论文投稿百科

精馏塔控制系统毕业论文

发布时间:2024-07-02 23:49:54

精馏塔控制系统毕业论文

随着科技负效应的显现,工程伦理越来越受的人们的重视。化学工程有着与其他工程不同的特点。下面是我为大家整理的化学工程应用 毕业 论文,供大家参考。

《 化学工程中计算流体力学应用分析 》

摘要:计算流体力学是以多种计算方程为基础,在多种化学反应设备中进行能量、质量和动量的综合计算,分析出不同守恒定律中,这些变量的主控形式和变化规律,从而优化工程设计和工艺设备,提高化学反应中正向变化的进行,提高热量交换和原材料的反应速率等。从化学工程经济效益的角度分析,有利于工程成本的节约,提升了经济回报。 文章 计算流体力学的基本原理进行分析,并 总结 了其砸你化学工程中搅拌、热交换、精馏塔和化学反应工程的具体应用。

关键词:计算流体力学;求解;基本原理;化学工程;应用

化学工程在我国具有较长的研究与应用历程,并在实际的生产与生活中取得到巨大的应用成效,不仅能够供给正常的生活需求,同时根据新材料的开发,能够满足现代型环保材料的使用。在化学工程中,较多的反映环境和反应机制都是在溶液中进行的,具有质量守恒和热量守恒定律的应用。而这种质量与能量的关系正是计算流体力学的主要原理。通过对实际应用环境和原理的分析,能够优化工程设计和工艺改进,提高化学工程的生产效率。

1计算流体力学在化学工程中的基本原理

计算流体力学简称CFD,是通过数值计算 方法 来求解化工中几何形状空间内的动量、热量、质量方程等流动主控方程,从而发现化工领域中各种流体的流动现象和规律,其主要以化学方程式中的动量守恒定律、能量守恒定律及质量守恒方程为基础。一般情况下,计算流体力学的数值计算方法主要包括数值差分法、数值有限元法及数值有限体积法,其也是一门多门学科交叉的科目,计算流体力学不仅要掌握流体力学的知识,也要掌握计算几何学和数值分析等学科知识,其涉及面广。

针对计算流体力学的真实模拟,其主要目的是对流体流动进行预测,以获得流体流动的信息,从而有效控制化工领域中的流体流动。随着信息技术的发展,市场上也出现了计算流体力学软件,其具有对流场进行分析、计算、预测的功能,计算流体力学软件操作简单,界面直观形象,有利于化学工程师对流体进行准确的计算。

2计算流体力学砸你化学工程中的实际应用

在搅拌中的应用分析

在搅拌的化学反应中,反映介质之间的流动性比较复杂,依据传统的计算形式根本无法解决,并在化学试剂在搅拌中存在不均匀扩散的特点,在湍流的形式中能量的分布状况也存在着空间特点。若是依据实验手段测得反映中物质、能量和质量的变化规律,其得出的结构往往存在较差时效性,实验差加大。

通过对二维计算流体力学的应用,能够对搅拌中流体的形式进行模拟,并进行质量、能量等数据的验证。但是流体的变化,不仅与化学试剂的浓度、减半速度有关,还与时间、容器的形状等有着之间的联系,需要建立三维空间模拟形式进行计算流行力学。随着科学技术和研究水平的提高,在通过借助多普勒激光测速仪后,已经对三维计算形式有了较大的突破,这对于化工工程中原料的有效应用和工程成本的减低具有促进的作用,但是在三维计算流体力学中还存在一定的缺陷,需要在今后的研究中不断的完善。

在化学工程换热器中的应用分析

换热器是化学工程中主要的应用设备,通过管式等换热器、板式换热器、冷却塔和再沸器等的应用,能够有效的控制化学试剂在反应中的温度变化。其中根据换热器的形式不同,计算流体力学的方式也就不同。在管式换热器中主要是通过流体湍流速度的改变,增加换热速率的。在板式换热器中是通过加大流体的接触面积,提高换热效率的。而在冷却塔和再沸器中,热量交换的形式更为复杂,但是却群在重复性换热的特点,增加了换热的时间,提高了换热的效果。从总体上分析,计算流量力学中,需要对温度变化、流体的速度变化、热交换面积变化和时间变化进行分析。通过CFD计算流体力学的应用,能够计算出不同设备的热交换效果,并根据生产的实际需求进行换热器的选择使用。

在精馏塔中的应用

CFD已成为研究精馏塔内气液两相流动和传质的重要工具,通过CFD模拟可获得塔内气液两相微观的流动状况。在板式塔板上的气液传质方面,Vi-tankar等应用低雷诺数的k-ε模型对鼓泡塔反应器的持液量和速度分布进行了模拟,在塔气相负荷、塔径、塔高和气液系统的参数大范围变化的情况下,模拟结果和现实的数据能够较好的吻合。

Vivek等以欧拉-欧拉方法为基础,充分考虑了塔壁对塔内流体的影响,用CFD商用软件FLUENT模拟计算了矩形鼓泡塔内气液相的分散性能,以及气泡数量、大小和气相速度之间的关系,取得了很好的效果。在填料塔方面,Petre等建立了一种用塔内典型微型单元(REU)的流体力学性质来预测整塔的流体力学性质的方法,对每一个单元用FLUENT进行了模拟计算,发现塔内的主要能量损失来自于填料内的流体喷溅和流体与塔壁之间的碰撞,且用此方法预测了整塔的压降。

Larachi等发现流体在REU的能量损失(包括流体在填料层与层之间碰撞、与填料壁的碰撞引起的能量损失等)以及流体返混现象是影响填料效率的主要因素,而它们都和填料的几何性质相关,因此用CFD模拟计算了单相流在几种形状不同的填料中流动产生的压降,为改进填料提供了理论依据。CFD模拟精馏塔内流体流动也存在一些不足,如CFD模拟规整填料塔内流体流动的结果与实验值还有一定的偏差。这是由于对于许多问题所应用的数学模型还不够精确,还需要加强流体力学的理论分析和实验研究。

在化学反应工程中的应用研究

在化学反应工程中,反应物和生成物的化学反应速率与反应器、温度和压力等有着较大的联系,在实际的反应中可以利用计算流体力学进行数据的获取。但是这数据的获取具有一定的温度限制,当反应中温度过大,就会造成分子的剧烈运动,其运动轨迹的变化规律就会异常,在利用计算流体力学的模型计算中,计算数据与实际情况会发生较大的偏差。由于高温中分子的运动轨迹和运动速度难以获取,在计算流体力学的实际计算中,就要借助FLUENT进行三维建型,并利用测速反应器进行速度的测量,通过综合的比较分析,利用限元法进行数据的计算。可以得出不同环境下的反应器的流线、反应器内部的浓度梯度及温度梯度。通过CFD软件预测反应器的速度、温度及压力场,可以更进一步理解化学反应工程中的聚合过程,详细、准确的数据可以优化化学反应中的操作参数。

3结束语

计算流体力学对于化学工程的应用具有实际意义,并在经济效益的提高上具有重要的价值,在近几年,化学工程技术人员不断的计算流体力学中展开研究,以二维空间计算和模拟为基础,不断的完善三维空间的流量计算,并得出了一系列的流体流动规律。根据计算流体力学在化学工程中的广泛应用,在今后的化学工程发展中,应加强此类学科的教学与延伸,提供出更有效的反应设备和工艺操作。

参考文献

[1]余金伟,冯晓锋.计算流体力学发展综述[J].现代制造技术与装备,2013(06).

[2]舒长青,王友欣.计算流体力学在化学工程中的应用[J].化工管理,2014(06).

《 能源化学工程专业化工热力学教学思考 》

[摘要]《化工热力学》是能源化学工程专业一门理论性和逻辑性较强的专业基础课,文章阐述了作者在《化工热力学》课程教学过程中如何提高学生对学习本课程兴趣的教学实践和教学体会。通过明确教学内容和教学主线,改变传统的单一的课堂教学,将课堂教学与学科动态及工程实践密切结合,激发学生学习兴趣,培养学生自主学习能力和工程意识,以满足培养能源化学工程领域领军人物的要求。

[关键词]化工热力学;能源化学工程;教学实践;教学体会

化工热力学是化工类学生的专业必修课程之一,主要讲述热力学定律在化学工程领域的应用,包括化工过程中各种形式的能量之间相互转换规律及过程趋近平衡的极限条件等。它是培养学生分析和解决实际化工问题思维方法的重要专业理论基础课[1-3]。然而该课程的课程内容抽象、计算繁琐,学生感到非常难学又缺乏实际应用,在课程学习过程中学生产生恐惧和厌学心理,达不到良好的教学效果,因此,我们对该课程的教学内容和 教学方法 进行一些改革和尝试,希望激发学生学习的兴趣,进而更好地掌握这门课程,为后续专业课程的学习夯实基础。

武汉大学2013年新开设的能源化学工程专业是由1958年原武汉水利电力学院开办的“电厂化学”专业发展而来,主要面向电力行业及高效洁净能源领域(包括超临界火电、核电、生物质能、氢能、新型化学电源等),培养掌握化学与化工基础理论及能源化学专业知识和技能的未来行业发展的领军人物。

