论文投稿百科

精馏塔温度控制系统仿真毕业论文

发布时间:2024-07-04 00:42:39

精馏塔温度控制系统仿真毕业论文

毕业设计(论文)任务书设计(论文)题目:年处理量万吨甲苯-水混合液的填料塔的设计函授站: 专业: 化工工艺 班级:xx学生: xx 指导教师:1.设计(论文)的主要任务及目标 塔设计计算:a塔工艺计算(物料和能量衡算)b 塔及塔板主要工艺尺寸的设计计算⑶ 对苯精馏塔的流体力学验算⑷ 相关辅助设备选型与计算⑸ 设计结果及分析讨论2.设计(论文)的基本要求和内容⑴ 论文内容符合毕业设计撰写规范。⑵ 数据可靠、真实,具有一定的代表性。⑶ 计算过程细化、符合规范要求。⑷ 要求论文图纸包括:生产工艺流程控制图、塔的部分装配图、X-Y图、塔板负荷性能图。3.主要参考文献⑴陆美娟.《化工原理》.化学工业出版社.2001年1月第1版⑵冯伯华.《化学工程手册》第1、2、3、6卷.化学工业出版社.1989年10月第1版 ⑶包丕琴.《华工原理课程设计指导书》.北京化工大学化工原理教研室.1997年4月⑷陈洪钫.《化工分离过程》.化学工业出版社.1995年5月第1版⑸陈钟秀.《化工热力学》.化学工业出版社.1993年11月第1关键词:回流比、精馏、泡点进料、设备、试差 目 录前言........................................(7)第1章 精馏方案的说明.......................(7)第节 操作压力............................(7)第节 进料状态............................(8)第节 采用强制回流(冷回流)...............(8)第节 塔釜加热方式、加热介质..............(8)第节 塔顶冷凝方式、冷却介质..............(8)第节 流程说明............................(8)第节 筛板塔的特性........................(9)第节 生产性质及用途......................(9)第节 安全与环保..........................(11)第2章 烯烃加氢饱和单元分析.................(12)第节 反应机理及影响因素分析第节 物料平衡第节 能量平衡第3章 精馏塔设计计算.......................(12)第节塔的工艺计算.......................(12)第节塔和塔板主要工艺尺寸的设计计算.....(25)第4章 塔的流体力学验算.....................(31)第节校核................................(31)第节负荷性能图计算......................(34)第5章 辅助设备选型计算.....................(39)第节换热器的计算选型....................(39)第节 管道尺寸的确定.....................(44)第节 原料槽、成品槽的确定................(45)第6章 设计结果概要及分析讨论...............(45)第节数据要求............................(45)第节设计特点............................(46)第节 存在的问题.........................(46)参考文献....................................(47)符号说明.....................................(48)附录1.......................................(52)附录2.......................................(52)附录3.......................................(52)附录4.......................................(52)前言本论文是针对工业生产中苯-甲苯溶液这一二元物系中进行苯的提纯精馏方案,根据给出的原料性质及组成、产品性质及组成,对精馏塔进行设计和物料衡算。通过设计核算及试差等计算初步确定精馏塔的进料、塔顶、塔底操作条件及物料组成。同时对精馏塔的基本结构包括塔的主要尺寸进行了计算和选型,对塔顶冷凝器、塔底再沸器、相关管道尺寸及储罐等进行了计算和选型。在计算设计过程中参考了有关《化工原理》、《化学工程手册》、《冷换设备工艺计算手册》、《炼油设备基础知识》、《石油加工单元过程原理》等方面的资料,为精馏塔的设计计算提供了技术支持和保证。通过对精馏塔进行设计和物料衡算等方面的计算,进一步加深了对化工原理、石油加工单元过程原理等的理解深度,开阔了视野,提高了计算、绘图、计算机的使用等方面的知识和能力,为今后在工作中进一步发挥作用打下了良好的基础。第1章 精馏方案的说明本精馏方案适用于工业生产中苯-甲苯溶液二元物系中进行苯的提纯。精馏塔苯塔的产品要求纯度很高,达%以上,而且要求塔顶、塔底产品同时合格,以及两塔顶温度变化很窄(℃),普通的精馏温度控制远远达不到这个要求。故在实际生产过程控制中只有采用灵敏板控制才能达到要求。故苯塔采用温差控制。第节 操作压力精馏操作在常压下进行,因为苯沸点低,适合于在常压下操作而不需要进行减压操作或加压操作。同时苯物系在高温下不易发生分解、聚合等变质反应且为液体(不是混合气体)。所以,不必要用加压减压或减压精馏。另一方面,加压或减压精馏能量消耗大,在常压下能操作的物系一般不用加压或减压精馏。第节 进料状态进料状态直接影响到进料线(q线)、操作线和平衡关系的相对位置,对整个塔的热量衡算也有很大的影响。和泡点进料相比:若采用冷进料,在分离要求一定的条件下所需理论板数少,不需预热器,但塔釜热负荷(一般需采用直接蒸汽加热)从总热量看基本平衡,但进料温度波动较大,操作不易控制;若采用露点进料,则在分离要求一定的条件下,所需理论板数多,进料前预热器负荷大,能耗大,同时精馏段与提馏段上升蒸汽量变化较大,操作不易控制,受外界条件影响大。泡点进料介于二者之间,最大的优点在于受外界干扰小,塔内精馏段、提馏段上升蒸汽量变化较小,便于设计、制造和操作控制。第1.3节 采用强制回流(冷回流)采用冷回流的目的是为了便于控制回流比,回流方式对回流温度直接影响。第1.4节 塔釜加热方式、加热介质塔釜采用列管式换热器作为再沸器间接加热方式,加热介质为水蒸汽。第1.5节 塔顶冷凝方式、冷却介质塔顶采用列管式冷凝冷却器,冷却介质用冷却水。第1.6节 流程说明由于上游装置没有后加氢单元,所以在重整反应过程中生成的烯烃会带到本装置原料中, 烯烃的存在,会导致苯、甲苯产品的酸洗比色不合格,因此必须进行烯烃的加氢饱和。本装置流程包括烯烃加氢反应单元和精馏单元两部分。烯烃加氢反应单元:原料经过进料泵加压后进入换热器E101与反应生成油交换热量后,进入加热炉L101进行加热,再进入反应器R101,经过烯烃饱和加氢反应后进入热交换器E101冷却后,进入油气分离器V101,油进入精馏原料中间罐。本精馏方案采用节能型强制回流进行流程设计,并附有在恒定进料量、进料组成和一定分离要求下的自动控制系统以保证正常操作。精馏过程:30OC原料液从原料罐经进料泵进入原料换热器E102再经原料预热器进行预热进一步预热至泡点(,加热介质为水蒸汽),温度升至约,从进料口进入精馏塔T101进行精馏,塔顶气温度为部分冷凝后的气液混合物进入塔顶冷却器(冷却介质为冷却水),冷凝后的物料进入回流罐V102,然后再通过回流泵,将料液一部分作为回流也打入塔顶,另一部分作为塔顶产品经产品冷却器进入产品储罐V103,再经产品泵P104/AB输送产品。塔釜内液体一部分进入再沸器E103,经水蒸汽加热后,回流至塔釜,另一部分与原料换热器换热后排入甲苯储罐。在整个流程中,所有的泵出口都装有压力表,所有的储槽都装有放空阀,以保证储槽内保持常压。第节 筛板塔的特性筛板塔是最早使用的板式塔之一,它的主要优点:(1)结构简单,易于加工,造价为泡罩塔的60%左右,为浮阀塔的80%左右;(2)在相同条件下,生产能力比泡罩塔大20%-40%;(3)塔板效率较高,比泡罩塔高15%左右,但稍低于浮阀塔;(4)气体压力降较小,每板压力降比泡罩塔约低30%左右。筛板塔的缺点是:小孔筛板易堵塞,不适宜处理脏的、粘性大的和带固体粒子的料液。第节 生产性质及用途 苯的性质及用途苯是一种易燃、易挥发、有毒的无色透明液体,易燃带有特殊芳香气味的液体。分子式C6H6,相对分子量,相对密度(20℃),熔点℃,沸点℃,闪点℃(闭杯),自燃点℃,蒸气密度,蒸气压( ℃), 标准比重为。蒸气与空气混合物爆炸限~。不溶于水,与乙醇、氯仿、乙醚、二硫化碳、四氯化碳、冰醋酸、丙酮、油混溶。遇热、明火易燃烧、爆炸。能与氧化剂,如五氟化溴、氯气、三氧化铬、高氯酸、硝酰、氧气、臭氧、过氯酸盐、(三氯化铝+过氯酸氟)、(硫酸+高锰酸盐)、过氧化钾、(高氯酸铝+乙酸)、过氧化钠发生剧烈反应,不能与乙硼烷共存。苯是致癌物之一。苯是染料、塑料、合成树脂、合成纤维、药物和农药等的重要原料,也可用作动力燃料及涂料、橡胶、胶水等溶剂。质量标准:见表1-1。表1-1 纯苯质量标准(GB/T2283-93)项目 指标 特级 一级 二级 三级外观 室温(18~25℃)下透明液体,不深于每1000mL水中含有重铬酸钾溶液的颜色密度(20℃)/kg/m3沸程/℃大气压下(℃)酸洗比色溴价/(g/100mL)结晶点/℃二硫化碳/(gBr/100mL)噻吩/(g/100mL) 876~880中性实验 中性水分 室温(18~20℃)下目测无可见不溶水 甲苯的性质甲苯有强烈的芳香气味,无色有折射力的易挥发液体,气味似苯。分子式C7H8,相对分子质量,相对密度(20℃/4℃),熔点-95~℃,沸点℃,闪点℃(闭杯),自燃点480℃,蒸气密度 kg/m3,蒸气压(30℃) 比重D 4℃20℃、,,蒸气与空气混合物的爆炸极限为~7%。