论文投稿百科

摩擦起电的论文研究

发布时间:2024-07-02 22:48:16

摩擦起电的论文研究

一)教学目的1.知道什么叫物体带电和摩擦起电。2.知道什么实验事实使人们认识到自然界有两种电荷;知道正、负电荷是如何规定的;知道电荷间的相互作用。3.知道验电器的构造和原理,会用验电器判断物体是否带电。4.知道电量及其单位。(二)教材分析:重点:两种电荷及它们之间的相互作用难点:识别物体是否带电,带何种电(三)教法提示:(四)教具:玻璃棒两根,橡胶棒两根,丝绸一块,毛皮一块,支架两个,验电器一个,验电一个,碎纸屑若干。(五)教学过程:1.复习提问(1):日常生活中,当空气干燥时用塑料梳子梳头发,会出现什么现象?提问(2):如果我们身上穿了几件化纤毛衣,在晚上脱衣时,有时会发出响声,甚至出现火花。你有过这种体会吗?你知道上面提到的两种现象发生的原因吗?教师总结:同学们在小学自然课的学习中已经了解了一些关于摩擦起电的知识。摩擦起电的现象在日常生活中又是经常可以看到的。那么,带了电的物体具有哪些性质?头发为什么会随梳子飘起来?在这一节里,我们将继续进行学习和讨论。2.进行新课(1)物体带电与使物体带电的方法演示实验:①用毛皮摩擦橡胶棒,然后把棒靠近纸屑等轻小物体,观察现象。②用丝绸摩擦玻璃棒,然后将棒靠近纸屑等轻小物体,观察现象。我们看到,被毛皮摩擦过的橡胶棒,被丝绸摩擦过的玻璃棒,都具有了吸引轻小物体的性质。物体具有了吸引轻小物体的性质,我们就说物体带了电,或说物体带了电荷。习惯上把带了电的物体叫做带电体。在空气干燥的时候,用塑料梳子梳头发,头发会随着梳子飘起来,就是因为梳子带了电,能吸引头发的缘故。使物体带电的方法:①摩擦起电用摩擦的方法使物体带电叫摩擦起电,这种方法简单、常见。下面请同学们举出几个日常生活中常见的摩擦起电的例子。②接触带电除摩擦外,用接触的方法也可以使物体带电。演示用毛皮摩擦过的橡胶棒甲接触没有被摩擦过的橡胶棒乙,然后用乙去靠近纸屑,观察橡胶棒乙能够吸引纸屑、验电羽等轻小物体,这说明橡胶棒乙通过接触橡胶棒甲而带了电。(2)两种电荷我们已经知道了什么叫带电现象,知道了被毛皮摩擦过的橡胶棒和被丝绸摩擦过的玻璃棒都带上了电荷,那么它们带的电荷是否相同呢?演示实验:①将被毛皮摩擦过的橡胶棒悬挂在支架上,用另一根被毛皮摩擦过的橡胶棒去靠近它,结果它们互相排斥。将被丝绸摩擦过的玻璃棒悬挂在支架上,用另一根被丝绸摩擦过的玻璃棒去靠近它,结果它们也互相排斥。②将被毛皮摩擦过的橡胶棒悬挂在支架上,用被丝绸摩擦过的玻璃棒去靠近它,结果它们互相吸引。思考:这两个实验现象说明什么?答:被毛皮摩擦过的橡胶棒和被丝绸摩擦过的玻璃棒所带的电荷不同。教师总结:人们通过大量的实验研究发现,用摩擦起电的方法可以使各种各样的物质带电。带电后的物体凡是跟丝绸摩擦过的玻璃棒互相吸引的,必定跟毛皮摩擦过的橡胶棒互相排斥;凡是跟毛皮摩擦过的橡胶棒互相吸引的,必定跟丝绸摩擦过的玻璃棒互相排斥。这些事实使人们认识到自然界中只有两种电荷。①正电荷和负电荷正电荷:指被丝绸摩擦过的玻璃棒所带的电荷,可用“+”表示。负电荷:指被毛皮摩擦过的橡胶棒所带的电荷,可用“-”表示。②电荷间的相互作用:同种电荷互相排斥,异种电荷互相吸引。(3)检验物体是否带电的方法:①利用带电体具有的性质来判断。例1.如果一个带电体吸引一个轻小物体,能否判断这个轻小物体也带电?分析:不能。如果轻小物体与带电体带异种电荷,它们之间可以相互吸引;如果轻小物体不带电,由于带电体的性质,它们之间也可以相互吸引。例2.如果一个带电体排斥一个轻小物体,能否判断这个轻小物体也带电?分析:可以。因为若轻小物体不带电,它们之间只能相互吸引,不会发生排斥现象。例3.如果两个物体互相排斥,你能作出什么判断?分析:根据电荷间的相互作用,可以判断带电体必带同种电荷。例4.有A、B、C、D四个带电体,若A排斥B,A吸引C,C排斥D,已知D带正电。那么A、B、C物体各带什么电?分析:已知D带正电可由此分析其他几个物体的带电性质。因为D带正电,D又排斥C,根据电荷间的相互作用,C应带正电。C吸引A,则A与C带异种电荷,即A带负电。A又排斥B,所以B也应带负电。②用验电器来检验。验电器是实验室里常用的一种检验物体是否带电的仪器。它是由金属球、金属杆、金属箔等几部分组成的(展示实物)。它的原理是利用了电荷间的相互作用。当用带电体接触验电器的金属球时,就有一部分电荷转移到验电器的金属箔片上,这两片金属箔由于带同种电荷互相排斥而张开。演示实验:用被丝绸摩擦过的玻璃棒接触验电器的金属球,观察验电器金属箔片张开的角度,思考此时金属箔片带什么电?用力多摩擦几下玻璃棒,再去接触验电器的金属球,观察验电器金属箔片张开的角度有什么变化?张开角度的变化反映了什么?换用毛皮摩擦过的橡胶棒,重做上面的实验。教师总结:验电器金属箔片张开的角度不同,反映了带电体传给验电器的电荷的多少不同。(4)电量电荷的多少叫电量。电量的单位是库仑,简称库,符号是C。库仑是一个比较大的单位。一根摩擦过的玻璃棒或橡胶棒上所带的电量,大约只有10-7库仑,一片带电的云上所带的电量,大约有几十库仑。(5)正、负电荷的中和演示实验:把用丝绸摩擦过的玻璃棒接触验电器的金属球,使金属箔片张开一定的角度;再用毛皮摩擦过的橡胶棒去接触验电器的金属球,观察金属箔片张角的变化。这个现象说明:正、负电荷放在一起会互相抵消。如果实验中的玻璃棒和橡胶棒带的电量相等,验电器的金属箔片将不再张开,即正、负电荷完全抵消。放在一起的等量异种电荷完全抵消的现象,叫做正、负电荷的中和。思考题:将一物体跟一带正电的验电器的金属球接触时,验电器的金属箔先合拢后张开。试分析这个物体的带电情况。3.小结这节课我们通过大量的实验,研究讨论了用摩擦的方法使物体带电后的性质、带电的种类及电荷间的相互作用。知道了怎样判断检验一个物体是否带电和带电的种类。那么摩擦起电的实质到底是什么呢?物体带正电、负电的本质又是什么呢?这些我们将在下一节里进行研究讨论。4.布置作业。(l)书上本节后的练习l、2、3。(2)思考题:梳子与头发摩擦后,怎样检验梳子是否带电?带什么电?(3)想一想,除了课上讲到的,还有哪些检验物体是否带电的方法。

先介绍原理,然后是研究现状,提出问题,解决问题,总结

物质是由原子组成的,而原子是由带正电的原子核和带负电的电子组成,不同物质的原子核对核外电子的束缚能力不同,有的原子核对电子的束缚能力强,有的原子核对核外电子的束缚能力弱,当两种不同的物质经过摩擦而充分接触时,对核外电子束缚能力强的物质就会从对核外电子束缚能力弱的物质中把电子吸引过来,这样得到电子的物质就会带负电,而失去电子的物质就会带正电。使得相互摩擦的两个物体就带上了等量的异种电荷。

