仍在运行,是目前最成功的人类空间站1993年11月1日美、俄签署协议,决定在“和平”号空间站的基础上,建造一座国际空间站,命名为阿尔法国际空间站我国航空航天大事件:1956年10月8日,我国第一个火箭导弹研究机构———国防部第五研究院成立。1970年4月24日,长征一号运载火箭在酒泉卫星发射中心成功地发射了东方红一号卫星,我国成为世界上第三个独立研制和发射卫星的国家。1975年11月26日,长征二号运载火箭在酒泉卫星发射中心成功地发射了我国第一颗返回式科学试验卫星,并于3天后成功回收。1984年4月8日,长征三号运载火箭在西昌卫星发射中心成功地发射了我国第一颗地球同步轨道卫星———东方红二号试验通信卫星。1990年4月7日,中国用自行研制的长征三号运载火箭在西昌卫星发射中心成功地发射了亚洲一号通信卫星,这是中国长征系列运载火箭首次发射国外卫星,使我国在世界航天商业发射服务领域占有了一席之地。1999年10月,我国和巴西联合研制的第一颗地球资源卫星顺利升空,并正常运行,这是我国首次在空间技术领域进行的全面国际合作。2003年10月15日,“神舟”五号飞船成功发射,并于2003年10月16日圆满回收,使我国成为世界上第三个独立掌握载人航天技术的国家。2003年12月和2004年7月,我国与欧洲空间局联合研制并发射了“探测一号”和“探测二号”科学卫星,“地球空间双星探测计划”取得圆满成功。2004年1月23日,我国绕月探测工程正式由国务院批准立项。2005年10月12日,神六成功发射

中国科学院披露载人航天实验内容  中国科学院有关负责人表示,载人飞船工程应用系统的主要任务是开展空间对地观测、空间科学及技术实验。我国载人航天工程(第一阶段)应用系统的目标是大力推进和发 展我国空间科学与空间应用技术,为国家经济建设和社会发展做出有重要价值的贡献,同时为今后有人参与的空间科学与技术实验打下基矗。  其中,“对地观测任务”是以与国际同步发展先进空间遥感器及开拓地球系统科学研究为目的,确定了中分辨率成像光谱仪器、多模态微波遥感器(包括微波高度计、辐射计和散射计)、地球环境监测和遥感应用研究等在轨实验和应用任务。地球环境监测包括太阳常数监测、太阳和地球紫外辐射监测以及地球辐射收支探测。遥感器应用研究为我国遥感应用技术的发展奠定基础;开展成像光谱技术和微波遥感技术在海洋、陆地和大气方面的应用研究和应用示范。  “空间科学研究”安排了空间生命科学、微重力科学(包括空间材料科学项目,微重力流体物理研究项目),还有空间天文项目、空间环境预报和监测任务,目标是全面提高我国空间科学水平。“空间生命科学和生物技术”研制了多种空间实验设备,开展空间生物学效应研究、空间蛋白质结晶、空间细胞培养、空间细胞电融合以及空间蛋白质和生物大分子分离纯化等研究;“空间材料科学研究”研制多工位晶体生长炉和晶体生长观测装置,开展二元和三元半导体光电子材料、透明氧化物晶体、金属和合金等材料研究和空间生长,研究空间晶体生长动力学;“空间环境预报和监测”研究可以建立空间环境预报中心,发布长期、中期、短期空间环境预报和警报,进行效应预测,保障航天员、载人航天器和空间设备安全。载人飞船构造:  1,轨道舱呈圆桶形状,是航天员工作、生活和休息的地方。轨道舱调整了舱内布局设计以便安装应用系统设备及航天员食品和饮用水装置。轨道舱的后端底部设有舱门,航天员通过这个舱门可以进入返回舱。轨道舱外部两侧装有两个像鸟儿翅膀一样的太阳电池翼,轨道舱所需要的电能就是由这两个电池翼提供的。  2,返回舱是载人飞船唯一返回地球的舱段,飞船起飞、上升到入轨及返回着陆时,航天员都在返回舱内。神舟六号的返回舱形状像钟,其舱门与轨道舱相连,航天员通过这个舱门,可以进入轨道舱。返回舱是飞船的指挥控制中心,舱内安装了航天员的座椅。飞船在起飞、上升和返回地面时,航天员躺在座椅上的。返回舱内还安装了飞行中需要航天员监视和操作的仪器设备,航天员通过这些仪表可以随时判断、了解飞船的工作情况,还可以在必要时人工干预飞船的系统和设备的工作。   3,推进舱形状也是圆柱形的,舱内安装推进系统发动机和推进剂,其使命是为飞船提供姿态高速和进行轨道维持所需的动力,飞船电源、环境控制和通信等系统的一部分设备也安装在这里。推进舱外部两侧也安装了两个太阳电池翼,为飞船提供所需的电能。   载人飞船的轨道舱和返回舱都是密封的舱段,舱内与外界完全隔绝,内部安装的环境和生命保障系统,将为航天员提供一个与地球环境一样的舒适生活环境。另外,还安装了供着陆用的主、备两具降落伞。返回舱侧壁上开设了两个圆形窗口,一个用于航天员观察窗外的情景,另一个供航天员操作光学瞄准镜观察地面驾驶飞船。长征2F运载火箭主要技术指标:  火箭的可靠性为0.97,安全性为0.997:0.97的可靠性就是说100次发射里,只有3次火箭可能出现问题;0.997的安全性是指火箭出现1000次问题里,可能有3次会危及航天员的生命安全。这是载人火箭的特性。一般的商用火箭可靠性为0.91到0.93,没有安全性要求。   