几乎不溶于水,与乙醇、氯仿、乙醚、丙酮、冰醋酸、二硫化碳混溶。遇热、明火或氧化剂易着火。遇明火或与(硫酸+硝酸)、四氧化二氮、高氯酸银、三氟化溴、六氟化铀等物质反应能引起爆炸。流速过快(超过3m/s)有产生和积聚静电危险。甲苯可用氯化、硝化、磺化、氧化及还原等方法之前染料、医药、香料等中间体及炸药、精糖。由于甲苯的结晶点很低,故可用作航空燃料及内燃机燃料的添加剂。质量标准:见表1-2。表1-2 甲苯质量标准(GB/T2284-93)项目 指标 特级 一级 二级外观 室温(18~25℃)下透明液体,不深于每1000mL水中含有重铬酸钾溶液的颜色密度(20℃)/(kg/m3) 沸程/℃大气压下(℃)酸洗比色溴价/(gBr/100mL) 863~868中性实验 中性水分 室温(18~20℃)下目测无可见不溶水第 安全与环保 安全注意事项苯类产品是易燃、易爆、有毒的无色透明液体,其蒸汽与空气混合能形成爆炸性混合物,因此,应特别注意防火,强化安全措施。(1)不准有明火和火花,设备必须密封,以减少苯蒸汽挥发散发入容器中,设备的放散管应通入大气,其管口用细金属网遮蔽,使贮槽或蒸馏设备中的苯类产品不致因散出蒸汽回火而引起燃烧,厂房应设有良好的通风设备,防止苯类蒸汽的聚集。(2)所有金属结构应按规定在几个地点上接地,为防止液体自由下落而引起静电荷的产生,将引入贮槽中所有管道均应安装到接近贮槽的底部,电动机应放在单独的厂房内。(3)应设有泡沫灭火器和蒸汽灭火装置,不能用水灭火。(4)工人进入贮槽或设备进行清扫或修理前,油必须全部放空,所有管道均需切断,设备应用水蒸汽彻底清扫后才允许进入并注意通风,检修人员没有动火证严禁在生产区域内动火。(5)进入生产区域或生产无关人员,不得乱动设备和计量仪表等。(6)及时清除设备管线泄漏情况,严防中毒着火、爆炸等事故的发生。(7)泄漏应急处理迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿消防防护服。尽可能切断泄漏源,防止进入下水道、排洪沟等限制性空间。小量泄漏:用活性炭或其它惰性材料吸收。也可以用不燃性分散剂制成的乳液刷洗,洗液稀释后放入废水系统。大量泄漏:构筑围堤或挖坑收容;用泡沫覆盖,抑制蒸发。用防爆泵转移至槽车或专用收集器内,回收或运至废物处理场所处置。 环境保护认真执行环境保护方针、政策、坚持污染防治设施与生产装置同时设计、同时施工、同时投产。现将“三废”治理措施分析述如下:(1)废水:各设备间接冷却水回收用于炼焦车间熄焦用,工艺产品分离水送往生化装置进行处理。设备冲洗水经初步沉淀和油水分离后送入生化处理。(2)废气:水凝气体回收引入列管户前燃烧,产品贮槽加水喷淋装置和氮密封措施,防止挥发污染大气环境。(3)废渣:生产过程中生产的废渣送往回收工段作为原料使用。定期检测个生产岗位苯含量和生产下水中各污染均含量,严防超标现象的发生。第2章 烯烃加氢饱和单元分析 反应机理及影响因素分析 (1)反应机理单烯烃 CnH2n+H2→CnH2n+2双烯烃 CnH2n-2+2H2→CnH2n+2环烯烃 烯烃的加氢饱和反应也为耗氢和放热反应。(2) 烯烃的加氢饱和反应过程的影响因素烯烃的加氢饱和反应过程的影响因素除催化剂性能外,主要有原料性质、反应温度、反应压力、氢油比和空速等。①原料性质加工烯烃含量较高的原料时,需要较高的反应苛刻度(即较高的反应压力和反应温度,较低的反应空速)。此外一定要注意原料油罐的惰性气体保护,最好是直接进装置,避免中间与空气接触发生氧化生成胶质,导致催化剂失活加快。 ②反应温度反应温度通常是指催化剂床层平均温度。烯烃的加氢饱和反应是一种放热反应,提高反应温度不利于加氢反应的化学平衡,但能明显提高化学反应速度,提高精制深度。过高的反应温度会促进加氢裂化副反应的发生,使产品液体收率下降,导致催化剂上积炭速率加快,降低催化剂使用寿命;反应温度过低,不能保证将杂质除净。在很高温度下,烯烃饱和度有一个明显的限制,结果使在高温操作比低温操作的产品中有更多的残存烯烃,当原料中有明显的轻组分,使用新催化剂时硫化氢与烯烃反应生成醇,在较低温度下操作可避免硫醇的生成。根据催化剂活性和原料油中的烯烃含量,一般预加氢的反应温度为150~180℃。随着运转时间的延长,逐步提高反应温度,以补偿催化剂的活性降低。③反应压力当要求一定的产品质量时,压力的选择主要是考虑催化剂的使用寿命和原料油中的烯烃含量。一般而言,压力愈高,催化剂操作周期愈长;原料油烯烃含量愈高,选择操作压力也愈高。提高反应压力将促进加氢反应速度,增加精制深度,并可保持催化剂的活性。但压力过高会促进加氢裂解反应,使产品总液收下降,同时过高的反应压力会增加投资及运转费用。④氢油比所谓氢油比是反映标准状态时,氢气流量与进料量的比值。可用H2/HC表示。提高氢油比,不仅有利于加氢反应的进行,并能防止结焦,起到保护催化剂的作用。但是,在原料油进料一定的情况下,氢油比过大会减少原料油与催化剂接触时间,反而对加氢反应不利,导致精制深度下降,产品质量下降,同时也增大了系统压降和压缩机负荷,操作费用增加。⑤空速空速指单位(质量或体积)催化剂在单位时间内处理的原料量,简写为h-1 。空速分为质量空速和体积空速。常用体积空速(LHSV),它的倒数相当于反应接触时间,称为假接触时间。因此空速的大小意味着原料与催化剂接触时间的长短。空速过大,即单位催化剂处理的原料量越多,其接触时间应越短,影响了精制深度;空速过小增加了加氢裂解反应,使产品液收率下降,运转周期缩短,降低了装置的处理量。 物料平衡表2-1烯烃加氢反应单元物料数据 单位:吨/日入 方 出 方原料油 精馏进料 氢气 损失 合计 合计 能量平衡(以加热炉为例) 原料进出加热炉数据 原料进出加热炉数据见表2-2。 表2-2 原料进出加热炉数据入 方(80℃) 出 方(160℃)单位项目 组成 数据 焓值 热量 单位项目 组成 数据 焓值 热量 m% Kcal/kg wkcal m% Kcal/kg wkcal原料油 苯 130 原料油 苯 154 甲苯 128 甲苯 158 烯烃 烯烃 氢气 540 氢气 1090 合计 合计 注:原料中烯烃含量很少在计算过程中可忽略不计。 加热炉热平衡 由表2-2可以知道,原料油经过加热炉后,热量增加值为:.加热炉需要燃烧瓦斯进行提供。加热炉用瓦斯组成见表2-3。表2-3 加热炉用瓦斯组成及焓值计算表 成份组成 体积热值 分析数据 焓值1 氢气 2650 氧气 0 03 氮气 0 04 二氧化碳 05 一氧化碳 3018 0 06 甲烷 8529 乙烷 15186 乙烯 14204 丙烷 21742 丙烯 20638 异丁烷 26100 正丁烷 28281 正丁烯 27160 异丁烯 27160 反丁烯 27160 顺丁烯 27160 碳五以上 34818 合计 100 第七章 参考文献1 化工原理》上下册.化学工业出版社.2006年5月第3版2 冯伯华.《化学工程手册》第1、2、3、6卷.化学工业出版社.1989年10月第1版3 包丕琴.《华工原理课程设计指导书》.北京化工大学化工原理教研室.1997年4月4 陈洪钫.《化工分离过程》,化学工业出版社,1995年5月第1版5 陈钟秀.《化工热力学》.化学工业出版社.1993年11月第1版6 沈复等.《石油加工单元过程原理》上下册.中国石化出版社.2004年8月第1版7.刘巍等.《冷换设备工艺计算手册》.中国石化出版社.2003年9月第1版8.马秉骞主编.《炼油设备基础知识》中国石化出版社.2003年1月第1版9.周志成等.《石油化工仪表自动化》中国石化出版社.1994年5月第1版10.田顾慧.《化工设备》中国石化出版社.1996年6月第1版11.沈复 李阳初.《石油加工单元过程原理》中国石化出版社.2004年8月第1版12.陆美娟.《化工原理》化学工业出版社. 2006年1月第10版符号说明A换热面积m2Aa 鼓泡区面积m2Af 降液管横截面积m2An 有效传质区面积m2Ao 筛孔面积m2AT塔横截面积m2A 质量分率-C 负荷系数-CP 比热KJ/Kg.OC(KJ/Kg.K)D 塔顶产品流率Kmol/h(Kg/h)Dg 公称直径mDT塔径mD 管内径 mmd1 管外径 mmdo 孔径 mmdm 管平均直径mmE 液流收缩系数-ET全塔板效率-ev 雾沫夹带量Kg液体/Kg气体F 进料流率 Kmol/h(Kg/h)H 塔高mHL板上清夜层高度mmHT板间距 mHd降液管内清夜层高度mHD塔顶空间高度 mHB塔底空间高度 mhd 气体通过干板压降mho 降液管下沿到塔板间距离mhow 溢流堰上液头高 mhp 气体通过塔扳压降mhr 液体通过降液管的压降mhw 溢流堰高度mhσ液体表面张力引起的压降mKo 以内壁为基准的总传热系数Kcal/m2.H.oCK稳定系数L 液体流量 Kmol/h(Kg/h,m3/h)lW溢流堰堰长ms 冷却剂质量流量 Kg/hN 实际塔板数 -NT 理论塔板数 -Nt 换热器总管数 -N 开孔数Q 换热器热负荷 WR 回流比 -Rmim 最小回流比 -Rsi 换热管内垢阻系数 m2•h•oC/Kcalr 气化潜热 KJ/KgTc 临界温度 KT 孔间距 mmTp 板厚度 mmua 以鼓泡区面积为基准的气速 m/suf 液泛气速 m/sun 空塔气速 m/suo 以筛孔面积为基准的气速 m/suow 漏液点气速 m/sV 塔内上升气体流量 Kmol/h(Kg/h,m3/h)W 塔釜采出液体量 Kmol/h(Kg/h)Wc 边缘区宽度 m(mm)Wd 降液管宽度 m(mm)Ws 塔板入口安定区宽度 m(mm)Ws’ 塔板出口安定区宽度 m(mm)X 液相摩尔分率 -Y 气相摩尔分率 -A 相对挥发度 -Ai 以内壁为基准的传热膜系数 Kcal/m2•h•oCAo 以外壁为基准的传热膜系数 Kcal/m2•h•oCβ 充气系数 -σ 表面张力 dyn/cm2ρL 液相密度 Kg/m3ρv(g) 气相密度 Kg/m3μ 粘度 Cp 开孔率 -Ф 装料系数 -τ 停留时间 sλ

