论文投稿百科

关于地震勘探的简介论文参考文献

发布时间:2024-07-02 17:08:32

关于地震勘探的简介论文参考文献

1.地震勘探简介

地震勘探是利用地震学的方法研究人工激发的弹性波在不同地层中的传播规律,包括波速、波的衰减、波形以及在界面的反射和折射等来研究地层埋深、构造形态以及岩性组成等的一种地球物理方法。根据接收波不同可以分为反射波法和折射波法。

地震勘探的优点在于能对地质构造作出定量解释,有较高的精度,控制深度较大,是当前物探中较精确的一种。缺点是较其他物探手段成本高,效率低。

2.地震勘探技术发展趋势

近年来,随着电子技术、计算机技术的高速发展。地震勘探的仪器设备、处理软件升级换代的速度明显加快,地震资料采集、处理与解释的一体化趋势得到加强。

(1)地震采集技术的新进展

一般来讲,地震野外采集成本占勘探成本的80%左右,因此,世界各国为了降低勘探成本、提高勘探效果,不断研发、更新地震勘探的仪器设备。

地震仪作为地震勘探的核心设备,从20世纪30年代至今,先后经历了光点记录、模拟磁带记录、数字地震仪、遥测数字地震仪、基于Δ∑技术的24位A/D型遥测数字地震仪和全数字地震仪等6个标志性时代。纵观近5年来地震勘探仪器的技术进展,可以看出:以24位A/D技术(Δ∑技术)、数字传感技术(MEMS技术)、网络遥测技术、光纤通讯技术、数字存储技术、超大规模硬件技术、硬件功能软件实现技术和超万道大容量采集技术为代表,地震仪器的研发广泛融合了地震勘探技术、电子技术、计算机技术、通讯技术、数字信号处理技术、数据传输技术的新成就以及新工艺、新材料等方面不断涌现的新发明,向着技术指标越来越高、工作速度越来越快、采集和预处理能力越来越强、可靠性和稳定性越来越好、自动化和智能化程度越来越高、单道成本越来越低的方向迅猛发展(周明非,2006)。

伴随着地震仪器的技术进步,地震数据采集方法在继续扩大原有的高分辨率三维地震成果应用范畴的基础上,从采集思路上越来越多地体现出地震采集、处理与解释一体化的总体思路,从采集技术上更多的强调单点(震源)、单道(检波器)、高密度(小道距、小线距)、高保真的采集模式,在采集方法上从最初的小道数二维地震逐渐发展到大道数三维地震、时延地震(四维地震)、矢量地震(三维多波)等;另外,在野外数据采集时,加强了采集方案优化论证、地震资料品质分析和定向照明设计、现场监控处理等基础环节的工作。总之,地震野外数据采集的装备与技术能力,目前已经完全能够满足全球范围内的沙漠、平原、山地、丛林、湖泊、海洋等作业环境的需要,在国内外能源地震勘探领域(油气、煤炭等)已经得到广泛应用,并成为能源地球物理勘探的核心技术(熊翥,2006)。

(2)地震处理技术的新进展

目前,无论是石油还是煤炭地震勘探的技术难度越来越大,可以用低(低信噪比)、深(埋藏较深)、难(条件困难)、隐(隐蔽性强)几个特点来概括(中国石油天然气集团公司油气勘探部,1999),这几个特点反应到地震资料处理上,其特点表现为以水平、均匀、层状介质为假设的地震资料常规处理方法和软件,已经越来越不适应复杂介质条件下的地震勘探资料处理,以往地震资料处理的一些关键模块遇到了难题和挑战,如复杂地表条件下的静校正、陡倾角条件下的叠加与偏移、非均匀介质条件下的动校正等。为了适应这些挑战,地震数据处理的硬件设备中,开始采用以pc-cluster集群为特征的并行处理机,以加快处理速度;地震资料处理方法中,常规的叠后偏移向叠前偏移发展,地震叠前偏移(时间域或深度域)处理已于2006年成为石油地震资料处理的必然要求,且已经开始在煤炭地震资料处理中得到应用(邹才能等,2002)。

另外,多次波压制技术、低信噪比资料处理技术、地表层析静校正技术等应对复杂条件下地震资料处理的关键模块不断发展,服务于处理解释一体化的地震叠前AVO技术、叠后约束反演处理技术等也取得了明显效果。

(3)地震解释技术的新进展

经过二十多年的发展,地震资料解释的计算机系统,已经从工作站单机版模式、服务器-用户终端模式、服务器-客户端网络模式,发展到多服务器的服务器-客户端网络模式;随着微机性价比的迅速提升,基于Linux系统的高配置微机工作站已经能够完全胜任地震解释的要求,从而实现了微机解释平台的Linux风暴。

近几年来,地震解释技术发展迅速,地震数据采集、处理、解释一体化的步伐明显加快。所有从事地质科学的人员———不仅仅是地震资料解释专家,也包括地质专家、岩石物理专家、矿藏工程师等,联合组成协同工作组(Lawrence M et al.,2003),可以将地震资料、地质模式、钻井资料和油藏开发史等有机结合起来。地震资料的处理不再是独立的处理步骤,而是整个解释过程中的一部分,其目标就是建立一个非常详细的地质模型,而各种软件的普及使得解释处理过程中的部分工作,可以由越来越新的智能型软件自动完成;三维地震可视化解释技术、虚拟现实解释技术的出现,在物探人员和地质人员之间架起了一座“桥梁”。如今的地震勘探的瓶颈问题不再是数据处理所需要的时间,而是物探解释人员和地质工程师利用这些信息作出综合判定的速度(Satinder C et al.,2003)。

在地震解释的新方法、新技术中,地震属性分析技术、相干体解释技术、方差体解释技术等发展迅速,地震资料除了能够完成常规的构造解释任务外,综合利用地震资料和沉积学知识开展的地震地层学解释、层序地层学解释、地震资料岩性解释和储层精细描述技术等也取得了积极的进展(张永刚,2007)。

总之,地震勘探技术经过近80年的快速发展,经历了从模拟阶段进入数字时代、从一维勘探发展到三维地震乃至四维地震、从单分量接收到多分量接收、从地面勘探到立体勘探、从构造勘探到岩性勘探、从均匀层状介质到各向异性介质理论等技术进步,取得了一系列技术创新成果。近年来,应用于煤炭石油工业的地震勘探技术逐步形成了高精度地震、三维地震连片处理、重磁电震联合反演、精细储层描述等综合勘探技术系列,在交互三维地震构造解释、断层分析、地震反演、属性分析、三维可视化、地质建模与地质统计技术等方面取得了重大的研究进展,促进了复杂油气藏的勘探,并逐步推广到煤炭地质勘探领域。据专家预测,在今后一段时间内,石油地球物理勘探技术的发展方向将从目前的勘探地球物理为主,逐步转向开发地球物理为主。为了满足复杂勘探对象的地下成像,高密度地震(万道地震采集)、高精度地震(精细解释)、三维可视化与虚拟现实技术以及地震勘探新技术(三维三分量地震———3D3C、全方位纵波地震———AVA、延时地震———4D、三维VSP———3DVSP、井间地震等)等地震勘探新方法、新技术正在发展、完善和成熟,代表着今后一段时期内地震勘探技术的发展趋势。

地壳运动是自地壳形成以来地壳物质所受到的地球重心的 持续作用。所谓的板块漂移,地幔热对流,地球自转速度变化, 洋底扩张等解说都是不符合地球起源和演变的历史的规则的。目 前,有足够的理由表明,自地壳形成以来,地壳的运行方向受北 半球重心作用发生了明显的规律性变化。首先地壳是向着北极方 向运动,然后逐步南移,至现代南移至赤道。赤道以南理论上不会成为地壳的运行方向。地壳运动幅度和强度在时空上也有很大 差别,通常越向北越接近现代越小;越向南越远离现代越大。针 对地壳的历史活动规律和地球的演变进程,几乎可以断言:现代 地壳在水平方向的运行强度和幅度已经介入微弱期,对地壳的整 体 坚固和塑性不讳构成太大威胁。但是,现代地壳在升降方向上 的运动却显露春相当肆虐,这种肆虐最明显表象是频繁发生高级 别地震。 在水平运动为主时期,地壳升降运动的动能主要来自水平方 向的挤压。这个时期,无论水平还是升降运动的运行幅度和强度 非常大,但由于历史过程中地壳的结构强度是一个持续加强的过 程,因此这个时期地壳运动很难产生高频长幅地震波,对地震附 作物不讳产生太大震动,但是对地表的改观程度却是现代地壳运 动根本作做不到的,比如:现代地球的主要山地高原等复杂地形 地势大都是在历史过程中形成的。 根据地球唯一的起源方式和相应的演变模式推测,现代地壳 运动所依赖的能量与水平运动所产生的能量几乎没有必然联系。 现代地壳升降运动是地壳物质在重力作用下分异运动产生的能量 对地壳的作用。在宇宙中,任何物质都有向着重心方向运动的被 动,任何物质都不可能停留在一个不变的空间位置上。但是,许 多物质在经历时空演变是由于同时经历了温度和压力等因素的变 化,往往演变,分离成别的或多种物质。其中,一些物质由于能 量级别降低或被分割,丧失了重心方向运动的能量,转而反向重心方向运动。现代地震几乎都是这些反向地球重心方向运动的物 质蕴积的应力造成的。 反向地球重心方向运动的物质是引发现代地震灾难的主要能 量来源。现代地球为圈层结构,较重的物质分布在地球深层;较 轻的物质分布在地球的浅层。这种规律在地核和地幔的深层尤为 精确;但是,在上地幔和地壳之间却显示了明显的不规则。地壳 是地球吸收捕获外来物质最直接的固体层面。这些外来物质种类 繁多,重量级别不等,在重力分异运动尚不十分明确的地壳表层, 往往混杂在一起向地球深层运动,或被新的物质掩埋。在地壳某 些区域由于混杂的重量级物质越来越多,所受到的地心引力就越 来越强;同时,所遭受的浮力也相应加强。通常,这些区域是引 发现代地震的高危区。紧挨地壳底层为软流层,以软流层的压力 和温度几乎可以改变所有来至地壳底层物质的物态,并使一些物 质改变结构和性质。这些物质当中,较重的继续向着地球深层运 动,较轻的反向地心运动。反向地心运动的物质,一部分是可以 通过波动和粒子的形式透出地层,比如:来至地核的磁粒子和内 式磁粒子的物质; 但大部分却被拦截围压在下地壳和上地幔之间。 如果把地球的物质由表及里分成 A ,B ,C 三个种群类,那 么在 A 层上的 B, C 类物质必然向 B , C 层运进。向 B ,C 层 运进的部分物质受压力和温度变化作用,必然演变分离出 B,A 类物质。根据重力分异运动规则,重力级别下降的物质必然返向 B,A 层运进。自然界中有这样一些现象,比如沼气,在植物提中以个体存在,发酵后受液压或固压作用以群体潜伏。当聚集量上 升一定程度会冲出围压脱离发酵体。软流层(即地幔)好比发酵 体,许多物质进入这个层位都要发生分离和演变。如果把这个层 位当着地球的 B 层,那么进入这个层位来至地球的物质会演变分 离出许多 A 层以上的物质。A 层以上的物质生存的空间不是 B 层, 更不是 C 层。但由于 A 层物质结构密度和压力在一定条件上优于 B 返 A 物质活动所形成的应力结构,因此在相当时间内,如果 B 返 A 物质形成不了规模,提升不了能级,就很难突破 A 层底层的 围压。但事实上,B 返 A 物质在数量和能级上始终是一个增长和 提升的过程,当折中增长和提升达到一定程度,A 层底层的结构 密度和围压就会被突破,或超越。现代地震绝大多数即是这种时 候发生。 B 返 A 物质大都以两种方式突破或超越地壳底层。一,水平 锲入。地壳底层并非圆滑凹面,有的深深锲入地幔,有的被地幔 深深锲入。统一个区域,B 返 A 物质所蕴积的应力如果小于 A 层 底层的纵压,但却大于 A 层锲入软流体的横压;A 层锲入体受 B 返 A 物质的应力作用必将上下分离。A 层锲入体突然上下分离, 在地表上首先感应是上下弹跳。这种弹跳在重力异常地区尤为强 烈,因为这就象受到拖拉的弹簧,如果拖拉力越大,其反弹力就 越大。水平锲入分离,破坏了一个区域的重力平衡和结构的坚固, 因此,这个区域在相当长的时间内震动不断(余震)。水平锲入 分离极易引发地表隆起和地表裂缝等地质现象,这是因为均衡状态的地壳由于下沉负荷减轻而上浮。地壳上浮,相应地表面积会 增大,因此在相应的地表上会发生由表及里的地裂缝。二,纵向 锲入。一个区域,B 返 A 物质蕴积的应力如果小于周边横压而大 于 A 层底层的纵压,就会在纵向上对地壳底层实施突破,导致地 壳在纵向上突然分离,比如,岩浆活动和火山活动等。通常,纵 向锲入对地表不会产生大的震动,而且引发灾难也相对微弱。参考文献: 1.<<地震勘探原理>> 2.<<海啸地震与地壳运动>>

郝小柱1,2韦成龙1,2

(1.广州海洋地质调查局 广州 510760;2.国土资源部海底矿产资源重点实验室 广州 510760)

第一作者简介:郝小柱,1982年生,男,工程师,现主要从事海洋地球物理勘探研究。Email:。

摘要 本文基于5080 立方英寸 Bolt 气枪震源,根据中生界目的层信号频率要求,设计了6400立方英寸的Bolt气枪震源,并对海上试验进行对比分析,证实了该震源适用于南海北部中生界地震勘探。

关键词 南海北部 中生界 气枪震源

目前南海北部超过300m水深的海域面积超过20万km2,油气勘探程度低,而近年的勘探实践显示其勘探潜力巨大。台西南盆地钻遇滨海相下白垩统沉积,产凝析油。潮汕坳陷发育晚三叠世—白垩纪的多套生储盖组合。综合地球物理资料显示,南海东北部中生界分布的面积达6万km2,南海北部深水地区中生界可能成为今后我国海洋油气勘探的新领域。我国关于海域前新生界的专门勘探起步晚,中国海洋石油深圳分公司、上海分公司和广州海洋地质调查局均进行了有益的尝试,取得了可喜的成果。近年来,广州海洋地质调查局针对前新生界、中生界地层的地震勘探在采集技术上做了大量深入研究和试验。在南海北部勘探地震采集方面,取得了长足进步。

近年来在深水中生界油气勘探中,主要使用的是容量为5080 立方英寸(1 立方英寸=×10-5m3,下同)Bolt气枪震源[1~3],地震波在海水中的旅行时间长,常规反射地震方法中深层地震信号微弱,深层地震反射信噪比低,其深层的地质结构尚未能揭露,难以满足地质研究需求。在上述勘探难点区要获取良好反射波数据,震源性能至关重要[4]。资料证实,南海北部中生界地震反射信号优势频段在5~40Hz范围。根据目的层信号频率要求,设计形成了一套6400立方英寸震源。本文主要介绍其设计与应用。

1 震源软件模拟设计

本研究区调查目标为中生界地层,与其他项目调查目标相比,存在目标埋藏深度大,崎岖海底、倾斜地层等对反射波的吸收和衰减作用大;地层接触界面存在剥蚀、反射波速度变化大等特点,因此项目调查的一个困难是中深层反射波微弱,往往淹没在噪音当中。若不考虑地质和施工环境因素,那么要解决该困难的一个重要方法,就是对现有震源进行重新设计,增强其输出能量,并加大其在低频端的能量输出,获得5-40Hz频率能量有较明显增强。