火箭起飞重量为479吨:火箭加上飞船重量约44吨,其它的都是液体推进剂。因此,火箭的90%都是液体,比人体含水量还大。水通常占人体的60%到70%。   飞船重量为8吨多,占船箭组合体起飞重量的六十二分之一:要把一公斤的东西送入轨道,就得消耗62公斤的火箭。神舟六号飞船比神舟五号在重量上有所增加,因此发射神六的火箭也重了不少。   火箭芯级直径为3.35米:古罗马人使用两匹马拉的车,车轮在石板路上磨出两道沟。由于车轮宽窄不一样,路上留下了不同宽窄的沟。后来他们想把轮距统一起来,就把两匹并排的马屁股当成标准,即1.435米,后来英国人修铁路也把铁轨轨距定为1.435米,并被各国沿用。按照这个轨距修建的铁路,能够运输的货物最宽为3.72米,去掉车厢外壳,只剩下3.35米。因此,用标准铁路进行运输的火箭最大直径只能达到3.35米。   火箭入轨点速度为每秒7.5公里:这个速度是音速的22倍。我们通常说的“十里长街”,是指北京建国门至复兴门的距离,长6.7公里。每秒7.5公里的速度,相当于1秒钟内从长安街东头跑到西头。   火箭轨道近地200公里,远地350公里:地球半径6400公里,火箭轨道与地球的距离,仅为地球半径的几十分之一。如果站在地球外面看,飞船就像贴着地面在飞行。

我把文章给你吧!自己写的! “我是一只小小小小鸟,想要飞呀飞呀习也飞不高……”我哼着赵传的《我是一只小小鸟》,走在路上,心中不免有些失落。我就像歌中的那只小小鸟,我是人,人怎么能飞呢?一想到这儿,我就十分沮丧。不过我有时还是想入非非:我的梦想就是也能乘坐飞船火箭,飞到太空去遨游一番,去寻找新的有生命的星球或其他任务,呵呵,那就太爽了!不过好像不太现实,神舟五号也才载了杨利伟一个人,那能轮得上我呢?唉!   我迈进家门,按例打开了电视机,只见中央台新闻联播的播音员正报道说:“今天上午九时,我国神舟六号载人航天飞船在酒泉发射中心成功发射,宇航员为费俊龙和聂海胜。”我几乎每天都认真地观看有关神六的新闻报道,了解了神六的基本情况、宇航员的衣食住行以及神六与神五的区别等等。我心情十分激动,同时也感到不可思议。我的天哪,才两年的时间,我国就成功发射了两艘航天飞船!你看,这神六可比神五先进多了,光宇航员就增加了一倍,同时,神六的飞行时间达到了115小时32分钟,比神五的21小时多了好几倍,这是多么大的差距啊!另外还有食物,原来神五就简简单单几种,神六却有50多种,在太空中,连鱼香肉丝、宫爆鸡丁都能吃到!这下子可激活了我的脑细胞:对了!按照现在的发展速度,每2年有一架航天飞船上天,每次增加一名宇航员,到2020年就应该做到一艘航天飞船一次可以乘载9名航天员了吗?我不禁跃跃欲试,摩拳擦掌了。我心里暗想道,我 要计划一下,争取当一名宇航员,到太空去遨游一番!  做宇航员所必备的条件是:高超的飞行技术、扎实的理论知识、强健的身体、良好的心理素质和反应能力。高超的飞行技术、良好的心理素质和反应能力以后可以慢慢培养,现在我要经常进行体育锻练,增强体质,同时更要抓紧学习,积累知识,希望长大以后成为一名航天员。  我相信,在不久的将来,我的飞天梦想将成为现实,我一定会圆了这个梦! 希望我的回答对您有帮助!谢谢采纳!

载人航天论文总结报告

“我知道地球是圆的,因为我看见了圆形;然后,又看到它还是立体的。当我往下看时,……看到印度洋上船舶拖着尾波前进,非洲一些地方出现灌木林火,一场雷电交加的暴风雨席卷了澳大利亚1000英里的地区,呈现出大自然的一幅立体风景画。” 这是航天员在谈到从航天飞机上看地球的情景时的一段描述。航天技术发展是当今世界上最引人注目的事业之一,它推动着人类科学技术的进步,使人类活动的领域由大气层内扩展到宇宙空间。航天技术是现代科学技术的结晶,是基础科学和技术科学的集成,航天技术是一个国家科学技术水平的重要标志。航天技术是一门综合性的工程技术,主要包括:制导与控制技术,热控制技术,喷气推进技术,能源技术,空间通信技术,遥测遥控技术,生命保障技术,航天环境工程技术,火箭及航天器的设计、制造和试验技术,航天器的发射、返回和在轨技术等。由多种技术融于一体的航天系统是现代高技术的复杂大系统,不仅规模庞大,技术高新、尖端,而且人力、物力耗费巨大,工程周期长。时至今日,航天技术已被广泛应用到政治、军事、经济和科学探测等领域,已成为一个国家综合国力的象征。人类很早就有遨游太空、征服宇宙的理想。宇宙的星球对人类一直充满着吸引力和神秘感,许多美丽的神话和传说,反映了人类对宇宙的向往和探索空间奥秘的心情。《嫦娥奔月》、《牛郎织女》,以及孙悟空腾云驾雾、一个筋斗十万八千里等。航天飞行的历史是从火箭技术的历史开始的,没有火箭也就没有航天飞行。追溯源头,中国是最早发明火箭的国家。“火箭”这个词在三国时代(公元220~280年)就出现了。不过那时的火箭只是在箭杆前端绑有易燃物,点燃后由弩弓射出,故亦称为“燃烧箭”。• 随着中国古代四大发明之一的火药出现,火药便取代了易燃物,使火箭迅速应用到军事中。