四塔甲醇精馏工艺流程及原理粗甲醇通过预塔给料泵、粗甲醇预热器送到预塔脱除轻组份。预精馏塔(脱醚塔)冷凝器采用二级冷凝,系统中增设了排气冷凝器,用以脱除二甲醚等低沸点的杂质,控制冷凝器气体出口温度,并回收夹带的部分甲醇。在该温度下,几乎所有的低沸点馏份都在气相,并排出系统,不再冷凝回流到预精馏塔。 充分脱除低沸点组分后的甲醇溶液,通过加压精馏塔给料泵送往加压精馏塔。主要是提高甲醇气体的分压与沸点,使加压精馏塔的塔顶气有足够的热量供常压精馏塔的再沸器使用。常压精馏塔就不再需要蒸汽加热,减少装置的能耗。加压塔和常压精馏塔分别采出一般要求的甲醇产品。如特殊需要,可再经常压精馏塔进一步提纯。两塔的混合液都达到国家优级标准以上,能满足甲醇羰基化所需要的工艺指标要求。 从常压精馏塔底部排出的占甲醇产量20%左右的残液,被回收塔给料泵送往回收塔进一步回收,最终从底部排出装置。

1. 基于FX2N-48MRPLC的交通灯控制2. 西门子PLC控制的四层电梯毕业设计论文3. PLC电梯控制毕业论文4. 基于plc的五层电梯控制5. 松下PLC控制的五层电梯设计6. 基于PLC控制的立体车库系统设计7. PLC控制的花样喷泉8. 三菱PLC控制的花样喷泉系统9. PLC控制的抢答器设计10. 世纪星组态 PLC控制的交通灯系统11. X62W型卧式万能铣床设计12. 四路抢答器PLC控制13. PLC控制类毕业设计论文14. 铁路与公路交叉口护栏自动控制系统15. 基于PLC的机械手自动操作系统16. 三相异步电动机正反转控制17. 基于机械手分选大小球的自动控制18. 基于PLC控制的作息时间控制系统19. 变频恒压供水控制系统20. PLC在电网备用自动投入中的应用21. PLC在变电站变压器自动化中的应用22. FX2系列PCL五层电梯控制系统23. PLC控制的自动售货机毕业设计论文24. 双恒压供水西门子PLC毕业设计25. 交流变频调速PLC控制电梯系统设计毕业论文26. 基于PLC的三层电梯控制系统设计27. PLC控制自动门的课程设计28. PLC控制锅炉输煤系统29. PLC控制变频调速五层电梯系统设计30. 机械手PLC控制设计31. 基于PLC的组合机床控制系统设计32. PLC在改造z-3040型摇臂钻床中的应用33. 超高压水射流机器人切割系统电气控制设计34. PLC在数控技术中进给系统的开发中的应用35. PLC在船用牵引控制系统开发中的应用36. 智能组合秤控制系统设计37. S7-200PLC在数控车床控制系统中的应用38. 自动送料装车系统PLC控制设计39. 三菱PLC在五层电梯控制中的应用40. PLC在交流双速电梯控制系统中的应用41. PLC电梯控制毕业论文42. 基于PLC的电机故障诊断系统设计43. 欧姆龙PLC控制交通灯系统毕业论文44. PLC在配料生产线上的应用毕业论文45. 三菱PLC控制的四层电梯毕业设计论文46. 全自动洗衣机PLC控制毕业设计论文47. 工业洗衣机的PLC控制毕业论文48. 《双恒压无塔供水的PLC电气控制》49. 基于三菱PLC设计的四层电梯控制系统50. 西门子PLC交通灯毕业设计51. 自动铣床PLC控制系统毕业设计52. PLC变频调速恒压供水系统53. PLC控制的行车自动化控制系统54. 基于PLC的自动售货机的设计55. 基于PLC的气动机械手控制系统56. PLC在电梯自动化控制中的应用57. 组态控制交通灯58. PLC控制的升降横移式自动化立体车库59. PLC在电动单梁天车中的应用60. PLC在液体混合控制系统中的应用61. 基于西门子PLC控制的全自动洗衣机仿真设计62. 基于三菱PLC控制的全自动洗衣机63. 基于plc的污水处理系统64. 恒压供水系统的PLC控制设计65. 基于欧姆龙PLC的变频恒压供水系统设计66. 西门子PLC编写的花样喷泉控制程序67. 欧姆龙PLC编写的全自动洗衣机控制程序68 景观温室控制系统的设计69. 贮丝生产线PLC控制的系统70. 基于PLC的霓虹灯控制系统71. PLC在砂光机控制系统上的应用72. 磨石粉生产线控制系统的设计73. 自动药片装瓶机PLC控制设计74. 装卸料小车多方式运行的PLC控制系统设计75. PLC控制的自动罐装机系统76. 基于CPLD的可控硅中频电源77. 西门子PLC编写的花样喷泉控制程序78. 欧姆龙PLC编写的全自动洗衣机控制程序79. PLC在板式过滤器中的应用80. PLC在粮食存储物流控制系统设计中的应用81. 变频调速式疲劳试验装置控制系统设计82. 基于PLC的贮料罐控制系统83. 基于PLC的智能交通灯监控系统设计1.基于labVIEW虚拟滤波器的设计与实现2.双闭环直流调速系统设计3.单片机脉搏测量仪4.单片机控制的全自动洗衣机毕业设计论文电梯控制的设计与实现6.恒温箱单片机控制7.基于单片机的数字电压表8.单片机控制步进电机毕业设计论文9.函数信号发生器设计论文变电所一次系统设计11.报警门铃设计论文单片机交通灯控制13.单片机温度控制系统通信系统中的接入信道部分进行仿真与分析15.仓库温湿度的监测系统16.基于单片机的电子密码锁17.单片机控制交通灯系统设计18.基于DSP的IIR数字低通滤波器的设计与实现19.智能抢答器设计20.基于LabVIEW的PC机与单片机串口通信设计的IIR数字高通滤波器22.单片机数字钟设计23.自动起闭光控窗帘毕业设计论文24.三容液位远程测控系统毕业论文25.基于Matlab的PWM波形仿真与分析26.集成功率放大电路的设计27.波形发生器、频率计和数字电压表设计28.水位遥测自控系统 毕业论文29.宽带视频放大电路的设计 毕业设计30.简易数字存储示波器设计毕业论文31.球赛计时计分器 毕业设计论文数字滤波器的设计毕业论文机与单片机串行通信毕业论文34.基于CPLD的低频信号发生器设计毕业论文变电站电气主接线设计序列在扩频通信中的应用37.正弦信号发生器38.红外报警器设计与实现39.开关稳压电源设计40.基于MCS51单片机温度控制毕业设计论文41.步进电动机竹竿舞健身娱乐器材42.单片机控制步进电机 毕业设计论文43.单片机汽车倒车测距仪44.基于单片机的自行车测速系统设计45.水电站电气一次及发电机保护46.基于单片机的数字显示温度系统毕业设计论文47.语音电子门锁设计与实现48.工厂总降压变电所设计-毕业论文49.单片机无线抢答器设计50.基于单片机控制直流电机调速系统毕业设计论文51.单片机串行通信发射部分毕业设计论文52.基于VHDL语言PLD设计的出租车计费系统毕业设计论文53.超声波测距仪毕业设计论文54.单片机控制的数控电流源毕业设计论文55.声控报警器毕业设计论文56.基于单片机的锁相频率合成器毕业设计论文57.基于Multism/protel的数字抢答器58.单片机智能火灾报警器毕业设计论59.无线多路遥控发射接收系统设计毕业论文60.单片机对玩具小车的智能控制毕业设计论文61.