气枪震源设计是指通过设计计算,将各支气枪或各组气枪子阵结合在一起,以达到提高震源子波主脉冲振幅、压制气泡脉冲和提高初泡比的目的。气枪阵列的子波参数表征了震源性能的好坏。Nucleus地震建模和调查设计软件包含大量用于海洋地震调查的各种震源、电缆、接收仪器型号的技术参数,可以根据现有设备的性能选择相应参数类型。在震源设计过程中,我们用Nucleus软件进行了大量的震源型号、震源容量、震源电缆组合深度、电缆和接收仪器型号等参数的模拟计算。2010年设计了该Bolt-6400 立方英寸低频小组合震源。

在这次的震源设计中,通过模拟计算得知,若震源的气枪数量较少,不同容量气枪的不同信号频率输出无法满足互补,频谱曲线会出现明显的周期振荡。不利于目标层探测。在总容量一定情况下,参与组合的气枪数量越多,则子波输出峰峰值越高,频谱分布越平滑。设计中根据现有震源系统结构及空压机条件,采用尽量多的气枪数,并考虑到需要足够的低频输出能量,根据现有震源的条件,舍弃小容量(10/20/40/50立方英寸)和大容量(500/600/900/1400立方英寸)的单枪,进行“低频小组合”,即主要考虑低频输出较强的小容量枪组合为主。该枪阵由4个子阵共40支单枪组成,总容量6400立方英寸,1-2-3-4子阵的容量分别为1580、1620、1620、1580立方英寸,其结构见图1。

图1 6400立方英寸枪阵结构图

The special detecting structure of 6400 in3

2 6400 立方英寸枪阵与5080 立方英寸枪阵参数对比

近年来探宝号地震船在深水中生界油气勘探中,主要使用的是容量为5080立方英寸Bolt气枪震源,为比较6400立方英寸枪阵与5080立方英寸枪阵的性能,利用软件模拟计算了两种枪阵在不同沉放深度的子波频谱特征,对比见表1和图2。6400立方英寸的枪阵在沉放10m时主峰值和峰峰值均提高了16%以上,而波泡比未出现明显减小,说明其气泡压制更好;6400立方英寸枪阵在绝对振幅大于210分贝时低频输出从5080立方英寸的8Hz拓展到6Hz,6400立方英寸枪阵较5080立方英寸枪阵在5~40Hz范围频率能量也有了较明显增强,更有利于接收中生界反射的较微弱的低频信号。

表1 5080~6400立方英寸震源特性对比 The comparison of seismic source between 5080 in3and 6400 in3

3 6400 立方英寸枪阵与5080 立方英寸枪阵海上实验分析

震源激发特性(激发子波)与震源本身的物理参数和沉放深度有关,实际南海北部中生界调查中,我们更加关心的是经过地层的反射、吸收衰减后,到达电缆水听器的子波特性(接收子波)。很明显,激发子波和接收子波会有较大的差异。2010年新设计的Bolt-6400立方英寸枪阵在探宝号上进行了装配和资料采集试验,接收记录系统采用480道电缆的Seal地震采集系统,道间距;气枪控制系统采用BigShot气枪控制器,同步误差控制在±1毫秒。炮间距为25米时剖面叠加次数为120次,炮间距为时叠加次数为80次。

该实验在东沙隆起区选取了一条40km长度的测线,该段范围内中生代地层显示较好,为检验所设计6400立方英寸震源的性能,采用了4组地震参数组合进行同方向采集数据(表2)。试验对比了6400立方英寸震源与现有5080立方英寸震源,并进行了不同电缆沉放深度下采用6400立方英寸震源获得地震剖面的效果。

图2 5080与6400立方英寸震源子波特性对比图(压力2000PSI,深度10m)

The comparison diagram of sub-wave caused by seismic source between 5080 and 6400 in3(2000 psi,10m deep)

表2 震源试验采集参数表 The parameter of seismic source testing

在试验中,接收的直达波波形见下图3,6400立方英寸震源接收子波波形有一个小旁瓣,约为主波形幅度的1/3,但其紧靠着主波形,宽度仅为主波形的1/8-1/6。在每一炮地震信号采集中,波形会有渐进的变化,统计认为其对地层反射波组的辨认不存在影响。

从波形强度上看,6400立方英寸震源接收子波波形振幅较5080立方英寸的震源强。

图3 5080立方英寸与6400立方英寸震源接收子波波形对比

The comparison regarding waveforms of sub⁃wave between 5080 and 6400 in3seismic source

图4为同一测线剖面不同记录深度的接收子波频谱对比。可以看出,两种容量震源在实际采集时,在不同记录时段范围,接收的信号频率宽度相当。

图4 5080立方英寸与6400立方英寸震源接收的子波频谱对比图

The comparison diagram regarding frequency spectrum of sub⁃wave between 5080 and 6400 in3seismic source

在以内,两种震源接收子波在30-50Hz范围内能量相当,而6400立方英寸震源接收子波在5-25Hz的能量更高;

在以上的记录范围,5080立方英寸震源接收子波在30-50Hz范围内的能量较高;而6400立方英寸接收子波在5-25Hz的能量较高。从两种震源接收子波频谱的曲线所包络的面积可知,6400立方英寸震源接收子波在5-50Hz频谱总能量上较5080立方英寸的高。

6400立方英寸震源接收子波在以上的记录深度,频谱向低频端移动比较明显,势必使得中深层地层的分辨率有所降低。但总的来说,研究区主要目标层是中生界及其以下地层,牺牲少量的分辨率,得到中深层反射信号明显的改善,是非常值得的。

该试验还对比了电缆分别沉放12m、15m和18m时震源均采用重新设计的6400立方英寸、沉放深度10m时的采集效果。

图5显示电缆沉放深度为12m、15m和18m的接收波形对比。

图5 电缆沉放12m、15m与18m时接收波形对比

(震源6400立方英寸,深度10m)

The comparison of waveforms between cable immersion of 12m,15m and 18m

(seismic source 6400 in?,10m deep)

直达波波形,电缆沉放12m时接收到的直达波波形振幅最大,15m深度波形振幅强度次之,18m深度波形振幅最小。

海底反射波形,电缆沉放12m时接收海底反射波形振幅最大,15m深度波形振幅强度次之,18m深度波形振幅最小。

综合分析,震源沉放10m,电缆沉放12m时接收到的子波特征较优。

图6所显示的为电缆沉放深度不同时,在不同记录范围的接收子波频谱对比。

图6 电缆沉放深度12m和18m接收的子波频谱对比图

The comparison diagram of frequency spectrum between cable immersion of 12m and 18m

在1~2s记录范围内,电缆沉放12m在40~55Hz能量较沉放18米高一些,而在8~15Hz则比沉放18m的能量低。大体上,两者的频带宽度相当,约为8~45Hz,差异较小。

在3~4s记录范围内,沉放深度为12m时,频段40~50Hz能量较沉放18米的高一些;而在5~20赫兹的低频频段,两者能量分布相似,区别不明显。

在5~6s记录范围内,两者的频带宽度也比较相似,为7~35Hz;在下降10dB时,低频端均为7~8Hz,区别不大。

在7~8s记录范围内,两者的频带宽度相似,基本上在6~30Hz之间,低频端扩展到了约6Hz。

总体说来,沉放深度为12m和18m时,两者的频带宽度比较相近;从频谱曲线形态上看,在低频端,沉放深度为18m时稍微有一些优势,但是并不明显。

4 结论

图7为实验中两种震源容量的枪阵采集的资料叠加剖面效果对比,叠加剖面A使用5080立方英寸震源25m炮间距,叠加剖面B使用6400立方英寸震源炮间距,两条测线的震源电缆沉放深度一致,均为10~12m组合。为更好地比较,在资料处理时,采用同样的处理流程和参数,流程中没有使用预测反褶积,对同一方向的试验测线使用同样的速度库,这样可避免速度因素对剖面的影响。为避免叠后修饰掩盖试验参数的差异,没有在叠后做任何处理。

图7 5080~120次覆盖(剖面A)与6400~80次覆盖(剖面B)立方英寸震源采集剖面对比

(震源深度10m,电缆深度12m,480道接收)

The comparison of sections between 5080~120 times cover(section A)and 6400~80 times cover(section B)in3seismic source

(seismic source 10m deep,cable immersion of 12m,480 channels)

从图中可看到,后者无论在3~的中浅层,或者6~的较深层,其有效波组的连续性都比前者强。6400立方英寸震源获得的信号,连续性更好。在4-7秒的中深目标层,表现尤其明显。表明在东沙隆起区等中生界目标顶面存在剥蚀褶皱或屏蔽区,使用6400立方英寸震源是合适的。

通过设计和海上试验,表明该6400立方英寸震源,子波输出峰峰值和低频端的能量得到了加强,震源激发信号往低频方向移动,适用于存在屏蔽层,或目标地层剥蚀、褶皱、埋藏较深区域,如东沙隆起区等,获得的中深层地震剖面得到进一步改善,对于南海北部中生界的勘探更加有利。

参考文献

[1]赵庆献,王立明,杨蜀冀,等.2006.“探宝号”船可变阵列震源的实现及应用[J].南海地质研究,4(17):92-100

[2]王立明,罗文造,陆敬安,等.2009.海洋地震勘探中的震源布局分析研究[J].海洋技术,28(4):89-93

[3]罗文造,韦成龙,王立明,等.2009.海上地震勘探主要采集参数的选取与验证[J].热带海洋学报,28(4):93-101

[4]林建民,王宝善,葛洪魁,等.2008.大容量气枪震源特征及地震波传播的震相分析[J].地球物理学报.51(1):206-212

[5]唐杰,王宝善,葛洪魁,等.2009.大容量气枪震源的实验和模拟研究[J].中国地震,25(1):1-10

[6]杨怀春,高生军.2004.海洋地震勘探中空气枪震源激发特性研究[J].石油物探,43(4):323-326

[7]伍忠良,赵庆献,胡家赋.2002.海上地震系统低频响应与电缆噪音[J].海洋技术,21(1):42-45

Applied to Seismic Exploration in Mesozoic in Northern South China Sea Air Gun Source Design and Experimental Analysis

Hao Xiaozhu1,2,Wei Chenglong1,2

( Marine Geological Survey,Guangzhou,510760;

Laboratory of Marine Mineral Resources,MLR,Guangzhou,510760)

Abstract:In this paper,based on the 5080 cubic inch Bolt air gun seismic source,according to the objective requirements of Mesozoic layer signal frequency,design of the 6400 cubic inch Bolt air gun source,and carries on the contrast analysis on sea trials,confirmed the source suitable for seismic exploration in Mesozoic in the northern South China sea.

Key word:Northern South China sea;Mesozoic;Air gun source

地震勘探工论文答辩

翟继锋1,2韦成龙1,2曾宪军1,2

(1.广州海洋地质调查局 广州 510760;2.国土资源部海底矿产资源重点实验室 广州 510760)

第一作者简介:翟继锋(1982—),男,本科学历,助理工程师,主要从事海洋地震勘探工作。

摘要 地震观测系统是用来表示激发点、接收点和地下反射点三者之间的位置关系。观测系统决定地震采集资料的质量,其质量直接影响后续的处理解释结果和精度,关系到地震勘探的成败,可见观测系统的重要性。本文基于地震观测系统设计的基本理论,从基本原则、参数选择出发,讨论了如何合理设计海上二维地震观测系统。

关键词 观测系统 原则 参数

1 引言

地震资料采集的中心问题是通过各种手段和方法来增强有效波,压制干扰波,提高信噪比,获得高质量的地震记录。观测系统的设计取决于地震勘探任务、工区地震地质条件和勘探方法,总的原则是尽可能使记录到的地下界面得到连续追踪,避免发生有效波彼此干涉的现象,野外施工简单等。地震勘探野外施工中主要使用纵测线观测系统,即激发点和接收点布置在同一条测线上,该系统能得到测线正下方界面的反射信息,所获得的资料易于解释,野外施工方案简单直观,在实际工作中被广泛应用。

2 观测系统的各种参数

图1是“探宝号”船240道seal电缆常用的观测系统。对海上地震调查来说,所使用的震源、接收电缆、记录仪器的部分有着固定的参数,我们主要分析以下十个可以变化的参数。

最大炮检距

最大炮检距是炮点的中心到最远一道的中心的距离,图2中用X表示,设计时要以下几个因素为依据:

1)时距曲线,力求其近似为双曲线。比较合适的炮检距,可以使正常时差足够大,足以区分一次反射波、多次波以及其他相干噪音;比较大的炮检距,就会使远道的时距曲线近似为高次曲线,从而使记录得到的同相轴不满足双曲线的假设。水平层状介质的地震地质模型地震反射波的时距曲线为:

图1 探宝号船240道常用观测系统

The common observation system of 240 seismic channels of“TanBao”

图2 距离参数示意图

The sketch map of distance parameter

南海地质研究(2014)

如果在炮点的附近接收地震波,就可以把水平层状介质的波速简化为均方根速度,则反射波的时距曲线方程可简化为:

南海地质研究(2014)

由这两个方程可知,当最大炮检距的取值为勘探目标深度的~倍时,反射波的时距曲线近似为双曲线。

2)速度分析,力求能获得较高的精度。在水平层状介质中,一般认为射线速度是一种准确的速度,它随着炮检距的增大而增大,当炮检距一定时,射线速度等于均方根速度,也就是说这时的均方根速度可以认为是准确的,此时的炮检距就是所要选用的最大炮检距。由射线速度公式和炮检距公式式,可算出最大炮检距约为勘探目标的埋深。

南海地质研究(2014)

3)动校正拉伸畸变,力求使其小。动校正拉伸的程度,随反射界面深度和炮检距之比的减小而增大,即炮检距小,拉伸程度就小,炮检距大,拉伸程度就大。

百分比动校正拉伸量=(动校正量/双程反射时间)×100%

若在计算动校正量采用近似公式 ,则当最大炮检距为目的层埋深的倍时,动校正拉伸为;当最大炮检距为目的层埋深的倍时,动校正拉伸为。动校正拉伸使信号频率降低,从而影响分辨率。

4)反射系数,力求其变化尽可能小。反射系数随着炮检距的变化而变化,如果炮检距在小于某个数值时,反射系数几乎不随炮检距变化,则炮检距应当选取这个数值。反射系数可以通过佐普里兹方程来求取。

5)高频衰减,力求远道的高频衰减尽可能小。地震波的吸收和衰减随着传播距离的增大而增大,从而使高频信息能量变弱,降低分辨率。

通过以上的论述,合适的最大炮检距应选取勘探目标深度的~倍。最大炮检距过大,会使远道的反射时距曲线近似为高次曲线,不符合地震勘探中把时距曲线视为双曲线的假设;炮检距过大会使远道的反射系数有较大变化;炮检距过大会产生转换横波;炮检距过大会使动校正拉伸较严重,使远道地震信号中的高频信息衰减较厉害。最大炮检距偏小,则会使整个排列偏短,不利于接收中深层的地震反射信息,并且会由此造成时距曲线太短,反映不出双曲线的形态,得不到准确速度,而在资料处理叠加的过程中,最关键的是速度参数。因此在选择最大炮检距时,重点应考虑目标层的速度分析精度。

最小炮检距

最小炮检距是炮点的中心到电缆第一道(近道)的中心的距离,图2中用Y表示,应该小于最浅目标层的深度。最小炮检距大一些,确实可以有效地避免震源和作业船产生的部分噪音信号干扰,但却会损失有用的浅层有效信号。

最小炮检距的选取应从以下几方面考虑:

1)考虑炮检距与叠加特性的关系,选择较小的最小炮检距。

2)根据作业船噪音情况及地震地质条件,选择能够较好地避免震源和作业船产生的部分噪音信号干扰的最小炮检距。较大的偏移距有利于避开面波、船噪音等干扰。

3)为满足大炮检距的初至折射静校正或层析成像反演静校正处理的需要,宜采用较小的最小炮检距。

4)为提高分辨率,宜采用较小的最小炮检距。

随着偏移道数的增加,迭加特性曲线通放带宽度变窄,压制带范围向左移,同时压制范围内,特性曲线的三次极大值幅度变小。说明偏移道数的增加,能更好压制与反射波速度相近的多次波,即可以提高分辨率。但是,偏移道数增大,导致压制带宽度变窄,特性曲线二次极大值的幅度增大。因而,与反射波速度相差较大的多次反射波,就有可能进入二次极值带,得不到好的压制效果,所以不能认为偏移道数越大越好。