公元lO世纪唐末宋初就已经有了火药用于火箭的文字记载,这时的火箭虽然使用了火药,但仍须由弩弓射出。真正靠火药喷气推进而非弩弓射出的火箭的外形被记载于明代茅元仪编著的《武备志》中,见图1。这种原始火箭虽然没有现代火箭那样复杂,但已经具有了战斗部(箭头)、推进系统(火药筒)、稳定系统(尾部羽毛)和箭体结构(箭杆),完全可以认为是现代火箭的雏形。中华民族不但发明了火箭,而且还最早应用了串联(多级)和并联(捆绑)技术以提高火箭的运载能力。明代史记中记载的“神火飞鸦”就是并联技术的体现;“火龙出水”就是串、并联综合技术的具体运用,如图2所示。世界上第一个试图乘坐火箭上天的“航天员”也出现在中国。相传在14世纪末期,中国有位称为“万户”的人,两手各持一大风筝,请他人把自己绑在一把特制的座椅上,座椅背后装有47支当时最大的火箭(又称“起火”)。他试图借助火箭的推力和风筝的气动升力来实现“升空”的理想。“万户”的勇敢尝试虽遭失败并献出了生命,但他仍是世界上第一个想利用火箭的力量进行飞行的人。 19世纪末20世纪初,火箭才又重新蓬勃地发展起来。近代的火箭技术和航天飞行的发展,涌现出许多勇于探索的航天先驱者,其中代表人物K.3.齐奥尔科夫斯基(~OHCTaHTHH3ayap且oBHq UHOaKOBCKHfi),R.戈达德(Robert Goddard),H.奥伯特(Hermann Oberth)。 前苏联科学家齐奥尔科夫斯基一生从事利用火箭技术进行航天飞行的研究。在他的经典著作中,对火箭飞行的思想进行了深刻的论证,最早从理论上证明了用多级火箭可以克服地心引力进入太空的论点。 1、建立了火箭运动的基本数学方程,奠定航天学的基础。 2、首先肯定了液体火箭发动机是航天器最适宜的动力装置,论述了关于液氢一液氧作为推进剂用于火箭的可能性,为运载器的发展指出了方向,这些观点仅仅几十年就成为了现实。 3、指出过用新的燃料(原子核分解的能量)来作火箭的动力;并具体地阐明了用火箭进行航天飞行的条件,火箭由地面起飞的条件,以及实现飞向其他行星所必须设置中间站的设想。 4、提出过许多的技术建议,如他建议使用燃气舵来控制火箭,用泵来强制输送推进剂到燃烧室中,以及用仪器来自动控制火箭等,都对现代火箭和航天飞行的发展起了巨大的作用。 美国的火箭专家、物理学家和现代航天学奠基人之一戈达德博士在1910年开始进行近代火箭的研究工作,他在1919年发表的《达到极大高度的方法》的论文中,阐述了火箭飞行的数学原理,指出火箭必须具有7.9 km/s的速度才能克服地球的引力,并研究了利用火箭把有效载荷送至月球的几种可能方案。 德国的奥伯特教授在他1923年出版的《飞向星际空间的火箭》一书中不仅确立了火箭在宇宙空间真空中工作的基本原理,而且还说明火箭只要能产生足够的推力,便能绕地球轨道飞行。同齐奥尔科夫斯基和戈达德一样,他也对许多推进剂的组合进行了广泛的研究。 在1932年德国发射A2火箭,飞行高度达到3 km。1942年10月3日,德国首次成功地发射了人类历史上第一枚弹道导弹¡ª¡ªV¡ª2(A4型),并于1944年9月6日首次投入作战使用。V-2的成功在工程上实现了19世纪末、20世纪初航天技术先躯者的技术设想,并培养和造就了一大批有实践经验的火箭专家,对现代大型火箭的发展起到了继往开来的作用。V-2的设计虽不尽完善,但它却是人类拥有的第一件向地球引力挑战的工具,成为航天技术发展史上的一个重要里程碑。 • 1957年10月4日,前苏联用¡°卫星¡±号运载火箭把世界上第一颗人造地球卫星送入太空,卫星呈球形,外径O.58 m,外伸4根条形天线,质量83.6 kg,卫星在天上正常工作了3个月。按照今天的标准衡量,前苏联的第一颗卫星只不过是一个伸展开发射机天线的圆球,但它却是世界上第一个人造天体,把人类几千年的梦想变成了现实,为人类开创了航天新纪元,标志着人类活动范围的又一飞跃。 • 1961年4月12日,前苏联成功地发射了第一艘¡°东方号¡±载人飞船,尤里加加林成为人类第一位航天员,揭开了人类进入太空的序幕,开始了世界载人航天的新时代。• 1962年8月27日,美国发射的“水手2号”探测器第一次成功飞越金星。• 1969年7月20日,美国N.A.阿姆斯特朗和E.E.奥尔德林乘坐¡°阿波罗11号¡±飞船登月成功,在月球静海西南角着陆,成为涉足地球之外另一天体的首批人员。他们在月球上安放了科学实验装置,拍摄了月面照片,搜集了22虹月球岩石与土壤样品,然后自月面起飞,与指挥舱会合,返回地球。首次实现了人类登上月球的理想。 • 1971年4月19日,前苏联¡°礼炮1号¡±空间站人轨成功,其质量约18 t,总长14 m,轨道高度200~250 km,轨道倾角51.6。,成为人类第一个空间站,完成了有关天体物理学、航天、医学、生物学等方面的科研计划,考察地球资源和进行长期失重条件下的技术实验。• 1972年3月2日,美国发射了木星和深远空间探测器¡°先驱者10号¡±。它携有表明人类信息的镀金铝板,经过11年飞行,于1983年6月越过海王星轨道,而后成为飞离太阳系的第一个人造天体。