任何物体都是由原子构成的,而原子由带正电的原子核和带负电的电子所组成,电子绕着原子核运动。在通常情况下,原子核带的正电荷数跟核外电子带的负电荷数相等,原子不显电性,所以整个物体是中性的。原子核里正电荷数量很难改变,而核外电子却能摆脱原子核的束缚,转移到另一物体上,从而使核外电子带的负电荷数目改变。当物体失去电子时,它的电子带的负电荷总数比原子核的正电荷少,就显示出带正电;相反,本来是中性的物体,当得到电子时,它就显示出带负电。两个物体互相摩擦时,哪个物体的原子核束缚电子的本领弱,它的一些电子就会转移到另一个物体上,失去电子的物体因缺少电子而带正电,得到电子的物体因有多余的电子而带等量的负电。

研究摩擦力论文

摩擦力分为滑动摩擦力和静摩擦力,静摩擦力F=静摩擦因素*物体的质量,只要一个力大于静摩擦力F,物体就会开始有所移动,滑动摩擦力始终小于静摩擦力F,至于方向,就具体问题具体分析。重力G=mg,重力的方向之竖直向下,而不是垂直于地面向下,重力加速度g的值一般为,地球上各个地方的重力加速度有的都不一样,做题的时候要考虑g 的取值。惯性:物体在没有外力的作用下,保持原来的运动状态,这是牛顿第一定律,也叫惯性定律……

摩擦力是物体与物体相接触时,在接触面上产生一种阻止它们相对滑动的作用力。摩擦是一种极为普遍的力学现象,在人类生活、生产中无处不在。不仅固体与固体的接触面上有摩擦(这类摩擦称为干摩擦),就连固体与液体的接触面或固体与气体的接触面上都有摩擦(这两类摩擦称为湿摩擦)。在干摩擦中,摩擦力按其性质可分为静摩擦力、滑动摩擦力和滚动摩擦力三种。不同性质的摩擦力,影响其大小的因素亦不相同。 一、干摩擦力 (一)静摩擦力 只要两物体之间存在着相对滑动趋势,就会出现摩擦力。如果滑动趋势不太强,则由于摩擦力的作用,相对滑动不致真正实现,这时的摩擦力称为静摩擦力fS。可见静摩擦力产生的原因是因为物体间有相对运动的趋势。而相对运动趋势产生的原因是有外力作用,因此,产生静摩擦力的条件不仅包括接触面不光滑、有正压力,还需要有外力作用。静摩擦力的大小与指向都取决于相对滑动趋势。既然摩擦力是阻止相对滑动的作用力,静摩擦力的指向自然与接触面上相对滑动趋势的指向相反。两物体都受静摩擦力的作用,其指向分别与各该物体在接触面上的相对滑动趋势的指向相反。静摩擦力的大小也取决于相对滑动趋势,没有相对滑动趋势,就没有静摩擦力,即摩擦力大小为零;一有相对滑动趋势,静摩擦力也随之出现。在一定条件下,物体之间相对滑动趋势一定,静摩擦力就具有与之相应的一定的大小,这一大小应当恰恰足以抵消相对滑动趋势,使相对滑动不致真正发生。因此,在具体问题中,静摩擦力的大小往往不能预先知道,需要根据“物体之间并不真正发生相对滑动”这一条件从动力学的运动方程计算出来。情况一旦变了,物体之间的相对滑动趋势变了,静摩擦力的大小也就随之自动调节,使相对滑动总是不能真的发生。但是静摩擦力的自动调节并不能无限度地进行,其最大限度称为最大静摩擦力。在不超出最大静摩擦力的范围时,外力越大,静摩擦力越大。一旦超出最大静摩擦力的范围,物体便开始滑动,静摩擦力转变为滑动摩擦力。那么最大静摩擦力与什么有关呢?实验查明,最大静摩擦力fmax与两物体之间的正压力N成正比,与接触面的面积无关,与接触面的性质有关(如接触面的材料、接触面的粗糙程度等)。即fmax=μSN,其中μS称为静摩擦因数,它取决于接触面的材料与接触面的表面状态等。实践证明fS≤fmax=μSN。 (二)滑动摩擦力 当外力超出最大静摩擦力的范围时,物体便开始滑动,摩擦力继续存在,只是静摩擦力转变为滑动摩擦力。物体沿着接触面相对滑动,接触面上阻止相对滑动的摩擦力称为滑动摩擦力。滑动摩擦力的指向自然是与接触面上相对滑动的指向相反。滑动摩擦力的大小随相对滑动速度而变,相对滑动速度从零逐渐增大,滑动摩擦力则相应地从最大静摩擦力fmax=μN逐渐减小。通常说滑动摩擦小于静摩擦,将静止着的物体推动比较费劲,既以推动之后维持匀速运动则较省力,就是指此而言。但相对滑动速度过分大的时候,滑动摩擦力又急剧增大。我们可以采取控制变量法,通过实验准确验证在动摩擦因数一定时,滑动摩擦力的大小正比于接触面上的正压力N。但因为动摩擦因数较难控制,只粗略验证了在正压力一定时,滑动摩擦力与动摩擦力系数成正比这一结论。由此,可得出公式:fK=μN,其中μ称为滑动摩擦因数,它取决于接触面的材料与接触面的表面状态及相对滑动速度(如图所示)等。在一些特殊情况下(例如材料的硬度保持一定,接触面经过一定加工等等),滑动摩擦 力几乎不随运动速度而变,并且差不多就等于最大静摩擦力,即μ=常数≈μS 当外力等于动摩擦力时,物体受力还是平衡的,要使物体运动,就必须增大外力。 二、湿摩擦力 物体相对于液体或气体(称为流体)而运动时,沿着接触面上也有阻止相对滑动的摩擦力,这种摩擦力称为湿摩擦。物体浸没于液体或气体中,运动时除了受到湿摩擦力外,同时还有另一种效应,即在接触面上,物体受到液体或气体的压力,这压力的指向垂直于接触面,而且迎面所受压力大于背面所受压力,因而物体所受压力的总效果也是阻止物体的相对运动。由此而引起的阻力称为介质阻力,并且一般来说,介质阻力远远大于湿摩擦力。介质阻力和湿摩擦力的本质完全不同,但在物体相对于液体或气体的运动中,它们起着同样的作用。一般就将介质阻力归到湿摩擦力中,不去追究它们的本质。湿摩擦力不同于干摩擦力,没有相对运动也就没有湿摩擦力。所以对于湿摩擦现象,谈不上静摩擦力。既然不存在静摩擦,不论多小的力都能推动物体使其在液体或气体中运动。在干摩擦的情况下,小于最大静摩擦力的力根本不能推动物体。可以用竹竿撑船使船前进,却从来没看见过用竹竿撑汽车使汽车前进,就是这个道理。 一旦发生相对运动,湿摩擦力也随之出现。湿摩擦力的指向自然与物体相对运动速度指向相反。至于湿摩擦力的大小则随着相对运动的加快而增大。当相对运动比较慢的时候,湿摩擦力的大小大致与速度成正比;当相对运动比较快的时候,湿摩擦力大致与速度的平方成正比。 物体浸于液体或气体中,如以一定大小的力去推物体,由于不存在静摩擦,物体将逐渐动起来。物体一开始运动,湿摩擦力也就出现。起初,湿摩擦力比较小,还小于所加推力,物体仍然继续加速。物体速度加快,湿摩擦力随之而增大。最后,物体达到某个速度,其相应的湿摩擦力与所加推动力相等,物体保持这一速度而作匀速运动,这一速度称为极限速度。如物体的初速度超过极限速度,则湿摩擦力大于所加推动力,运动变慢,最后也是达到极限速度而作匀速运动。极限速度的大小显然与所加推动力的大小有关。在力学中湿摩擦力一般不去分析与研究,主要考虑的是干摩擦力。 三、摩擦力带来的影响 推桌子时,如果没有推动,则桌子有一个向右的运动趋势,同时桌子会受到一个向左的静摩擦力的作用,阻碍它的这种运动趋势,使桌子处于相对静止状态。传递带把货物往上运的过程中,如果没有摩擦,则货物要沿斜面下滑,所以物体有沿斜面下滑的趋势,所以传送带给了货物一个沿斜面向上的静摩擦力的作用,以阻碍货物向下滑的运动趋势。假如没有摩擦力,我们就不能走路了。因为既站不稳,也无法行走。比如在冰上步行,由于冰滑,走不多远就累得满头大汗。如果没有摩擦力的话,道路比冰还滑,那时人们只有伏倒在地上才会觉得好受些。假如没有摩擦力,螺钉就不能旋紧,钉在墙上的钉子就会自动松开而落下来。根据万有引力定律得知,一切物体就会在万有引力的作用下,全部聚集在了一起。家里的桌子,椅子都要聚在一起。给一点推力就都会散开来,并且会在地上滑过来,滑过去,根本无法使用。。。 如果没有摩擦和介质阻力,物体只发生动能和势能的相互转化时,机械能的总量保持不变。这就是摩擦力带来的影响。总之,影响摩擦力大小的因素是固定的,较少的,但其表现形式却十分多样化、复杂化、只有充分了解、控制这些因素,才能充分利用有益摩擦,避免有害摩擦,最大程度地改进生产,改善生活。 四、高端物理学中对摩擦力的产生的解释 至到今天,人们对摩擦力的本质认识得不是十分清楚。最早对摩擦进行实验研究的代表性人物是文艺复兴时期的达·芬奇。他对表面光滑程度不同的物质的摩擦作了比较,提出物体间的摩擦程度取决于物体表面粗糙程度的大小,表面愈粗糙,摩擦力愈大,即固体表面的凹凸程度是产生摩擦的根本原因。这一想法后来逐步被发展为一种学说——凹凸说。该学说认为:物体表面无论经过何种加工,都必然留下或大或小的凹凸,这种表面凹凸不平的物体相互接触,就必然产生摩擦。有人对此做过这样一个比喻:固体表面的接触,犹如把一列山脉翻过来盖在另一列山脉上一样。由于它们的相互咬合,所以只有把凸部破坏掉,才能使之滑动,这便是产生阻碍相对运动的摩擦力的基本原理。这种学说在很长一段时间里,受到许多人的支持。 对于摩擦力的另外一种看法是分子说。这是由英国的物理学家德萨古利埃提出的。他认为,摩擦力产生的原因是摩擦面上的分子力相互交错所致。该学说指出,物体表面愈是光滑,摩擦面愈是相互接近,表面分子力就愈大,这样摩擦力也就愈大。但是这种学说由于加工技术上的原因,一直没有得到实验的证实,因而入们对此很难接受。 进入20世纪以后,分子说逐渐得到很多人的支持。一个叫尤因的人首先指出因摩擦引起的能量损失,是因固体表面分子引力场的相互干涉所致,与凹凸程度无关。而另一名著名的学者哈迪,他进行了大量的实验,从而证明了分子说的正确性。他首先把两个物体表面研磨得极光滑,然后来做摩擦实验,结果发现,两物体磨得越光滑,它们之间的摩擦力就越少,但是这种光滑水平达到一定程度时,摩擦力反而有所增加,甚至两个光滑的金属面能“粘”在一起。而这正好证实了分子说的观点:当两个表面的分子互相进入彼此的分子间的引力圈时,两者间就能产生强烈的粘合作用,并以摩擦力的形式显示出来。哈迪的实验为分子说提供了有力的证据,分子说因而获得了广泛的承认,并被进一步发展为“粘合说”。但是,凹凸说并没有因分子说和粘合说的进展而被完全废弃,它与对立的分子说和粘合说都持之有据,言之有理。有人在这两者的基础上提出了包含凹凸说内容的综合性的现代粘合论。 (一)凹凸啮合说 从15世纪至18世纪,科学家们提出的一种关于摩擦本质的理论,啮合说认为摩擦是由于互相接触的物体表面粗糙不平产生的。两个物体接触挤压时,接触面上很多凹凸部分就相互啮合。如果一个物体沿接触面滑动,两个接触面的凸起部分相碰撞,产生断裂、摩损,就形成了对运动的阻碍。 (二)粘附说 这是继凹凸啮合说之后的一种关于摩擦本质的理论。最早由英国学者德萨左利厄斯于1734年提出,他认为两个表面抛得很光的金属,摩擦会增大,可以用两个物体的表面充分接触时它们的分子引力将增大来解释。 上世纪以来,随着工业和技术的发展,对摩擦理论的研究进一步深入,到上世纪中期,诞生了新的摩擦粘附论。 新的摩擦粘附论认为,两个互相接触的表面,无论做得多么光滑,从原子尺度看还是粗糙的,有许多微小的凸起,把这样的两个表面放在一起,微凸起的顶部发生接触,微凸起之外的部分接触面间有10-8 m或更大的间隙。这样,接触的微凸起的顶部承受了接触面上的法向压力。如果这个压力很小,微凸起的顶部发生弹性形变;如果法向压力较大,超过某一数值(每个凸起上约千分之几牛顿),超过材料的弹性限度,微凸起的顶部便发生塑性形变,被压成平顶,这时互相接触的两个物体之间距离变小到分子(原子)引力发生作用的范围,于是,两个紧压着的接触面上产生了原子性粘合。这时要使两个彼比接触的表面发生相对滑动,必须对其中的一个表面施加一个切向力,来克服分子(原子)间的引力,剪断实际接触区生成的接点,这就产生了摩擦。在现代摩擦理论中,还加进了静电作用。光滑表面摩擦过程中可能带上异号电荷,它们之间的静电作用,也是摩擦力的一个原因。 综上所述,摩擦现象的机理是复杂的,是必须在分子尺度内才能加以说明的。由于分子力的电磁本性,摩擦力说到底也是由于电磁相互作用引起的。 上述理论,已经否定了“物体表面越光滑,摩擦力越小”的说法。在非常平滑的物体表面之间,摩擦力是存在的。在教学中经常使用“表面光滑”,其含义是指无摩擦或摩擦因数等于零的表面,即没有摩擦力。这是教学中的一种约定,而并非真的是说两个表面光滑。在平玻璃板上推木块很容易,而在平玻璃板上推与木块相同质量的玻璃时就不容易了,这说明摩擦力增大了。