从以往的施工结果看,250m的最小炮检距可以有效地避免震源和作业船产生的噪音信号干扰,但是在研究区部分测线水深小于100m,最小炮检距过大的话就会损失有用的浅层有效信号,而且会使海底难以追踪。因为这时直达波和海底一次反射波几乎同时到达,给去除直达波,追踪海底造成困难,在以往的地震资料中也出现过海底辨认不准确的情况。这主要和水深太浅,最小炮检距偏大有关。因此在以后的野外作业中,对最小炮检距也应做试验。综合考虑准确追踪海底和减小近道噪音,通过现场处理结果,确定出一个合适的最小炮检距。

炮间距

炮间距(图2中的Z表示)是炮点移动的距离: ;d为炮点移动的距离,M为排列长度,n为覆盖次数,Δx为道间距。令 ;υ是炮点移动的道数。则: ;单边放炮S为1,双边放炮S为2。

因炮点移动的道数与覆盖次数成反比关系,在排列长度及道间距一定时,炮点移动的距离越短,覆盖次数越高。缩短炮点移动的距离,增加覆盖次数,以提高对多次波的压制效果,增强有效反射波的能量,提高资料信噪比。

检波器组合参数

检波器的排列组合要兼顾压制干扰波和突出有效波这两方面,利用干扰波的视速度、主周期、道间时差、随机干扰的半径以及有几组干扰波,出现的地段,强度的变化特点与激发条件的关系等资料,设计出合理的排列组合参数。检波器组合参数的因素包括:组内距、组合基距、组合内的检波器个数以及组合的形式等。视速度和炮检距为反比关系,也即组合内的各检波器的时差随着炮检距的增大而增大。一般认为排列中最近道处的视速度最大,最远道处的视速度最小,因此组合中首尾检波器点的时差最大,其低频响应更加严重,组合排列越长,基距越大,这种现象就越明显。在中深层地震勘探中,利用检波器组合法提高信噪比的同时,要避免低频响应。

“探宝号”船目前所用的seal 24位电缆采用12个检波器线性组合作为一道。由于新技术的应用,使得检波器在线性度、灵敏度高,分辨力、迟滞、重复性、漂移、稳定性等性能也极大地提高。

道间距

道间距是指相邻两个接收点之间的距离。道间距的选择,应保证道与道之间的反射波都能对比。反射波到达相邻两个接收点的时差Δt,应满足下列关系:Δt≤T*/2,式中,T*为反射波的视周期。因反射波的视速度V*是道间距Δχ和时间差Δt之比值,即:V*= 。则 ,为了能够同时并且可靠地追踪来自深层和浅层的反射波,道间距的最大适合值Δχ应当以浅层反射波的视波长λ*来计算。

道间距的大小会直接影响地震资料的解释工作,影响横向分辨率:道间距偏大,将导致同一层的有效波追踪和辨认的可靠性将受到影响,会产生比较严重的空间假频,而且是道间距越大,低频响应也越严重;道间距偏小,将会使野外数据量、工作量及成本大大增加。选取道间距应当以在地震记录上能够可靠辨认同一有效波的相同相位为准则,这主要取决于:相邻的道记录形态的重复性;地震有效波、干扰波和随机振动背景的振动关系;地震波到达相邻道所用时的时差;地震波的视周期以及横向分辨率等。

由对工区采集资料进行的频谱、速度分析可知,有效反射波视频率主要分布范围(以-6dB计算)是6~60Hz;浅层层速度值约为1800~2400m/s。道间距Δχ1800/(2×60)约为15m。表明采用道间距已完全满足采集精度要求。

我局拥有海上地震调查设备Seal、MSX、Hydroscience三种24位地震采集记录系统,电缆的道间距均为。从以往进行地震资料采集结果看,使用的道间距能够在地震记录上清晰地辨认出同一有效波的相同相位。

覆盖次数

覆盖次数即地层界面某一点的追踪次数,n=S*N/2*r,其中,S代表一个系数,一般取1;N代表记录道数;r代表炮点移动的道数。若增加覆盖次数,迭加特性曲线通放带的宽度和压制带的左边界都不会有多大变化。说明增加覆盖次数,既不会改善因为动校正速度不准确而引起反射波迭加特性变坏的情况,也不会提高压制与反射波速度相近的多次波的能力。但若增加覆盖次数,则压制带的宽度将会加大,压制带范围内的三次极大值将会变小。叠加次数也即覆盖次数,越大则压制带平均值越小,压制效果就越好,所以增大覆盖次数对于提高信噪比是有利的。就是说,覆盖次数的增加,既有利于对多次波的压制,也有利于对与反射波速度相差较大的多次波的压制。总而言之,增大覆盖次数,可以提高压制的效果,提高信噪比,覆盖次数越大,信噪比的改善程度就越大。假设叠加后的信噪比为1,则各目标层所需要的覆盖次数可由下式计算:

南海地质研究(2014)

式中, 为震源信噪比;TRA(i)表示透反射、球面扩散以及地层吸收导致的地震波能量的损失。

选取较大的覆盖次数,能够充分压制高频环境下的干扰噪音,增大目标层的有效反射能量,就能提高资料的信噪比,确保目标层的成像效果。因此,采集中都需选取较大的覆盖次数。

震源能量

在相同条件下,震源能量越强,得到的信号其信噪比也相应提高。但大震源大能量作业,在接收到更强的有效反射信号的同时,也会接收到更大的多次波等干扰信号,因而资料的信噪比不一定会提高。中深层地震勘探所关心的是信噪比,而不仅仅是反射信号的强弱。

通过对地震地质模型进行计算机模拟来测算最佳的震源能量,再经过野外震源试验来对比验证,确定合适的震源能量,是目前常规二维地震震源能量较好的确定手段。

震源电缆组合沉放深度

在海洋地震勘探作业中,我们使用电缆中排列组合的水听器记录压力P,若电缆沉放深度记作,且地震反射信号中的某一谐波波长为λ,其入射角为θ,则其简要关系式为:

南海地质研究(2014)

对海洋地震气枪震源来说,激发后所产生的地震波信号,以及由海面反射回来的地震波信号一起向地下传播。由于气枪震源的沉放深度相对于水深和地层厚度而言比较小,可以看做是叠加在一起的两个信号向地下传播。而这两个信号的叠加效果是受气枪震源沉放深度控制的,和地震电缆的情况相同,叠加信号的振幅大小变化也是受气枪震源沉放深度控制。

理论上的分析结果是:震源与电缆沉放的深度相同,并且深度值为按上式算出的使得压力P取最大值的Z的值,其中的λ可以认为是对应于目标层的主频波长。

实际上震源、电缆组合的沉放深度,震源激发信号在海水、地层中传播时的扩散、衰减,各界面的反射、折射和散射,海水、地层吸收所产生的各种组合滤波效应,再加上各种各样的噪音干扰,使得电缆中水听器接收到的信号已经发生了变化,电缆接收到的信号波形态与频谱早已不同于原震源波形态与频谱。

以理论值为依据,通过计算机模拟以及在工区中做震源、电缆组合沉放深度试验,就可以找到一个最佳的震源、电缆组合沉放深度。

采样率

合适的采样间隔Δt,可避免间隔过大使离散信号失真及谱畸变出现假频现象的缺点,又可避免采样过密使处理工作量加大的缺点。根据采样定理:

南海地质研究(2014)

Δt为采样间隔,fmax为要保护的目的层的最高频率。一个信号周期中至少需要三个样点〔也就是需要两个采样间隔(2Δt)〕的最小量来定义一个周期的信号。

对研究区所采集资料进行频谱分析可知,有效反射波频率分布范围(以-6dB计)为6~60Hz。计算结果表明选用2ms采样完全满足采集精度的要求。并且采样率为2ms,地震仪采集到的信号理论极限频率是206Hz左右。中深部地层信息主要反映在较低频率上,该采样率已经完全满足要求。

低截滤波

近几年的常规地震勘探中,对低截滤波的确定都倾向于低截频率尽可能地低一些,尽可能多地保留原始采集信号。在海上地震勘探中,涌浪等会产生几到十几赫兹的噪音,水鸟挂上异物会在附近道产生有规律的抖动等,低频干扰影响到资料信噪比。当低频干扰偏大时,在处理时滤波虽然可以将之除掉,但低频有效信号也同时损失,因此在干扰比较大的情况下,降低低截滤波的门槛值是没有益处的。利用现场处理的噪音分析,可以获得低频干扰的频率范围和幅值大小。良好的海况一般采用的低截滤波值为3Hz。当然,震源、电缆深度都加深后,涌浪等环境噪音大大降低,可以不加低截滤波。

3 结论

本文主要讨论了海上二维地震勘探观测系统各个参数的设计原则,详细介绍每个参数的作用及影响。观测系统有效合理的设计是在部分论证参数的约束下选择观测系统的几何形态、最大炮检距、最小炮检距、炮间距和道间距,这些参数的确定又以观测系统的属性分析为指导。在已建立的地球物理模型情况下,设计合理的观测系统,才能在合理的投入下,获得最适合处理与解释的资料。

参考文献

[1]刘振东.2010.泌阳凹陷复杂断裂带地震勘探采集处理方法研究与应用[D].中国地质大学博士学位论文,24-37

[2]冯凯.2006.三维地震观测系统最优化设计的方法研究[D].成都理工大学工学博士论文,9-23

[3]钱光萍,康家光,王紫娟.2001.基于模型的地震采集参数分析及应用研究[J].物探化探计算技术,23(2):109-114

[4]王桂华.2004.海上地震数据采集主要参数选取方法[J].海洋石油,24(3):35-39

[5]史乃祥,王德利.2005.深水区地震波传播特性研究[J].吉林地质,24(2):82-86

[6]罗文造,韦成龙,王立明,等.2008.南海北部中生界地球物理勘探采集技术[D].2007年度成果报告.6-39

[7]舒虎,易劲松,邢涛,等.年度区域综合地球物理补充调查地震资料处理报告[D].4-44

[8]黄文彬,郭嵩魏,李刚毅.地区三维地震观测系统研究,内蒙古石油化工[J].第17期17,94-99

[9]杨金华.2006.三维观测系统的设计优化[J].工程技术,128

[10]王玉娇,李刚.2006.障碍物密集区三维地震观测系统的设计与应用[J].大众科技,7,39-40

[11]夏建军,唐东磊,黄永平.2009.三维地震采集观测系统压噪能力的估算及应用[J].石油地球物理勘探,44(2),140-145

[12]秦广胜,蔡其新,刘学伟.2010.满足叠前偏移要求的三维地震观测系统设计[J].石油地球物理勘探,45(S1),25-29

Principle of Design Observation System of Marine 2 D Seismic

Zhai Jifeng1,2,Wei Chenglong1,2,Zeng Xianjun1,2

( Marine Geological Survey,Guangzhou,510760;

Laboratory of Marine Mineral Reasources,MLR,Guangzhou,510760)

Abstract:The seismic observation system is used to express the relationship among the shot point,the receiving point,and the reflection quality of acquisition data is decided by the observation system,and which directly affect the quality and accuracy of subsequent processing and the good or not of observation system is related to the success or failure of the seismic exploration,it is very article based on the basic theories of observation system,we discuss how to design observation system of 2D marine seismic with the basic principles and parameters.

Key word:Observation system;Principle;Parameter

崔若飞 陈同俊 钱进 赵虎 李仁海 毛欣荣

(中国矿业大学 徐州 221008)

作者简介:崔若飞,1954年生,男,河南洛阳人,中国矿业大学教授,博士生导师,长期从事应用地球物理的教学和科研工作。电子信箱:,通信地址:江苏省徐州市中国矿业大学资源与地球科学学院,邮编:221008。

摘要 三维P波地震勘探是煤层气勘探开发的关键技术之一,属于岩性地震勘探的范畴。利用国内外油气勘探的成功经验并结合煤层气勘探的特点,提出利用“两个理论、六项技术”来指导煤层气地震勘探。两个理论是双相介质理论和各向异性介质理论,六项技术是地震属性技术、地震反演技术、方位AVO技术、方位各向异性技术、煤层厚度非线性反演技术和基于MAPGIS的多源信息预测技术。利用煤层气地震勘探技术,并配合其他地质手段,建立煤层气(瓦斯)富集带预测模型,为煤层气的开发提供科学的地质依据。

关键词 煤层气勘探 岩性地震勘探 地震反演 方位AVO 方位各向异性

CBM Seismic Survey Technology

Cui Ruofei,Chen Tongjun,Qian Jin,Zhao Hu,Li Renhai,Mao Xinrong

(China University of Mining and Technology,Xuzhou 221008)

Abstract:3D P-wave seismic survey is the lithological seismic method which is one of the key techniques for CBM on domestic and overseas successful oil/gas survey experiences and the features of CBM survey,the paper pointed out that CBM seismic survey should be directed by the two theories and six two theories mean both two-phase and anisotropic medium techniques include seismic attribute,seismic inversion,azimuth AVO,azimuth anisotropy,non-linear inversion of coalbed thickness and multi-source information prediction based on CBM seismic survey combined with other geological methods,the paper established the prediction model of CBM accumulation area which would provide scientific geological basis for CBM exploitation.