• 1975年6月8日,前苏联发射了¡°金星9号¡±探测器,实现了在金星表面着陆。• 1975年7月18日,美国¡°阿波罗号¡±飞船与前苏联¡°联盟19号¡±飞船在大西洋上空对接成功(视频资料)。• 1975年8月20日,美国发射了¡°海盗1号¡±探测器,第一次在火星表面着陆成功(视频资料)。• 1977年9月,美国发射了¡°旅行者2号¡±探测器,对天王星、海王星进行探测。• 1981年4月,世界上第一架垂直起飞、水平着陆、可重复使用的美国航天飞机¡°哥伦比亚号¡±试飞成功,标志着航天运载器由一次性使用的运载火箭转向重复使用的航天运载器的新阶段,是航天史上一个重要的里程碑,标志着人类在空间时代又上了一层楼,进入了航天飞机时代。至2000年10月,航天飞机已成功飞行100次。 • 1986年2月,前苏联¡°和平号¡±轨道空间站发射成功,它成为目前人类发射的在轨运行时间最长的载人航天器,在轨运行超过15年。2001年3月23日,¡°和平号¡±轨道空间站被引入大气层销毁,完成了其辉煌的历史使命。 • 目前,更大规模的国际空间站在美国、俄罗斯、加拿大、日本、意大利和欧洲空间局的合作下,正在进行在轨组装建设¡­¡­人类就是以如此快速的步伐冲击着宇宙大门! • 不难看出,从公元10世纪的中国火箭到第二次世界大战的V一2导弹,人类是出于军事需求发展了火箭技术,而这恰恰为航天技术的发展奠定了坚实的基础。自20世纪40年代至今,航天技术以惊人的速度发展着并日臻完善。我们可以坚信,随着科学技术的进步和工业基础的不断增强,航天技术将会有更大的突破并更趋完善。 • 航天技术从20世纪50年代末期的研究试验阶段到70年代中期,发展到了广泛实际应用阶段。其中60年代以来,为科学研究、国民经济和军事服务的各种科学卫星与应用卫星得到了很大发展。至70年代,军、民用卫星已全面进入应用阶段。一方面向侦察、通信、导航、预警、气象、测地、海洋、天文观测和地球资源等专门化的方向发展,同时另一方面,各类卫星亦向多用途、长寿命、高可靠性和低成本的方向发展。 • 回顾近50年来航天技术应用的历程,具有代表性的大事列举如下:• 1958年12月,美国发射了世界上第一颗通信卫星¡°斯科尔号¡±;• 1960年4月,美国先后发射了世界上第一颗气象卫星¡°泰罗斯1号¡±和导航卫星¡°子午仪1B号¡±;• 1963年7月,美国发射了世界上第一颗地球同步轨道通信卫星;• 1964年8月,美国发射了世界上第一颗地球静止轨道通信卫星;• 1965年4月,美国成功地发射了世界上第一颗商用通信卫星¡°国际通信卫星1号¡±,正式为北美与欧洲之间提供通信业务,它标志着通信卫星进入了实用阶段;• 1972年7月,美国发射了世界上第一颗地球资源卫星¡°陆地卫星1号¡±;• 1982年11月,美国航天飞机开始商业性飞行;1984年11月,美国航天飞机成功地施放了两颗卫星并回收了两颗失效的通信卫星,第一次实现了双向运载任务;• 1983年4月,美国发射了世界上第一颗跟踪和数据中继卫星;• 1999年,由66颗小型卫星组网形成的美国¡°铱¡±星全球电话通讯系统建成并投入使用。• 目前,美国的GPS系统和俄罗斯的卫星导航系统已成为全世界各领域普遍应用的定位导航系统,发挥着巨大的作用。• 在我国,继1970年4月24日首颗卫星¡°东方红一号¡±发射成功以来,航天技术的发展和应用也取得了巨大的成就:• 1975年11月,我国第一颗返回式遥感卫星发射成功,并顺利回收;• 1984年4月,我国第一颗静止轨道试验通信卫星发射成功;• 1986年2月,我国第一颗静止轨道实用通信卫星发射成功;• 1988年9月,我国第一颗气象卫星¡°风云一号¡±发射成功;• 至2000年10月,我国¡°长征¡±系列运载火箭已成功发射62次。• 进入20世纪90年代,我国航天技术应用的步伐进一步加快,大容量通信卫星¡°东方红三号¡±、气象卫星¡°风云一号¡±和¡°风云二号¡±以及资源卫星先后发射成功。• 1999年11月20日我国成功发射了第一艘试验飞船¡°神舟号¡±,在载人航天领域迈出了坚实的一步¡­¡­综上可见,从1957年世界上第一颗人造地球卫星发射成功算起,迄今仅40余年,航天技术取得了如此巨大的成就是前所未有的,产生了巨大的社会效益与经济效益。 总之,随着航天技术应用的发展,航天活动已越来越显示出其巨大的军事意义和经济效益,已成为国民经济和国防建设的一个重要组成部分。反过来,这种社会和经济效益又进一步推动着航天技术日新月异的发展。• 航天技术是一门研究和实现如何把航天器送人空间,并在那里进行活动的工程技术。它主要包括航天器、运载工具和地面测控三大部分。为了便于了解,我们首先对航天器进行分类。• 同一个航天器可兼有数种任务,故机械地、绝对地分类,是不可能的。同一类航天器,往往包括了几种系列,而每一系列又可分成数种不同的卫星系统或型号。• 航天器可分为无人航天器与载人航天器两大类。无人航天器按是否绕地球运行又可分为人造地球卫星和宇宙探测器两类。