数字频率计毕业设计论文62.基于单片机控制的电机交流调速毕业设计论文63.楼宇自动化--毕业设计论文64.车辆牌照图像识别算法的实现--毕业设计65.超声波测距仪--毕业设计66.工厂变电所一次侧电气设计67.电子测频仪--毕业设计68.点阵电子显示屏--毕业设计69.电子电路的电子仿真实验研究70.基于51单片机的多路温度采集控制系统71.基于单片机的数字钟设计72.小功率不间断电源(UPS)中变换器的原理与设计73.自动存包柜的设计74.空调器微电脑控制系统75.全自动洗衣机控制器76.电力线载波调制解调器毕业设计论文77.图书馆照明控制系统设计78.基于AC3的虚拟环绕声实现79.电视伴音红外转发器的设计80.多传感器障碍物检测系统的软件设计81.基于单片机的电器遥控器设计82.基于单片机的数码录音与播放系统83.单片机控制的霓虹灯控制器84.电阻炉温度控制系统85.智能温度巡检仪的研制86.保险箱遥控密码锁 毕业设计变电所的电气部分及继电保护88.年产26000吨乙醇精馏装置设计89.卷扬机自动控制限位控制系统90.铁矿综合自动化调度系统91.磁敏传感器水位控制系统92.继电器控制两段传输带机电系统93.广告灯自动控制系统94.基于CFA的二阶滤波器设计95.霍尔传感器水位控制系统96.全自动车载饮水机97.浮球液位传感器水位控制系统98.干簧继电器水位控制系统99.电接点压力表水位控制系统100.低成本智能住宅监控系统的设计101.大型发电厂的继电保护配置102.直流操作电源监控系统的研究103.悬挂运动控制系统104.气体泄漏超声检测系统的设计105.电压无功补偿综合控制装置型无功补偿装置控制器的设计电机调速频段窄带调频无线接收机109.电子体温计110.基于单片机的病床呼叫控制系统111.红外测温仪112.基于单片微型计算机的测距仪113.智能数字频率计114.基于单片微型计算机的多路室内火灾报警器115.信号发生器116.基于单片微型计算机的语音播出的作息时间控制器117.交通信号灯控制电路的设计118.基于单片机步进电机控制系统设计119.多路数据采集系统的设计120.电子万年历121.遥控式数控电源设计降压变电所一次系统设计变电站一次系统设计124.智能数字频率计125.信号发生器126.基于虚拟仪器的电网主要电气参数测试设计127.基于FPGA的电网基本电量数字测量系统的设计128.风力发电电能变换装置的研究与设计129.电流继电器设计130.大功率电器智能识别与用电安全控制器的设计131.交流电机型式试验及计算机软件的研究132.单片机交通灯控制系统的设计133.智能立体仓库系统的设计134.智能火灾报警监测系统135.基于单片机的多点温度检测系统136.单片机定时闹钟设计137.湿度传感器单片机检测电路制作138.智能小车自动寻址设计--小车悬挂运动控制系统139.探讨未来通信技术的发展趋势140.音频多重混响设计141.单片机呼叫系统的设计142.基于FPGA和锁相环4046实现波形发生器143.基于FPGA的数字通信系统144.基于单片机的带智能自动化的红外遥控小车145.基于单片机AT89C51的语音温度计的设计146.智能楼宇设计147.移动电话接收机功能电路148.单片机演奏音乐歌曲装置的设计149.单片机电铃系统设计150.智能电子密码锁设计151.八路智能抢答器设计152.组态控制抢答器系统设计153.组态控制皮带运输机系统设计154..基于单片机控制音乐门铃155.基于单片机控制文字的显示156.基于单片机控制发生的数字音乐盒157.基于单片机控制动态扫描文字显示系统的设计158.基于LMS自适应滤波器的MATLAB实现功率放大器毕业论文160.无线射频识别系统发射接收硬件电路的设计161.基于单片机PIC16F877的环境监测系统的设计162.基于ADE7758的电能监测系统的设计163.智能电话报警器164.数字频率计 课程设计165.多功能数字钟电路设计 课程设计166.基于VHDL数字频率计的设计与仿真167.基于单片机控制的电子秤168.基于单片机的智能电子负载系统设计169.电压比较器的模拟与仿真170.脉冲变压器设计仿真技术及应用172.基于单片机的水温控制系统173.基于FPGA和单片机的多功能等精度频率计174.发电机-变压器组中微型机保护系统175.基于单片机的鸡雏恒温孵化器的设计176.数字温度计的设计177.生产流水线产品产量统计显示系统178.水位报警显时控制系统的设计179.红外遥控电子密码锁的设计180.基于MCU温控智能风扇控制系统的设计181.数字电容测量仪的设计182.基于单片机的遥控器的设计电话卡代拨器的设计184.数字式心电信号发生器硬件设计及波形输出实现185.电压稳定毕业设计论文186.基于DSP的短波通信系统设计(IIR设计)187.一氧化碳报警器188.网络视频监控系统的设计189.全氢罩式退火炉温度控制系统190.通用串行总线数据采集卡的设计191.单片机控制单闭环直流电动机的调速控制系统192.单片机电加热炉温度控制系统193.单片机大型建筑火灾监控系统接口设备驱动程序的框架设计195.基于Matlab的多频率FMICW的信号分离及时延信息提取196.正弦信号发生器197.小功率UPS系统设计198.全数字控制SPWM单相变频器199.点阵式汉字电子显示屏的设计与制作200.基于AT89C51的路灯控制系统设计200.基于AT89C51的路灯控制系统设计201.基于AT89C51的宽范围高精度的电机转速测量系统202.开关电源设计203.基于PDIUSBD12和K9F2808简易USB闪存设计204.微型机控制一体化监控系统205.直流电机试验自动采集与控制系统的设计206.新型自动装弹机控制系统的研究与开发207.交流异步电机试验自动采集与控制系统的设计208.转速闭环控制的直流调速系统的仿真与设计209.基于单片机的数字直流调速系统设计210.多功能频率计的设计信息移频信号的频谱分析和识别212.集散管理系统—终端设计213.基于MATLAB的数字滤波器优化设计214.基于AT89C51SND1C的MP3播放器215.基于光纤的汽车CAN总线研究216.汽车倒车雷达217.基于DSP的电机控制218.超媒体技术219.数字电子钟的设计与制作220.温度报警器的电路设计与制作221.数字电子钟的电路设计222.鸡舍电子智能补光器的设计223.高精度超声波传感器信号调理电路的设计224.电子密码锁的电路设计与制作225.单片机控制电梯系统的设计226.常用电器维修方法综述227.控制式智能计热表的设计228.电子指南针设计229.汽车防撞主控系统设计230.单片机的智能电源管理系统231.电力电子技术在绿色照明电路中的应用232.电气火灾自动保护型断路器的设计233.基于单片机的多功能智能小车设计234.对漏电保护器安全性能的剖析235.解析民用建筑的应急照明236.电力拖动控制系统设计237.低频功率放大器设计238.银行自动报警系统