Keywords:CBM exploration;lithological seismic survey;seismic inversion;azimuth AVO;azimuth anisotropy

1 煤层气勘探的意义

煤层气(瓦斯)是由煤化作用形成的赋存在煤层中的以甲烷为主的混合气体。我国是一个能源消费大国,加速煤层气的勘探与开发具有重要意义。

首先,煤层气作为一种新型洁净能源,其开发利用可弥补我国常规能源的不足。我国是煤层气资源大国,居世界第二位。近年来,对煤层气的成因、储层特性、赋存状态、成藏理论进行系统研究,取得了一大批成果。但是,相应的勘探与开发技术相对滞后。今天,地质学家和地球物理学家已经把研究重点放在勘探与开发技术领域。

其次,瓦斯突出问题是长期以来困扰煤矿安全生产的一个灾害性问题。据国家安监总局统计,2005年全国煤矿瓦斯事故死亡2157人,占全部煤矿事故死亡人数的36%。在一次死亡10人以上的特大煤矿事故中,瓦斯事故起数占69%。事实上瓦斯已成为我国煤矿安全生产的“第一杀手”。造成这种局面的原因是多方面的,既有管理上的原因,也有技术上的原因。关键在于煤矿在开采前和开采过程中,对地下瓦斯富集的情况一无所知。这样就使煤矿在生产和开采过程中,无法根据瓦斯分布情况制定有针对性的措施。

目前,晋城矿区为了抽排瓦斯,只能以一定的密度均匀布置钻孔,希望通过这种方式将瓦斯在开采前抽放掉。但是这样做又会面临两难的选择,如果要将瓦斯尽可能地排放干净,就必须将钻孔布置得相当密集,成本就会增加;如果要控制成本,就要降低钻孔密度,可能无法保证瓦斯浓度在安全指标以下,即可能会导致瓦斯事故的发生。因此,只有依靠科技进步,采用新技术、新方法才能为煤矿查明煤层瓦斯富集区域,是当前煤矿生产中亟待解决的重要课题。

最后,利用煤层气可以有效保护生态环境。甲烷对红外线的吸收能力是二氧化碳的25~30倍,是造成温室效应的元凶之一。煤矿开采过程中的甲烷排放量占全球总排放量的一半,可见煤层气的开发利用可以有效降低温室效应。

总之,煤层气的勘探、开发与利用可以改善我国能源结构、促进煤矿安全生产、有效保护生态环境,是一举多得、利国利民的大事。

2 煤层气勘探开发的关键技术

今天,三维地震勘探技术已经成为煤矿生产中必不可少的手段,在很大程度上替代了传统的地质勘探方法。

现行的煤田地震勘探技术主要是利用反射波的运动学特征来解决构造问题,而煤层气(瓦斯)地震勘探属于岩性地震勘探。在影响煤层气成藏的5个主要因素中,利用地震资料和其他地质资料可以查明煤层厚度、断层及其他构造分布、煤层埋藏深度、煤层的倾角与露头位置。但是,不能对煤层和围岩的透气性做出评价,即无法确定含裂隙裂缝介质(构造煤的分布与厚度)的性质。

瓦斯作为气体,如果要在煤层中储存和运移,那么煤层及其顶底板中就必须要有相互联通的裂隙裂缝。总之,裂隙裂缝的存在是瓦斯存在的必要条件,也是搞清煤层瓦斯富集带的关键。因此,对于煤矿开采而言,研究煤层及其顶底板裂隙裂缝的分布和连通情况极其重要。瓦斯突出及爆炸的罪魁祸首就是煤层及其顶底板中的裂隙裂缝。由于裂隙裂缝是瓦斯富集、存储、运移的场所,因此查明采区内断层、裂隙裂缝的分布便能够对煤层及其顶底板(围岩)的透气性做出正确评价。于是,煤层气(瓦斯)地震勘探的核心是查明煤层及顶板中裂隙裂缝发育的方向和密度。

早在20世纪90年代,利用地震资料研究裂隙裂缝发育的方向和密度便受到地球物理学家的高度重视。主要原因是碳酸盐岩是一个有利的高产油气层,世界上约有60%左右的油气来自碳酸盐岩储层,而碳酸盐岩储层与裂隙裂缝的关系极为密切。大量的研究工作和观测数据表明,含裂隙裂缝介质的性质可以用双相介质理论和各向异性介质理论进行解释。因此,国内外学者把重点放在利用地震资料研究双相介质的各向异性和检测裂隙裂缝方面,其主要方法有三类:①多波多分量裂隙裂缝检测技术;②S波裂隙裂缝检测技术;③P波裂隙裂缝检测技术。由于P波地震勘探成本低,从20世纪90年代起,地球物理学家把目光转向P波勘探,用P波代替S波/转换波检测裂隙裂缝已成为一个重要研究课题。

煤田地震勘探的情况也是如此,1993年P 波三维地震勘探技术开始得到应用,1998年三维三分量地震勘探技术引入煤田,并陆续在10余个煤矿进行试验工作,希望综合利用P波和转换波解决煤矿生产中的开采技术条件问题。但是,事与愿违,时至今日没有取得突破性成果。今天,回过头来分析煤田转换波地震勘探的得失时,不能忽略煤层埋藏浅、P波的信噪比高和分辨率高这一鲜明特点,而转换波的信噪比较P 波相差1~2个数量级。因此,煤层气勘探开发应该以三维P波地震技术为主,同时配合其他地质手段。

3 煤层气地震勘探技术的特点

利用P波进行煤层气地震勘探,目的是利用地震波运动学和动力学特征来研究小型压性与压扭性构造、煤岩层岩性,特别是查明煤层及顶板中裂隙裂缝发育的方向和密度(煤体结构破坏程度)、构造煤的厚度。

利用国内外油气勘探的成功经验并结合煤层气勘探的特点,提出利用“两个理论、六项技术”来指导煤层气地震勘探。

两个理论是双相介质理论和各向异性介质理论,六项技术是地震属性技术、地震反演技术、方位AVO技术、方位各向异性技术、煤层厚度非线性反演技术和基于MAPGIS的多源信息预测技术。

地震属性技术

地震属性指的是由叠前或叠后的地震数据,经过数学变换而导出的有关地震波的几何形态、运动学特征、动力学特征和统计学特征。地震属性技术是指提取、显示、分析和评价地震属性的技术,在煤层气地震勘探中包括地震属性的提取、地震属性的分析、利用地震属性区分构造、岩性并进行目的层预测。

煤层气储层是典型的双相介质,与单相介质相比,地震波在双相介质中传播后,各个频率成分的能量分布发生了变化,主要表现为地震波能量向低频方向移动。这种地震波场动力学特征的变化为预测瓦斯富集带提供了理论基础。杨双安博士利用数值模拟方法对该理论进行了验证。图1为六层介质模型,其中第四层中部为双相介质,代表瓦斯富集区。合成记录见图2。

图1 模型示意图

图2 合成地震记录

从图2 中看到有两组反射波,在100ms 附近的反射波是界面1 形成的反射波,在200ms附近的反射波是界面2、界面3、界面4和界面5形成的复合波。对200ms附近的复合反射波进行分频处理,得到不同频率成分的能量。在图3中,中间的双相介质区域表现出:①时间发生延迟、反射波连续性较好的运动学特征;②低频能量增强、高频能量衰减的频率特性;③与正常反射波相位相反的相位特征。总之,具有双相介质特征的瓦斯富集区与单相介质区域有明显的差异。

图3(a)标准低频成分(1~10Hz)的能量;(b)高频成分(35~45Hz)的能量(据杨双安)

图4 淮南张集煤矿西三采区13-1煤层的主频带能量百分比

图4是淮南张集煤矿西三采区13-1煤层的主频带能量百分比,可以发现主频带能量的变化规律。

地震反演技术

波阻抗反演技术是岩性地震勘探的重要手段之一,根据钻孔测井数据纵向分辨率很高的有利条件,对井旁地震资料进行约束反演,并在此基础上对孔间地震资料进行反演,推断煤系地层岩性在平面上的变化情况,这样就把具有高纵向分辨率的已知测井资料与连续观测的地震资料联系起来,实行优势互补,大大提高三维地震资料的纵、横向分辨率和对地下地质情况的勘探研究程度。

通过波阻抗反演,可以预测煤层及顶底板的岩性特征。图5显示的是某区13-1煤常规地震剖面与波阻抗反演剖面的对比。通过对比,发现图5(b)不但能清楚地显示煤层,而且对煤层顶底板的岩性也有较清楚的显示。因此,可以对方位地震数据体进行反演,从方位反演数据体中提取有关剖面属性并进行各向异性分析。

图5 某区13-1煤常规地震剖面与波阻抗反演剖面的对比

方位AVO 技术

AVO(Amplitude Versus Offset)技术是利用反射系数随入射角变化的原理,在叠前道集上分析振幅随炮检距变化的规律,估求岩石的弹性参数并检测油气的重要技术。而方位AVO分析则是将宏面元按多方位等分,再在不同的方位上做AVO分析的一种技术。

影响反射振幅随炮检距变化的最主要因素是介质的泊松比,其次是速度。因此,AVO响应实际是地层泊松比异常的反映。通常,煤的泊松比值为~,含气砂岩的泊松比值可降到。因此,可以根据CDP道集记录中的振幅随偏移距的变化关系来勘探气层。图6是方位AVO分析示意图,图6(a)是宏面元方位划分方法,图6(b)是宏面元方位AVO曲线。

图6 方位AVO分析示意图

由于AVO曲线可以下式进行近似:

AP(θ)=P+G*sin(θ)

因此,对每个宏面元的每个方位AVO曲线用上式进行拟合,即可以得到每个方位的 P 属性值和G属性值。同样,可将每个宏面元内每个方位的 P 值和G值进行椭圆拟合,计算出方位各向异性(图7)。

图7 P波属性的方位各向异性

方位各向异性技术

含裂隙裂缝介质的性质可以用各向异性介质理论进行解释,而传统的地震理论仅研究各向同性介质。

目前,国内外学者通过大量的正演计算证明了反射P波在裂隙性地层中表现为方向各项异性。主要表现在叠前P波数据的振幅、速度和旅行时差随炮检距或方位角的变化。研究结果表明,反射P波对裂缝性地层所表现出的方位各向异性特征很敏感,所有的P波属性分布函数均为椭圆,如图7所示。图8中显示的是某区4号宏面元的方位CDP道集。图8中将宏面元按等方位地划分为18个区,每个方位的道集依次排列,红色箭头的位置为目的层。从图8中可以发现宏面元的每个方位道集的振幅强弱是不同的,将它们提取并做椭圆拟合,将椭圆的长轴方向作为裂隙的主方向。这样就可以得到裂隙裂缝分布示意图,如图9所示。在图9中箭头方向表示裂隙裂缝的方向,箭头长度表示裂缝的密度,箭头越长表示裂隙裂缝越发育。另外,也可以通过对宏面元的各方位CDP道集做速度分析,得到层速度随方位的变化关系,同样也可以拟合出裂隙裂缝分布示意图。

图8 某区4号宏面元的方位CDP道集

图9 利用P波属性得到的裂隙裂缝分布示意图

把上述观点进行延伸,研究多个地震属性随入射角变化的规律,利用地震属性参数随方位角变化的特征提取裂隙属性,从而确定岩溶裂隙带的空间分布,这种技术称方位各向异性技术。

煤层厚度非线性反演技术

传统的煤层厚度计算是利用钻孔资料的对比、内插获得的。然而在任何勘探区内,钻孔的数目是有限的,所以其计算的煤厚值可信度很低。因此,国内外许多学者试图从连续观测的地震资料,特别是从数据密度很大的三维地震资料中获取煤层厚度信息。

人们提出了多种煤层厚度的定量解释方法,从理论上讨论了煤层反射波的形成机制,研究了它的地震特征(包括波形、振幅与频率)随煤层厚度的变化规律,为利用煤层反射波的地震属性参数进行煤层厚度预测提供了理论依据。但是,这些方法基本上只利用了一类地震属性参数,具有一定的局限性,它们都要求煤层厚度在一定范围内与煤层反射波属性参数呈线性变化关系,即它们都属于煤层厚度线性反演方法。然而,煤层反射波属性参数与煤层厚度是一种非线性关系。因此,迫切需要建立煤层厚度的非线性反演方法。

煤层厚度非线性反演技术属于统计分析方法,即利用某些地震属性参数与薄层厚度的统计关系来预测构造煤层的厚度变化。首先利用谱分解技术对地震剖面进行分解得到窄带频率剖面,然后从低频剖面中提取有关地震属性参数,最后利用人工神经网络对地震属性参数进行煤层厚度反演。

基于MAPGIS的多源信息预测技术

由于瓦斯富集与裂隙发育程度、煤层厚度、断层及其他构造分布、煤层埋藏深度、煤层的倾角与露头位置、煤化程度等因素有关。因此,要对煤层瓦斯富集带进行准确预测就必须将上述因素都要充分考虑。可以发现,提取了上述几种因素的有关属性后,上述因素的属性数据量将相当大,相互关系将相当复杂。为了有效、合理地利用上述因素的各种属性,选择了GI S作为平台,将各种属性和空间数据相融合,生成各种专题图件,最终确立合理的多源信息融合方法。在此基础上,建立服务于煤矿生产的瓦斯富集带预测模型。图10显示的是多源信息融合方法和综合分析过程。

图10 多源信息融合方法和综合分析

4 结论

煤层气地震勘探的总体目标是:将地球物理技术、基础地质勘探手段、数学地质分析手段与地理信息系统技术进行有机结合,应用于煤层气(瓦斯)富集带的预测与评价。

煤层气地震勘探的技术特点是:

(1)将双相介质理论和各向异性介质中弹性波传播理论与煤田地震资料的特点相结合;

(2)利用地震属性技术、地震反演技术、方位AVO技术、方位各向异性技术,提取地震P波对裂缝性地层所表现出的方位各向异性特征,并从地震属性参数随方位角变化的特征中提取煤层和围岩的裂隙属性;

(3)利用煤层厚度非线性反演技术获取构造煤的厚度信息;

(4)利用GIS作为平台,把煤层和围岩的裂隙属性、煤层厚度、断层及其他构造分布、煤层埋藏深度、煤层的倾角与露头位置等多源信息进行融合和综合分析后,建立煤层气(瓦斯)富集带预测模型,为煤层气的开发提供科学的地质依据。

参考文献

[1]张子敏,张玉贵.2005.瓦斯地质规律与瓦斯预测,北京:煤炭工业出版杜,4~54

[2]董敏煜.2002.多波多分量地震勘探,北京:石油工业出版杜,31~53

[3]曲寿利,季玉新,王鑫.2003.泥岩裂缝油气藏地震检测方法,北京:石油工业出版杜

[4]杨双安.2006.双相介质中三维地震勘探技术预测瓦斯的研究.中国矿业大学博士论文

[5]王晓波.1997.地理信息系统在南屯煤矿瓦斯分布规律研究中的应用.中国矿业大学硕士论文

[6]Christopher Juhlin,Roger of thin layers for amplitude variation with offset(AVO)studies,Geophysics,58(8):1200~1204

[7]Antonio et AVO analysis and modeling applied to fracture detection in coalbed methane reservoirs,Geophysics,62(6):1683~1695

[8]Perez MA,Gibson R L,Toks of fracture orientation using azimuthal variation of P-wave AVO response,Geophysics,64(4):1253~1265

[9] and detection in a carbonate reservoir using a variety of seismic methods,Geophysics,64(4):1266~1276

[10]Willian L production application of 3-D amplitude variation with offset:The lessons learened,Geophysics,67(2):379~389

地质勘探论文

工程地质是一门认知工程-地质相互作用规律和过程的科学,它的使命是保障人类工程活动的安全。下面是我为大家整理的工程地质论文,供大家参考。

工程地质论文 范文 一:隧道工程地质雷达检测分析

【摘要】通过实际工程应用,介绍地质雷达的特点、原理和探测解析 方法 ;在隧道工程的超前地质探测预报以及隧道结构检测的应用中,证明了地质雷达的实用性、先进性及其实际应用中的重要作用。

【关键词】公路隧道;地质雷达;检测;超前预报;应用

1、工程概况

小北山二号隧道为长隧道,按左、右线分离布设。左线隧道起讫里程ZK19+571~ZK21+091,长1520m,揭阳端洞口采用削竹式,洞口设计标高,惠来端洞门采用削竹式,洞口设计标高,坡高~,隧道最大埋深约209m。右线隧道起讫里程ZK19+599~ZK21+081,长1482m,揭阳端洞口采用削竹式,洞口设计标高,惠来端洞门采用削竹式,洞口设计标高,坡度~,隧道最大埋深约212m。隧道位于丘陵地区,山体地形陡峭,山体植被较发育,山体发育花岗岩孤石,大小不一。隧址区基底主要为燕山期花岗岩,局部见辉绿岩岩脉,覆盖层由粘土、全~强风岩组成,基岩由中~微风化岩组成。隧址区地下水类型主要为 潜水 ,含水层主要为第四系松散层的孔隙及中~微风化岩的风化裂隙。