摩擦是一种极为普遍的现象,摩擦在实际生活中的例子也很多,如抓住物体需要摩擦,皮带传动需要摩擦,铁钉固定在墙上也要靠摩擦等等。但摩擦也会给我们的日常生活带来麻烦。例如:机器开动时,滑动部件之间因摩擦而浪费动力,还会使机器的部件磨损,缩短寿命。我们有时希望地球上从来就没有摩擦力,但如果真的没有摩擦力,人们的生活又会发生什么样的变化呢? 首先,也是最基本的,我们无法行动,脚与地面没有了摩擦,人们简直寸步难行。自行车车轮与地面间光滑,怎么才能开动呢?汽车还没发动就打滑,要么就是车子开起来了就停不下来,没有阻碍它运动的力,就只能无限滑下去最后与其它车相撞造成一起又一起的交通事故。飞机无论是活塞发动机或者涡轮喷气发动机都无法启动。第二,我们无法拿起任何东西,我们能拿东西靠的就是摩擦力,摩擦力来自于物体本身的凹凸和我们手上的指纹,这下好,物体光滑,我们也没有了指纹,想拿东西却和它作用不上,只能干着急,不仅拿不起东西,拧盖子扭把手,一系列的力的作用都无法进行;生活处处困难重重。想写字却拿不起笔,笔又不能和纸产生摩擦写字,想吃饭碗筷却拿不住,筷子怎么也夹不住菜,想喝水又提不起杯子;想穿衣服却拿不起穿不上;想工作劳动,但任何工具都一次次从手上滑落……这样的话,人安会多么无助。如果没有了摩擦,那么以后我们就再也不能够欣赏美妙的用小提琴演奏的音乐等,因为弓和弦的摩擦产生振动才发出了声音。总之,假如没有摩擦的存在,那么人们的衣、食、住、行都很难解决。如果衣食住行、学习、生活、工作、劳动等所有方面人们都因拿不起东西这个小小的因素困扰,人们还怎么有最基本的生存,更别提发展了。有资料说,某国家已研制出所谓的“超润滑材料”,可将它用到军事上,一旦战争暴发,将这种超润滑材料洒到对方的公路上、铁路的铁轨上和飞机起飞的跑道上,使对方的战车、运兵车、火车无法运行,军用物资无法运送;飞机不能起飞,失去制空权……用以谋求战争的胜利,这种超润滑材料所起的作用还真有点战略意义呢!我们可能幻想过如果没有摩擦,干什么事情都将不会有阻力,可等我们真正到了没有摩擦力的世界,才感受到摩擦力的重要。摩擦力有利也有蔽,我们应该尽量减少那些有害摩擦,学会利用摩擦造福人类。