精馏塔控制系统毕业论文

随着科技负效应的显现,工程伦理越来越受的人们的重视。化学工程有着与其他工程不同的特点。下面是我为大家整理的化学工程应用 毕业 论文,供大家参考。

《 化学工程中计算流体力学应用分析 》

摘要:计算流体力学是以多种计算方程为基础,在多种化学反应设备中进行能量、质量和动量的综合计算,分析出不同守恒定律中,这些变量的主控形式和变化规律,从而优化工程设计和工艺设备,提高化学反应中正向变化的进行,提高热量交换和原材料的反应速率等。从化学工程经济效益的角度分析,有利于工程成本的节约,提升了经济回报。 文章 计算流体力学的基本原理进行分析,并 总结 了其砸你化学工程中搅拌、热交换、精馏塔和化学反应工程的具体应用。

关键词:计算流体力学;求解;基本原理;化学工程;应用

化学工程在我国具有较长的研究与应用历程,并在实际的生产与生活中取得到巨大的应用成效,不仅能够供给正常的生活需求,同时根据新材料的开发,能够满足现代型环保材料的使用。在化学工程中,较多的反映环境和反应机制都是在溶液中进行的,具有质量守恒和热量守恒定律的应用。而这种质量与能量的关系正是计算流体力学的主要原理。通过对实际应用环境和原理的分析,能够优化工程设计和工艺改进,提高化学工程的生产效率。

1计算流体力学在化学工程中的基本原理

计算流体力学简称CFD,是通过数值计算 方法 来求解化工中几何形状空间内的动量、热量、质量方程等流动主控方程,从而发现化工领域中各种流体的流动现象和规律,其主要以化学方程式中的动量守恒定律、能量守恒定律及质量守恒方程为基础。一般情况下,计算流体力学的数值计算方法主要包括数值差分法、数值有限元法及数值有限体积法,其也是一门多门学科交叉的科目,计算流体力学不仅要掌握流体力学的知识,也要掌握计算几何学和数值分析等学科知识,其涉及面广。

针对计算流体力学的真实模拟,其主要目的是对流体流动进行预测,以获得流体流动的信息,从而有效控制化工领域中的流体流动。随着信息技术的发展,市场上也出现了计算流体力学软件,其具有对流场进行分析、计算、预测的功能,计算流体力学软件操作简单,界面直观形象,有利于化学工程师对流体进行准确的计算。

2计算流体力学砸你化学工程中的实际应用

在搅拌中的应用分析

在搅拌的化学反应中,反映介质之间的流动性比较复杂,依据传统的计算形式根本无法解决,并在化学试剂在搅拌中存在不均匀扩散的特点,在湍流的形式中能量的分布状况也存在着空间特点。若是依据实验手段测得反映中物质、能量和质量的变化规律,其得出的结构往往存在较差时效性,实验差加大。

通过对二维计算流体力学的应用,能够对搅拌中流体的形式进行模拟,并进行质量、能量等数据的验证。但是流体的变化,不仅与化学试剂的浓度、减半速度有关,还与时间、容器的形状等有着之间的联系,需要建立三维空间模拟形式进行计算流行力学。随着科学技术和研究水平的提高,在通过借助多普勒激光测速仪后,已经对三维计算形式有了较大的突破,这对于化工工程中原料的有效应用和工程成本的减低具有促进的作用,但是在三维计算流体力学中还存在一定的缺陷,需要在今后的研究中不断的完善。

在化学工程换热器中的应用分析

换热器是化学工程中主要的应用设备,通过管式等换热器、板式换热器、冷却塔和再沸器等的应用,能够有效的控制化学试剂在反应中的温度变化。其中根据换热器的形式不同,计算流体力学的方式也就不同。在管式换热器中主要是通过流体湍流速度的改变,增加换热速率的。在板式换热器中是通过加大流体的接触面积,提高换热效率的。而在冷却塔和再沸器中,热量交换的形式更为复杂,但是却群在重复性换热的特点,增加了换热的时间,提高了换热的效果。从总体上分析,计算流量力学中,需要对温度变化、流体的速度变化、热交换面积变化和时间变化进行分析。通过CFD计算流体力学的应用,能够计算出不同设备的热交换效果,并根据生产的实际需求进行换热器的选择使用。

在精馏塔中的应用

CFD已成为研究精馏塔内气液两相流动和传质的重要工具,通过CFD模拟可获得塔内气液两相微观的流动状况。在板式塔板上的气液传质方面,Vi-tankar等应用低雷诺数的k-ε模型对鼓泡塔反应器的持液量和速度分布进行了模拟,在塔气相负荷、塔径、塔高和气液系统的参数大范围变化的情况下,模拟结果和现实的数据能够较好的吻合。