2、地质雷达的发展及其应用

随着社会的高速发展,有很多的方便加上很多的仪器可以在岩土勘察中使用,重要的方法有弹性波法及其电磁波法。在实际工程当中经常使用的电磁波法就是地质雷达,隧道地震探测仪比较适合远距离宏观的地质问题探测;并且地质雷达方法可以结合高频电磁波而进行非常快的无损伤探测,因此频段非常高的话可以在隧道结构当中进行检测。公路的隧道工程埋深、规模以及数量随着时间的增加而不断地变多,而在施工的过程当中也遇到了很多复杂的工程地质条件。虽然说在设计以前都作了非常详细地质勘察,但是在隧道实际的开挖施工当中,还会有非常多的问题发生的。从这些方面就可以很好地说明,在隧道施工过程当中的围岩稳定性状况以及一些掌子面前方的实际情况,并且做出及时地超前预报。当隧道发生一些事故或者竣工以后,应该结合现行的规范上面要求以及隧道本身的结构特性,不但应该在隧道的表面进行观测以及净空断面进行测量,需要的时候还应该采用地质雷达进行一些更深入的检测,例如围岩的密实完整稳定的情况、钢拱架的分布情况、有无离析以及蜂窝麻面、衬砌混凝土的均匀一致性以及相对应的完整性以及衬砌有效厚度等等。经过实际的情况可以证明,地质雷达技术可以在隧道的施工当中作出非常详细的超前地质预报。现在,地质雷达检测技术已经发展到了单点探测以及连续探测的实时自动成图。而国外的国家探地雷达基本上是单脉冲雷达,其工作的频率在50到2G赫兹,最为代表性的国家是美国和加拿大。我们国家所生产的一系列地质雷达,结合地下工程的超前预报的特点,采用的是脉冲调制式,这个的探测距离非常大,而且分辨率也非常高,其工作的频率大约在160到220兆赫兹,其探测的距离可以达到40到60米,可以很好地适应超前地质预报以及部分的工程检测。

3、探测的原理以及方法

结合设计的图纸以及设计的任务书按照规定进行开展地质超前预报的工作,其预测应该是沿着隧道纵向三十米的范围以内对一些不安全的地质问题进行检查,对前面的地层岩性变化以及水文地质特征(软弱岩层的分布、断层发育及其影响带、水的赋存情况等)进行探测,对隧道围岩的级别进行分析,并列出一些施工的建议,确保隧道施工的安全,减少一些不必要的损失,为动态的设计提供所需要的地质参数,从而可以更好地为隧道施工进行服务。本次的地质预报使用的是地质雷达系统,运用了空气耦合型100兆赫兹的天线,结合探测的前方岩石的特点以及现场施工的条件,对距离30米左右进行详细地探测。而这次预报的工作面位于ZK19+735里处的地方,使用一些点测的方式,使用一系列的方法对工作面的正前方进行详细地预测。

4、数据的处理以及得出来的结果

对实际测量出来的资料用一系列的软件进行处理分析,再结合现场的岩性所具体的实际情况,选择一个比较适合的相对介电常数,进而得出来一些成果,在成果的解释当中,开始的时候,假如发现了有非常明显的反相位反射波组出现的话,就应该岩性变坏的一个表现;假如发现了有非常明显的正相位强波反射波组出现的话,就应该是岩层岩性变好的一个表现,结合反射波反射强度的实际大小就可以区分反射界面前方介质的一系列的特征。依据雷达数据处理结果并结合地质资料分析得出以下预报结果:(1)掌子面为强风化花岗岩,上方自稳能力差,中部伴随严重掉块,局部潮湿明显,推断围岩级别为Ⅴ级。(2)掌子面右侧前方4~10m(ZK19+739~ZK19+745)区域反射信号强烈,同相轴紊乱,推测此区域与掌子面情况类似,有明显破碎带,围岩完整性差,推断围岩级别为Ⅴ级。(3)掌子面前方10~15m(ZK19+745~ZK19+750)区域反射信号衰退稳定,同相轴平稳但仍存在断开处,推测此区域岩性略微好转,但依旧破碎且含水,推断围岩级别为IV级。(4)掌子面前方15~30m(ZK19+750~ZK19+765)区域信号较弱,加大增益后发现同相轴较为连续,推测此区域岩性好转,级别应为IV级。依据结果给出的建议:(1)ZK19+735掌子面围岩为强风化花岗岩,自稳能力差,局部潮湿明显,中部掉块严重,应严格控制进尺,加强支护,预防坍塌。(2)掌子面前方10m区域围岩与掌子面情况相似,稳定性差,破碎带明显,容易坍塌。严格控制进尺,及时做好初期支护工作并保证强度,防止掉块与坍塌,同时做好排水工作。(3)掌子面前方20m区域后,岩性有所好转。建议采用上下台阶方法,并严格控制进尺,及时做好初期支护工作并保证强度,防止掉块与坍塌,同时做好排水工作。

5、结束语

地质雷达在隧道工程施工或者是后期的运营过程当中,可以很好地对工程的质量进行详细地检测,可以更严格地控制工程的质量,更好地检查工程的缺陷。假如说天线的频率特性以及工作的方法有一定的影响,而地质雷达在对介质参数的探测当中,还存在很多的争议,那么经过不断地完善以及发展,地质雷达在隧道工程检测当中一定有一个非常重要的角色。综上所述,应用地质雷达在地质超前预报当中可以精准地探测预报隧道施工当中危害的工程施工安全的相关地质灾害。而地质雷达可以探测出来隧道的结构中重要的施工缺陷,可以为有问题的隧道提供一些非常可靠的依据,这样就可以提高工作的效率,并且节省一些资金。

工程地质论文范文二:福仁山隧道工程地质研究

【摘要】福仁山隧道是中国水电十四局承建的西成铁路西安至江油段(陕西境内)站前工程XCZQ-5标段的一座典型隧道工程。该隧道地处秦岭南麓低中山区,位于商丹断裂带和勉略-巴山弧形断裂构造带夹持的南秦岭构造带,内部组成与构造变形十分复杂,工程地质现象较为特殊,具有一定的研究意义。

【关键词】福仁山隧道;工程地质特征;地质构造

1福仁山隧道工程概述

目前在建的西成客运专线按国铁Ⅰ级、双线建设,设计时速250公里每小时,功能以客运为主,从西安出发,穿越秦岭经陕西汉中、翻越米仓山进入四川境内,经四川广元至江油与绵成乐客运专线相接直抵成都,预计线路通车后,将大大缩短西安到成都的直线距离。从西安到汉中仅需1小时、到成都需3小时。该项目由西安至四川江油段和成绵乐城际铁路两段组成,全长660公里,项目投资估算总额约为688亿元。西成客专陕西段全长公里,建设工期5年。中国水电十四局负责西成铁路西安至江油段(陕西境内)站前工程XCZQ-5标段,正线全长。该标段主要包括:罗曲隧道进出口路基工程,隧道工程4座(包括部分得利隧道6330m、福仁山隧道、罗曲隧道、范家咀隧道)总长度,桥梁3座(金水河特大桥、酉水河大桥、金龙河大桥)总长度。福仁山隧道地处秦岭南麓低中山区,隧道范围平均海拔1200m,最高海拔为,洞身地表起伏较大,地表自然坡度为30°~40°,分布有众多基岩“V”形侵蚀谷,多为南北展布,隧道区域山高坡陡,基岩裸露,沟壑纵横,地形复杂,植被茂密。隧道起讫里程为DK159+。进口位于金水河牛角坝,出口位于酉水河宋家堰,最大埋深929m,最小埋深46m,洞身均位于直线以上,隧道以3‰上坡进洞至DK162+900后以8‰下坡出洞。进口位于金水河右岸坡地上,隧道中含有一座斜井,为本标段重点控制隧道。本隧道建筑限界采用《高速铁路设计规范》(TB10621—2009)中规定的限界尺寸,隧道内采用“通隧(2008)0201”中的衬砌内轮廓,轨面有效面积为92m2,隧道内线间距为.曲线上隧道衬砌内轮廓不加宽,施工针对围岩情况采取短进尺、分部开挖和初期支护,二次衬砌及时跟进,以确保施工安全。

2沿线气候条件

本区域为亚热带湿润季风气候,特点是温暖湿润,四季分明,降水量多集中在夏秋季节,常有暴雨灾害,年平均气温℃,极端最高气温℃,极端最低气温℃,年平均降水量,年平均蒸发量,最大积雪厚度4cm。

3工程地质特征

地层岩性

隧道通过的地层主要有第四系全新统(Q4),志留系下统(S1),元古界中上统(Pt2-3)及太古界(Ar)的构造岩类。(1)第四系全新统(Q4)主要包括:膨胀土(Q4d19)、卵石土(Q4d17)、碎石土(Q4d17、p17)、块石土(Q4d18),多为灰黄色,粒径小于或等于2-60mm的约占10%,大于60-100mm的约占25%,大于200mm的约占55%。(2)志留系下统(S1):片岩夹大理岩(S1Sc+Mb),大理岩(S1Mb)、片岩(S1Sc)、主要为灰黄青灰色变晶结构,片状块状构造。(3)元古界中上统(Pt2-3):变粒岩夹大理岩(Pt2-3Gr+Mb),大理岩夹片麻岩(Pt2-3Mb+Mb)。多为灰褐色,浅灰色,风化厚度约为1-10mm。(4)太古界(Ar):片麻岩夹大理岩(Pt2-3Gr+Mb),灰褐色,浅灰色粒状变晶结构,块状结构,风化厚度2-8mm。(5)构造岩类主要包括:碎裂岩,多为青灰色、灰褐色,宽度约20-65m,工程地质较差。

地质构造

福仁山隧道位于商丹断裂带和勉略-巴山弧形断裂构造带夹持的南秦岭构造带,相当于秦岭造山带的蜂腰部位,隧道主体位于佛坪窟窿的南半部,历经多次地质构造活动的影响,其内部组成与构造变形十分复杂。目前已经发现的主要断层包括:f66、f67、f68、f69、f70、f70-1、f71、f71-1、f71-2,其中f66为逆断层,产状N65°-N80°W(65°-N75°),破碎带宽约为10-30m,断层带物质成分为碎裂岩,局部夹断层角砾岩,断裂带内部岩体较为破碎,隧道洞身通过地段为DK159+856~DK159+。f67为逆断层,产状N60°-N80°W(50°-N65°),断裂带宽30~40m,内部成分为断层角砾,洞身通过地段为DK160+281~DK160+318。另外,隧道段还发育两处背斜及一处向斜,背斜核部洞身中心里程为DK165+543~DK169+062,岩体破碎,节理发育,向斜核部未穿过洞身,富水,岩体破碎,节理发育,由于隧道区各地质体的发育时代,构造运动强烈,区域性大断裂贯穿东西,发育数条低序次断裂,岩石节理裂隙较发育,分布较多节理密节带,岩体较破碎-较完整。

不良地质及特殊岩土

(1)隧道范围内不良地质为隧道进口处左侧分布的大理岩岩溶,岩溶现象主要发育在隧道进口左侧金水河右岸的大理岩中,以溶洞形式发育,溶洞直径约1-3m,可见延伸深度大于10m,不完全填充,充填物为角砾及杂砂土。(2)隧道范围内的特殊岩土为膨胀土,具弱-中等膨胀性。

4工程设计情况

针对福仁山隧道地层岩性多样、地质构造复杂、不良地质现象多发的工程地质特点,施工单位在详细的实地勘察和室内研究的基础上,制定了较为科学合理的设计方案:(1)洞口工程采用斜切式洞门,并设置明洞段,出口采用倒斜切式洞口边仰坡设置截水天沟,边坡采用锚网喷支护。(2)洞身工程隧道内部采用“通隧(2008)0201”中的衬砌内轮廓,轨面有效面积为92m2,隧道采用复合式衬砌,初期支护采用喷锚支护设置喷混凝土,锚杆,钢筋网,钢架,二次衬砌等,各衬砌类型预留变形量,特殊地形地质地段对支护 措施 采用管棚,小导管等措施进行了加强。

参考文献:

[1]王毅才.隧道工程[M].北京:人民交通出版社,2013.

[2]兰州铁道学院.隧道工程[M].北京:人民铁道出版社,1977.

[3]张咸恭.工程地质学[M].北京.地质出版社,1983.

[4]高速铁路设计规范(TB10621—2009)[S].2009.

工程地质论文相关 文章 :