对摩擦力的研究的论文

摩擦是一种极为普遍的现象,摩擦在实际生活中的例子也很多,如抓住物体需要摩擦,皮带传动需要摩擦,铁钉固定在墙上也要靠摩擦等等。但摩擦也会给我们的日常生活带来麻烦。例如:机器开动时,滑动部件之间因摩擦而浪费动力,还会使机器的部件磨损,缩短寿命。我们有时希望地球上从来就没有摩擦力,但如果真的没有摩擦力,人们的生活又会发生什么样的变化呢? 首先,也是最基本的,我们无法行动,脚与地面没有了摩擦,人们简直寸步难行。自行车车轮与地面间光滑,怎么才能开动呢?汽车还没发动就打滑,要么就是车子开起来了就停不下来,没有阻碍它运动的力,就只能无限滑下去最后与其它车相撞造成一起又一起的交通事故。飞机无论是活塞发动机或者涡轮喷气发动机都无法启动。第二,我们无法拿起任何东西,我们能拿东西靠的就是摩擦力,摩擦力来自于物体本身的凹凸和我们手上的指纹,这下好,物体光滑,我们也没有了指纹,想拿东西却和它作用不上,只能干着急,不仅拿不起东西,拧盖子扭把手,一系列的力的作用都无法进行;生活处处困难重重。想写字却拿不起笔,笔又不能和纸产生摩擦写字,想吃饭碗筷却拿不住,筷子怎么也夹不住菜,想喝水又提不起杯子;想穿衣服却拿不起穿不上;想工作劳动,但任何工具都一次次从手上滑落……这样的话,人安会多么无助。如果没有了摩擦,那么以后我们就再也不能够欣赏美妙的用小提琴演奏的音乐等,因为弓和弦的摩擦产生振动才发出了声音。总之,假如没有摩擦的存在,那么人们的衣、食、住、行都很难解决。如果衣食住行、学习、生活、工作、劳动等所有方面人们都因拿不起东西这个小小的因素困扰,人们还怎么有最基本的生存,更别提发展了。有资料说,某国家已研制出所谓的“超润滑材料”,可将它用到军事上,一旦战争暴发,将这种超润滑材料洒到对方的公路上、铁路的铁轨上和飞机起飞的跑道上,使对方的战车、运兵车、火车无法运行,军用物资无法运送;飞机不能起飞,失去制空权……用以谋求战争的胜利,这种超润滑材料所起的作用还真有点战略意义呢!我们可能幻想过如果没有摩擦,干什么事情都将不会有阻力,可等我们真正到了没有摩擦力的世界,才感受到摩擦力的重要。摩擦力有利也有蔽,我们应该尽量减少那些有害摩擦,学会利用摩擦造福人类。