它们又可以进一步按用途分类,如图3所示。 • 简称人造卫星,是数量最多的航天器(占90%以上)。它们的轨道长度由i00多公里到几十万公里。按用途它们又可分为: 目前的载人航天器只在近地轨道飞行和从地球到月球的登月飞行。今后将出现可以到达各种星球的载人飞船,以及供人类长期在空间生活和工作的永久性空间站。载人航天器按飞行和工作方式可分为: 可以重复使用的,往返于地面和高度在1000 km以下的近地轨道之间,运送有效载荷的航天器。 3.宇宙探测器 旅行者1号 旅行者2号• 按航天器在轨道上的功能来进行分类,就人造地球卫星而言,可分为观测站、中继站、基准站和轨道武器四类。每一类又包括了各种不同用途的航天器。卫星处在轨道上,对地球来说,它站得高,看得远(视场大),用它来观察地球是非常有利的。此外,由于卫星在地球大气层以外不受大气的各种干扰和影响,所以用它来进行天文观测也比地面天文观测站更加有利。属于这种功能的卫星有下列几种典型的用途。 在各类应用卫星中侦察卫星发射得最早(1959年发射),发射的数量也最多。侦察卫星有照相侦察和电子侦察卫星两种。 资源卫星是在侦察卫星和气象卫星的基础上发展而来的。利用星上装载的多光谱遥感器获取地面目标辐射和反射的多种波段的电磁波,然后把它传送到地面,再经过处理,变成关于地球资源的有用资料。它们包括地面的和地下的,陆地的和海洋的等等。海洋卫星的任务是海洋环境预报,包括远洋船舶的最佳航线选择,海洋渔群分析,近海与沿岸海洋资源调查,沿岸与近海海洋环境监测和监视,灾害性海况预报和预警,海洋环境保护和执法管理,海洋科学研究,以及海洋浮标、台站、船舶数据传输,海上军事活动等。• 当然,作为观测站的卫星远不止以上几种,预警卫星、核爆炸探测卫星、天文预测卫星(如美国的“哈勃”太空望远镜)等均属于这一类。虽然它们的功能各有侧重,但基本观测原理都是相似的。2.中继站 利用卫星进行通信和平常的地面通信相比较,具有下列优点: ①通信容量大; ②覆盖面积广; ③通信距离远; ④可靠性高; ⑤灵活性好; ⑥成本低。广播卫星是一种主要用于电视广播的通信卫星。这种广播卫星不需要经过任何中转就可向地面转播或发射电视广播节目,供公众团体或者个人直接接收,因此又称为直播卫星。目前普通的家庭电视机配一架直径不到1m的天线就可以直接接收直播卫星的电视广播节目。跟踪和数据中继卫星是通信卫星技术的一个重大发展。它是利用卫星来跟踪与测量另一颗卫星的位置,其基本思想是把地球上的测控站搬到地球同步轨道上,形成星地测控系统网。 3.基准站 这种卫星是轨道上的测量基准点,所以要求它测轨非常准确。属于这种功能的卫星有:4.轨道武器 这是一种积极进攻的航天器,具有空间防御和空间攻击的职能。它主要包括:不同类型的航天器,其系统的结构、外型和功能干差万别,但是它们的基本系统组成都是一致的。典型航天器都是由不同功能的若干分系统组成的,其基本系统一般分为有效载荷和保障系统两大类。 1.有效载荷 用于直接完成特定的航天飞行任务的部件、仪器或分系统。有效载荷种类很多,随着飞行任务即航天器功能的不同而异。例如,科学卫星上的粒子探测器,天文观测卫星上的天文望远镜,侦察卫星上的可见光相机、CCD相机、红外探测器、无线电侦察接收机,气象卫星上的可见光和红外扫描辐射仪,地球资源卫星上的电视摄像机、CCD摄像机、主题测绘仪、合成孔径雷达,通信卫星上的转发器和通信天线,生物科学卫星上的种子和培养基等,均属有效载荷。• 单一用途的卫星装有一种类型的有效载荷,而多用途的卫星可以装有几种类型的有效载荷。• 2.保障系统• 用于保障航天器从火箭起飞到工作寿命终止,星上所有分系统的正常工作。各种类型航天器的保障系统一般包括下列分系统:(1)结构系统:用于支承和固定航天器上各种仪器设备,使它们构成一个整体,以承受地面运输、运载器发射和空间运行时的各种力学环境(振动、过载、冲击、噪声)以及空间运行环境。对航天器结构的基本要求是重量轻、可靠性高、成本低等,因此航天器的结构大多采用铝、镁、钛等轻合金和碳纤维复合材料等制造。通常用结构质量比,即结构重量占航天器总重量的比例来衡量航天器结构设计和制造水平。 (3)电源系统:用来为航天器所有仪器设备提供所需的电能。现代航天器大多采用太阳电池和蓄电池联合供电系统。 (4)姿态控制系统:用来保持或改变航天器的运行姿态。常用的姿态控制方式有重力梯度稳定、自旋稳定和三轴稳定。 (5)轨道控制系统:用来保持或改变航天器的运行轨道。轨道控制往往与姿态控制配合,它们构成航天器控制系统。(6)测控系统:包括遥测、遥控和跟踪三部分。遥测部分主要由传感器、调制器和发射机组成,用于测量并向地面发送航天器的各种仪器设备的工程参数(212作电压、电流、温度等)和其他参数(环境参数和姿态参数等)。遥控部分一般由接收机和译码器组成,用于接收地面测控站发来的遥控指令,传送给有关系统执行。跟踪部分主要是信标机和应答机,它们不断发出信号,以便地球测控站跟踪航天器并测量其轨道位置和速度。除了以上基本系统组成外,航天器根据其不同的飞行任务,往往还需要有一些不同功能的专用系统。