1. 工程地质勘探中的钻探技术应用论文

2. 地理地质论文

3. 环境工程地质在城市规划中的作用分析

4. 地质矿产经济发展论文

5. 探析煤矿地质测绘重点及地质因素研究论文

6. 探究当代水工环地质现状及发展趋势论文

[中图分类号] [文献码] B [ 文章 编号] 1000-405X(2013)-7-229-2 中国地质调查局是我国目前唯一组织公益性地质钻探技术研究开发和推广应用的单位,自1999年成立以来,在组织地质钻探技术研究开发和推广应用方面开展了大量工作并做出了显著的成绩,对我国地质钻探技术的发展起到了较好的推动作用。面对地质工作大发展的新形势和实现地质工作现代化目标的要求,地质钻探技术如何发展,如何更好地起到对地质工作的支撑作用,笔者对这些问题有些不成熟的想法,在此发表,希望能抛砖引玉,与大家共同探讨地质钻探技术的发展问题。 1地质工作对钻探技术的需求 目前我国矿产资源紧缺,资源问题成为制约国家建设和国民经济发展的瓶颈问题,引起了国家政府和领导的高度重视。在国务院关于加强地质工作的决定提出的地质工作主要任务中,突出能源矿产勘查和加强非能源重要矿产勘查是两项首要任务。国家为此投入了大量经费,除了正在实施的国土资源大调查专项基金之外,又启动了危机矿山接替资源找矿专项基金和地质勘查基金。此外,地方、甚至个人也在找矿方面表现出很大的热情,并进行积极的投资。近年来,随着地质工作的加强,地质钻探工作量成倍增长,一些省区的年钻探工作量达到了几十万米。钻探工作项目资金来源有国土资源大调查、矿产资源补偿费、中央财政补贴、省资源补偿费、地方财政补贴、市场项目等。钻探工作量加大,使得对钻探设备和技术的需求同时加大。 2地质钻探技术应用现状 与世界先进的钻探技术相比,目前我国地质勘探工作中采用的钻探技术总体水平比较落后。钻探施工主要采用立轴式岩心钻机,基本上是20世纪80年代左右的设计。现代的全液压动力头钻机依靠进口,我国自己研制的产品已经开始出现,但还未得到大面积推广应用,而且现在只有个别钻深能力(1000m)的钻机,还未形成系列。钻探工艺方面,一些先进的钻进工艺方法还没有得到推广应用。金刚石绳索取心钻进方法虽得到了较多的应用,但还未能大面积普及。液动锤钻进(液动冲击回转钻进)方法的优点虽然为人们所认识,但由于该方法在恶劣的泥浆条件下使用时,钻具可靠性和寿命方面存在着一些问题以及这些年钻探现场管理水平的下降,使其在地质钻探中的应用较以前更少。一些具有较好前景的先进的钻进工艺方法,如绳索取心液动锤钻进方法和不提钻换钻头方法虽然都已研制成功,但实际应用很少。空气反循环取样钻进方法尽管具有高效率、低成本的特点,但由于没有得到地质人员的认可,至今未能得到推广。除此之外,目前地质钻探施工中所用的钻孔护壁堵漏技术、测斜技术等,基本上也是20世纪80年代左右的水平。由于采用的钻探技术水平不高,地质勘探中钻探工作的效率和效果不太理想,表现在台月效率较低、复杂地层钻进问题多、深孔钻进能力差、钻进成本高。这些问题的存在,使得钻探技术对地质工作的技术支撑效果受到影响。 3地质钻探技术发展目标 笔者认为,考虑地质钻探技术发展目标时应该分阶段,应该分成近期、中长期和远期。划分原则是:至2010年为近期,至2020年为中长期,至2050年为远期。 远期(至2050年)目标 实现地质钻探技术的现代化应该是钻探技术发展的远期目标。在国务院关于加强地质工作的决定和国务院温家宝就贯彻决定所作的重要批示中,都明确地提出了要实现地质工作现代化。关于地质工作现代化的定义,目前尚无统一的说法。笔者的理解是:地质工作现代化的标志应该是,在地质工作中普遍采用具有现代世界先进水平的地质勘查技术。钻探技术是地质勘查技术的种类之一,地质钻探技术的现代化也应该符合此项标准。然而,此项目标的实现是一项长期和艰巨的任务,因为只有国家的整体工业技术水平达到了世界先进水平后,我国的地质钻探技术才有可能从总体上达到世界先进水平,地质钻探技术现代化与国家的现代化应该是基本同步的。邓小平同志在介绍中国实现现代化的三步走战略时,明确提出到2050年中国基本实现现代化,达到世界中等发达国家的水平。1999年10月22日,时任国家主席江泽民在英国剑桥大学发表演讲时向公众宣布:我们的目标是,到下世纪中叶,即中华人民共和国成立一百周年时,基本实现现代化。由此看来,我国地质钻探技术现代化实现的时间应该是21世纪中叶。 中长期(至2020)年目标 地质钻探技术发展的中长期(至2020年)目标应该是:自主创新能力显著增强,地质钻探技术水平显著提高,自主研发的新型钻探设备和先进钻进工艺方法得到较大面积的推广应用,钻探装备与施工技术总体上接近发达国家水平。 近期(至2010年)目标 地质钻探技术发展的近期(至2010年)目标应该是:初步完成2000m深度以内的新一代地质岩心钻探设备系列研制;改进完善一批先进的钻进工艺方法,使之达到推广应用的水平;取得一批深孔钻探、复杂地层钻探和高精度定向钻探技术研究成果;研发成功现代的深水井和煤层气井钻探用全液压动力头钻机;地质钻探科技成果转化和推广取得较显著的成效。 4地质钻探技术近期研发工作重点 中国地质调查局近期组织开展的地质钻探技术研发工作基本上是按照上述的近期目标的思路安排的,重点研究内容如下: (1)2000m深度以内的新一代地质岩心钻探设备系列;(2)满足覆盖区化探和异常查证需求、适应复杂地层条件的轻便、高效、多功能取样钻机及其配套的钻进工艺方法和器具;(3)1000m全液压动力头水井和煤层气井钻机及其配套的钻进工艺方法和器具;(4)改进完善一批先进的钻进工艺方法,包括冲击回转钻进方法、绳索取心冲击回转钻进方法、不提钻换钻头方法和深孔绳索取心方法;(5)解决复杂地层钻进技术难题,包括复杂地层钻孔护壁堵漏技术问题、复杂地层取心技术问题等;(6)高精度定向钻探技术,包括提高钻孔测量精度和定向钻进施工中靶精度的技术以及取心定向钻进技术;(7)万米科学超深孔钻探技术方案预研究。除了研究与开发工作以外,钻探新方法、新技术推广应用也是中国地质调查局钻探技术管理工作的重点之一,拟开展以下一些工作: ①新型岩心钻探机具应用培训;②地质调查浅层取样钻技术应用培训;③地质钻孔测量技术应用培训;④新型地质钻探泥浆体系应用培训;⑤节水钻进技术应用培训;⑥空气反循环取心钻进技术培训和应用示范;⑦车载式浅层取样钻机应用示范。 5几个值得强调的问题 加强技术创新 技术创新的核心内容是科学技术的发明和创造,其直接结果是推动科学技术进步,提高社会生产力的发展水平,进而促进社会经济的增长。通过技术创新可实现技术跨越式发展,在短期内获得显著的技术经济效果,使一些常规方法难以解决的问题得到解决。这里举2个钻探技术领域技术创新取得显著成效的实例。第一个实例是科拉超深钻。前苏联的工业技术发达程度比不上西方国家,却钻成了世界上唯一一口深度超万米的钻井——12262m深的科拉超深井。钻万米超深井的难度非常大。这口井之所以能钻进成功,是因为前苏联人在施工这口井时进行了大量的钻探技术创新,其中3项对钻进施工的成败起决定性作用的重大创新是:超前孔裸眼钻进方法;铝合金钻杆;带减速器的涡轮马达井底驱动。第二个实例是中国大陆科学钻探工程科钻一井。该项目是在坚硬的结晶岩中施工5000m连续取心钻孔。这种施工在我国没有先例,在世界上也属高难度钻井工程。该井在施工时采取了一系列的技术创新,涉及套管和钻进施工程序、取心钻进技术、扩孔钻进技术和井斜控制技术,最终获得了高效、优质的施工效果。由于采用螺杆马达-液动锤-金刚石取心钻进方法,使机械钻速提高50%以上,回次长度由3m提高到8~9m,大大节省了施工时间和成本。 加强新方法、新技术推广应用 新方法、新技术从研发出来,到在钻探施工中得到普遍应用,通常需要花很长的时间,做大量的推广应用工作。推广应用工作包括宣传、现场演示、技术培训和技术交流等。这些环节工作效果的好坏,都会直接影响到科技成果转化及其得到实际应用所需的时间,影响地质钻探技术现代化的进程。为获得好的效果,该项工作应有计划、有组织地开展,因为研发单位通常只是从本单位的利益和眼前的利益考虑推广应用工作,而该项目工作的计划和组织实施需要一种全局性和长远的考虑。这些年来,在钻探技术研究与应用的所有环节中,科技成果推广应用是相对比较薄弱的环节,加强此方面工作是当务之急。 参考文献 [1]王达.探矿工程(地质工程)未来20年科技发展战略研究[J].探矿工程(岩土钻掘工程),2004,31(1).看了“地质钻探技术论文”的人还看: 1. 工程地质勘探中的钻探技术应用论文 2. 工程地质勘查论文 3. 工程地质勘察论文 4. 地质毕业论文范文 5. 地质学毕业论文范文

与地震有关论文参考文献

建筑专业论文的参考文献

导语:作中征引过的文献须在文中注明出处,并列于文后参考文献中。是我带来的建筑专业论文的参考文献,欢迎大家阅读参考。

[1]顾晓鲁等.地基与基础(第二版)。

[2].吕斌.海上风电场降低成本前景分析[J].上海电力.2007.(4):429-437

[3]施晓春.徐日庆.俞建霖.筒型基础间接及试验研究.杭州应用工程技术学院学报.(10):39~40

[4]何炎平.谭家华.筒型基础的.发展历史和典型用途.中国海洋平台.(6):10~14

[5]袁晓铭.曹振中.孙锐等.汶川级地震特征初步研究.岩石力学与工程学报.2009

[6]王成华.孙冬梅.横向受荷桩的p-y曲线研究与应用述评.中国港湾建设.

[7]林华国.贾兆宏.张立丽.砂土液化判刑方法研究.岩土工程技术.(2).89~93

[8]李芳.作为海上风机基础的筒型基础土体液化研究.硕士学位论文.天津大学.2010

[9]林峰.黄润秋.边坡稳定性极限平衡条分法的探讨.地质灾害与环境保护.1997.(4).9~13

[10]沈玉光.海上风电筒型基础风机结构体系动力响应分析.硕士学位论文.天津大学.2012

[11]陈有顺.场地的地震效应及砂土地基的液化.高原地震.(1).35~39

[12]任金刚.王玉芳.饱和砂土地震液化研究方法概述.海河水利.2006(3):51~53

[13]李敬梅.地震作用下坝基土体液化的判别及有限元分析.硕士学位论文.天津大学.2004

[14]王大伟.赵艳.初始地应力场分析方法探讨.水电站设计.(4).38~41

[1]高珊珊.基于三维激光扫描仪的点云配准[D].南京:南京理工大学,2008

[2]李宝瑞.地面三维激光扫描技术在古建筑测绘中的应用研究[D].西安:长安大学,2012

[3]刘洋.基于编码结构光的三维扫描仪原型系统研发[D].杭州:浙江大学,2005

[4]杨永.古建筑数字化保护关键技术研究[D].开封:河南大学,2010

[5]林源.古建筑测绘学[M].北京:中国建筑工业出版社,2003

[6]王其亨.古建筑测绘[M].北京:中国建筑工业出版社,2006

[7]沙黛诺.古建筑测绘方法和技术的适用性和可靠性[D].天津:天津大学,2009

[8]毛方儒,王磊.三维激光扫描测量技术[J].宇航计测技术,2005,25(2):1-6

[9]代世威.地面三维激光点云数据质量分析与评价[D].西安:长安大学,2013

[10]刘涛.三维激光扫描技术及其误差分析[J].工业工程与技术,2014,(1):40-43

[11]李刚.基于逆向工程的自由曲面重构技术研究[D].济南:山东大学,2009

地震既然是巨大能量释放,那么就存在释放能量的物质,这个物质到底是什么?天然地震的动力,源于地球自身的核能郭德胜 佳木斯大学数学系伊春市汤旺河党校摘要:根据方法论,研究地壳的运动和形变,必须从物质的物理角度和化学角度进行全面的分析总结。物体自身发生形变,产生动力的主要途径是物理变化、化学变化及和核裂变,物体的动能与势能导致物体形变或移动,物质发生化学变化,形成化学能,导致物体形变或移动。而动能、势能、化学能、核能是物质自身形成动力的绝对因素。根据多年的细致的研究发现,地球内部即存在物理变化,又存在化学变化,在地球内部的物质化学变化中,各种物质之间相互转化,形成新的无机物、有机物,单质及核能,而这些物质都具有能量释放的特性,形成动力。对照地下能量物质与地震产生的位置,可以得出,地震发生的位置与核物质存在的位置有着非常密切的关系,再结合大量事实及文献,根据地震与能量物质的一系列复杂关系,循序渐进的逻辑分析、推导,推论出这样一个事实,天然地震的动力,来源于地球内的核能。关键词:铀;铀矿;钚;锎;氡;裂变;聚变;衰变;半衰期;中子;地震;天然核反应堆.前言:受人类活动的影响,全球气候发生了快速的变化,各种自然灾害频繁发生,气候恶化加剧,对人类的生存造成极大的威胁与不适应,如何解决这一问题,已经成为全球地学科学家与学者当务之急。自古以来,科学研究者对地震研究一直纠结于地震的“动力”问题,运用“板块理论”进行了无数次的研究,最终没有得出科学的结论,为什么会出现这样的情况呢?方法论给出了解释,研究地质形变,必须要针对物理变化、化学变化所产生的动力入手,对地震等自然灾害形成的动力进行分析、判别,只有找到地质灾害的动力根源,一切地质灾害问题就将迎刃而解。通过大量的历史资料与文献,结合自己多年的认识和总结,按照方法论、以及正确的逻辑思维分析、判断,在长时间的细致研究与总结中,对地质灾害的动力根源有了全面的了解和更深刻的认识,运用正确的思维逻辑,结合文献对地震等地质灾害问题加以全面的剖析和严谨的论述。一,地壳发生形变分析物体发生形变,不外乎物理变化、化学变化所形成的动能、势能、化学能以及核能所形成的动力,地壳发生形变,是地球外部因素与内部的动能、势能、化学能、核能导致的结果,在地球外部,存在风能、光能、水能,山体势能,在地球内部,存在着煤、石油、天然气,核物质等能量物质,而这些物质都隐含巨大的可释放能量,在一定条件和长时间的转化过程里,就会发生能量的释放。火山爆发、地震现象,这是一种能量释放,造成地壳出现抖动,由于地下本身就存在了各种可燃的能量物质以及核物质,那么,火山爆发、地震的“动力”一定来自地球内部。由此,我们要对地球内部的地质结构以及地球内部各种能量物质进行研究分析,找到使地壳发生形变的根源。二,地震、地下能量物质存在的位置分析根据“盆地、冲积平原,对成煤、成矿起了决定作用”这篇文章,得出这样的结论是,盆地、冲击平原地带会形成煤和天然气,而成煤地带,又是地震发生过的地带。比如山西,历史发生了无数次大地震,而山西是又是产煤的大省,地震、煤矿、天然气有着密不可分的关系。再根据,铀矿与天然气伴生等大量的史料文献,让我们清楚了这样一个事实,铀矿与天然气共存,也存在于盆地及冲击平原内及其盆山边缘,那么,在盆地、冲击平原及其周围就存在这样一个事实。煤、天然气、石油、铀矿、地震在一个以盆地、冲击平原这样地貌的的特殊位置上。在盆地、冲击平原这个特殊位置上,让我们发现了无数的煤矿,天然气矿,油矿、铀矿,而这些物质都是地球上最重要的可以释放能量的物质,在这样特殊的地理位置,又时时的发生着地震,地震与这些能量物质,就存在了千丝万缕的复杂关系。[]三, 地下所有能量物质能否在地下释放能量对于埋藏地下的能量物质,我门所知道的主要是,煤、石油、天然气、瓦斯、核物质。这些储存地下的能量物质能否进行能量的释放呢?按照煤、石油、天然气瓦斯的燃烧、爆炸性质,他们燃烧、爆炸需要氧气条件及明火,氧气的多少决定了能量释放的多少,矿井常常因瓦斯爆炸引发地震,这是井下瓦斯浓度与充足的氧气存在了爆炸的条件。在地下,如果煤、天然气、石油这些矿出现完全的能量释放,那么,就必须存在有足够的氧气。但事实证明,地下的氧气不足以释放这些能量的物质,但现在,大量的事实,以及无数的相关文献证明,地下存在与天然气伴生的铀矿[],铀是核物质,铀矿是运用到各个领域的基础燃料,而且释放的能量巨大。而对于核物质来讲,不需要任何条件,只需要一个“中子”撞击,就能将核物质的能量释放出来。 [9]四,分析地地球内部所存在核物质的特性现在所发现的地下核物质是铀矿,铀的原子序数为92的元素,在自然界中存在三种同位素铀234、铀235和铀238。铀238的半衰期约为45亿年,铀235的半衰期约为7亿年,而铀234的半衰期约为25万年,铀矿石里含有铀234、铀235和铀238。[6]参考关于“铀_钚和铀核裂变产物的若干问题_兼谈2011年福岛核事故泄露的放射性物质”,这篇文章详细的介绍了核物质的衰变、裂变以及产生的高能碎片继续衰变的过程,在铀的三种同位素U234,U235,U238中,铀U235有巨大的能量,1克U235裂变释放的能量相当于吨优质煤所释放的能量,当铀U235在中子、热中子的轰击下,会发生裂变,裂变的途径有60多种,裂变所形成的高能碎片有20多种,主要的高能碎片有锶89(半衰期50天),锶90(半衰期29年),氪(半衰期年),氙半衰期(9个小时),铀233,钡141,等碎片,这些高能碎片,在一定时间内,还会继续发生衰变,裂变,继续释放能量。[6]铀矿中存在钚的痕量,钚的同位素有13种,自然界里有钚244,钚239 ,储量极少,半衰期年限比较长,人造的钚的同位素PU238,PU240,PU234,PU232,PU235,PU236,PU237,PU246等,PU244,半衰期约8千万年,PU239半衰期约万年,PU238半衰期约88年,PU240半衰期约6500年,在研究过程中发现,地球内部还存有着极少量的锎,主要出现在含铀量很高的铀矿中。[]锎的同位素已知的锎同位素共有20个,都是 放射性同位素。其中最稳定的有锎-251( 半衰期为898年)、锎-249(351年)、锎-250(年)及锎-252(年)。其余的同位素半衰期都在一年以下,大部分甚至少于20分钟。锎同位素的 质量数从237到256不等。[]锎-252是个强中子射源,因此其放射性极高,非常危险。锎-252有的概率进行α衰变(损失两颗质子和两颗中子),并形成锔-248,剩余的概率进行自发裂变。一微克(最)的锎-252每秒释放230万颗中子,平均每次自发裂变释放颗中子。其他大部分的锎同位素都以α衰变形成锔的同位素(原子序为96)。可用作高通量的中子源。[] 能够利用的锎的数量非常少,使其应用受到了限制,可是,它作为裂解碎片源,被用于核研究。[]如果含铀量高的铀矿一旦出现锎,锎是强中子源,衰变会释放中子,对于含铀量高的铀矿,就会导致裂变,这如同成熟女人的卵细胞,当遇到精子,就会产生卵细胞分裂。铀即能自发裂变,又可以人工裂变,在裂变过程中产生巨大能量,同时会发光、发热。铀裂变在核电厂最常见,加热后铀原子放出2到4个中子,中子再去撞击其它原子,从而形成链式反应而自发裂变,产生爆炸。[12]五,一个铀矿形成的能量与地震所释放的能量对比分析根据美国地震学家里克特和古登堡提出的“里氏地震”,汶川八级大地震所释放的能量约为10亿吨左右当量的TNT,按照一千克铀裂变释放的能量相当于2万吨TNT所释放的能量,来推导汶川大地震需要多少铀矿石,一般情况,铀在铀矿石里的比例约0.75/100,按照这个标准计算,10亿吨TNT当量需要多少吨铀矿石呢?把10亿吨TNT当量换算成铀裂变能量,经过计算,需要铀5万千克,换算成铀矿石,约0.6667万吨,这就是说,如果有0.6667万吨的铀矿石完全裂变,就会产生10亿吨TNT当量。2012年11月5日,从国土资源部获悉 ,内蒙古发现大型铀矿,储量达到3万吨,如果三万吨铀矿完全裂变,产生的能量相当于45亿吨TNT当量。2016年1月17日 - 1月14日,记者从全区国土资源工作电视电话会议上获悉,内蒙古发现七处大型铀矿床,内蒙古的铀矿如果完全释放,将远远超过45亿TNT当量,由此对比,内蒙古铀矿如果发生完全裂变,所形成的能量远远超过8级地震所释放的能量。[23]六,地震发生的前后,氡气出现明显量的变化氡是一种放射性惰性气体,铀是氡的母体,因此有铀存在的地方就有氡。根据这一说法,如果地表发生了氡气变化,那么地下就可能存在铀及其他核物质,现在常常运用氡出现的变化探测铀矿。另一方面,很多事实表明,在地震后,氡气有了明显变化,在地震后,对龙门山断裂地带检测,氡出现明显的不同,有铀矿的地方会出现氡气,氡气与铀有着直接的关系。[]七,铀矿的衰变、裂变,与地震和余震现象高度吻合根据奥克洛现象,地球内部存在天然的核反应堆,在一定的时间里就会产生核衰变、核裂变,释放能量,铀矿的大小及含量决定了能量释放的大小,一旦出现铀矿出现衰变、裂变,那么就会释放巨大能量,产生地动、地震现象。[]根据天然气与铀矿同存,及盆地、冲积平原,对成煤、成矿起了决定作用,推导出,铀矿与地震所发生的位置完全处于同一位置,[]根据地球内部还存有着极少量的锎,主要出现在含铀量很高的铀矿中。一个铀矿一旦有了锎及锎的同位素存在,那么铀矿发生裂变的时间,被锎所决定,锎及锎的同位素的衰变有900年的,有几十年的,有几十分钟的,而且是核变的中子源。根据铀是氡的母体,铀矿发生裂变,氡就自然脱离母体,氡气自然会发生变化。根据内蒙古地区铀矿的储量,三万吨的铀矿具备了大地震所产生的当量。根据铀发生裂变所产生的高能碎片,还会遇到其他核物质及其同位素的裂变或衰变所释放出的中子继续撞击,再次裂变。锎的同位素很多,而这些同位素衰变时间,从20几分钟到几百年不等。更重要的是释放中子,高能碎片接受中子,会继续裂变,进而形成持续的能量释放,直至核物质能量释放完为止,这和每次大地震后的余震过程高度相似。根据核裂变的特性,地球内部发生铀矿核裂变,采用声波预测是无法实现的。从上面所发现的结果,铀矿与天然气位置,铀矿能量与地震能量地震位置同处于一个位置,地震发生产生的TNT当量与铀矿转化的TNT的当量匹配,地震、余震的过程,与核裂变释放能量的过程极度相似。[]八,对核聚变的思考与分析核聚变的过程也是一种能量释放的过程。核聚变是小质量的两个原子合成一个比较大的原子,核裂变就是一个大质量的原子分裂成两个比较小的原子, 在同等条件下,核聚变所释放的能量远远大于核裂变。在史料和文献中还未有地球内部发生自然核聚变的解释和说明,只是有文献说明,地球内部发现3H的证据,根据现有的资料和文献,对于地球内部是否存在核聚变还没有科学的证实,更因为,核聚变的条件比较苛刻,需要超高的温度,火山爆发会有较高的温度,地球内部核裂变会出现较高的温度,它们所产生的温度能否满足核聚变的条件,在核裂变中是否还存在核聚变,还有待于进一步的科学证实。[]九,地震的消减方法另据报道,澳大利亚近些年很少地震,通过了解,澳大利亚是铀矿产量高的国家,而且很早就对铀矿进行了开采,到现在有80多年的历史,很多铀矿都被找到和开采,铀矿被开采后,奥克洛天然核反应堆现象也就不存在了。澳大利亚近几十年很少地震,与大量开采铀矿是否有关系?就有必要的思考了。[33]地震属于能量的释放,而对于地下的的能量物质来讲,铀矿的能量巨大,而且,铀矿发生能量释放的方式非常简单,释放的条件是,铀矿的含量达到一定程度,存在中子源,就会出现铀裂变,导致能量释放,出现地壳的震动。通过上述的分析,消除地震的最有效手段,就是快速找到铀矿并开采,把这个可以释放能量的核物质从地球内移除,除去地震的隐患,这是非常可行的办法。另一方面,对所存在的铀矿地区,进行铀矿含量鉴定,因为铀矿石达到一定含量,才会形成裂变条件。[]十,海啸的形成海啸也同地震一样,是海洋内出现巨大能量的释放,但根据已有的资料和文献,还无法断定海啸是哪种能量物质发生了释放,科学界对可燃冰这个能量物质特性,还没有较详细的论证,海洋底部是否也存在核物质也没有相关文献和实证,因而,海啸的发生,是什么哪一种能量物质还难以定论。结论通过上述的逻辑分析和推论,如果所采用的文献和数据是科学的,那么,地震将不再是奥秘。自然发生的地震、余震都是铀矿的含量到了一定程度,在含量高的铀矿中,锎及锎的同位素会发生衰变,射出中子而导致铀矿的裂变,释放能量产生巨大的动力,引起地震震动和无数次持续裂变而产生的余震,同时,根据盆地、冲击平原对成煤成矿、地质灾害起了决定作用,及天然气与铀矿同存,这两篇文章,就可以发现以往很难发现的各种矿物质,同时,对地震的减消提供了合理的指导方向,为减免大地震的发生,为人类不再为地震所困找到了病因,这是造福人类,重新认识地球的一次史无前例的突破。