你是谷一中的/? 我刚还准备借借你的答案, 我也是谷一中的, 看来不行了。

摩擦力是物体与物体相接触时,在接触面上产生一种阻止它们相对滑动的作用力。摩擦是一种极为普遍的力学现象,在人类生活、生产中无处不在。不仅固体与固体的接触面上有摩擦(这类摩擦称为干摩擦),就连固体与液体的接触面或固体与气体的接触面上都有摩擦(这两类摩擦称为湿摩擦)。在干摩擦中,摩擦力按其性质可分为静摩擦力、滑动摩擦力和滚动摩擦力三种。不同性质的摩擦力,影响其大小的因素亦不相同。 一、干摩擦力 (一)静摩擦力 只要两物体之间存在着相对滑动趋势,就会出现摩擦力。如果滑动趋势不太强,则由于摩擦力的作用,相对滑动不致真正实现,这时的摩擦力称为静摩擦力fS。可见静摩擦力产生的原因是因为物体间有相对运动的趋势。而相对运动趋势产生的原因是有外力作用,因此,产生静摩擦力的条件不仅包括接触面不光滑、有正压力,还需要有外力作用。静摩擦力的大小与指向都取决于相对滑动趋势。既然摩擦力是阻止相对滑动的作用力,静摩擦力的指向自然与接触面上相对滑动趋势的指向相反。两物体都受静摩擦力的作用,其指向分别与各该物体在接触面上的相对滑动趋势的指向相反。静摩擦力的大小也取决于相对滑动趋势,没有相对滑动趋势,就没有静摩擦力,即摩擦力大小为零;一有相对滑动趋势,静摩擦力也随之出现。在一定条件下,物体之间相对滑动趋势一定,静摩擦力就具有与之相应的一定的大小,这一大小应当恰恰足以抵消相对滑动趋势,使相对滑动不致真正发生。因此,在具体问题中,静摩擦力的大小往往不能预先知道,需要根据“物体之间并不真正发生相对滑动”这一条件从动力学的运动方程计算出来。情况一旦变了,物体之间的相对滑动趋势变了,静摩擦力的大小也就随之自动调节,使相对滑动总是不能真的发生。但是静摩擦力的自动调节并不能无限度地进行,其最大限度称为最大静摩擦力。在不超出最大静摩擦力的范围时,外力越大,静摩擦力越大。一旦超出最大静摩擦力的范围,物体便开始滑动,静摩擦力转变为滑动摩擦力。那么最大静摩擦力与什么有关呢?实验查明,最大静摩擦力fmax与两物体之间的正压力N成正比,与接触面的面积无关,与接触面的性质有关(如接触面的材料、接触面的粗糙程度等)。即fmax=μSN,其中μS称为静摩擦因数,它取决于接触面的材料与接触面的表面状态等。实践证明fS≤fmax=μSN。 (二)滑动摩擦力 当外力超出最大静摩擦力的范围时,物体便开始滑动,摩擦力继续存在,只是静摩擦力转变为滑动摩擦力。物体沿着接触面相对滑动,接触面上阻止相对滑动的摩擦力称为滑动摩擦力。滑动摩擦力的指向自然是与接触面上相对滑动的指向相反。滑动摩擦力的大小随相对滑动速度而变,相对滑动速度从零逐渐增大,滑动摩擦力则相应地从最大静摩擦力fmax=μN逐渐减小。通常说滑动摩擦小于静摩擦,将静止着的物体推动比较费劲,既以推动之后维持匀速运动则较省力,就是指此而言。但相对滑动速度过分大的时候,滑动摩擦力又急剧增大。我们可以采取控制变量法,通过实验准确验证在动摩擦因数一定时,滑动摩擦力的大小正比于接触面上的正压力N。但因为动摩擦因数较难控制,只粗略验证了在正压力一定时,滑动摩擦力与动摩擦力系数成正比这一结论。由此,可得出公式:fK=μN,其中μ称为滑动摩擦因数,它取决于接触面的材料与接触面的表面状态及相对滑动速度(如图所示)等。在一些特殊情况下(例如材料的硬度保持一定,接触面经过一定加工等等),滑动摩擦 力几乎不随运动速度而变,并且差不多就等于最大静摩擦力,即μ=常数≈μS 当外力等于动摩擦力时,物体受力还是平衡的,要使物体运动,就必须增大外力。 二、湿摩擦力 物体相对于液体或气体(称为流体)而运动时,沿着接触面上也有阻止相对滑动的摩擦力,这种摩擦力称为湿摩擦。物体浸没于液体或气体中,运动时除了受到湿摩擦力外,同时还有另一种效应,即在接触面上,物体受到液体或气体的压力,这压力的指向垂直于接触面,而且迎面所受压力大于背面所受压力,因而物体所受压力的总效果也是阻止物体的相对运动。由此而引起的阻力称为介质阻力,并且一般来说,介质阻力远远大于湿摩擦力。介质阻力和湿摩擦力的本质完全不同,但在物体相对于液体或气体的运动中,它们起着同样的作用。一般就将介质阻力归到湿摩擦力中,不去追究它们的本质。湿摩擦力不同于干摩擦力,没有相对运动也就没有湿摩擦力。所以对于湿摩擦现象,谈不上静摩擦力。既然不存在静摩擦,不论多小的力都能推动物体使其在液体或气体中运动。在干摩擦的情况下,小于最大静摩擦力的力根本不能推动物体。可以用竹竿撑船使船前进,却从来没看见过用竹竿撑汽车使汽车前进,就是这个道理。 一旦发生相对运动,湿摩擦力也随之出现。湿摩擦力的指向自然与物体相对运动速度指向相反。至于湿摩擦力的大小则随着相对运动的加快而增大。当相对运动比较慢的时候,湿摩擦力的大小大致与速度成正比;当相对运动比较快的时候,湿摩擦力大致与速度的平方成正比。 物体浸于液体或气体中,如以一定大小的力去推物体,由于不存在静摩擦,物体将逐渐动起来。物体一开始运动,湿摩擦力也就出现。起初,湿摩擦力比较小,还小于所加推力,物体仍然继续加速。物体速度加快,湿摩擦力随之而增大。最后,物体达到某个速度,其相应的湿摩擦力与所加推动力相等,物体保持这一速度而作匀速运动,这一速度称为极限速度。如物体的初速度超过极限速度,则湿摩擦力大于所加推动力,运动变慢,最后也是达到极限速度而作匀速运动。极限速度的大小显然与所加推动力的大小有关。在力学中湿摩擦力一般不去分析与研究,主要考虑的是干摩擦力。 三、摩擦力带来的影响 推桌子时,如果没有推动,则桌子有一个向右的运动趋势,同时桌子会受到一个向左的静摩擦力的作用,阻碍它的这种运动趋势,使桌子处于相对静止状态。传递带把货物往上运的过程中,如果没有摩擦,则货物要沿斜面下滑,所以物体有沿斜面下滑的趋势,所以传送带给了货物一个沿斜面向上的静摩擦力的作用,以阻碍货物向下滑的运动趋势。假如没有摩擦力,我们就不能走路了。因为既站不稳,也无法行走。比如在冰上步行,由于冰滑,走不多远就累得满头大汗。如果没有摩擦力的话,道路比冰还滑,那时人们只有伏倒在地上才会觉得好受些。假如没有摩擦力,螺钉就不能旋紧,钉在墙上的钉子就会自动松开而落下来。根据万有引力定律得知,一切物体就会在万有引力的作用下,全部聚集在了一起。家里的桌子,椅子都要聚在一起。给一点推力就都会散开来,并且会在地上滑过来,滑过去,根本无法使用。。。 如果没有摩擦和介质阻力,物体只发生动能和势能的相互转化时,机械能的总量保持不变。这就是摩擦力带来的影响。总之,影响摩擦力大小的因素是固定的,较少的,但其表现形式却十分多样化、复杂化、只有充分了解、控制这些因素,才能充分利用有益摩擦,避免有害摩擦,最大程度地改进生产,改善生活。 四、高端物理学中对摩擦力的产生的解释 至到今天,人们对摩擦力的本质认识得不是十分清楚。最早对摩擦进行实验研究的代表性人物是文艺复兴时期的达·芬奇。他对表面光滑程度不同的物质的摩擦作了比较,提出物体间的摩擦程度取决于物体表面粗糙程度的大小,表面愈粗糙,摩擦力愈大,即固体表面的凹凸程度是产生摩擦的根本原因。这一想法后来逐步被发展为一种学说——凹凸说。该学说认为:物体表面无论经过何种加工,都必然留下或大或小的凹凸,这种表面凹凸不平的物体相互接触,就必然产生摩擦。有人对此做过这样一个比喻:固体表面的接触,犹如把一列山脉翻过来盖在另一列山脉上一样。由于它们的相互咬合,所以只有把凸部破坏掉,才能使之滑动,这便是产生阻碍相对运动的摩擦力的基本原理。这种学说在很长一段时间里,受到许多人的支持。 对于摩擦力的另外一种看法是分子说。这是由英国的物理学家德萨古利埃提出的。他认为,摩擦力产生的原因是摩擦面上的分子力相互交错所致。该学说指出,物体表面愈是光滑,摩擦面愈是相互接近,表面分子力就愈大,这样摩擦力也就愈大。但是这种学说由于加工技术上的原因,一直没有得到实验的证实,因而入们对此很难接受。 进入20世纪以后,分子说逐渐得到很多人的支持。一个叫尤因的人首先指出因摩擦引起的能量损失,是因固体表面分子引力场的相互干涉所致,与凹凸程度无关。而另一名著名的学者哈迪,他进行了大量的实验,从而证明了分子说的正确性。他首先把两个物体表面研磨得极光滑,然后来做摩擦实验,结果发现,两物体磨得越光滑,它们之间的摩擦力就越少,但是这种光滑水平达到一定程度时,摩擦力反而有所增加,甚至两个光滑的金属面能“粘”在一起。而这正好证实了分子说的观点:当两个表面的分子互相进入彼此的分子间的引力圈时,两者间就能产生强烈的粘合作用,并以摩擦力的形式显示出来。哈迪的实验为分子说提供了有力的证据,分子说因而获得了广泛的承认,并被进一步发展为“粘合说”。但是,凹凸说并没有因分子说和粘合说的进展而被完全废弃,它与对立的分子说和粘合说都持之有据,言之有理。有人在这两者的基础上提出了包含凹凸说内容的综合性的现代粘合论。 (一)凹凸啮合说 从15世纪至18世纪,科学家们提出的一种关于摩擦本质的理论,啮合说认为摩擦是由于互相接触的物体表面粗糙不平产生的。两个物体接触挤压时,接触面上很多凹凸部分就相互啮合。如果一个物体沿接触面滑动,两个接触面的凸起部分相碰撞,产生断裂、摩损,就形成了对运动的阻碍。 (二)粘附说 这是继凹凸啮合说之后的一种关于摩擦本质的理论。最早由英国学者德萨左利厄斯于1734年提出,他认为两个表面抛得很光的金属,摩擦会增大,可以用两个物体的表面充分接触时它们的分子引力将增大来解释。 上世纪以来,随着工业和技术的发展,对摩擦理论的研究进一步深入,到上世纪中期,诞生了新的摩擦粘附论。 新的摩擦粘附论认为,两个互相接触的表面,无论做得多么光滑,从原子尺度看还是粗糙的,有许多微小的凸起,把这样的两个表面放在一起,微凸起的顶部发生接触,微凸起之外的部分接触面间有10-8 m或更大的间隙。这样,接触的微凸起的顶部承受了接触面上的法向压力。如果这个压力很小,微凸起的顶部发生弹性形变;如果法向压力较大,超过某一数值(每个凸起上约千分之几牛顿),超过材料的弹性限度,微凸起的顶部便发生塑性形变,被压成平顶,这时互相接触的两个物体之间距离变小到分子(原子)引力发生作用的范围,于是,两个紧压着的接触面上产生了原子性粘合。这时要使两个彼比接触的表面发生相对滑动,必须对其中的一个表面施加一个切向力,来克服分子(原子)间的引力,剪断实际接触区生成的接点,这就产生了摩擦。在现代摩擦理论中,还加进了静电作用。光滑表面摩擦过程中可能带上异号电荷,它们之间的静电作用,也是摩擦力的一个原因。 综上所述,摩擦现象的机理是复杂的,是必须在分子尺度内才能加以说明的。由于分子力的电磁本性,摩擦力说到底也是由于电磁相互作用引起的。 上述理论,已经否定了“物体表面越光滑,摩擦力越小”的说法。在非常平滑的物体表面之间,摩擦力是存在的。在教学中经常使用“表面光滑”,其含义是指无摩擦或摩擦因数等于零的表面,即没有摩擦力。这是教学中的一种约定,而并非真的是说两个表面光滑。在平玻璃板上推木块很容易,而在平玻璃板上推与木块相同质量的玻璃时就不容易了,这说明摩擦力增大了。