例如,返回式卫星有回收系统,载人飞船有乘员系统、环境控制与生命保障系统、交会与对接系统,航天飞机有着陆系统等。一个刚体航天器的运动可以由它的位置、速度、姿态和姿态运动来描述。其中位置和速度描述航天器的质心运动,这属于航天器的轨道问题;姿态和姿态运动描述航天器绕质心的转动,属于姿态问题。从运动学的观点来说,一个航天器的运动具有6个自由度,其中3个位置自由度表示航天器的轨道运动,另外3个绕质心的转动自由度表示航天器的姿态运动。航天器的控制可以分为两大类,即轨道控制和姿态控制。 1.轨道控制 轨道控制包括轨道确定和轨道控制两方面的内容。轨道确定的任务是研究如何确定航天器的位置和速度,有时也称为空间导航,简称导航;轨道控制是根据航天器现有位置、速度、飞行的最终目标,对质心施以控制力,以改变其运动轨迹的技术,有时也称为制导。轨道控制按应用方式可分为四类。 (1)轨道机动: 指使航天器从一个自由飞行段轨道转移到另一个自由飞行段轨道的控制。例如,地球静止卫星发射过程中为进入地球静止轨道,在其转移轨道的远地点就须进行一次轨道机动。(3)轨道交会:指航天器能与另一个航天器在同一时间以相同速度达到空间同一位置而实施的控制过程。 (4)再人返回控制:指使航天器脱离原来的轨道,返回进入大气层的控制。2.姿态控制 姿态控制也包括姿态确定和姿态控制两方面内容。 姿态确定是研究航天器相对于某个基准的确定姿态方法。这个基准可以是惯性基准或者人们所感兴趣的某个基准,例如地球。 姿态控制是航天器在规定或预先确定的方向(可称为参考方向)上定向的过程,它包括姿态稳定和姿态机动。姿态稳定是指使姿态保持在指定方向,而姿态机动是指航天器从一个姿态过渡到另一个姿态的再定向过程。姿态控制通常包括以下几个具体概念。 (1)定向:指航天器的本体或附件(如太阳能电池阵、观测设备、天线等)以单轴或三轴按一定精度保持在给定的参考方向上。此参考方向可以是惯性的,如天文观测;也可以是转动的,如对地观测。由于定向需要克服各种空间干扰以保持在参考方向上,因此需要通过控制加以保持。 (2)再定向:指航天器本体从对一个参考方向的定向改变到对另一个新参考方向的定向。再定向过程是通过连续的姿态机动控制来实现的。 (3)捕获:又称为初始对准,是指航天器由未知不确定姿态向已知定向姿态的机动控制过程。如航天器人轨时,星箭分离,航天器从旋转翻滚等不确定姿态进入对地对日定向姿态;又如航天器运行过程中因故障失去姿态后的重新定姿等。为了使控制系统设计更为合理,捕获一般分粗对准和精对准两个阶段进行。 (4)粗对准:指初步对准,通常须用较大的控制力矩以缩短机动的时间,但不要求很高的定向精度。 (5)精对准:指粗对准或再定向后由于精度不够而进行的修正机动,以保证定向的精度要求。精对准一般用较小的控制力矩。(6)跟踪:指航天器本体或附件保持对活动目标的定向。 (7)搜索:指航天器对活动目标的捕获。 总之,姿态控制是获取并保持航天器在空间定向的过程。例如,卫星对地进行通信或观测,天线或遥感器要指向地面目标;卫星进行轨道控制时,发动机要对准所要求的推力方向;卫星再人大气层时,要求制动防热面对准迎面气流。这些都需要使星体建立和保持一定的姿态。姿态稳定是保持已有姿态的控制,航天器姿态稳定方式按航天器姿态运动的形式可大致分为两类。 (1)自旋稳定:卫星等航天器绕其一轴(自旋轴)旋转,依靠旋转动量矩保持自旋轴在惯性空间的指向。自旋稳定常辅以主动姿态控制,来修正自旋轴指向误差。 (2)三轴稳定:依靠主动姿态控制或利用环境力矩,保持航天器本体三条正交轴线在某一参考空间的方向。 3.姿态控制与轨道控制的关系 航天器是一个比较复杂的控制对象,一般来说轨道控制与姿态控制密切相关。为实现轨道控制,航天器姿态必须符合要求。也就是说,当需要对航天器进行轨道控制时,同时也要求进行姿态控制。在某些具体情况或某些飞行过程中,可以把姿态控制和轨道控制分开来考虑。某些应用任务对航天器的轨道没有严格要求,而对航天器的姿态却有要求。航天器控制按控制力和力矩的来源可以分为两大类。 (1)被动控制:其控制力或力矩由空间环境和航天器动力学特性提供,不需要消耗星上能源。 4.主动控制系统的组成 航天器主动控制系统,无论是姿态控制系统还是轨道控制系统,都有两种组成方式。(1)星上自主控制:指不依赖于地面干预,完全由星载仪器实现的控制,其系统结构见图1.4 (2)地面控制:或称星一地大回路控制,指依赖于地面干预,由星载仪器和地面设备联合实现的控制,其结构见图1.5。

一分都不给,写个毛呀白白吃饭呗