1、硕士论文:《自然灾害防控过程中的人类行为研究》,东北师范大学, 科学技术哲学, 2007,作者:耿东风。2、硕士论文:《自然灾害:人与自然的另类互动》南昌大学 2009 鲁晓燕 3、参考文献:苏桂武 高庆华 自然灾害风险的行为主体特性与时间尺度问题,自然灾害学报 2003, 12(1)4、国家科委全国重大自然灾害综合研究组 中国重大自然灾害及减灾对策(总论) 1994 5、马宗晋.李闽锋 自然灾害评估、灾度和对策 1990 6、聂高众.高建国.马宗晋 中国未来10~15年地震灾害的风险评估

摘 要 本文考虑地震动的随机性,在土石坝随机地震反应分析和有限元边坡稳定分析方法的基础上,建立了随机地震作用下土石坝边坡的稳定性分析方法,并通过对土坝动力模型试验的数值验证及—理想土石坝边坡的动力稳定性分析,证明这种方法是合理的、有效的。关键词 随机地震反应,有限元,边坡稳定分析,土石坝。本文于1998年10月13日收到,系国家自然科学基金资助项目。地震作用下边坡的稳定性问题一直没有得到很好地解决,以往惯用的极限平衡法及拟静力法分析边坡的地震动力稳定性存在着不少缺陷。本文在考虑输入地震动荷载的平稳随机特性进行坝体随机动力反应分析[1、2、3]的基础上,应用有限元边坡稳定分析方法[4、5],分析了边坡的地震动力稳定性。文中对如何考虑随机动应力作了处理,并对其合理性进行了论证。通过对模型坝和高土石坝两个算例的计算分析,可以看出本文的方法还是很成功的。1 分析方法简述 随机地震反应分析 本文将地震过程看作零均值平稳高斯过程。由随机振动理论可知,对于高阻尼体系在平稳运动激励下的初始非平稳响应段很短,可近似忽略,而按平稳响应处理。土工建筑物可以当作高阻尼体系考虑,因此可以按平稳输入平稳响应来进行分析。在随机荷载作用下,决定土层反应的一般二维等价线性方程为(1)其中{JX}、{JY}为水平与竖向荷载指示向量,、为水平与竖向地震加速度输入过程,阻尼阵[ceq]按单元变阻尼法形成。在频域上示解需对一个个的频率离散点分别进行,求解上式时可输入加速度功率谱、在一系列ωj处离散。对第j个离散点,假定系统受幅值为、的虚拟简谐运动激励,这时问题的求解式(1)变为下述确定性线性方程(2)然后用振型分解法降价可迅速求解得到位移反应幅值,此即平稳随机响应的确定性算法,该法计算简便且精度较高[9]。将稳态反应的位移幅值作为结构的静变位,计算出各单元的正应变与剪应变幅值,由平面应变状态下的应力-应变关系(3)即可求得每一单元的动应力幅值,幅值的平方即得功率值。对每一频率离散点进行上述计算即得位移、应力反应的功率谱。在得到动应力反应的功率谱后,通过积分可得反应量的方差;应用直接插值等价线性化法[10],可得等价的动应力平均幅值。同时,从此可求出最大动应力反应的中值(也即平均最大值)[1]。可以证明,按上面计算的稳态反应功率谱已计入了各阶振型互相耦合的影响,结果是比较准确的[9]。 随机地震作用下边坡的稳定性分析 应用有限元边坡稳定分析方法[4,5],取土体的抗剪强度为莫尔-库仑强度准则,那么曲面上任一点土体的抗剪强度为τf=σntgφ+c(4)式中σn为法向应力,φ和c分别是土体的内摩擦角和粘滞力。边坡稳定分析的目的是要在计算区域内找到这样一个曲面(平面问题为一条曲线),沿这个面的抗滑稳定安全系数为最小。用有限元方法计算出坝体区域的应力场,并将平面问题的曲线离散后,问题的求解可以表示为(5)e为离散后曲线上的一个单元。上式可进一步写成(6)式中|J|为雅可比行列式。上式可以用高斯数值积分计算。在静力条件下,一点沿曲线方向的法向应力和切向应力用下式计算(7)式中(8)其中y n'是沿曲线方向的法线斜率。在随机地震作用下,式(7)中的各应力分量应为静应力与随机动应力分量之和。由于动应力是由随机动力反应分析得到的,只能得到动应力的平均幅值与平均最大值的大小,而方向是不确定的,所以不能简单地迭加上随机动应力后进行最危险滑裂面的搜索。如前所述,本文所考虑的边坡稳定分析方法是一种在有限元应力分析基础之上的、假定初始滑裂面、采用虎克 捷夫(Hooke-Jeeves)方法逐点、逐步搜索求解的数学规划方法。为了迭加上随机动应力又不至于增加太多的计算量,在每一计算点考虑3个动应力(σdx、σdy、σdxy)的随机组合,则法向应力和切向应力可表示为(9)其中m=±1,n=±1,l=±1,它们的取值实际上代表了动应力的方向。当m、n、l分别取值时,在每一高斯点形成8种不同的应力组合。由每组算得的σn、τ代入目标函数,取其中对目标函数值贡献最小的应力组合作为此点的计算应力。从数学上讲,用上述方法最终都能搜索得到最危险滑裂面并求得最小安全系数。用于最后计算对目标函数值贡献的是其中最不利组合的一种,那么,此时的动应力方向能否代表实际边坡在地震作用下破坏时真实的动应力方向是一个要考虑的问题。因为这里所考虑的地震作用是随机的,对某一点来说出现这样那样的应力方向是可能的,但以往大量的确定性地震反应分析表明,边坡破坏时沿破坏面的应力分布具有一定规律性,这里考虑地震动的随机性来分析边坡的稳定性也应符合这种规律。在后面对模型坝的计算分析中将进一步对这一问题加以说明。 计算方法 为了分析随机地震作用下土石坝边坡的稳定性,需进行如下计算:(1)用随机地震反应分析方法计算坝体的随机动力反应,求出动应力场的平均幅值及平均最大值。(2)分别考虑随机动应力的平均幅值及平均最大值按前述方法进行搜索求解,分别得到这两种情况下的最小安全系数及最危险滑裂面。(3)为了用数学规划法(Hook-Jeeves搜索法)搜索得到最危险滑裂面,先给定多条初始滑裂面进行搜索,找到各自的最小安全系数及其对应的滑裂面,将各安全系数进行比较,取其中最小的安全系数及其对应的滑裂面为问题的解。2 应用分析方法的合理性应用本文所述的随机地震作用下边坡的稳定性分析方法,可以求得平均意义上的最危险滑裂面及最小安全系数。而计算得到的滑裂面正确与否以及最后确定的动应力是否与实际相符还需要得到验证。由于这里所考虑的是随机动力反应,那么输入的动力过程也应该是随机的激励荷载。较为合理的做法应该是在大量的随机荷载激励下,进行土石坝边坡的破坏试验,然后在统计出的输入荷载数据的基础上,进行坝体的随机动力反应分析及坝坡的稳定性分析,再与统计的试验结果相比较。但由于缺少这方面的试验资料,进行试验又有一定的困难,在目前情况下还难以做到,这里引用了董军在日本东京大学完成的在正弦波激励下模型砂坝破坏试验的研究成果[6],砂坝含水量为,粘聚力c=300Pa,内摩擦角φ=36°,坝的几何尺寸及其破坏曲线示于图2.在输入假定功率谱的情况下,对它进行随机动力反应分析及稳定性分析,以便能得到对随机动力作用下边坡稳定性分析方法合理性的一个印证。为了尽可能与原试验有一定程度的近似,这里按以下两方面的要求选择输入的加速度功率谱:(1)由于原模型坝试验输入的是正弦波激励,只有一个频率分量,故选择输入的功率谱为一窄带过程,且其主振频率为正弦波的频率,即5Hz;(2)所输入加速度功率谱的总功率与输入正弦波的总功率一致。对输入的正弦波过程先进行FFT变换,再进行功率谱积分,即可得到输入正弦波加速度的总功率值,以此作为输入加速度功率谱的总功率值。图1 模型坝试验的输入功率谱曲线符合以上条件的功率谱是不难找到的。这里选取了图1所示的加速度功率谱作为输入,用上述方法进行随机动力反应分析,分别取动应力的平均幅值与平均最大值进行稳定性分析,将试验结果与计算结果示于图2.由图可见,用本文的方法计算出的最危险滑裂面趋势与试验结果是比较一致的。同时,可以看出,不论是用平均幅值还是用平均最大值计算出来的最危险滑裂面位置都比静力状态下的要浅,试验破坏面介于二者之间且更接近用平均幅值计算出来的最危险滑裂面。TFL为试验破坏曲线;SFL为静力状态下最危险滑裂面,K=;DFL为动应力取平均幅值计算出的最危险滑裂面,K=;DML为动应力取平均最大值计算出的最危险滑裂面,K=.图2 模型坝的静动力最危险滑裂面同时,这里将模型坝破坏时的实际主应力分布示于图3,将由搜索所确定的最危险滑裂面上各点的动应力示于表1,主应力沿滑裂面的分布示于图4.可以看出,动应力方向并没有因为考虑随机组合而出现杂乱无章的情况,而是很有规律;接近边坡左表面的主应力分布与实际破坏时情况也相一致。3 随机地震作用下高土石坝边坡的稳定性分析取一堆石坝的坝高为100m,坝顶宽10m,坝体上下游边坡坡比为1∶,堆石坝坝体为均质堆石材料,容重γ=,静力计算时坝体材料的应力-应变关系模型采用修改的邓肯非线性双曲线E—B模型。泊松比μ=,最大动剪切模量Gmax=(K2)max(σ0),其中σ0为平均有效应力,(K2)max=150,动摩擦角φ=42°。表1 模型坝沿最危险滑裂面各点的动应力--------------------------------------------------------------------------------序号 沿滑裂线各点坐标 动应力(平均值)分量 序号 沿滑裂线各点坐标 动应力(平均值)分量--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------X/m Y/m σd/104Pa σdy/104Pa τxy/104Pa X/m Y/m σd/104Pa σdy/104Pa τxy/104Pa--------------------------------------------------------------------------------1 16 17 18 19 20 21 22 23 24 25 26 27 28 29 (基底输入加速度)图3 模型坝破坏时的主应力分布图4 模型坝取平均动应力幅值搜索得到的最危险滑裂面上主应力分布波选用了塔夫脱波的水平向分量、唐山波的水平向分量和竖直分量,而塔夫脱波又按最大加速度的不同考虑了几种情况。随机地震反应分析需要输入加速度功率谱,对于已经记录到的某加速度波形,可以将其看成是一平稳随机地震过程的一个样本的实现,按照Vanmarcke等介绍的寻求等价平稳运动的方法[7],换出与历时曲线相应的等价平稳运动的功率谱,同时也可求得这一平稳运动的持续时间。其功率谱曲线见图5~7.图5 输入塔夫脱波的加速度()功率谱曲线图6 输入水平向唐山波加速度()功率谱曲线由输入加速度功率谱曲线可见,在相同的最大加速度情况下,唐山波的最大谱值明显比塔夫脱的最大谱值小,而频带(约35Hz)明显比塔夫脱波的频带(约10Hz)宽;塔夫脱波在最大加速度不同情况下的频谱特性相同,只是最大加速度大的其谱值也大,图中只表示出了最大加速度为的功率谱曲线。用前述方法进行堆石坝的随机地震反应分析,分别取动应力的平均幅值和平均最大值与静应力迭加进行堆石坝的随机动力稳定性分析,求出相应的最危险滑裂面及相应的抗滑稳定安全系数,见图8~12.同时,为了便于比较,静力状态下的最危险滑裂面及最小安全系数在图8及图12给出。图7 输入竖直向唐山波加速度()功率谱曲线AFL 动应力取平均幅值计算出的最危险滑裂面,K= 动应力取平均最大值计算出的最危险滑裂面,K= 静力状态下计算出的最危险滑裂面,K=图8 输入塔夫脱波加速度为时的滑裂面AFL 动应力取平均幅值计算出的最危险滑裂面,K= 动应力取平均最大值计算出的最危险滑裂面,K=图9 输入塔夫脱波加速度为时的滑裂面AFL 动应力取平均幅值计算出的最危险滑裂面,K= 动应力取平均最大值计算出的最危险滑裂面,K=图10 输入塔夫脱波加速度为时的滑裂面SAFL 唐山波(水平向)动应力取平均幅值计算出的最危险滑裂面,K= SMFL 唐山波(水平向)动应力取平均最大值计算出的最危险滑裂面,K= TAFA 塔夫脱波动应力取平均幅值算出的最危险滑裂面,K= 塔夫脱波动应力取平均最大值计算出的最危险滑裂面,K=图11 输入不同波(加速度均为,唐山波只考虑水平向)滑裂面的比较HAFL 唐山波(水平向)动应力取平均幅值计算出的最危险滑裂面,K= HMFL 唐山波(水平向)动应力取平均最大值计算出的最危险滑裂面,K= VAFA 唐山波(两向)动应力取平均幅值算出的最危险滑裂面,K= VMFL 唐山波(两向)动应力取平均最大值计算出的最危险滑裂面,K= STA 静力状态下计算出的最危险滑裂面,K=图12 输入唐山波的水平向()与输入唐山波两向(水平向,;竖直向,)滑裂面的比较由计算结果可以看到:(1)无论取动应力平均幅值,还是取动应力的平均最大值计算出的最小安全系数比静力状态下的要小,最危险滑裂面较为接近于坝顶及坝坡的表面,这与试验观察得到的结果是一致的[8];只是取动应力的平均幅值计算出的最危险滑裂面与静力状态下的差不多或稍浅,而取动应力的平均最大值计算出的最危险滑裂面位置却较深一些,这在输入加速度较大时更为明显。(2)取动应力平均幅值计算出的最危险滑裂面接近一直线,而取动应力的平均最大值计算出的最危险滑裂面较为接近圆弧。(3)对于输入的同一加速度功率谱,一般来说,取动应力的平均最大值计算出的最危险滑裂面比以动应力平均幅值计算出最危险滑裂面要深一些,在输入地震动强度较大时尤其如此,见图9及图10.对于输入同样频谱特性的塔夫脱波加速度功率谱,其最大加速度越大,计算出的最小安全系数越小,最危险滑裂面相对也越深,见图8~图10.对于输入最大加速度相同的不同地震波,当动应力取平均幅值计算时,功率谱值越大(塔夫脱波),最小安全系数越小,而最危险滑裂面位置相差不大;当动应力取平均最大值计算时,功率谱值越大(塔夫脱波),最危险滑裂面位置也越深,见图11.从图12可以看出,对唐山波而言,只输入水平向地震波与同时输入水平向和竖直向地震波,计算出来的最危险滑裂面及最小安全系数差别甚微。这说明,在一般的计算应用中,只考虑水平向地震波是可行的。4 结语与讨论由前述分析可见,本文所进行的随机地震作用下边坡的稳定分析是合理和有效的。它具有以下特点:(1)随机振动反应得出的是动应力的平均值,它包含了大量历时曲线统计的平均,比单一的历时曲线响应分析得出的结果更具有代表性和普遍性。(2)求出的动应力的平均幅值和平均最大值较为直观,用来分析边坡的稳定性得出的结果也比较直观明了,而不象时程分析那样繁琐。当然,这种直观是在统计平均的意义上的。(3)随机振动反应输入的是功率谱,这实际上是从能量的角度来分析问题。对于类似的动力作用过程,如果对应的功率谱能量是已知的,则可用这种方法作类似的分析。参考文献1 吴再光,韩国城,林皋。随机土动力学概论。大连:大连理工大学出版社,1992..2 吴再光。地基土石坝随机地震反应及动力稳定性的概率分析〔学位论文〕。大连:大连工学院, 刘文廷。土石坝随机地震反应分析〔学位论文〕。大连:大连理工大学, 邵龙潭,韩国城。堆石坝边坡稳定分析的一种方法。大连理工大学学报,1994,34(3).5 邵龙潭,韩国城。水流作用下堆石边坡的稳定分析方法。水利学报,1997,(1).6 JUN DONG. STUDY ON DYNAMIC SLOPE STABILITY OF FILL-TYPE DAM Dissertation submitted for the Degree of Doctor of Engineering at the Graduate School of Civil Engineering University of Vanmarcke E H, Lai S S. Strong Motion Duration and RMS Amplitude of Earthquake. BSSA, 1980,70(4).8 韩国城,孔宪京,李寇。面板堆石坝动力破坏性态及抗震措施试验研究。水利学报,1994,(12).9 林家浩。随机地震响应的确定性算法。地震工程与工程振动,1985,5(1).10 吴再光。土层随机地震反应的一种改进算法。振动工程学报,1990,3(1).http://里面有图的 可以仔细看看