目前,本专业主要有水处理、材料腐蚀与防护、化学监督与控制、能源化学四个主要研究方向。为了适应学校对新专业发展和一流学科建设的要求,2015年在本专业大三学生中新增设了《化工热力学》这门化工类专业的专业基础课程。如何调动学生的课堂积极性,培养学生的创新能力,夯实学生的专业基础,使他们在54学时的学习过程中理解并掌握本门课程的基本概念,并且将抽象的理论与实际的能源化学过程联系起来是本课程的核心教学任务。本文结合我校能源化学工程专业的培养目标,浅谈《化工热力学》的教学体会,着重对教学方式进行了探索和实践,为培养能源化学工程领域的领军人物奠定基础。

1明确教学内容与课程主线

结合我校《化工热力学》课程以工程应用为中心、专业研究方向覆盖面广等特点,我们选用了朱自强等编著、化学工业出版社出版的《化工热力学》作为教材[4],同时,也鼓励学生使用部分参考教材(《化工热力学》,冯新等编,2008;《化工热力学(第二版)》,陈钟秀等编,2000;《化工热力学导论(原著第七版)》,.史密斯等编,刘洪来等译,2007)[5-7]。化工热力学发展时间较长,已形成较完整的知识体系,如何在54学时内有效地把关键知识点教授给学生是本课程教学实践的关键。

由于本专业学生在大二《物理化学》课程中已经系统学习了理想气体相关的状态方程及其应用,因此在本课程教学中不再赘述,而是重点介绍工程实际应用较多的二参数状态方程、化工热力学分析、溶液热力学、流体相平衡和化学反应平衡等。在教学实践中,首先,详细分析《化工热力学》教材结构,围绕主线内容合理编排知识点;其次,建立好各知识点之间的逻辑关系,让学生在大脑中建立化工热力学框架图;最后,根据能源化学工程专业的需要,适当删减补充了教材内容,结合学科动态,增强化工热力学的应用能力,如燃料电池开路电压的计算、水/二氧化碳共电解制合成气过程中气体组成的计算等。

2改变单一课堂教学模式,培养学生自主学习能力

化工热力学课程设计的公式多而繁杂,学生在开始学习阶段容易产生恐惧厌学心理,传统的单一课堂教学模式具有“教师主导学生学习”的特点,与本课程“教师引导学生学习”的教学目的存在较大偏差。因此,应改变传统单一课堂讲授模式,充分采用“启发式”和“参与式”相结合的教学方法。

首先,教师在 课前预习 阶段设疑(提出问题),促使学生思考,复习旧知识,预习新知识;其次,教师在教学实践过程中采用多媒体和板书相结合的教学方式解疑(解决问题),并通过对例题和习题的讲解加深学生对化工热力学原理、方法和应用的理解,同时,教学过程中应避免陷于抽象的说教和枯燥的公式推导之中,重点讲述化工热力学知识点的应用条件和物理意义;最后,课堂教学结束后,教师主动与学生面对面交流答疑(探讨问题),并设置思考题让学生查阅相关资料。通过“设疑—解疑—答疑”的渐进式教学方法达到对关键知识点举一反三的目的,同时,吸引学生注意力,培养学生自主学习能力,提高学生学习的积极性和主动性。

3课堂教学与工程实践密切结合,培养学生初步的工程观点

化工热力学由于理论性较强、基本概念多且抽象,而且本科生在学习过程中接触科研课题及工程实践的机会较少,将课堂教学内容与科研课题及工程实践紧密结合起来,建立“以应用为中心”、“探究式”的特色教学模式,紧密联系我校在能源化学工程领域(特别是超临界火电、核电、生物质能、氢能、新型化学电源等方面)开发利用的化学工程实际问题,把学科前沿领域的科研成果带入课堂,可以使他们强化科研思想、激发听课兴趣、培养创新能力;同时,可以让学生获取利用化工热力学基本原理解决工程实际问题提供思路和方法,培养学生初步的工程观点。

4考核方式方法研究

传统的期末一张考卷为准的考试方式不利于学生能力的培养,也不能全面地体现学生对所学知识的掌握程度,为了更加系统全面地评价学生对课程内容的认识情况,我们对课程的考核方式方法进行了改革探索。目前,课程成绩总评包括平时成绩和期末成绩两部分,其中平时成绩包括学生的课堂综合表现、课程预习、作业三个部分,各占10%;期末考试采用开卷方式考试,考试的题目偏重于对知识点的理解和其在能源化学过程中的应用。然而由于该课程的课程内容抽象、计算繁琐,教学过程中发现仍有部分学生存在畏惧厌学心理,因此,在今后的教学实践中应考虑进一步激发学生的学习兴趣,增强学生的主观能动性,在课堂教学中引入分组讨论,开展导向性的专题研究,将课程内容与能源化学过程(特别是学科动态)相结合,培养学生查阅资料和分工协作的能力,为学生下一步学习专业课程夯实基础。

5结束语

在《化工热力学》课程的教学实践和尝试中,首先要明确教学内容与主线,打破单一的学生被动听讲的模式,理论联系实际应用,调动学生学习的积极性和主动性,激发学生对教学内容的兴趣,并且在教学的过程中对教学方法进行改革创新,因材施教,为学生下一步学习更专业的能源化学工程知识和从事新能源行业工作奠定扎实的基础。

参考文献

[1]陆小华,冯新,吉远辉,等.迎接化工热力学的第二个春天[J].化工高等 教育 ,2008,3:19-21.

[2]梁浩,刘惠茹,王春花.《化工热力学》教学实践与尝试[J].广东化工,2010,37(1):157-158.

[3]李兴扬,唐定兴,沈凤翠,等.化工热力学教学改革与体验[J].化工高等教育,2011,3:71-73.

[4]朱自强,吴有庭.化工热力学(第三版)[M].北京:化学工业出版社,2009.

[5]冯新,宣爱国,周彩荣,等.化工热力学[M].北京:化学工业出版社,2008.

[6]陈钟秀,顾飞燕,胡望明.化工热力学(第二版)[M].北京:化学工业出版社,2000.

[7]史密斯JM,范内斯HC,阿博特MM,等编;刘洪来,陆小华,陈新志,等译.化工热力学导论(原著第七版)(IntroductiontoChemicalEngineeringThermodynamics,SevenEdition).北京:化学工业出版社,2007.

有关化学工程应用毕业论文推荐:

1. 化学工程毕业论文

2. 化学毕业论文精选范文

3. 化工毕业论文范文大全

4. 化学毕业论文范例

5. 化学毕业论文范文

6. 化工毕业设计论文范文

四塔甲醇精馏工艺流程及原理粗甲醇通过预塔给料泵、粗甲醇预热器送到预塔脱除轻组份。预精馏塔(脱醚塔)冷凝器采用二级冷凝,系统中增设了排气冷凝器,用以脱除二甲醚等低沸点的杂质,控制冷凝器气体出口温度,并回收夹带的部分甲醇。在该温度下,几乎所有的低沸点馏份都在气相,并排出系统,不再冷凝回流到预精馏塔。 充分脱除低沸点组分后的甲醇溶液,通过加压精馏塔给料泵送往加压精馏塔。主要是提高甲醇气体的分压与沸点,使加压精馏塔的塔顶气有足够的热量供常压精馏塔的再沸器使用。常压精馏塔就不再需要蒸汽加热,减少装置的能耗。加压塔和常压精馏塔分别采出一般要求的甲醇产品。如特殊需要,可再经常压精馏塔进一步提纯。两塔的混合液都达到国家优级标准以上,能满足甲醇羰基化所需要的工艺指标要求。 从常压精馏塔底部排出的占甲醇产量20%左右的残液,被回收塔给料泵送往回收塔进一步回收,最终从底部排出装置。