摩擦焊的研究进展论文

搅拌摩擦焊最早来自于英国焊接技术研究所,于1991年发明。2002年,航空工业与其合作成立中国搅拌摩擦焊中心。2003年成立北京赛福斯特技术有限公司,专注于搅拌摩擦焊正式进入中国。进入中国17年了。其实早期,主要用于航天、航空等jun工领域。前几年就已经开始在一些新的领域进行研究和试验。于这2年,开始逐步被大众所熟知。现在运用得最成熟的领域是水冷板散热器和新能源汽车的电池托盘的搅拌摩擦焊接,很多公司采购搅拌摩擦焊接设备专门生产配套。在中国,所有行业的第一台搅拌摩擦焊设备均来自航空工业赛福斯特公司(中国搅拌摩擦焊中心)。而现在正是搅拌摩擦焊在各个行业广泛应用的上升阶段。前期的试验已经成功,市场阶段的测试和小试阶段已经过去。已经到了各个企业开始广泛使用和用于批量生产的阶段。

-4现代焊接2007年第11期总第59期he present situation for the application of the shipping welding technologyT1焊接技术对船舶建造重要性2我国船舶焊接技术的起步与发展焊接工作量占船体建造总工作量30%~40%,焊接成本占船体建造成本的30%~50%。同时,焊接技术能扩大造船总量、缩短造船周期、稳定焊接质量、提高经济效益、减轻劳动强度等。造船焊接技术起步于50年代手工电弧焊;50年代中期引进埋弧自动、半自动焊;50年代末期~70年代末,试验半自动CO焊、重力焊、下行焊、衬垫单面焊获得成功;80年代初,船总大力发展高效焊技术,成立高效焊接技术指导组,推广应用各种高效焊2江南造船(集团)有限公司焊接研究所所长倪慧锋船舶焊接技术应用现状高效化率表1船总船厂高效化率统计表年份002001200220032004CO气体保护焊埋弧自动焊船总船厂高效化率变化趋势接工艺。船舶焊接具有工件庞大、形状复杂、施工环境差等特点。主要有以下三种焊接方法:①埋弧自动焊:普通单、双丝埋弧焊、FCB法、RF法、FAB法;②CO气体保护焊:常规CO半自动焊、双丝自动焊(MAG)、自动角焊、CO气保护单面焊、CO气电垂直自动焊;③手工焊条焊:铁粉焊条焊、下行焊条焊、深熔焊条焊、重力焊、普通焊条焊。船总船厂高效化率统计表如表1所示。铜衬垫单面埋弧自动焊(FCB)原理:焊缝反面采用铜衬垫支撑,其上铺设衬垫焊剂,利用通气软管将铜垫板压紧在坡口背面,正面焊接,反面同时成形。应用:主要用于平面组装阶段的船底外板、舷侧外板、双层底板、顶板、甲板、隔板等的拼板对接焊。特点:双丝、三丝(多丝)焊,熔敷效率高;单面焊实现焊缝反面成形,节省工时;装配定位焊缝可在坡口内实施;坡口形状、焊接条件的波3我国船舶焊接三大主要方法2 22 2动允许范围广;长焊缝焊接需要大型门架结构支持;易产生热裂纹,特别是厚板终端裂纹。热固型焊剂衬垫单适用拼板平对接单面焊;反面成形依靠焊剂衬垫;可实现大线能量焊接表2 FCB、RF工艺比较不同点相同点FCB法错边、板厚差适应性低需要足够大且均匀压紧力反面必须采用铜衬垫支撑RF法错边、板厚差适应性强可依靠板列自重无需铜衬垫面埋弧焊(RF法)原理:一种单面自动埋弧焊方法,可以得到均匀的背面焊道。焊接只在正面一侧进行,背面是含有热硬化性树脂的衬垫焊剂,它的下部是装有底层焊剂的焊剂袋,再下部是通气软管,它们都被放置在衬垫外壳之内,依靠密封的通气软管将焊剂压紧在坡口背面。FCB、RF工艺比较如表2所示。焊剂石棉衬垫单面埋弧焊(FAB)原理:利用柔性衬垫材料装在坡口背面一侧,并用铝板和磁性压紧装置将其固定的单面埋弧焊。特点:具有良好柔性,对较大接头错边、变形、不等厚接头有好的适应性,使用操作灵活、方便。应用:平板及背面侧有曲率的对接焊,如弯曲外壳板、甲板、底板。适用于船体分段中合拢、船台(船坞)大合拢。 T排制作自动角焊。无需装配焊接;焊接速度快;焊接变形小。船体纵骨自动角焊。双丝双电弧;平直分段纵骨焊接;同时焊接4纵骨8条缝。简易CO自动角焊。专用自动焊2现代焊接2007年第11期总第59期X-5Analects第21届中国焊接博览会论文精选接小车,轻便、灵活、易携永久磁铁、导向机构,避免脱离焊接线,适用于长直焊缝,立角焊具有摆动功能,可以调整摆动速度、摆动幅度、中心位置与左右停留时间,焊缝两端需要补焊。 CO垂直气电自动焊原理:焊接时采用CO专用药芯焊丝,焊缝正面通过水冷铜滑块强制成形,反面借助于衬垫也同时成形的一种高效焊接方法。特点与应用:高熔敷效率,生产效率比手工焊提高5~7倍;焊丝伸出长度控制在恒定值,适应变化的焊接条件;单道焊可焊接最大板厚32mm;坡口间隙必须严格控制;用于船台(船坞)大合拢垂直对接缝,如船体外侧壳板、隔板。双丝MAG焊。双电极双摆动CO气体保护单面焊双面成形,无间隙装配,可在坡口内侧定位焊,坡口背面敷粘贴型陶瓷衬垫,送丝机和丝盘与焊机一体化,可进行长拼缝连续焊,22mm板厚拼接可一次焊接完成,焊接效率是普通CO焊的8倍,适用大合拢主甲板、内底板对接,中合拢平板对接。普通CO气保护单面焊。船厂应用最广泛的焊接工艺,设备投资少,高效且工艺实施方便,打底焊第一道焊接是关键,可在平、立、横多个位置施焊。焊条高效化。重力焊:平直角焊缝,一人可同时操作多台;铁粉焊条:药皮中加入铁粉,提高熔敷效率;下行焊条:改变药皮渣系,提高电弧吹力、熔渣凝固点温度;深熔焊条:可焊透板厚12mm以下对接焊缝。搅拌摩擦焊(FSW)1991年,由英国焊接研究所(TheWelding Institute-TWI)发明。焊接过程属于固相焊接,核心技术是搅拌头,焊接工艺参数包括搅拌头旋转速度、焊接速度、倾斜角度、焊接压力。高质量焊接接头,无裂纹、夹杂、气孔等缺陷,焊接变形小,无需焊接材料,焊前工件表面清理要求低,焊接过程中无飞溅、烟尘、噪音等环境污染。适用制造大型船舶铝合金结构件,挪威、日本、澳大利亚等国的船舶制造公司生产预成形结构件(一般为板材或挤压型材),使船舶制造由零件的制造装配转变为船舶甲板以及壳体的预成型结构件的装配。单道焊接铝合金厚度达100mm,双道焊接达180mm。激光复合焊(Laser-Hybrid)激光+常规MIG或MAG焊,与单纯激光焊比较有许多优点:可有效利用激光能量,电弧先将母材熔化,提高激光吸收率。增加熔深,利用激光束作用于电弧形成的熔池底部,进一步提高焊接熔深。稳定电弧,激光使气体电离产生等离子体,有助于电弧稳定。降低焊缝装配精度,装配间隙由增大至1mm。船舶建造的激光焊大部分采用大功率CO激光器,主要用于大型豪华邮轮、高速滚装/客滚船、军用舰艇等高附加值的军民用舰船薄板及合金材料焊接,可以保证船体结构轻盈,焊缝性能好,表面成形美观,构件不变形。应用船厂:德国Meyer(玛亚)船厂、Blohm+Voss(博隆·福斯)船厂、丹麦Odense(欧登塞)船厂、德国Kv-aerner Warnow(克瓦尔纳·瓦诺)船厂。焊接机器人计算机技术、自动控制技术、气保护焊接技术的完美结合,适用于船舶构件批量化、小型化焊接生产以及狭窄舱室短焊缝全位置焊接。有固定机械臂式焊接机器人、可移动便携式离线编程焊接机器人。上世纪90年代初,日本船厂已开始使用焊接机器人,随后又研制出自动切割机器人。2003年,韩国现代重工研发出5种获得国际认证的焊接机器人,用于造船焊接。具有焊接重现性好,环境适应性强、智能化程度高的优点。船舶行业发展需求。造船总量不断上升,2015年预计可突破3000万吨;船舶大型化,船型多样化;进一步提高船舶市场国际竞争力。船舶焊接技术发展方向。CO气保护焊自动化程度不断提高,应用范围扩大;手工焊条焊应用逐步减少,焊接机器人(智能化焊接系统)尝试应用;焊接设备趋向低能耗,高负载持续率,数字化。船舶焊接中存在的问题。造船模式相对落后;大型焊接系统国产化率低;高性能焊接材料依赖进口;国产船用钢板大线能量焊接适应性;焊接技术人员流失严重,工艺开发能力不足;生产组织管理不够完善;工艺研究成果转化为生产应用比率不高。22222224国外船舶焊接先进技术5国内船舶行业焊接技术发展趋势