地质勘探钻探专业论文

到万方这类论文数据库找,那里论文多,且质量高。自己懒得去找的话,可以去淘宝的《翰林书店》店铺看看,店主应该能帮你下载到这论文的

摘要:简述雷达的基本原理,介绍了地质雷达在工程质量检测中的应用实例。关键词:地球;地质雷达;水利工程;质量;应用;...必须把地质、钻探、地质雷达这三个方面的资料有机结合起来,建立测区的地质——地球物理模型,才能获得正确的地下地质...

浅谈煤田地质勘探前沿发展趋势摘要:本文根据中国煤炭生产方针、煤田地质特点及世界先进技术发展现状,讨论了中国煤田地质勘探前沿问题,从提高勘探精度,开展动态地质研究等方面加以论述。并且展望了煤田地质勘探技术发展的趋势。关键词:地质勘探勘探技术发展趋势0引言20世纪,煤炭在世界能源中占主要地位,进入21世纪,煤炭在世界一次能源中仍将占主要地位,在我国尤其如此。在我国,1500m左右的煤炭总资源量约4万亿吨,已探明保有储量达1万亿吨。而石油、天然气,由于资源赋存条件与勘探、开发困难等原因,一个时期内难于大幅度增产。但是,随着开放与市场经济发展,煤炭要有竟争力才能在市场上站住脚,经济、安全、高效采煤就成为煤炭工业发展的关键。因此,世界上所有采煤国家都需要继续开展煤田地质勘探工作,而且,煤田勘探技术要迅速发展才能满足生产要求。1我国煤田地质勘探前沿问题从我国煤田地质特点及世界先进技术的发展现状来看,我们可以看出,近年来我国煤田地质勘探前沿问题可概括为以下几个方面。从完善矿井水防治与保水采煤研究方面来看我国东部一些矿井,随着采深增大,突水事故经常出现,突水量也日益增大。由于这些煤田水文地质条件特别复杂,加之采深不断增大,浅部矿井水治理获得的一些认识往往不适应深部矿井水动力条件。因此,我国煤矿水害防治技术的发展趋势是:深入研究矿区深部岩溶水形成与运移特征,深部矿井底板岩溶水突出机理,开发突水预测预报技术;开发适应现代机械化开采的采掘区无水险水害防治技术。从开展动态地质研究方面来看常见的岩煤突出、瓦斯突出、冲击地压、突水、井筒破裂等井下灾害,实际上是一种动力地质现象。这些现象均与岩体应力场有关。主要起因于岩煤采掘后,原有自然条件下各种地质因素之间的平衡遭受破坏,岩体应力再分配,从而引发或诱发出这类灾害性地质现象。通过研究这些现象形成的地质机理,事先测定出采掘阶段岩体应力随时空的动态变化,就有可能预测上述动力地质现象是否会形成,确定并采取消除或减弱这些灾害的措施。从加强环境地质勘查与灾害地质防治方面来看由于矿区在天然条件下以及因开发而使地质体系遭受破坏,从而可能形成一系列环境问题,如耕地破坏、水源污染、沙化,粉尘、一氧化碳、二氧化硫造成的大气污染等以及更具破坏性的灾害地质现象,如地裂、地表塌陷、滑坡乃至诱发地震。由于历史原因及煤矿不断开发,旧帐未清,新帐纷至,所产生的问题相当严重,煤矿环境问题是制约煤炭工业可持续发展的关键因素之一,今后矿区环境评价与治理将成为开发部门重要的工作内容。从提高勘探精度来看连续作业是煤炭工业现代化或采掘机械化和自动化的特点。这要求开发前查明所采煤层的细微变化,如煤层厚度、结构和灰分的局部细小变化。煤层及其顶底板岩石物理力学性质的局部变化等。但是,世界各国的煤炭证实储量及我国的探明储量均只主要说明煤炭的原地埋藏数量,并未充分甚至没有提供满足现代开采技术要求的开采地质信息,为适应现代机械化开采,普遍需要补充勘探。从攻克煤层气开发难关来看近年来许多国家正在把煤层气作为一种能源进行研究,已有20多个国家开展了煤层气研究、勘探和开发活动。在煤层气试验开发中,目前所遇到的问题是:多数井煤层气产率低、衰减快,钻井冲洗液污染煤层,完井后坍塌堵孔,水力压裂效果不明显,裂缝短,所占比例低,完井后采气效果差等。显然,研究我国煤层渗透率低的原因、渗透率变化规律、煤层气富集和高产因素、煤层力学稳定性和破坏规律,开发适于我国低渗率煤层的钻井、完井、采气和增产实用技术,探索我国煤层气开发有利区段的评价选择模式就成为技术攻关的重点。2煤田地质勘探技术发展趋势用发展眼光看,近年来钻探仍将成为获取“第一性”地质资料的重要手段。物探仪器日新月异,性能改进与更新迅速,向高灵敏度、高分辨率、高精确度、遥控、计算机实时控制、处理、数据分析和三维图形显示方向发展;物探方法向多维、多参数测量、多方法组合发展;计算机和信息技术将普及到地质勘探的各个专业、各个作业单元,乃至管理整个勘探系统。近年来,值得注意的煤田地质勘探技术发展趋势如下。开发井下勘探技术根据国内外资料,落差小于5m、长度小于150m的小断层及小型褶曲,近期不可能用地面勘探方法查明。因此,国内外普遍认为,应在采区开采前,在井下开展采区勘探或工作面勘探,其方法包括矿井物探和沿煤层钻进。基于煤层密度比上下围岩小,煤层是一个明显的低速槽,国外在70年代末首先采用槽波地震勘探技术在井下探测煤层构造。近年来,探地雷达技术发展迅速。最近南非开发出一种Rock雷达系统,能定量研究岩体,准确确定断裂带深度、巷道周围裂隙带特征。显然,煤矿井下物探技术将大有作为,是一重要发展方向。发展水平钻进技术20世纪80年代以来,技术先进的采煤国家愈来愈重视采用水平钻进方法沿煤层钻进,并采用与之相配合的随钻测斜技术。水平钻进技术是由受控定向钻进发展而来的。近年来,这种钻进技术发展迅速,不仅能在井下沿煤层钻进,还能在地面沿垂直一圆弧一水平线轨迹进入煤层钻进。地面水平钻进,在煤炭部门是80年代后期才从石油部门引进的。加强综合勘探据有关材料说明,英国煤矿区尽管用三维地震勘探曾解释出小至煤厚落差的断层,但英国深部煤矿公司仍然重视钻孔研究。近年来,他们在已经评价的赋存经济可采储量的井田,按400一500m网度布无心孔,用组合测井方法勘探。他们开发了一种岩层显微扫描仪,通过人机联作能解释几十厘米落差的断层、裂隙、沉积和构造特征,以及应力方向。借助专用软件,用组合测井可确定出岩石类型、岩石强度、孔隙度或渗透率、倾角、孔径、分析水和烃等。据说,通过这一综合勘探方法,“可提供一份详细、实用的构造及应力场图”“,从而使矿山设计切实可行”,可提供最佳施工方向和合理地选定开采方法。这表明,选用合适手段、采用多手段综合勘探,是深部煤矿勘探的发展方向。研究动态地质勘探技术如前所述,危害矿井安全的动力地质现象由采掘活动诱发而形成。它们具有动态特性。因此,预测动力地质现象的形成及其强度,不能简单地只凭反映原始地质条件的静止数据,而应主要分析基于岩煤层应力或其物性随时间变化的动态特征资料。高产高效采煤推进速度快,进行动态勘探,即在采掘期间连续多次勘探采区的应力或物性随时间变化很有必要。加快发展信息技术计算机和信息技术现已在煤田地质勘探各个专业推广应用,发展较快。由于引入了许多高新技术,如并行分布式处理、大容量存储、工作站、多媒体、人工智能和神经网络技术等,目前已能用人机对话方式处理、分析、解释和显示地质勘探数据,一些物探仪器自动化程度高,能在现场作预处理,控制各项操作和质量,选择有关参数。3结语根据相关资料分析表明,除少数几个发展中国家外,各主要产煤国家的煤田地质勘探工作量自80年代以来均明显减少,但用于开发勘探、工作面勘探的工作内容和工作量却明显增多,勘探精度大大提高。从煤炭现代化生产要求角度看,我国煤田地质勘探技术与世界先进技术相比尚存在较大差距,因此,必须把握时机,加快我国煤田地质勘探技术的发展,才能满足我国高产高效采煤的需求。参考文献:[1]储绍良.矿井物探应用.北京:煤炭工业出版社.1995.[2]李夫忠.走向精确勘探的道路[M].北京:石油工业出版社..

相关百科
热门百科
首页
发表服务