精馏塔温度控制系统仿真毕业论文

毕业设计(论文)任务书设计(论文)题目:年处理量万吨甲苯-水混合液的填料塔的设计函授站: 专业: 化工工艺 班级:xx学生: xx 指导教师:1.设计(论文)的主要任务及目标 塔设计计算:a塔工艺计算(物料和能量衡算)b 塔及塔板主要工艺尺寸的设计计算⑶ 对苯精馏塔的流体力学验算⑷ 相关辅助设备选型与计算⑸ 设计结果及分析讨论2.设计(论文)的基本要求和内容⑴ 论文内容符合毕业设计撰写规范。⑵ 数据可靠、真实,具有一定的代表性。⑶ 计算过程细化、符合规范要求。⑷ 要求论文图纸包括:生产工艺流程控制图、塔的部分装配图、X-Y图、塔板负荷性能图。3.主要参考文献⑴陆美娟.《化工原理》.化学工业出版社.2001年1月第1版⑵冯伯华.《化学工程手册》第1、2、3、6卷.化学工业出版社.1989年10月第1版 ⑶包丕琴.《华工原理课程设计指导书》.北京化工大学化工原理教研室.1997年4月⑷陈洪钫.《化工分离过程》.化学工业出版社.1995年5月第1版⑸陈钟秀.《化工热力学》.化学工业出版社.1993年11月第1关键词:回流比、精馏、泡点进料、设备、试差 目 录前言........................................(7)第1章 精馏方案的说明.......................(7)第节 操作压力............................(7)第节 进料状态............................(8)第节 采用强制回流(冷回流)...............(8)第节 塔釜加热方式、加热介质..............(8)第节 塔顶冷凝方式、冷却介质..............(8)第节 流程说明............................(8)第节 筛板塔的特性........................(9)第节 生产性质及用途......................(9)第节 安全与环保..........................(11)第2章 烯烃加氢饱和单元分析.................(12)第节 反应机理及影响因素分析第节 物料平衡第节 能量平衡第3章 精馏塔设计计算.......................(12)第节塔的工艺计算.......................(12)第节塔和塔板主要工艺尺寸的设计计算.....(25)第4章 塔的流体力学验算.....................(31)第节校核................................(31)第节负荷性能图计算......................(34)第5章 辅助设备选型计算.....................(39)第节换热器的计算选型....................(39)第节 管道尺寸的确定.....................(44)第节 原料槽、成品槽的确定................(45)第6章 设计结果概要及分析讨论...............(45)第节数据要求............................(45)第节设计特点............................(46)第节 存在的问题.........................(46)参考文献....................................(47)符号说明.....................................(48)附录1.......................................(52)附录2.......................................(52)附录3.......................................(52)附录4.......................................(52)前言本论文是针对工业生产中苯-甲苯溶液这一二元物系中进行苯的提纯精馏方案,根据给出的原料性质及组成、产品性质及组成,对精馏塔进行设计和物料衡算。通过设计核算及试差等计算初步确定精馏塔的进料、塔顶、塔底操作条件及物料组成。同时对精馏塔的基本结构包括塔的主要尺寸进行了计算和选型,对塔顶冷凝器、塔底再沸器、相关管道尺寸及储罐等进行了计算和选型。在计算设计过程中参考了有关《化工原理》、《化学工程手册》、《冷换设备工艺计算手册》、《炼油设备基础知识》、《石油加工单元过程原理》等方面的资料,为精馏塔的设计计算提供了技术支持和保证。通过对精馏塔进行设计和物料衡算等方面的计算,进一步加深了对化工原理、石油加工单元过程原理等的理解深度,开阔了视野,提高了计算、绘图、计算机的使用等方面的知识和能力,为今后在工作中进一步发挥作用打下了良好的基础。第1章 精馏方案的说明本精馏方案适用于工业生产中苯-甲苯溶液二元物系中进行苯的提纯。精馏塔苯塔的产品要求纯度很高,达%以上,而且要求塔顶、塔底产品同时合格,以及两塔顶温度变化很窄(℃),普通的精馏温度控制远远达不到这个要求。故在实际生产过程控制中只有采用灵敏板控制才能达到要求。故苯塔采用温差控制。第节 操作压力精馏操作在常压下进行,因为苯沸点低,适合于在常压下操作而不需要进行减压操作或加压操作。同时苯物系在高温下不易发生分解、聚合等变质反应且为液体(不是混合气体)。所以,不必要用加压减压或减压精馏。另一方面,加压或减压精馏能量消耗大,在常压下能操作的物系一般不用加压或减压精馏。第节 进料状态进料状态直接影响到进料线(q线)、操作线和平衡关系的相对位置,对整个塔的热量衡算也有很大的影响。和泡点进料相比:若采用冷进料,在分离要求一定的条件下所需理论板数少,不需预热器,但塔釜热负荷(一般需采用直接蒸汽加热)从总热量看基本平衡,但进料温度波动较大,操作不易控制;若采用露点进料,则在分离要求一定的条件下,所需理论板数多,进料前预热器负荷大,能耗大,同时精馏段与提馏段上升蒸汽量变化较大,操作不易控制,受外界条件影响大。泡点进料介于二者之间,最大的优点在于受外界干扰小,塔内精馏段、提馏段上升蒸汽量变化较小,便于设计、制造和操作控制。第1.3节 采用强制回流(冷回流)采用冷回流的目的是为了便于控制回流比,回流方式对回流温度直接影响。第1.4节 塔釜加热方式、加热介质塔釜采用列管式换热器作为再沸器间接加热方式,加热介质为水蒸汽。第1.5节 塔顶冷凝方式、冷却介质塔顶采用列管式冷凝冷却器,冷却介质用冷却水。第1.6节 流程说明由于上游装置没有后加氢单元,所以在重整反应过程中生成的烯烃会带到本装置原料中, 烯烃的存在,会导致苯、甲苯产品的酸洗比色不合格,因此必须进行烯烃的加氢饱和。本装置流程包括烯烃加氢反应单元和精馏单元两部分。烯烃加氢反应单元:原料经过进料泵加压后进入换热器E101与反应生成油交换热量后,进入加热炉L101进行加热,再进入反应器R101,经过烯烃饱和加氢反应后进入热交换器E101冷却后,进入油气分离器V101,油进入精馏原料中间罐。本精馏方案采用节能型强制回流进行流程设计,并附有在恒定进料量、进料组成和一定分离要求下的自动控制系统以保证正常操作。精馏过程:30OC原料液从原料罐经进料泵进入原料换热器E102再经原料预热器进行预热进一步预热至泡点(,加热介质为水蒸汽),温度升至约,从进料口进入精馏塔T101进行精馏,塔顶气温度为部分冷凝后的气液混合物进入塔顶冷却器(冷却介质为冷却水),冷凝后的物料进入回流罐V102,然后再通过回流泵,将料液一部分作为回流也打入塔顶,另一部分作为塔顶产品经产品冷却器进入产品储罐V103,再经产品泵P104/AB输送产品。塔釜内液体一部分进入再沸器E103,经水蒸汽加热后,回流至塔釜,另一部分与原料换热器换热后排入甲苯储罐。在整个流程中,所有的泵出口都装有压力表,所有的储槽都装有放空阀,以保证储槽内保持常压。第节 筛板塔的特性筛板塔是最早使用的板式塔之一,它的主要优点:(1)结构简单,易于加工,造价为泡罩塔的60%左右,为浮阀塔的80%左右;(2)在相同条件下,生产能力比泡罩塔大20%-40%;(3)塔板效率较高,比泡罩塔高15%左右,但稍低于浮阀塔;(4)气体压力降较小,每板压力降比泡罩塔约低30%左右。筛板塔的缺点是:小孔筛板易堵塞,不适宜处理脏的、粘性大的和带固体粒子的料液。第节 生产性质及用途 苯的性质及用途苯是一种易燃、易挥发、有毒的无色透明液体,易燃带有特殊芳香气味的液体。分子式C6H6,相对分子量,相对密度(20℃),熔点℃,沸点℃,闪点℃(闭杯),自燃点℃,蒸气密度,蒸气压( ℃), 标准比重为。蒸气与空气混合物爆炸限~。不溶于水,与乙醇、氯仿、乙醚、二硫化碳、四氯化碳、冰醋酸、丙酮、油混溶。遇热、明火易燃烧、爆炸。能与氧化剂,如五氟化溴、氯气、三氧化铬、高氯酸、硝酰、氧气、臭氧、过氯酸盐、(三氯化铝+过氯酸氟)、(硫酸+高锰酸盐)、过氧化钾、(高氯酸铝+乙酸)、过氧化钠发生剧烈反应,不能与乙硼烷共存。苯是致癌物之一。苯是染料、塑料、合成树脂、合成纤维、药物和农药等的重要原料,也可用作动力燃料及涂料、橡胶、胶水等溶剂。质量标准:见表1-1。表1-1 纯苯质量标准(GB/T2283-93)项目 指标 特级 一级 二级 三级外观 室温(18~25℃)下透明液体,不深于每1000mL水中含有重铬酸钾溶液的颜色密度(20℃)/kg/m3沸程/℃大气压下(℃)酸洗比色溴价/(g/100mL)结晶点/℃二硫化碳/(gBr/100mL)噻吩/(g/100mL) 876~880中性实验 中性水分 室温(18~20℃)下目测无可见不溶水 甲苯的性质甲苯有强烈的芳香气味,无色有折射力的易挥发液体,气味似苯。分子式C7H8,相对分子质量,相对密度(20℃/4℃),熔点-95~℃,沸点℃,闪点℃(闭杯),自燃点480℃,蒸气密度 kg/m3,蒸气压(30℃) 比重D 4℃20℃、,,蒸气与空气混合物的爆炸极限为~7%。