我们知道,人类的家园是地球,而地球的外面覆盖着一层大气,如果没有水和大气以及适宜的温度和环境,生物是很难生存的。通常,在人们的眼中,“天”很高,要想冲出厚厚的大气层,进入太空非常非常困难。其实,与地球相比,大气层是很稀薄的。人们知道,地球的直径大约为12700千米,而大气层的厚度只有100 -800千米。如果将地球比作一个苹果的话,那么,我们可以把大气层看成是苹果的皮,可这层“苹果皮”本身却是变化多端的。比如最贴近地球表面的一层,叫作对流层,其高度从海平面起一直到大约11000米止,其顶界是随纬度、季节等情况而变化的,在赤道地区为17000米,在中纬度地区(如北京、天津地区)为11000米,在地球两极地区则为7000-8000米。对流层的主要特点是,空气温度随着高度的增加而降低,因而又称为变温层,平均而言高度每上升1000米,气温约下降5℃。与此同时,气压也随高度的增加而降低。由于地球引力的作用,在 5500米的高度范围内,包含了大气总量的一半,而整个对流层,大约占了全部大气质量的四分之三。由于几乎所有的水蒸气都集中在这一层大气内,再加上大量的微粒,因而,这里也是风云变幻最为剧烈的一层。从大约11000米的高度起,直到 30500米左右,其大气温度基本不变,平均保持在-5℃上下,因此被称为同温层(实际情况是:在25000米以下,气温随高度的升高而上升。在同温层顶,气温约升至-43至-33℃)。同温层的气温之所以具有这样的特点,是因为该层大气离地球表面较远,受地面温度的影响较小,并且其顶部存在着臭氧,能够直接吸收太阳的辐射热等。同温层所包含的空气质量大约占整个大气的四分之一弱。在这一层大气内,没有上下对流,只有水平方向的风,所以又叫作平流层。另外,该层大气几乎不存在水蒸气,基本上没有云、雾、雨、雹等气象变化的现象,这对飞行器的平稳飞行是非常有利的。不过,由于空气密度很小,飞机在这一高度层上又不适宜机动飞行。人类的航空活动差不多都集中在对流层和同温层内。为了保证飞机和发动机的工作效率,飞机飞行的高度一般不超过30千米的界限。从30千米到80-100千米的高度范围,被称为中间层。这一层空气的特点是:以 45千米为界,温度先升后降。由于大量的臭氧存在,其气温先由同温层顶的-33℃提高到17至40℃左右;从45千米起,随着高度的升高,气温又开始下降,一直降低到-5℃至-113℃。中间层的空气已经很稀薄了,其空气质量约只占整个大气层的1/3000。在80千米高度上,空气的密度只有地面的五万分之一;而在100千米高度上,空气的密度仅为地面的一千万分之八。由于空气非常稀薄,并且气体开始呈现电离现象,因此,人们一般把飞行高度达到80—100千米的飞行器,看成是不依靠大气飞行的航天器。1967年10月,美国试飞员约瑟夫·沃尔克驾驶X-15A火箭飞机飞出了 7297千米/小时的惊人速度,创造了有人驾驶飞机速度的世界纪录。而且,他还曾多次飞到了80千米以上的高空,成为美国第一个“驾驶飞机的宇航员”。按照美国航空航天局规定:飞行高度超过80千米的飞行员即可称为宇航员在中间层之上直至800千米高空的范围,称作电离层。其特点是:含有大量的带正电或负电的离子,空气具有导电性。并且,其温度随高度的增大而迅速升高,在200千米高度时,气温可达400℃。所以,这里又被人们叫作“暖层”。在电离层顶端之外,便是大气的最外层——“散逸层”了。由于地球引力的减弱,气体分子和等离子体与地球已若即若离。电离层和散逸层的空气密度极低,对太空飞行器的影响已很小,因此,人类大部分的航天活动都是在它们之内(或之外)进行的。航空与航天的区别:航空与航天是人们经常接触的两个技术名词,两者虽然仅一字之差,却被称为两大技术门类,这是为什么呢?您稍加注意即可发现,航空技术主要是研制军用飞机、民用飞机及吸气发动机,航天技术主要是研制无人航天器、载人航天器、运载火箭和导弹武器,最能集中体现两者成果的是航空器和航天器。从航空器与航天器的重大区别上即可看出两个技术领域的显著差异。第一,飞行环境不同。所有航空器都是在稠密大气层中飞行的,其工作高度有限。现代飞机最大飞行高度也就是距离地面30多千米。即使以后飞机上升高度提高,它也离不开稠密大气层。而航天器冲出稠密大气层后,要在近于真空的宇宙空间以类似自然天体的运动规律飞行,其运行轨道的近地点高度至少也在100 千米以上。对在运行中的航天器来讲,还要研究太空飞行环境。第二,动力装置不同。航空器都应用吸气发动机提供推力,吸收空气中的氧气作氧化剂,本身只携带燃烧剂。而航天器其发射和运行都应用火箭发动机提供推力,既带燃烧剂又带氧化剂。吸气发动机离开空气就无法工作,而火箭发动机离开空气则阻力减小有效推力更大。吸气发动机包括燃烧剂箱在内都可随飞机多次使用,而发射航天器的运载火箭都是一次性使用。虽然航天飞机的固体助推器经过回收可以重复使用20次,其轨道器液体火箭发动机可以重复使用50次,但与航空器使用的吸气发动机比较起来,使用次数仍然是很少的。吸气发动机所用的燃烧剂仅为航空汽油和航空煤油,而火箭发动机所用的推进剂却是多种多样的,既有液体的,也有固体的,还有固液型的。第三,飞行速度不同。现代飞机最快速度也就是音速的三倍多,且是军用飞机。至于目前正在使用的客机,都是以亚音速飞行的。而航天器为了不致坠地,都是以非常高的速度在太空运行的。如在距地面600千米高的圆形轨道上运行的航天器,其速度是音速的22倍。所有航天器正常运行时都处于失重状态,若长期载人会使人产生失重生理效应,并影响健康。