Vivek等以欧拉-欧拉方法为基础,充分考虑了塔壁对塔内流体的影响,用CFD商用软件FLUENT模拟计算了矩形鼓泡塔内气液相的分散性能,以及气泡数量、大小和气相速度之间的关系,取得了很好的效果。在填料塔方面,Petre等建立了一种用塔内典型微型单元(REU)的流体力学性质来预测整塔的流体力学性质的方法,对每一个单元用FLUENT进行了模拟计算,发现塔内的主要能量损失来自于填料内的流体喷溅和流体与塔壁之间的碰撞,且用此方法预测了整塔的压降。

Larachi等发现流体在REU的能量损失(包括流体在填料层与层之间碰撞、与填料壁的碰撞引起的能量损失等)以及流体返混现象是影响填料效率的主要因素,而它们都和填料的几何性质相关,因此用CFD模拟计算了单相流在几种形状不同的填料中流动产生的压降,为改进填料提供了理论依据。CFD模拟精馏塔内流体流动也存在一些不足,如CFD模拟规整填料塔内流体流动的结果与实验值还有一定的偏差。这是由于对于许多问题所应用的数学模型还不够精确,还需要加强流体力学的理论分析和实验研究。

在化学反应工程中的应用研究

在化学反应工程中,反应物和生成物的化学反应速率与反应器、温度和压力等有着较大的联系,在实际的反应中可以利用计算流体力学进行数据的获取。但是这数据的获取具有一定的温度限制,当反应中温度过大,就会造成分子的剧烈运动,其运动轨迹的变化规律就会异常,在利用计算流体力学的模型计算中,计算数据与实际情况会发生较大的偏差。由于高温中分子的运动轨迹和运动速度难以获取,在计算流体力学的实际计算中,就要借助FLUENT进行三维建型,并利用测速反应器进行速度的测量,通过综合的比较分析,利用限元法进行数据的计算。可以得出不同环境下的反应器的流线、反应器内部的浓度梯度及温度梯度。通过CFD软件预测反应器的速度、温度及压力场,可以更进一步理解化学反应工程中的聚合过程,详细、准确的数据可以优化化学反应中的操作参数。

3结束语

计算流体力学对于化学工程的应用具有实际意义,并在经济效益的提高上具有重要的价值,在近几年,化学工程技术人员不断的计算流体力学中展开研究,以二维空间计算和模拟为基础,不断的完善三维空间的流量计算,并得出了一系列的流体流动规律。根据计算流体力学在化学工程中的广泛应用,在今后的化学工程发展中,应加强此类学科的教学与延伸,提供出更有效的反应设备和工艺操作。

参考文献

[1]余金伟,冯晓锋.计算流体力学发展综述[J].现代制造技术与装备,2013(06).

[2]舒长青,王友欣.计算流体力学在化学工程中的应用[J].化工管理,2014(06).

《 能源化学工程专业化工热力学教学思考 》

[摘要]《化工热力学》是能源化学工程专业一门理论性和逻辑性较强的专业基础课,文章阐述了作者在《化工热力学》课程教学过程中如何提高学生对学习本课程兴趣的教学实践和教学体会。通过明确教学内容和教学主线,改变传统的单一的课堂教学,将课堂教学与学科动态及工程实践密切结合,激发学生学习兴趣,培养学生自主学习能力和工程意识,以满足培养能源化学工程领域领军人物的要求。

[关键词]化工热力学;能源化学工程;教学实践;教学体会

化工热力学是化工类学生的专业必修课程之一,主要讲述热力学定律在化学工程领域的应用,包括化工过程中各种形式的能量之间相互转换规律及过程趋近平衡的极限条件等。它是培养学生分析和解决实际化工问题思维方法的重要专业理论基础课[1-3]。然而该课程的课程内容抽象、计算繁琐,学生感到非常难学又缺乏实际应用,在课程学习过程中学生产生恐惧和厌学心理,达不到良好的教学效果,因此,我们对该课程的教学内容和 教学方法 进行一些改革和尝试,希望激发学生学习的兴趣,进而更好地掌握这门课程,为后续专业课程的学习夯实基础。

武汉大学2013年新开设的能源化学工程专业是由1958年原武汉水利电力学院开办的“电厂化学”专业发展而来,主要面向电力行业及高效洁净能源领域(包括超临界火电、核电、生物质能、氢能、新型化学电源等),培养掌握化学与化工基础理论及能源化学专业知识和技能的未来行业发展的领军人物。

目前,本专业主要有水处理、材料腐蚀与防护、化学监督与控制、能源化学四个主要研究方向。为了适应学校对新专业发展和一流学科建设的要求,2015年在本专业大三学生中新增设了《化工热力学》这门化工类专业的专业基础课程。如何调动学生的课堂积极性,培养学生的创新能力,夯实学生的专业基础,使他们在54学时的学习过程中理解并掌握本门课程的基本概念,并且将抽象的理论与实际的能源化学过程联系起来是本课程的核心教学任务。本文结合我校能源化学工程专业的培养目标,浅谈《化工热力学》的教学体会,着重对教学方式进行了探索和实践,为培养能源化学工程领域的领军人物奠定基础。

1明确教学内容与课程主线

结合我校《化工热力学》课程以工程应用为中心、专业研究方向覆盖面广等特点,我们选用了朱自强等编著、化学工业出版社出版的《化工热力学》作为教材[4],同时,也鼓励学生使用部分参考教材(《化工热力学》,冯新等编,2008;《化工热力学(第二版)》,陈钟秀等编,2000;《化工热力学导论(原著第七版)》,.史密斯等编,刘洪来等译,2007)[5-7]。化工热力学发展时间较长,已形成较完整的知识体系,如何在54学时内有效地把关键知识点教授给学生是本课程教学实践的关键。

由于本专业学生在大二《物理化学》课程中已经系统学习了理想气体相关的状态方程及其应用,因此在本课程教学中不再赘述,而是重点介绍工程实际应用较多的二参数状态方程、化工热力学分析、溶液热力学、流体相平衡和化学反应平衡等。在教学实践中,首先,详细分析《化工热力学》教材结构,围绕主线内容合理编排知识点;其次,建立好各知识点之间的逻辑关系,让学生在大脑中建立化工热力学框架图;最后,根据能源化学工程专业的需要,适当删减补充了教材内容,结合学科动态,增强化工热力学的应用能力,如燃料电池开路电压的计算、水/二氧化碳共电解制合成气过程中气体组成的计算等。

2改变单一课堂教学模式,培养学生自主学习能力

化工热力学课程设计的公式多而繁杂,学生在开始学习阶段容易产生恐惧厌学心理,传统的单一课堂教学模式具有“教师主导学生学习”的特点,与本课程“教师引导学生学习”的教学目的存在较大偏差。因此,应改变传统单一课堂讲授模式,充分采用“启发式”和“参与式”相结合的教学方法。

首先,教师在 课前预习 阶段设疑(提出问题),促使学生思考,复习旧知识,预习新知识;其次,教师在教学实践过程中采用多媒体和板书相结合的教学方式解疑(解决问题),并通过对例题和习题的讲解加深学生对化工热力学原理、方法和应用的理解,同时,教学过程中应避免陷于抽象的说教和枯燥的公式推导之中,重点讲述化工热力学知识点的应用条件和物理意义;最后,课堂教学结束后,教师主动与学生面对面交流答疑(探讨问题),并设置思考题让学生查阅相关资料。通过“设疑—解疑—答疑”的渐进式教学方法达到对关键知识点举一反三的目的,同时,吸引学生注意力,培养学生自主学习能力,提高学生学习的积极性和主动性。

3课堂教学与工程实践密切结合,培养学生初步的工程观点

化工热力学由于理论性较强、基本概念多且抽象,而且本科生在学习过程中接触科研课题及工程实践的机会较少,将课堂教学内容与科研课题及工程实践紧密结合起来,建立“以应用为中心”、“探究式”的特色教学模式,紧密联系我校在能源化学工程领域(特别是超临界火电、核电、生物质能、氢能、新型化学电源等方面)开发利用的化学工程实际问题,把学科前沿领域的科研成果带入课堂,可以使他们强化科研思想、激发听课兴趣、培养创新能力;同时,可以让学生获取利用化工热力学基本原理解决工程实际问题提供思路和方法,培养学生初步的工程观点。