几乎不溶于水,与乙醇、氯仿、乙醚、丙酮、冰醋酸、二硫化碳混溶。遇热、明火或氧化剂易着火。遇明火或与(硫酸+硝酸)、四氧化二氮、高氯酸银、三氟化溴、六氟化铀等物质反应能引起爆炸。流速过快(超过3m/s)有产生和积聚静电危险。甲苯可用氯化、硝化、磺化、氧化及还原等方法之前染料、医药、香料等中间体及炸药、精糖。由于甲苯的结晶点很低,故可用作航空燃料及内燃机燃料的添加剂。质量标准:见表1-2。表1-2 甲苯质量标准(GB/T2284-93)项目 指标 特级 一级 二级外观 室温(18~25℃)下透明液体,不深于每1000mL水中含有重铬酸钾溶液的颜色密度(20℃)/(kg/m3) 沸程/℃大气压下(℃)酸洗比色溴价/(gBr/100mL) 863~868中性实验 中性水分 室温(18~20℃)下目测无可见不溶水第 安全与环保 安全注意事项苯类产品是易燃、易爆、有毒的无色透明液体,其蒸汽与空气混合能形成爆炸性混合物,因此,应特别注意防火,强化安全措施。(1)不准有明火和火花,设备必须密封,以减少苯蒸汽挥发散发入容器中,设备的放散管应通入大气,其管口用细金属网遮蔽,使贮槽或蒸馏设备中的苯类产品不致因散出蒸汽回火而引起燃烧,厂房应设有良好的通风设备,防止苯类蒸汽的聚集。(2)所有金属结构应按规定在几个地点上接地,为防止液体自由下落而引起静电荷的产生,将引入贮槽中所有管道均应安装到接近贮槽的底部,电动机应放在单独的厂房内。(3)应设有泡沫灭火器和蒸汽灭火装置,不能用水灭火。(4)工人进入贮槽或设备进行清扫或修理前,油必须全部放空,所有管道均需切断,设备应用水蒸汽彻底清扫后才允许进入并注意通风,检修人员没有动火证严禁在生产区域内动火。(5)进入生产区域或生产无关人员,不得乱动设备和计量仪表等。(6)及时清除设备管线泄漏情况,严防中毒着火、爆炸等事故的发生。(7)泄漏应急处理迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿消防防护服。尽可能切断泄漏源,防止进入下水道、排洪沟等限制性空间。小量泄漏:用活性炭或其它惰性材料吸收。也可以用不燃性分散剂制成的乳液刷洗,洗液稀释后放入废水系统。大量泄漏:构筑围堤或挖坑收容;用泡沫覆盖,抑制蒸发。用防爆泵转移至槽车或专用收集器内,回收或运至废物处理场所处置。 环境保护认真执行环境保护方针、政策、坚持污染防治设施与生产装置同时设计、同时施工、同时投产。现将“三废”治理措施分析述如下:(1)废水:各设备间接冷却水回收用于炼焦车间熄焦用,工艺产品分离水送往生化装置进行处理。设备冲洗水经初步沉淀和油水分离后送入生化处理。(2)废气:水凝气体回收引入列管户前燃烧,产品贮槽加水喷淋装置和氮密封措施,防止挥发污染大气环境。(3)废渣:生产过程中生产的废渣送往回收工段作为原料使用。定期检测个生产岗位苯含量和生产下水中各污染均含量,严防超标现象的发生。第2章 烯烃加氢饱和单元分析 反应机理及影响因素分析 (1)反应机理单烯烃 CnH2n+H2→CnH2n+2双烯烃 CnH2n-2+2H2→CnH2n+2环烯烃 烯烃的加氢饱和反应也为耗氢和放热反应。(2) 烯烃的加氢饱和反应过程的影响因素烯烃的加氢饱和反应过程的影响因素除催化剂性能外,主要有原料性质、反应温度、反应压力、氢油比和空速等。①原料性质加工烯烃含量较高的原料时,需要较高的反应苛刻度(即较高的反应压力和反应温度,较低的反应空速)。此外一定要注意原料油罐的惰性气体保护,最好是直接进装置,避免中间与空气接触发生氧化生成胶质,导致催化剂失活加快。 ②反应温度反应温度通常是指催化剂床层平均温度。烯烃的加氢饱和反应是一种放热反应,提高反应温度不利于加氢反应的化学平衡,但能明显提高化学反应速度,提高精制深度。过高的反应温度会促进加氢裂化副反应的发生,使产品液体收率下降,导致催化剂上积炭速率加快,降低催化剂使用寿命;反应温度过低,不能保证将杂质除净。在很高温度下,烯烃饱和度有一个明显的限制,结果使在高温操作比低温操作的产品中有更多的残存烯烃,当原料中有明显的轻组分,使用新催化剂时硫化氢与烯烃反应生成醇,在较低温度下操作可避免硫醇的生成。根据催化剂活性和原料油中的烯烃含量,一般预加氢的反应温度为150~180℃。随着运转时间的延长,逐步提高反应温度,以补偿催化剂的活性降低。③反应压力当要求一定的产品质量时,压力的选择主要是考虑催化剂的使用寿命和原料油中的烯烃含量。一般而言,压力愈高,催化剂操作周期愈长;原料油烯烃含量愈高,选择操作压力也愈高。提高反应压力将促进加氢反应速度,增加精制深度,并可保持催化剂的活性。但压力过高会促进加氢裂解反应,使产品总液收下降,同时过高的反应压力会增加投资及运转费用。④氢油比所谓氢油比是反映标准状态时,氢气流量与进料量的比值。可用H2/HC表示。提高氢油比,不仅有利于加氢反应的进行,并能防止结焦,起到保护催化剂的作用。但是,在原料油进料一定的情况下,氢油比过大会减少原料油与催化剂接触时间,反而对加氢反应不利,导致精制深度下降,产品质量下降,同时也增大了系统压降和压缩机负荷,操作费用增加。⑤空速空速指单位(质量或体积)催化剂在单位时间内处理的原料量,简写为h-1 。空速分为质量空速和体积空速。常用体积空速(LHSV),它的倒数相当于反应接触时间,称为假接触时间。因此空速的大小意味着原料与催化剂接触时间的长短。空速过大,即单位催化剂处理的原料量越多,其接触时间应越短,影响了精制深度;空速过小增加了加氢裂解反应,使产品液收率下降,运转周期缩短,降低了装置的处理量。 物料平衡表2-1烯烃加氢反应单元物料数据 单位:吨/日入 方 出 方原料油 精馏进料 氢气 损失 合计 合计 能量平衡(以加热炉为例) 原料进出加热炉数据 原料进出加热炉数据见表2-2。 表2-2 原料进出加热炉数据入 方(80℃) 出 方(160℃)单位项目 组成 数据 焓值 热量 单位项目 组成 数据 焓值 热量 m% Kcal/kg wkcal m% Kcal/kg wkcal原料油 苯 130 原料油 苯 154 甲苯 128 甲苯 158 烯烃 烯烃 氢气 540 氢气 1090 合计 合计 注:原料中烯烃含量很少在计算过程中可忽略不计。 加热炉热平衡 由表2-2可以知道,原料油经过加热炉后,热量增加值为:.加热炉需要燃烧瓦斯进行提供。加热炉用瓦斯组成见表2-3。表2-3 加热炉用瓦斯组成及焓值计算表 成份组成 体积热值 分析数据 焓值1 氢气 2650 氧气 0 03 氮气 0 04 二氧化碳 05 一氧化碳 3018 0 06 甲烷 8529 乙烷 15186 乙烯 14204 丙烷 21742 丙烯 20638 异丁烷 26100 正丁烷 28281 正丁烯 27160 异丁烯 27160 反丁烯 27160 顺丁烯 27160 碳五以上 34818 合计 100 第七章 参考文献1 化工原理》上下册.化学工业出版社.2006年5月第3版2 冯伯华.《化学工程手册》第1、2、3、6卷.化学工业出版社.1989年10月第1版3 包丕琴.《华工原理课程设计指导书》.北京化工大学化工原理教研室.1997年4月4 陈洪钫.《化工分离过程》,化学工业出版社,1995年5月第1版5 陈钟秀.《化工热力学》.化学工业出版社.1993年11月第1版6 沈复等.《石油加工单元过程原理》上下册.中国石化出版社.2004年8月第1版7.刘巍等.《冷换设备工艺计算手册》.中国石化出版社.2003年9月第1版8.马秉骞主编.《炼油设备基础知识》中国石化出版社.2003年1月第1版9.周志成等.《石油化工仪表自动化》中国石化出版社.1994年5月第1版10.田顾慧.《化工设备》中国石化出版社.1996年6月第1版11.沈复 李阳初.《石油加工单元过程原理》中国石化出版社.2004年8月第1版12.陆美娟.《化工原理》化学工业出版社. 2006年1月第10版符号说明A换热面积m2Aa 鼓泡区面积m2Af 降液管横截面积m2An 有效传质区面积m2Ao 筛孔面积m2AT塔横截面积m2A 质量分率-C 负荷系数-CP 比热KJ/Kg.OC(KJ/Kg.K)D 塔顶产品流率Kmol/h(Kg/h)Dg 公称直径mDT塔径mD 管内径 mmd1 管外径 mmdo 孔径 mmdm 管平均直径mmE 液流收缩系数-ET全塔板效率-ev 雾沫夹带量Kg液体/Kg气体F 进料流率 Kmol/h(Kg/h)H 塔高mHL板上清夜层高度mmHT板间距 mHd降液管内清夜层高度mHD塔顶空间高度 mHB塔底空间高度 mhd 气体通过干板压降mho 降液管下沿到塔板间距离mhow 溢流堰上液头高 mhp 气体通过塔扳压降mhr 液体通过降液管的压降mhw 溢流堰高度mhσ液体表面张力引起的压降mKo 以内壁为基准的总传热系数Kcal/m2.H.oCK稳定系数L 液体流量 Kmol/h(Kg/h,m3/h)lW溢流堰堰长ms 冷却剂质量流量 Kg/hN 实际塔板数 -NT 理论塔板数 -Nt 换热器总管数 -N 开孔数Q 换热器热负荷 WR 回流比 -Rmim 最小回流比 -Rsi 换热管内垢阻系数 m2•h•oC/Kcalr 气化潜热 KJ/KgTc 临界温度 KT 孔间距 mmTp 板厚度 mmua 以鼓泡区面积为基准的气速 m/suf 液泛气速 m/sun 空塔气速 m/suo 以筛孔面积为基准的气速 m/suow 漏液点气速 m/sV 塔内上升气体流量 Kmol/h(Kg/h,m3/h)W 塔釜采出液体量 Kmol/h(Kg/h)Wc 边缘区宽度 m(mm)Wd 降液管宽度 m(mm)Ws 塔板入口安定区宽度 m(mm)Ws’ 塔板出口安定区宽度 m(mm)X 液相摩尔分率 -Y 气相摩尔分率 -A 相对挥发度 -Ai 以内壁为基准的传热膜系数 Kcal/m2•h•oCAo 以外壁为基准的传热膜系数 Kcal/m2•h•oCβ 充气系数 -σ 表面张力 dyn/cm2ρL 液相密度 Kg/m3ρv(g) 气相密度 Kg/m3μ 粘度 Cp 开孔率 -Ф 装料系数 -τ 停留时间 sλ