关于研究摩擦力的论文

摩擦力是物体与物体相接触时,在接触面上产生一种阻止它们相对滑动的作用力。摩擦是一种极为普遍的力学现象,在人类生活、生产中无处不在。不仅固体与固体的接触面上有摩擦(这类摩擦称为干摩擦),就连固体与液体的接触面或固体与气体的接触面上都有摩擦(这两类摩擦称为湿摩擦)。在干摩擦中,摩擦力按其性质可分为静摩擦力、滑动摩擦力和滚动摩擦力三种。不同性质的摩擦力,影响其大小的因素亦不相同。 一、干摩擦力 (一)静摩擦力 只要两物体之间存在着相对滑动趋势,就会出现摩擦力。如果滑动趋势不太强,则由于摩擦力的作用,相对滑动不致真正实现,这时的摩擦力称为静摩擦力fS。可见静摩擦力产生的原因是因为物体间有相对运动的趋势。而相对运动趋势产生的原因是有外力作用,因此,产生静摩擦力的条件不仅包括接触面不光滑、有正压力,还需要有外力作用。静摩擦力的大小与指向都取决于相对滑动趋势。既然摩擦力是阻止相对滑动的作用力,静摩擦力的指向自然与接触面上相对滑动趋势的指向相反。两物体都受静摩擦力的作用,其指向分别与各该物体在接触面上的相对滑动趋势的指向相反。静摩擦力的大小也取决于相对滑动趋势,没有相对滑动趋势,就没有静摩擦力,即摩擦力大小为零;一有相对滑动趋势,静摩擦力也随之出现。在一定条件下,物体之间相对滑动趋势一定,静摩擦力就具有与之相应的一定的大小,这一大小应当恰恰足以抵消相对滑动趋势,使相对滑动不致真正发生。因此,在具体问题中,静摩擦力的大小往往不能预先知道,需要根据“物体之间并不真正发生相对滑动”这一条件从动力学的运动方程计算出来。情况一旦变了,物体之间的相对滑动趋势变了,静摩擦力的大小也就随之自动调节,使相对滑动总是不能真的发生。但是静摩擦力的自动调节并不能无限度地进行,其最大限度称为最大静摩擦力。在不超出最大静摩擦力的范围时,外力越大,静摩擦力越大。一旦超出最大静摩擦力的范围,物体便开始滑动,静摩擦力转变为滑动摩擦力。那么最大静摩擦力与什么有关呢?实验查明,最大静摩擦力fmax与两物体之间的正压力N成正比,与接触面的面积无关,与接触面的性质有关(如接触面的材料、接触面的粗糙程度等)。即fmax=μSN,其中μS称为静摩擦因数,它取决于接触面的材料与接触面的表面状态等。实践证明fS≤fmax=μSN。 (二)滑动摩擦力 当外力超出最大静摩擦力的范围时,物体便开始滑动,摩擦力继续存在,只是静摩擦力转变为滑动摩擦力。物体沿着接触面相对滑动,接触面上阻止相对滑动的摩擦力称为滑动摩擦力。滑动摩擦力的指向自然是与接触面上相对滑动的指向相反。滑动摩擦力的大小随相对滑动速度而变,相对滑动速度从零逐渐增大,滑动摩擦力则相应地从最大静摩擦力fmax=μN逐渐减小。通常说滑动摩擦小于静摩擦,将静止着的物体推动比较费劲,既以推动之后维持匀速运动则较省力,就是指此而言。但相对滑动速度过分大的时候,滑动摩擦力又急剧增大。我们可以采取控制变量法,通过实验准确验证在动摩擦因数一定时,滑动摩擦力的大小正比于接触面上的正压力N。但因为动摩擦因数较难控制,只粗略验证了在正压力一定时,滑动摩擦力与动摩擦力系数成正比这一结论。由此,可得出公式:fK=μN,其中μ称为滑动摩擦因数,它取决于接触面的材料与接触面的表面状态及相对滑动速度(如图所示)等。在一些特殊情况下(例如材料的硬度保持一定,接触面经过一定加工等等),滑动摩擦 力几乎不随运动速度而变,并且差不多就等于最大静摩擦力,即μ=常数≈μS 当外力等于动摩擦力时,物体受力还是平衡的,要使物体运动,就必须增大外力。 二、湿摩擦力 物体相对于液体或气体(称为流体)而运动时,沿着接触面上也有阻止相对滑动的摩擦力,这种摩擦力称为湿摩擦。物体浸没于液体或气体中,运动时除了受到湿摩擦力外,同时还有另一种效应,即在接触面上,物体受到液体或气体的压力,这压力的指向垂直于接触面,而且迎面所受压力大于背面所受压力,因而物体所受压力的总效果也是阻止物体的相对运动。由此而引起的阻力称为介质阻力,并且一般来说,介质阻力远远大于湿摩擦力。介质阻力和湿摩擦力的本质完全不同,但在物体相对于液体或气体的运动中,它们起着同样的作用。一般就将介质阻力归到湿摩擦力中,不去追究它们的本质。湿摩擦力不同于干摩擦力,没有相对运动也就没有湿摩擦力。所以对于湿摩擦现象,谈不上静摩擦力。既然不存在静摩擦,不论多小的力都能推动物体使其在液体或气体中运动。在干摩擦的情况下,小于最大静摩擦力的力根本不能推动物体。可以用竹竿撑船使船前进,却从来没看见过用竹竿撑汽车使汽车前进,就是这个道理。 一旦发生相对运动,湿摩擦力也随之出现。湿摩擦力的指向自然与物体相对运动速度指向相反。至于湿摩擦力的大小则随着相对运动的加快而增大。当相对运动比较慢的时候,湿摩擦力的大小大致与速度成正比;当相对运动比较快的时候,湿摩擦力大致与速度的平方成正比。 物体浸于液体或气体中,如以一定大小的力去推物体,由于不存在静摩擦,物体将逐渐动起来。物体一开始运动,湿摩擦力也就出现。起初,湿摩擦力比较小,还小于所加推力,物体仍然继续加速。物体速度加快,湿摩擦力随之而增大。最后,物体达到某个速度,其相应的湿摩擦力与所加推动力相等,物体保持这一速度而作匀速运动,这一速度称为极限速度。如物体的初速度超过极限速度,则湿摩擦力大于所加推动力,运动变慢,最后也是达到极限速度而作匀速运动。极限速度的大小显然与所加推动力的大小有关。在力学中湿摩擦力一般不去分析与研究,主要考虑的是干摩擦力。 三、摩擦力带来的影响 推桌子时,如果没有推动,则桌子有一个向右的运动趋势,同时桌子会受到一个向左的静摩擦力的作用,阻碍它的这种运动趋势,使桌子处于相对静止状态。传递带把货物往上运的过程中,如果没有摩擦,则货物要沿斜面下滑,所以物体有沿斜面下滑的趋势,所以传送带给了货物一个沿斜面向上的静摩擦力的作用,以阻碍货物向下滑的运动趋势。假如没有摩擦力,我们就不能走路了。因为既站不稳,也无法行走。比如在冰上步行,由于冰滑,走不多远就累得满头大汗。如果没有摩擦力的话,道路比冰还滑,那时人们只有伏倒在地上才会觉得好受些。