4考核方式方法研究

传统的期末一张考卷为准的考试方式不利于学生能力的培养,也不能全面地体现学生对所学知识的掌握程度,为了更加系统全面地评价学生对课程内容的认识情况,我们对课程的考核方式方法进行了改革探索。目前,课程成绩总评包括平时成绩和期末成绩两部分,其中平时成绩包括学生的课堂综合表现、课程预习、作业三个部分,各占10%;期末考试采用开卷方式考试,考试的题目偏重于对知识点的理解和其在能源化学过程中的应用。然而由于该课程的课程内容抽象、计算繁琐,教学过程中发现仍有部分学生存在畏惧厌学心理,因此,在今后的教学实践中应考虑进一步激发学生的学习兴趣,增强学生的主观能动性,在课堂教学中引入分组讨论,开展导向性的专题研究,将课程内容与能源化学过程(特别是学科动态)相结合,培养学生查阅资料和分工协作的能力,为学生下一步学习专业课程夯实基础。

5结束语

在《化工热力学》课程的教学实践和尝试中,首先要明确教学内容与主线,打破单一的学生被动听讲的模式,理论联系实际应用,调动学生学习的积极性和主动性,激发学生对教学内容的兴趣,并且在教学的过程中对教学方法进行改革创新,因材施教,为学生下一步学习更专业的能源化学工程知识和从事新能源行业工作奠定扎实的基础。

参考文献

[1]陆小华,冯新,吉远辉,等.迎接化工热力学的第二个春天[J].化工高等 教育 ,2008,3:19-21.

[2]梁浩,刘惠茹,王春花.《化工热力学》教学实践与尝试[J].广东化工,2010,37(1):157-158.

[3]李兴扬,唐定兴,沈凤翠,等.化工热力学教学改革与体验[J].化工高等教育,2011,3:71-73.

[4]朱自强,吴有庭.化工热力学(第三版)[M].北京:化学工业出版社,2009.

[5]冯新,宣爱国,周彩荣,等.化工热力学[M].北京:化学工业出版社,2008.

[6]陈钟秀,顾飞燕,胡望明.化工热力学(第二版)[M].北京:化学工业出版社,2000.

[7]史密斯JM,范内斯HC,阿博特MM,等编;刘洪来,陆小华,陈新志,等译.化工热力学导论(原著第七版)(IntroductiontoChemicalEngineeringThermodynamics,SevenEdition).北京:化学工业出版社,2007.

有关化学工程应用毕业论文推荐:

1. 化学工程毕业论文

2. 化学毕业论文精选范文

3. 化工毕业论文范文大全

4. 化学毕业论文范例

5. 化学毕业论文范文

6. 化工毕业设计论文范文

四塔甲醇精馏工艺流程及原理粗甲醇通过预塔给料泵、粗甲醇预热器送到预塔脱除轻组份。预精馏塔(脱醚塔)冷凝器采用二级冷凝,系统中增设了排气冷凝器,用以脱除二甲醚等低沸点的杂质,控制冷凝器气体出口温度,并回收夹带的部分甲醇。在该温度下,几乎所有的低沸点馏份都在气相,并排出系统,不再冷凝回流到预精馏塔。 充分脱除低沸点组分后的甲醇溶液,通过加压精馏塔给料泵送往加压精馏塔。主要是提高甲醇气体的分压与沸点,使加压精馏塔的塔顶气有足够的热量供常压精馏塔的再沸器使用。常压精馏塔就不再需要蒸汽加热,减少装置的能耗。加压塔和常压精馏塔分别采出一般要求的甲醇产品。如特殊需要,可再经常压精馏塔进一步提纯。两塔的混合液都达到国家优级标准以上,能满足甲醇羰基化所需要的工艺指标要求。 从常压精馏塔底部排出的占甲醇产量20%左右的残液,被回收塔给料泵送往回收塔进一步回收,最终从底部排出装置。

精馏塔毕业论文

1、搜集乙醇、水的全部物化数据(关键数据是“乙醇-水”二元共沸汽液平衡数据); 2、确立工艺条件:进料状态(决定着是否需要加热)、产品纯度标准(决定着回流比等)、加热热源(决定着塔底再沸器设计) 3、进行物料平衡计算、能量平衡计算; 4、进行塔板计算与设计,分别确立提馏段(如果需要的话)、精馏段的塔板数; 5、根据产品纯度标准,确定回流比,进料状态的调整(操作参数确立); 6、完善塔顶冷凝器、进料加热器和塔底再沸器设计; 7、全部装置的保温设计; 8、绘出总装图、部件图和零件图; 9、整理完成《“乙醇-水”浮阀式精馏塔设计计算说明书》,OK!

四塔甲醇精馏工艺流程及原理粗甲醇通过预塔给料泵、粗甲醇预热器送到预塔脱除轻组份。预精馏塔(脱醚塔)冷凝器采用二级冷凝,系统中增设了排气冷凝器,用以脱除二甲醚等低沸点的杂质,控制冷凝器气体出口温度,并回收夹带的部分甲醇。在该温度下,几乎所有的低沸点馏份都在气相,并排出系统,不再冷凝回流到预精馏塔。 充分脱除低沸点组分后的甲醇溶液,通过加压精馏塔给料泵送往加压精馏塔。主要是提高甲醇气体的分压与沸点,使加压精馏塔的塔顶气有足够的热量供常压精馏塔的再沸器使用。常压精馏塔就不再需要蒸汽加热,减少装置的能耗。加压塔和常压精馏塔分别采出一般要求的甲醇产品。如特殊需要,可再经常压精馏塔进一步提纯。两塔的混合液都达到国家优级标准以上,能满足甲醇羰基化所需要的工艺指标要求。 从常压精馏塔底部排出的占甲醇产量20%左右的残液,被回收塔给料泵送往回收塔进一步回收,最终从底部排出装置。