四塔甲醇精馏工艺流程及原理粗甲醇通过预塔给料泵、粗甲醇预热器送到预塔脱除轻组份。预精馏塔(脱醚塔)冷凝器采用二级冷凝,系统中增设了排气冷凝器,用以脱除二甲醚等低沸点的杂质,控制冷凝器气体出口温度,并回收夹带的部分甲醇。在该温度下,几乎所有的低沸点馏份都在气相,并排出系统,不再冷凝回流到预精馏塔。 充分脱除低沸点组分后的甲醇溶液,通过加压精馏塔给料泵送往加压精馏塔。主要是提高甲醇气体的分压与沸点,使加压精馏塔的塔顶气有足够的热量供常压精馏塔的再沸器使用。常压精馏塔就不再需要蒸汽加热,减少装置的能耗。加压塔和常压精馏塔分别采出一般要求的甲醇产品。如特殊需要,可再经常压精馏塔进一步提纯。两塔的混合液都达到国家优级标准以上,能满足甲醇羰基化所需要的工艺指标要求。 从常压精馏塔底部排出的占甲醇产量20%左右的残液,被回收塔给料泵送往回收塔进一步回收,最终从底部排出装置。

1. 基于FX2N-48MRPLC的交通灯控制2. 西门子PLC控制的四层电梯毕业设计论文3. PLC电梯控制毕业论文4. 基于plc的五层电梯控制5. 松下PLC控制的五层电梯设计6. 基于PLC控制的立体车库系统设计7. PLC控制的花样喷泉8. 三菱PLC控制的花样喷泉系统9. PLC控制的抢答器设计10. 世纪星组态 PLC控制的交通灯系统11. X62W型卧式万能铣床设计12. 四路抢答器PLC控制13. PLC控制类毕业设计论文14. 铁路与公路交叉口护栏自动控制系统15. 基于PLC的机械手自动操作系统16. 三相异步电动机正反转控制17. 基于机械手分选大小球的自动控制18. 基于PLC控制的作息时间控制系统19. 变频恒压供水控制系统20. PLC在电网备用自动投入中的应用21. PLC在变电站变压器自动化中的应用22. FX2系列PCL五层电梯控制系统23. PLC控制的自动售货机毕业设计论文24. 双恒压供水西门子PLC毕业设计25. 交流变频调速PLC控制电梯系统设计毕业论文26. 基于PLC的三层电梯控制系统设计27. PLC控制自动门的课程设计28. PLC控制锅炉输煤系统29. PLC控制变频调速五层电梯系统设计30. 机械手PLC控制设计31. 基于PLC的组合机床控制系统设计32. PLC在改造z-3040型摇臂钻床中的应用33. 超高压水射流机器人切割系统电气控制设计34. PLC在数控技术中进给系统的开发中的应用35. PLC在船用牵引控制系统开发中的应用36. 智能组合秤控制系统设计37. S7-200PLC在数控车床控制系统中的应用38. 自动送料装车系统PLC控制设计39. 三菱PLC在五层电梯控制中的应用40. PLC在交流双速电梯控制系统中的应用41. PLC电梯控制毕业论文42. 基于PLC的电机故障诊断系统设计43. 欧姆龙PLC控制交通灯系统毕业论文44. PLC在配料生产线上的应用毕业论文45. 三菱PLC控制的四层电梯毕业设计论文46. 全自动洗衣机PLC控制毕业设计论文47. 工业洗衣机的PLC控制毕业论文48. 《双恒压无塔供水的PLC电气控制》49. 基于三菱PLC设计的四层电梯控制系统50. 西门子PLC交通灯毕业设计51. 自动铣床PLC控制系统毕业设计52. PLC变频调速恒压供水系统53. PLC控制的行车自动化控制系统54. 基于PLC的自动售货机的设计55. 基于PLC的气动机械手控制系统56. PLC在电梯自动化控制中的应用57. 组态控制交通灯58. PLC控制的升降横移式自动化立体车库59. PLC在电动单梁天车中的应用60. PLC在液体混合控制系统中的应用61. 基于西门子PLC控制的全自动洗衣机仿真设计62. 基于三菱PLC控制的全自动洗衣机63. 基于plc的污水处理系统64. 恒压供水系统的PLC控制设计65. 基于欧姆龙PLC的变频恒压供水系统设计66. 西门子PLC编写的花样喷泉控制程序67. 欧姆龙PLC编写的全自动洗衣机控制程序68 景观温室控制系统的设计69. 贮丝生产线PLC控制的系统70. 基于PLC的霓虹灯控制系统71. PLC在砂光机控制系统上的应用72. 磨石粉生产线控制系统的设计73. 自动药片装瓶机PLC控制设计74. 装卸料小车多方式运行的PLC控制系统设计75. PLC控制的自动罐装机系统76. 基于CPLD的可控硅中频电源77. 西门子PLC编写的花样喷泉控制程序78. 欧姆龙PLC编写的全自动洗衣机控制程序79. PLC在板式过滤器中的应用80. PLC在粮食存储物流控制系统设计中的应用81. 变频调速式疲劳试验装置控制系统设计82. 基于PLC的贮料罐控制系统83. 基于PLC的智能交通灯监控系统设计1.基于labVIEW虚拟滤波器的设计与实现2.双闭环直流调速系统设计3.单片机脉搏测量仪4.单片机控制的全自动洗衣机毕业设计论文电梯控制的设计与实现6.恒温箱单片机控制7.基于单片机的数字电压表8.单片机控制步进电机毕业设计论文9.函数信号发生器设计论文变电所一次系统设计11.报警门铃设计论文单片机交通灯控制13.单片机温度控制系统通信系统中的接入信道部分进行仿真与分析15.仓库温湿度的监测系统16.基于单片机的电子密码锁17.单片机控制交通灯系统设计18.基于DSP的IIR数字低通滤波器的设计与实现19.智能抢答器设计20.基于LabVIEW的PC机与单片机串口通信设计的IIR数字高通滤波器22.单片机数字钟设计23.自动起闭光控窗帘毕业设计论文24.三容液位远程测控系统毕业论文25.基于Matlab的PWM波形仿真与分析26.集成功率放大电路的设计27.波形发生器、频率计和数字电压表设计28.水位遥测自控系统 毕业论文29.宽带视频放大电路的设计 毕业设计30.简易数字存储示波器设计毕业论文31.球赛计时计分器 毕业设计论文数字滤波器的设计毕业论文机与单片机串行通信毕业论文34.基于CPLD的低频信号发生器设计毕业论文变电站电气主接线设计序列在扩频通信中的应用37.正弦信号发生器38.红外报警器设计与实现39.开关稳压电源设计40.基于MCS51单片机温度控制毕业设计论文41.步进电动机竹竿舞健身娱乐器材42.单片机控制步进电机 毕业设计论文43.单片机汽车倒车测距仪44.基于单片机的自行车测速系统设计45.水电站电气一次及发电机保护46.基于单片机的数字显示温度系统毕业设计论文47.语音电子门锁设计与实现48.工厂总降压变电所设计-毕业论文49.单片机无线抢答器设计50.基于单片机控制直流电机调速系统毕业设计论文51.单片机串行通信发射部分毕业设计论文52.基于VHDL语言PLD设计的出租车计费系统毕业设计论文53.超声波测距仪毕业设计论文54.单片机控制的数控电流源毕业设计论文55.声控报警器毕业设计论文56.基于单片机的锁相频率合成器毕业设计论文57.基于Multism/protel的数字抢答器58.单片机智能火灾报警器毕业设计论59.无线多路遥控发射接收系统设计毕业论文60.单片机对玩具小车的智能控制毕业设计论文61.数字频率计毕业设计论文62.基于单片机控制的电机交流调速毕业设计论文63.楼宇自动化--毕业设计论文64.车辆牌照图像识别算法的实现--毕业设计65.超声波测距仪--毕业设计66.工厂变电所一次侧电气设计67.电子测频仪--毕业设计68.点阵电子显示屏--毕业设计69.电子电路的电子仿真实验研究70.基于51单片机的多路温度采集控制系统71.基于单片机的数字钟设计72.小功率不间断电源(UPS)中变换器的原理与设计73.自动存包柜的设计74.空调器微电脑控制系统75.全自动洗衣机控制器76.电力线载波调制解调器毕业设计论文77.图书馆照明控制系统设计78.基于AC3的虚拟环绕声实现79.电视伴音红外转发器的设计80.多传感器障碍物检测系统的软件设计81.基于单片机的电器遥控器设计82.基于单片机的数码录音与播放系统83.单片机控制的霓虹灯控制器84.电阻炉温度控制系统85.智能温度巡检仪的研制86.保险箱遥控密码锁 毕业设计变电所的电气部分及继电保护88.年产26000吨乙醇精馏装置设计89.卷扬机自动控制限位控制系统90.铁矿综合自动化调度系统91.磁敏传感器水位控制系统92.继电器控制两段传输带机电系统93.广告灯自动控制系统94.基于CFA的二阶滤波器设计95.霍尔传感器水位控制系统96.全自动车载饮水机97.浮球液位传感器水位控制系统98.干簧继电器水位控制系统99.电接点压力表水位控制系统100.低成本智能住宅监控系统的设计101.大型发电厂的继电保护配置102.直流操作电源监控系统的研究103.悬挂运动控制系统104.气体泄漏超声检测系统的设计105.电压无功补偿综合控制装置型无功补偿装置控制器的设计电机调速频段窄带调频无线接收机109.电子体温计110.基于单片机的病床呼叫控制系统111.红外测温仪112.基于单片微型计算机的测距仪113.智能数字频率计114.基于单片微型计算机的多路室内火灾报警器115.信号发生器116.基于单片微型计算机的语音播出的作息时间控制器117.交通信号灯控制电路的设计118.基于单片机步进电机控制系统设计119.多路数据采集系统的设计120.电子万年历121.遥控式数控电源设计降压变电所一次系统设计变电站一次系统设计124.智能数字频率计125.信号发生器126.基于虚拟仪器的电网主要电气参数测试设计127.基于FPGA的电网基本电量数字测量系统的设计128.风力发电电能变换装置的研究与设计129.电流继电器设计130.大功率电器智能识别与用电安全控制器的设计131.交流电机型式试验及计算机软件的研究132.单片机交通灯控制系统的设计133.智能立体仓库系统的设计134.智能火灾报警监测系统135.基于单片机的多点温度检测系统136.单片机定时闹钟设计137.湿度传感器单片机检测电路制作138.智能小车自动寻址设计--小车悬挂运动控制系统139.探讨未来通信技术的发展趋势140.音频多重混响设计141.单片机呼叫系统的设计142.基于FPGA和锁相环4046实现波形发生器143.基于FPGA的数字通信系统144.基于单片机的带智能自动化的红外遥控小车145.基于单片机AT89C51的语音温度计的设计146.智能楼宇设计147.移动电话接收机功能电路148.单片机演奏音乐歌曲装置的设计149.单片机电铃系统设计150.智能电子密码锁设计151.八路智能抢答器设计152.组态控制抢答器系统设计153.组态控制皮带运输机系统设计154..基于单片机控制音乐门铃155.基于单片机控制文字的显示156.基于单片机控制发生的数字音乐盒157.基于单片机控制动态扫描文字显示系统的设计158.基于LMS自适应滤波器的MATLAB实现功率放大器毕业论文160.无线射频识别系统发射接收硬件电路的设计161.基于单片机PIC16F877的环境监测系统的设计162.基于ADE7758的电能监测系统的设计163.智能电话报警器164.数字频率计 课程设计165.多功能数字钟电路设计 课程设计166.基于VHDL数字频率计的设计与仿真167.基于单片机控制的电子秤168.基于单片机的智能电子负载系统设计169.电压比较器的模拟与仿真170.脉冲变压器设计仿真技术及应用172.基于单片机的水温控制系统173.基于FPGA和单片机的多功能等精度频率计174.发电机-变压器组中微型机保护系统175.基于单片机的鸡雏恒温孵化器的设计176.数字温度计的设计177.生产流水线产品产量统计显示系统178.水位报警显时控制系统的设计179.红外遥控电子密码锁的设计180.基于MCU温控智能风扇控制系统的设计181.数字电容测量仪的设计182.基于单片机的遥控器的设计电话卡代拨器的设计184.数字式心电信号发生器硬件设计及波形输出实现185.电压稳定毕业设计论文186.基于DSP的短波通信系统设计(IIR设计)187.一氧化碳报警器188.网络视频监控系统的设计189.全氢罩式退火炉温度控制系统190.通用串行总线数据采集卡的设计191.单片机控制单闭环直流电动机的调速控制系统192.单片机电加热炉温度控制系统193.单片机大型建筑火灾监控系统接口设备驱动程序的框架设计195.基于Matlab的多频率FMICW的信号分离及时延信息提取196.正弦信号发生器197.小功率UPS系统设计198.全数字控制SPWM单相变频器199.点阵式汉字电子显示屏的设计与制作200.基于AT89C51的路灯控制系统设计200.基于AT89C51的路灯控制系统设计201.基于AT89C51的宽范围高精度的电机转速测量系统202.开关电源设计203.基于PDIUSBD12和K9F2808简易USB闪存设计204.微型机控制一体化监控系统205.直流电机试验自动采集与控制系统的设计206.新型自动装弹机控制系统的研究与开发207.交流异步电机试验自动采集与控制系统的设计208.转速闭环控制的直流调速系统的仿真与设计209.基于单片机的数字直流调速系统设计210.多功能频率计的设计信息移频信号的频谱分析和识别212.集散管理系统—终端设计213.基于MATLAB的数字滤波器优化设计214.基于AT89C51SND1C的MP3播放器215.基于光纤的汽车CAN总线研究216.汽车倒车雷达217.基于DSP的电机控制218.超媒体技术219.数字电子钟的设计与制作220.温度报警器的电路设计与制作221.数字电子钟的电路设计222.鸡舍电子智能补光器的设计223.高精度超声波传感器信号调理电路的设计224.电子密码锁的电路设计与制作225.单片机控制电梯系统的设计226.常用电器维修方法综述227.控制式智能计热表的设计228.电子指南针设计229.汽车防撞主控系统设计230.单片机的智能电源管理系统231.电力电子技术在绿色照明电路中的应用232.电气火灾自动保护型断路器的设计233.基于单片机的多功能智能小车设计234.对漏电保护器安全性能的剖析235.解析民用建筑的应急照明236.电力拖动控制系统设计237.低频功率放大器设计238.银行自动报警系统