正因如此,航天员与飞机驾驶员比较起来,其选拔和训练要严格得多。一般人买票即可坐飞机,而花重金到太空遨游的人还必须通过专门培训。第四,工作时限不同。无论是军用还是民用飞机,最大航程计约2万千米,最长飞行时间不超过一昼夜。其活动范围和工作时间都很有限,主要用于军事和交通运输。虽然通用轻型飞机应用广泛,但每次活动范围相对更小。而航天器在轨道上可持续工作非常长时间,如目前仍在使用的联盟TM号载人飞船,可与空间站对接后在太空运行数月之久。再如航天飞机,能在轨道上飞行7-30天,约5小时即可围绕地球飞行一周。载人航天器运行时间最长的当属和平号空间站,它在太空飞行了整整15个年头。至于无人航天器,如各种应用卫星,一般都在绕地轨道上工作多年。有的深空探测器,如先驱者10号,已在太空飞行了32年,正在飞出太阳系向银河系遨游。航空器的优点是能多次重复使用,而航天器除航天飞机外,只能一次性使用,载人宇宙飞船也不例外。第五,升降方式不同。飞机的升空是从起飞线开始滑跑到离开地面,加速爬升到安全高度为止的运动过程。它返回地面降落时只要经过下滑和着陆即可。只有个别飞机如英国的“鹞”型战斗机采用发动机喷口转向的方式使飞机能够垂直起落,但机身并未竖起,仍处于水平位置。而至今为止的航天器发射,包括地面和海上的发射,顶部装着航天器的运载火箭都是垂直腾空的。在完成发射过程中,运载火箭要按程序掉头转向和逐级脱离,最终将航天器送入预定轨道运行。有的航天器发射,中间还要经过多次变轨,情况更为复杂。航天飞机虽然也能施放航天器,但它本身亦是垂直发射升空的。至于返回式航天器,其回归地面必须经历离轨、过渡、再入和着陆四个阶段,远比飞机降落困难。航空器的起飞、飞行和降落与航天器的发射、运行和返回,虽然都离不开地面中心的指挥,但两者的地面设施和保障系统及其工作性能与内容也是大有区别的。世界航空航天大事件:风筝起源古代中国,约14世纪传到欧洲公元前500-400年中国人就开始制作木鸟并试验原始飞行器1909年世界第一架轻型飞机在法国诞生1903年12月14日至17日,由莱特兄弟设计制造的“飞行者”1号飞机,在人类航空史上首次实现了自主操纵飞行这次试飞成功成为一个划时代的事件,人类航空史从此进入新的纪元1947年10月14日美国著名试飞员查尔斯·耶格尔驾驶X—1飞机实现了突破音障飞行1969年7月20日22时56分20秒,阿姆斯特迈出一小步成为全体地球人类的一大步1957年10月4日前苏联发射世界第一颗人造地球卫星。半年后,美国的人造卫星上天1959年9月12日前苏联发射“月球”2号探测器,为世界上第一个撞击月球表面的航天器1961年4月12日前苏联宇航员加加林成为世界第一位飞入太空的人1969年7月20日美国宇航员阿姆斯特朗乘坐“阿波罗”11号飞船,成为人类踏上月球的第一人1970年12月15日前苏联“金星”7号探测器首次在金星上着陆1971年4月9日前苏联“礼炮”1号空间站成为人类进入太空的第一个空间站。两年后,美国将“天空实验室”空间站送入太空1971年12月2日前苏联“火星”3号探测器在火星表面着陆。5年后,美国的“海盗”火星探测器登陆火星1981年4月12日世界第一架航天飞机---美国“哥伦比亚”号航天飞机发射成功1986年1月28日美国航天飞机“挑战者”号在升空73秒后爆炸1986年2月20日前苏联发射“和平”号空间站,服役已经超期8年,至今仍在运行,是目前最成功的人类空间站1993年11月1日美、俄签署协议,决定在“和平”号空间站的基础上,建造一座国际空间站,命名为阿尔法国际空间站我国航空航天大事件:1956年10月8日,我国第一个火箭导弹研究机构———国防部第五研究院成立。1970年4月24日,长征一号运载火箭在酒泉卫星发射中心成功地发射了东方红一号卫星,我国成为世界上第三个独立研制和发射卫星的国家。1975年11月26日,长征二号运载火箭在酒泉卫星发射中心成功地发射了我国第一颗返回式科学试验卫星,并于3天后成功回收。1984年4月8日,长征三号运载火箭在西昌卫星发射中心成功地发射了我国第一颗地球同步轨道卫星———东方红二号试验通信卫星。1990年4月7日,中国用自行研制的长征三号运载火箭在西昌卫星发射中心成功地发射了亚洲一号通信卫星,这是中国长征系列运载火箭首次发射国外卫星,使我国在世界航天商业发射服务领域占有了一席之地。1999年10月,我国和巴西联合研制的第一颗地球资源卫星顺利升空,并正常运行,这是我国首次在空间技术领域进行的全面国际合作。2003年10月15日,“神舟”五号飞船成功发射,并于2003年10月16日圆满回收,使我国成为世界上第三个独立掌握载人航天技术的国家。2003年12月和2004年7月,我国与欧洲空间局联合研制并发射了“探测一号”和“探测二号”科学卫星,“地球空间双星探测计划”取得圆满成功。2004年1月23日,我国绕月探测工程正式由国务院批准立项。2005年10月12日,神六成功发射

是小鬼耶~居然偶尔看到你这个问题了……

相关百科
热门百科
首页
发表服务