室内温度控制系统毕业论文

已把我毕业论文的一部分发给你了,应该是你想要的。还需要其它的说一声

基于PLC的智能温室控制系统的设计摘要:温室环境系统是一个非线性、时变、滞后复杂大系统,难以建立系统的数学模型,采用常规的控制方法难以获得满意的静、动态性能。根据温室环境控制的特点,设计了一个基于PLC的智能温室控制系统。关键谝:PLC;智能控制:温室控制智能温室系统是近年逐步发展起来的一种资源节约型高效设施农业技术。本文在吸收发达国家高科技温室生产技术的基础上,对温室温度、湿度、CO,浓度和光照等环境因子控制技术进行研究,设计了一种基于PLC的智能温室控制系统。1智能温室控制算法的研究1.1温室环境的主要特点温室环境系统是一个复杂的大系统,建立精确的控制模型很难实现。由于作物对环境各气候因子的要求并不是特别的精确,而是一个模糊区间,比如作物对温度的要求,只要温度在某一时间段在某一区间内,该作物就能很好地生长,因此,也没有必要将各种参数进行精确控制。温室气候环境作为计算机控制系统的控制对象,有以下特点:非线性系统、分布参数系统、时变系统、时延系统、多变量藕合系统。1.2智能温室控制对象微分方程智能温室温度微分方程为:式中,为智能温室的放大系数;为智能温室的时间常数;为智能温室内外干扰热量换算成送风温度的变化量;为智能恒温室室内温度。2系统总体结构与硬件设计2.1系统总体结构2.1.1控制系统设计目标温室控制系统是依据室内外装设的温度传感器、湿度传感器、光照传感器、CO,传感器、室外气象站等采集或观测的温室内的室内外的温度、湿度、光照强度、CO,浓度等环境参数信息,通过控制设备对温室保温被、通风窗、遮阳网、喷滴灌等驱动/执行机构的控制,对温室环境气候和灌溉施肥进行调节控制以达到栽培作物生长发育的需要,为作物生长发育提供最适宜的生态环境,以大幅度提高作物的产量和品质。2.1.2控制模式以时间为基准的变温管理。根据一天中时间的变化实行变温管理,根据作物的生长需要将l天分成4个时间段,4个时间段中根据不同的控温要求对温室进行控制。1天中4个时间段的分段方法用户可以灵活的更改,而且4个时间段中的温度设定值用户也可以设定修改。不同季节的控制模式不同,只是自动控制系统启动的调节机构不相同,但不同季节的控制目的是相同的,即将环境参数调控到设定的参数附近。随着季节的变化,以及随作物生长阶段的变化,各时间段所需要的温度也是变化的,这时可通过修改设定温度值来调整温室的温度控制目标。2.1-3控制方案本系统采用自动与手动互相切换控制两种方式来实现对温室的自动控制,提高设备运行的可靠性。在运行时可通过按钮对这两种控制方式进行切换。手动控制简单可靠,由继电器、接触器、按钮、限位开关等电气元器件组成。自动控制模式采用计算机自动控制。通过传感器对环境因子进行监测,并对其设定上限和下限值,当检测到某一值超过设定值,便发出信号自动对驱动设备进行开启和关闭,从而使温室环境因子控制在设定的范围内。其运行成本较低,可大大节约劳动力,降低劳动者的劳动强度。2.2系统的硬件组成为了实现智能温室的环境监控,本设计建立了温室环境控制参数的长时间在线计算机自动控制系统。实现了温室内温度、湿度、CO,浓度、光照强度等参数的长期监测。并可根据智能温室温湿度的需求,对天窗、侧窗、降温湿风扇、风机、湿帘、内外遮阳网等设备自动控制。采用计算机作为上位机安装有组态t6.02监控软件,能将数据汇总、显示、记录、自动形成数据库,并实现了温室调控设备的自动设置与远程监控。为了确保系统的可靠性,温室设备的控制采用手动/自动切换方式,即在某些特殊情况下系统可以切换成手动,使用灵活方便。3系统的软件设计3.1温室控制系统PLC软件的设计根据基本要求和技术要求列出以下几点:(1)防止接点误动作:可利用自锁电路加以解决;(2)系统自诊断功能:PIG本身具有此项功能;(3)风机控制:温室设有一组风机,能同时启动与停止,当温室内的温度超出预定值时,受PLC的控制先是4个侧窗自动打开,延时5s后风机启动,再延时5s后湿帘水泵启动,从而使温室的温度降低;(4)侧窗控制:温室中设有4个侧窗,侧窗受电机控制,通过电机限位的设定来控制侧窗行程。解决方法类似上一点,但考虑到程序的精炼性,可配合PGI的中断功能命令加以解决;(5)系统自动/手动控制:可利用一个开关量作为PLC的输入信号,实现控制程序的转换;(6)湿帘泵控制;(7)遮阳网控制;(8)CO,补气(控制;(9)补光灯控制;(1O)可扩展性:在PLC中预留一定的存储空间和端口即可解决。3.2控制系统软件设计系统中对风扇、天窗、侧窗、环流风机、遮阳幕和湿帘泵的控制是通过PLC发出开关指令,通过交流接触器控制相关机构的启停。由于PLC检测系统具有较高的灵敏度,能够把温室内的扰动快速反应出来,同时由于温室较大的传递滞后,执行机构动作频繁,从而影响使用寿命。为此,在程序中加有时间可调的延时模块,使用时可根据具体情况调整延时,使控制效果达到最佳。3.3系统的组态监控软件的设计组态软件是可从可编程控制器以及各种数据采集卡等设备中实时采集数据,然后发出控制命令并监控系统运行是否正常的一种软件包。其主要功能如下:(1)远程监视功能。它可以通过通讯线远程监视多座温室的当前状态,包摇‘户外温度、光照强度、风速、风向、雨雪信号、室内温度、室内湿度、控制器温度、三组独立通风窗的位置和开关状态、内外遮阳幕的位置和开关状态以及一级二级风扇、湿帘、微雾、加热器、环流风扇、补光灯、C0,补气阀、水暖三通阀的状态和多种形式的报警监视,还能监视各灌溉阀的照强度、风速、室内温度、室内湿度、CO,浓度、水暖温度等全月的、全周的、全日的和本时段的最大值、最小值和平均值。(3)温室设备运行记录功能。它能在线记录各温室设备状态变化时的时间、当前状态和位置、当前目标温度、室内温度、目标湿度和室内湿度,并能打印输出。(4)远程设定功能。可以通过通讯线远程修改可编程控制器的全部设定参数。(5)生成曲线图功能。它能以平面图或立体图的方式同时绘制任意时刻的户外温度、光照强度、风速、目标温度、室内温度、目标湿度、室内湿度、CO,浓度、水暖温度等全年的、全月的、全周的、全日的变化曲线并打印输出。4结语本文通过分析温室执行机构的相应动作对环境因子的影响,将可编程控制技术、变频技术、组态监控技术和传感器技术应用于温室控制系统的设计,开发了基于PLC的智能温室控制系统。圜状态(2)数据统计功能。它可以统计任意时刻的户外温度、光[2]。它可以统计任意时刻的户外温度、光14O[参考文献】邓璐娟,张侃谕,龚幼民.智能控制技术在农业工程中的应用.现代化农业,2003(12):1~3申茂向等.荷兰设施农业的考察与中国工厂化农业建设的思考.农业工程学报,2000,16(5)

"幸福校园"有不少形式的论文范文,参考一下吧,希望对你可以有所帮助。第1章 绪 论 温度控制系统的发展状况近几年来,在我国以信息化带动的工业化正在蓬勃发展,温度已成为工业对象控制中一种重要的参数,任何物理变化和化学反应过程都与温度密切相关,因此温度控制是生产自动化的重要任务。对于不同生产情况和工艺要求下的温度控制,所采用的加热方式,燃料,控制方案也有所不同。例如:在食品加工、冶金工业、化工生产、电力工程、造纸行业和机械制造等诸多领域中,广泛使用的各种锅炉、加热炉、热处理炉和反应炉等;燃料有煤气、天然气、油、电等。单片微型计算机的功能不断的增强,许多高性能的新型机种应运而生。单片机以其功能强、体积小、可靠性高、造价低和开发周期短等优点,成为自动化领域和其他测控领域中广泛应用的器件,在工业生产中成为必不可少的器件。在温度控制系统中,单片机更是起到了不可替代的核心作用。像用于化工生产的智能锅炉、用于融化金属的加热炉等都广泛应用。

自动温度控制系统毕业论文

毕业设计论文可以找别人帮你做啊,把你的详细要求发不到任务中国网,让高手给你解决这个问题。或者你去抄一片。

"幸福校园"有不少形式的论文范文,参考一下吧,希望对你可以有所帮助。第1章 绪 论 温度控制系统的发展状况近几年来,在我国以信息化带动的工业化正在蓬勃发展,温度已成为工业对象控制中一种重要的参数,任何物理变化和化学反应过程都与温度密切相关,因此温度控制是生产自动化的重要任务。对于不同生产情况和工艺要求下的温度控制,所采用的加热方式,燃料,控制方案也有所不同。例如:在食品加工、冶金工业、化工生产、电力工程、造纸行业和机械制造等诸多领域中,广泛使用的各种锅炉、加热炉、热处理炉和反应炉等;燃料有煤气、天然气、油、电等。单片微型计算机的功能不断的增强,许多高性能的新型机种应运而生。单片机以其功能强、体积小、可靠性高、造价低和开发周期短等优点,成为自动化领域和其他测控领域中广泛应用的器件,在工业生产中成为必不可少的器件。在温度控制系统中,单片机更是起到了不可替代的核心作用。像用于化工生产的智能锅炉、用于融化金属的加热炉等都广泛应用。

用DS18B20测试温度,然后做出相应的控制,也可以报警创新方面可以做多路温度测试和控制吧,加温度显示,用LED数码管或者LCD显示屏

本科生有啥钱啊,楼上的,这点钱也想赚。。。既然是本科毕业设计,那还是老老实实自己做吧,也算对自己有个交代

相关百科
热门百科
首页
发表服务