精馏塔毕业论文

1、搜集乙醇、水的全部物化数据(关键数据是“乙醇-水”二元共沸汽液平衡数据); 2、确立工艺条件:进料状态(决定着是否需要加热)、产品纯度标准(决定着回流比等)、加热热源(决定着塔底再沸器设计) 3、进行物料平衡计算、能量平衡计算; 4、进行塔板计算与设计,分别确立提馏段(如果需要的话)、精馏段的塔板数; 5、根据产品纯度标准,确定回流比,进料状态的调整(操作参数确立); 6、完善塔顶冷凝器、进料加热器和塔底再沸器设计; 7、全部装置的保温设计; 8、绘出总装图、部件图和零件图; 9、整理完成《“乙醇-水”浮阀式精馏塔设计计算说明书》,OK!

四塔甲醇精馏工艺流程及原理粗甲醇通过预塔给料泵、粗甲醇预热器送到预塔脱除轻组份。预精馏塔(脱醚塔)冷凝器采用二级冷凝,系统中增设了排气冷凝器,用以脱除二甲醚等低沸点的杂质,控制冷凝器气体出口温度,并回收夹带的部分甲醇。在该温度下,几乎所有的低沸点馏份都在气相,并排出系统,不再冷凝回流到预精馏塔。 充分脱除低沸点组分后的甲醇溶液,通过加压精馏塔给料泵送往加压精馏塔。主要是提高甲醇气体的分压与沸点,使加压精馏塔的塔顶气有足够的热量供常压精馏塔的再沸器使用。常压精馏塔就不再需要蒸汽加热,减少装置的能耗。加压塔和常压精馏塔分别采出一般要求的甲醇产品。如特殊需要,可再经常压精馏塔进一步提纯。两塔的混合液都达到国家优级标准以上,能满足甲醇羰基化所需要的工艺指标要求。 从常压精馏塔底部排出的占甲醇产量20%左右的残液,被回收塔给料泵送往回收塔进一步回收,最终从底部排出装置。

丙烯精馏塔的毕业论文

塔板效率精馏塔在实际运行中,由于气液相传质阻力、混合、雾沫夹带等原因,气液相的组成与平衡状态有所偏离,所以在确定实际塔板数量时,应考虑塔板效率。系统物性、流体力学、操作条件和塔板结构参数等都对塔板效率有影响,塔板效率还不能精确地预测。 塔板效率一般是根据经验来确定的。常用的经验关联式是基于一些工业装置的数据,分析归纳成为经验式求取塔的效率,适用于一般烃类物系和化学物系的大多数设计。如德里卡默和布罗德福(Drickarner,H.G.和Bradford,J.R.)经验关系曲线、奥康奈尔(0’Connell,H.E.)经验关系曲线等。对于丙烯精馏塔来说,一般塔的操作压力在御a左右,塔顶塔底平均温度在53℃左右,该温度下其进料粘度为~·S,丙烯一丙烷相对挥发度为。按德里卡默和布罗德福经验关系曲线查得的塔板效率范围为92%~96%。该关系曲线使用说明中认为:“直径大于2133mm的塔,其操作效率可以较高。”因进料粘度与丙烯一丙烷相对挥发度乘积小于,超出奥康奈尔经验关系曲线的使用范围,其经验关系曲线不适用于丙烯精馏塔。文献r90通过大量的模拟计算,推荐丙烯一丙烷分离物系的塔板效率为95%~100%。某厂气体分馏装置丙烯精馏塔径为,共设有181层塔板,塔板效率设计值为85%,1999年10月开车以来运行平稳,计算表明实际塔板效率为95%。该结果与德里卡默和布罗德福经验关系曲线查得的数据是吻合的。文献报道福建炼油化工有限公司气体分馏装置改造中采用ADV浮阀塔盘,设计板效率为101%,标定的塔盘效率为105%。奥康奈尔经验关系曲线的使用范围,其经验关系曲线不适用于丙烯精馏塔。 塔板效率理论分析丙烯精馏塔板效率经验关系曲线和实际运行结果均可达到95%,文献报道的数据甚至高达100%以上。从物系分析来看,丙烯精馏操作压力高,意味着操作温度高,液相粘度和相对挥发度均较小,均对提高塔板效率有利。随着装置规模日趋大型化,精馏塔直径随之增大,塔内液流长度增加,减少了液流的轴向返混,增加了液体与汽体的接触传质时间,也对提高塔板效率有利。文献。J分析认为:“塔内液体流过塔板时,不起返混作用,故液体进入塔板时含低沸物较多,经过两相汽液接触,离开此塔板时,则含量变低,上升蒸气与进入塔板的液体接触,致使蒸汽离开塔板时的组成,较离开塔板的液体的平衡蒸气组成高”。又认为:“在C2~C4烃类的加压普通精馏时,应用浮阀塔全塔效率经常在100%左右,有时可超过100%,若在加压下进行丙烯一丙烷的分离,则塔板效率超过100%”。 据文献到报道,异丁烷一正丁烷物系,操作压力(表压)由上升到,塔板效率由70%~80%上升至90%~95%;文献…’认为该物系在、塔径为、采用F1型浮阀时,塔板效率可达122%。

信息学院瞄准国际学术前沿,取得了一批具有国际先进水平的研究成果。2002年-2005年共承担国家高技术发展计划(863)、国家自然科学基金、国家“973”项目、省部级和横向合同项目近200项,经费达4000多万元,其中国家和省部级项目占。获国家科技进步二等奖2项,省部级科研奖励17项,专利(授权)10余项。在国内外重要学术期刊和会议上发表论文700余篇,其中被SCI、EI和ISTP收录200多篇。 具体成果如下:1、乙烯生产过程基于神经网络的软测量和智能控制技术,2002年国家科学进步二等奖,2001年中国高校科技进步一等奖(钱锋等);2、大型精对苯二甲酸生产过程智能建模、控制与优化技术,2004年教育部科技进步一等奖;2005年国家科技进步二等奖(钱锋等);3、双塔脱丙烷和丙烯精馏装置先进控制与优化操作,2002年教育部科技进步一等奖(钱锋等);4、重整反应器软测量及优化系统,2002年上海市科技进步三等奖(顾幸生等);5、裂解炉先进控制技术开发,2002年江苏省科学技术进步二等奖(钱锋等);6、大规模分布并行智能处理的理论和方法,2003年上海市科技进步三等奖(帅典勋等);7、函数逼近理论及其在系统控制与生产过程监控中的应用,2003年上海市科技进步三等步奖(顾幸生等);8、PTA装置对二甲苯氧化反应过程建模和优化操作,2004年中国石油化工集团公司(部级)科学技术进步二等奖;2004年河南省科技进步二等奖(钱锋等);9、PTA装置结晶过程优化操作技术研究开发,2004年中国石油化工集团公司(部级)科学技术进步三等奖(钱锋等);10、三井工艺PX氧化反应过程模型化与操作优化,2004年天津市科技进步二等奖(钱锋等);11、乙烯精馏装置软测量和智能控制技术,2004年上海市科技进步奖一等奖(钱锋等); 乙烯装置中裂解炉的智能控制方法,2004年上海市发明创造专利奖一等奖(钱锋等);12、非纤聚酯生产装置软测量技术和先进控制管理软件开发》,2004年上海市科技进步三等奖(张素贞等)13、基于windows平台一级、二级VB、VFP等级上机考试软件系统,2004年上海市科技进步三等奖(高玻等)14、高可信度 软件系统的形式化设计和分析,2005年上海市科技进步三等奖(虞慧群等);15、模式识别若干关键理论问题和机器嗅觉方法研究,2006年上海市科技进步三等奖(高大启等);16、常减压装置流程模拟和优化操作技术研究开发,2006年上海市科技进步三等奖(钱锋等)。

精馏系统论文格式

参考文献

[1] 崔衍立.城市污水处理常用方法比较研究[J].内江科技,2010.

[2] 殷实.浅谈活性污泥在废水处理中的应用[J].环境研究与监测,2010,(2) :23-24.

[3] 孙惠修.排水工程.第四版.北京:中国建筑工业出版社,1999:105-107.

[4] 苏振中.CODcr与BOD5的相关性研究[J].黑龙江环境通报,2010,34 (2):75-78.

[5] 顾凤妹.李秀霞.重铬酸钾法测定COD影响因素分析[J].小氮肥,2009,37 (3):18-20.

[6] 李国刚,王德龙.生化需氧量BOD测定方法综述[J].中国环境监测,2004,20 (2):54-57.

[7] 肖肖,陈英姿.BOD5测定的影响因素分析[J].化学工程与装备,2009,9:176-177.

[8] 王锐刚.活性污泥法除磷动力学研究[D].中国矿业大学环测学院,2009:9-11.

[9] 徐航.COD重铬酸钾分析法相关问题的探讨[J].化学工程与装备,2010,6: 171-172.

25万吨/年二甲醚精馏系统及二甲醚精馏塔设计

一、课题的目的与意义

二甲醚又称甲醚,简称DME,分 子 式:CH3OCH3 ,结 构 式:CH3—O—CH3 。二甲醚在常温常压下是一种无色气体或压缩液体,具有轻微醚香味。相对密度(20℃),熔点℃,沸点℃,室温下蒸气压约为,与石油液化气(LPG)相似。溶于水及醇、乙醚、丙酮、氯仿等多种有机溶剂。易燃,在燃烧时火焰略带光亮,燃烧热(气态)为 1455kJ/mol。常温下DME具有惰性,不易自动氧化,无腐蚀、无致癌性,但在辐射或加热条件下可分解成甲烷、乙烷、甲醛等。

二甲醚是醚的同系物,但与用作麻醉剂的乙醚不一样,却具有神经毒性;能溶解各种化学物质;由于其具有易压缩、冷凝、气化及与许多极性或非极性溶剂互溶特性,广泛用于气雾制品喷射剂、氟利昂替代制冷剂、溶剂等,另外也可用于化学品合成,用途比较广泛。

二甲醚作为一种基本化工原料,由于其良好的易压缩、冷凝、汽化特性,使得二甲醚在制药、燃料、农药等化学工业中有许多独特的用途。如高纯度的二甲醚可代替氟里昂用作气溶胶喷射剂和致冷剂,减少对大气环境的污染和臭氧层的破坏。由于其良好的水溶性、油溶性,使得其应用范围大大优于丙烷、丁烷等石油化学品。代替甲醇用作甲醛生产的新原料,可以明显降低甲醛生产成本,在大型甲醛装置中更显示出其优越性。作为民用燃料气其储运、燃烧安全性,预混气热值和理论燃烧温度等性能指标均优于石油液化气,可作为城市管道煤气的调峰气、液化气掺混气。也是柴油发动机的理想燃料,与甲醇燃料汽车相比,不存在汽车冷启动问题。它还是未来制取低碳烯烃的主要原料之一。由于石油资源短缺 、煤炭资源丰富及人们环保意识的增强,二甲醚作为从煤转化成的清洁燃料而日益受到重视,成为2010年来国内外竞相开发的性能优越的碳一化工产品。作为 LPG和石油类的替代燃料,二甲醚是具有与LPG的物理性质相类似的化学品,在燃烧时不会产生破坏环境的气体,能便宜而大量地生产。与甲烷一样,被期望成为21世纪的能源之一。

二、研究现状和前景展望

1.研究现状

目前DME的制取工艺有合成气一步法以及甲醇两步法,其中两步法包括甲醇液相法以及气相法。甲醇液相硫酸催化法和甲醇气相法制取二甲醚的生产技术较为成熟,两种方法均有工业装置运转。

甲醇脱水法以精甲醇为原料,脱水反应副产物少,二甲醚纯度高达99%,使用于有较高要求的气雾产品,也可以用作制冷剂或医用气雾剂的抛射剂5,且三废排放少。该工艺比较成熟,可以依托老企业建设新装置,也可单独建厂生产。但该方法要经过甲醇合成、甲醇精馏、甲醇脱水和二甲醚精馏等工艺,流程较长,因而设备投资大,产品成本高,受甲醇市场波动的影响也比较大。

合成气法生产二甲醚的生产工艺在淤浆床中,反应温度分布均匀,热平衡较易控制,操作简单且稳定性好,生产成本低。合成气法所用的合成气可由煤、重油、渣油气化以及天然气转化制得,原料经济易得,因而该工艺可用于化肥厂和甲醇厂。这些工厂可将甲醇装置适当改造用于生产二甲醚,形成规模生产。目前一步法生产二甲醚面临的关键问题是:需要高效低价的煤制气工艺及设备;需要能满足大型化二甲醚生产的反应器;解决以煤为原料制二甲醚生产过程中CO2的利用问题; 相关催化剂的开发与生产;成熟而经济的二甲醚分离提纯技术。

2.前景展望

目前,尽管二甲醚产品供大于求,二甲醚在推广应用上遇到一定的困难,但从以下几方面分析,总体上对二甲醚行业来讲是机遇大于挑战。

( 1) 在2009 年5 月18 日国务院办公厅下发的石化行业调整和振兴规划中,已将煤制二甲醚列为重点抓好的五类示范工程之一,说明利用煤炭高效清洁转化生产二甲醚已引起国家的高度重视。国家发改委发布的《关于加强煤化工项目建设管理,促进产业健康发展的通知》中要求一般不应批准规模在1 000 kt /a 以下的二甲醚项目,这对于遏制盲目扩张二甲醚产能、引导二甲醚产业有序发展、保持二甲醚市场的相对稳定将起到积极的作用。

( 2) 2010 年9 月2 日,中华人民共和国国家质量监督检验检疫总局和中国国家标准化管理

委员会2010 年第4 号( 总第159 号) 文( 中华人民共和国国家标准批准发布公告) 联合批准发布了编号为GB 25035—2010 的《城镇燃气用二甲醚》国家标准,标准对二甲醚作为城镇燃气使用的质量要求、试验方法、检验规则、标志、包装、运输和储存提出了严格的规定,已于2011 年7 月1 日起实施。这使得二甲醚作为城镇燃气使用有法可循,二甲醚大规模进入民用燃气市场有了合法的身份。

( 3) 经国务院批准,财政部、税务总局联合发布通知,为支持和促进二甲醚的推广使用,自2008 年7 月1 日起,二甲醚按13% 的增值税税率征收增值税,税收上对二甲醚生产企业给予了一定的优惠。这意味着政府已加大对替代能源———二甲醚的扶持力度。

( 4) 随着二甲醚在城市公交车、出租车上的成功推广使用和相应配套设施的建立和完善,二甲醚需求量会大幅增加,将为二甲醚提供一个稳定的大市场。

( 5) 中国城市燃气协会二甲醚专业委员会的成立,对促进二甲醚作为城镇民用燃气的进程将发挥积极的作用。

( 6) 随着国际原油价格的疯涨,我国作为一个石油进口大国,无疑会带来较大的能源安全风险。在此情况下,国家发展和改革委办公厅[2006] 1404 号文已将发展二甲醚煤基醇醚燃料列为缓解石油供应短缺、高油价矛盾替代工作的重点,这无疑为二甲醚行业带来了良好的发展商机。

三、课题主要内容、拟解决的问题、研究特色和创新之处

1.主要内容

如图所示,甲醇经过处理后进入二甲醚合成塔中反应,得到的产物中主要含有二甲醚、甲醇以及水分,将产物送入二甲醚精馏塔中进行精馏分离。由于分离体系中的泡点的不同,二甲醚泡点最低,故得到的轻组分为二甲醚,从塔顶分离出来,而甲醇和水分则从塔底从来。重组分中含有大量的未被反应的甲醇,再送进甲醇回收塔中进行分离,得到较纯的甲醇再次循环利用。

本次毕业设计中应用的物料衡算是工艺设计的基础,根据所需设计项目的年产量,通过对全过程或单元过程的物料衡算,可以计算出原料的消耗量、副产品量及输出过程物料的损耗量等;并在此基础上作能量衡算,计算出蒸汽、水、电、煤或者其他燃料的消耗定额;最终可以根据这些计算确定所生成产品的技术经济指标。同时根据物料衡算所得的各单元设备的物流量及其组成、能量负荷及其等级,对生产设备和辅助设备进行选型或者设计,从而对过程所需设备的投资及其项目可行性进行估价。

2.需解决的问题

本次设计的流程有多种,根据对三废排放、节能节源的比较,选择工艺流程,并通过对精馏塔的比较以及对于经济效益的比较,选择本次精馏塔的类型,并且根据自己对整个流程的了解画出本设计的物料流程图,最后通过计算机绘制精馏工段的物料流程图、精馏设备的控制流程图、精馏塔的设备图、±平面的设备布置图;用A2图纸手工绘制二甲醚精馏工段的物料流程图、预塔冷却器的控制流程图、预塔冷却器的设备图、±平面的设备布置图。

3.特色和创新

本设计考虑到原料的充分利用,即将未被反应的甲醇通过回收循环利用,这样,既能减少原料的损耗,同时也符合经济效益。同时,被设计中二甲醚采用的是甲醇气相法,其优点:

生产二甲醚的原料可为精甲醇或粗甲醇, 蒸汽消耗和生产成本较低。

二甲醚反应器是列管式反应器,反应温度易控制,且催化剂在反应器中分布较均匀。

采用先进塔器内件和分离工艺, 回收效果好, 流程简化, 醇耗低。

四、研究方法、步骤和措施

查阅并收集与毕业设计内容相关的资料,认真总结,完成文献综述;同时根据文献综述的详细内容进行总结归纳,完成开题报告。

尝试通过ASPEN PLUS,对甲醇精馏流程进行全流程模拟;对单个设备预塔冷却器进行设计和模拟,并分析其操作影响因素从而得到一个较为可行性的优化方案。

对全流程进行物料衡算、能量衡算,并对所使用的换热器的设备尺寸进行计算,从而绘制工艺流程图。

五、参考文献

魏文德. 有机化工原料大全(第二卷)[M]. 北京:化学工业出版社. 1989:177

张正国. 二甲醚(DME)生产技术及传统工艺优化改造(J).气雾剂通讯,(3):1-3.

费金华,王一兆. 二甲醚的生产工艺及其特点(J). 小氮肥设计技术,2003,24(1):57-59

郭俊旺,牛玉琴. 浆态床合成气制二甲醚双功能催化剂的性能(J). 材料化学学报. 1998,26(4):321-325

Fu Yuchuan , Hong Tao , Chen Jieping .Surfaee Acidity and the Dehydration of Methanolto Dimethyl Ether .Thermochimiea Aeta .2005 , 434 ): 22 一2 6

朱炳辰, 化学反应工程.第四版. 北京: 化学工业出版社,

Lide D R. CRC Handbook of Chemistry and Physies .88thed. New York : CRC Press ,2007

Yaws C L. Chemical Properties Hand York : MeGraw 一HillBook Co ,

Deanjohn A. 兰氏化学手册. 魏俊发, 杨安运. 杨祖培等译.第二版. 北京: 科学出版社,2003 .1- 6

刘光启,马连湘,刘杰. 化学化工物性数据手册(有机卷) . 北京: 化学工业出版社, 一613

王守国, 邵允, 王元鸿等. 加压条件下负载型杂多酸复合催化剂催化甲醇脱水制备二甲醚.分子催化, 2001 ,15 (3) : 201 一2 05

慈志敏,储伟,谢在库等. 气相催化法甲醇脱水合成二甲醚的工艺和催化剂研究. 四川大学学报(工程科学版) , 2004 ,36 (1) : 28 一31

朱志渊, 李淑芳. 工业装置精馏高纯二甲醚最佳条件[ J ] . 天然气化工, 2000.

高占笙. 甲醇脱水制二甲醚及其分离精制[ J ] . 化肥工业,1993, ( 5) : 58- 61.

郑丹星, 金红光, 曹文等. 二甲醚分离工艺. CN 1513825 A,2004.

Voss Bodil , Joen sen F, Boegild J H . Preparation of fuel grade dimethyl ether. WO9623755, 1996.

Peng X D, Diamond B W, Robert T T , Lajjaram B B. Separationprocess f or one- step production of dimethyl ether from US6458856, 2002.

精馏塔是进行精馏的一种塔式汽液接触装置,又称为蒸馏塔。有板式塔与填料塔两种主要类型。根据操作方式又可分为连续精馏塔与间歇精馏塔。 蒸气由塔底进入,与下降液进行逆流接触,两相接触中,下降液中的易挥发(低沸点)组分不断地向蒸气中转移,蒸气中的难挥发(高沸点)组分不断地向下降液中转移,蒸气愈接近塔顶,其易挥发组分浓度愈高,而下降液愈接近塔底,其难挥发组分则愈富集,达到组分分离的目的。由塔顶上升的蒸气进入冷凝器,冷凝的液体的一部分作为回流液返回塔顶进入精馏塔中,其余的部分则作为馏出液取出。塔底流出的液体,其中的一部分送入再沸器,热蒸发后,蒸气返回塔中,另一部分液体作为釜残液取出。 精馏原理 (Principle of Rectify) 蒸馏的基本原理是将液体混合物部分气化,利用其中各组份挥发度不同(相对挥发度,α)的特性,实现分离目的的单元操作。蒸馏按照其操作方法可分为:简单蒸馏、闪蒸、精馏和特殊精馏等。 本节以两组分的混合物系为研究对象,在分析简单蒸馏的基础上,通过比较和引申,讲解精馏的操作原理及其实现的方法,从而理解和掌握精馏与简单蒸馏的区别(包括:原理、操作、结果等方面)。

相关百科
热门百科
首页
发表服务