假如没有摩擦力,螺钉就不能旋紧,钉在墙上的钉子就会自动松开而落下来。根据万有引力定律得知,一切物体就会在万有引力的作用下,全部聚集在了一起。家里的桌子,椅子都要聚在一起。给一点推力就都会散开来,并且会在地上滑过来,滑过去,根本无法使用。。。 如果没有摩擦和介质阻力,物体只发生动能和势能的相互转化时,机械能的总量保持不变。这就是摩擦力带来的影响。总之,影响摩擦力大小的因素是固定的,较少的,但其表现形式却十分多样化、复杂化、只有充分了解、控制这些因素,才能充分利用有益摩擦,避免有害摩擦,最大程度地改进生产,改善生活。 四、高端物理学中对摩擦力的产生的解释 至到今天,人们对摩擦力的本质认识得不是十分清楚。最早对摩擦进行实验研究的代表性人物是文艺复兴时期的达·芬奇。他对表面光滑程度不同的物质的摩擦作了比较,提出物体间的摩擦程度取决于物体表面粗糙程度的大小,表面愈粗糙,摩擦力愈大,即固体表面的凹凸程度是产生摩擦的根本原因。这一想法后来逐步被发展为一种学说——凹凸说。该学说认为:物体表面无论经过何种加工,都必然留下或大或小的凹凸,这种表面凹凸不平的物体相互接触,就必然产生摩擦。有人对此做过这样一个比喻:固体表面的接触,犹如把一列山脉翻过来盖在另一列山脉上一样。由于它们的相互咬合,所以只有把凸部破坏掉,才能使之滑动,这便是产生阻碍相对运动的摩擦力的基本原理。这种学说在很长一段时间里,受到许多人的支持。 对于摩擦力的另外一种看法是分子说。这是由英国的物理学家德萨古利埃提出的。他认为,摩擦力产生的原因是摩擦面上的分子力相互交错所致。该学说指出,物体表面愈是光滑,摩擦面愈是相互接近,表面分子力就愈大,这样摩擦力也就愈大。但是这种学说由于加工技术上的原因,一直没有得到实验的证实,因而入们对此很难接受。 进入20世纪以后,分子说逐渐得到很多人的支持。一个叫尤因的人首先指出因摩擦引起的能量损失,是因固体表面分子引力场的相互干涉所致,与凹凸程度无关。而另一名著名的学者哈迪,他进行了大量的实验,从而证明了分子说的正确性。他首先把两个物体表面研磨得极光滑,然后来做摩擦实验,结果发现,两物体磨得越光滑,它们之间的摩擦力就越少,但是这种光滑水平达到一定程度时,摩擦力反而有所增加,甚至两个光滑的金属面能“粘”在一起。而这正好证实了分子说的观点:当两个表面的分子互相进入彼此的分子间的引力圈时,两者间就能产生强烈的粘合作用,并以摩擦力的形式显示出来。哈迪的实验为分子说提供了有力的证据,分子说因而获得了广泛的承认,并被进一步发展为“粘合说”。但是,凹凸说并没有因分子说和粘合说的进展而被完全废弃,它与对立的分子说和粘合说都持之有据,言之有理。有人在这两者的基础上提出了包含凹凸说内容的综合性的现代粘合论。 (一)凹凸啮合说 从15世纪至18世纪,科学家们提出的一种关于摩擦本质的理论,啮合说认为摩擦是由于互相接触的物体表面粗糙不平产生的。两个物体接触挤压时,接触面上很多凹凸部分就相互啮合。如果一个物体沿接触面滑动,两个接触面的凸起部分相碰撞,产生断裂、摩损,就形成了对运动的阻碍。 (二)粘附说 这是继凹凸啮合说之后的一种关于摩擦本质的理论。最早由英国学者德萨左利厄斯于1734年提出,他认为两个表面抛得很光的金属,摩擦会增大,可以用两个物体的表面充分接触时它们的分子引力将增大来解释。 上世纪以来,随着工业和技术的发展,对摩擦理论的研究进一步深入,到上世纪中期,诞生了新的摩擦粘附论。 新的摩擦粘附论认为,两个互相接触的表面,无论做得多么光滑,从原子尺度看还是粗糙的,有许多微小的凸起,把这样的两个表面放在一起,微凸起的顶部发生接触,微凸起之外的部分接触面间有10-8 m或更大的间隙。这样,接触的微凸起的顶部承受了接触面上的法向压力。如果这个压力很小,微凸起的顶部发生弹性形变;如果法向压力较大,超过某一数值(每个凸起上约千分之几牛顿),超过材料的弹性限度,微凸起的顶部便发生塑性形变,被压成平顶,这时互相接触的两个物体之间距离变小到分子(原子)引力发生作用的范围,于是,两个紧压着的接触面上产生了原子性粘合。这时要使两个彼比接触的表面发生相对滑动,必须对其中的一个表面施加一个切向力,来克服分子(原子)间的引力,剪断实际接触区生成的接点,这就产生了摩擦。在现代摩擦理论中,还加进了静电作用。光滑表面摩擦过程中可能带上异号电荷,它们之间的静电作用,也是摩擦力的一个原因。 综上所述,摩擦现象的机理是复杂的,是必须在分子尺度内才能加以说明的。由于分子力的电磁本性,摩擦力说到底也是由于电磁相互作用引起的。 上述理论,已经否定了“物体表面越光滑,摩擦力越小”的说法。在非常平滑的物体表面之间,摩擦力是存在的。在教学中经常使用“表面光滑”,其含义是指无摩擦或摩擦因数等于零的表面,即没有摩擦力。这是教学中的一种约定,而并非真的是说两个表面光滑。在平玻璃板上推木块很容易,而在平玻璃板上推与木块相同质量的玻璃时就不容易了,这说明摩擦力增大了。

摩擦是一种极为普遍的现象,摩擦在实际生活中的例子也很多,如抓住物体需要摩擦,皮带传动需要摩擦,铁钉固定在墙上也要靠摩擦等等。但摩擦也会给我们的日常生活带来麻烦。例如:机器开动时,滑动部件之间因摩擦而浪费动力,还会使机器的部件磨损,缩短寿命。我们有时希望地球上从来就没有摩擦力,但如果真的没有摩擦力,人们的生活又会发生什么样的变化呢? 首先,也是最基本的,我们无法行动,脚与地面没有了摩擦,人们简直寸步难行。自行车车轮与地面间光滑,怎么才能开动呢?汽车还没发动就打滑,要么就是车子开起来了就停不下来,没有阻碍它运动的力,就只能无限滑下去最后与其它车相撞造成一起又一起的交通事故。飞机无论是活塞发动机或者涡轮喷气发动机都无法启动。第二,我们无法拿起任何东西,我们能拿东西靠的就是摩擦力,摩擦力来自于物体本身的凹凸和我们手上的指纹,这下好,物体光滑,我们也没有了指纹,想拿东西却和它作用不上,只能干着急,不仅拿不起东西,拧盖子扭把手,一系列的力的作用都无法进行;生活处处困难重重。想写字却拿不起笔,笔又不能和纸产生摩擦写字,想吃饭碗筷却拿不住,筷子怎么也夹不住菜,想喝水又提不起杯子;想穿衣服却拿不起穿不上;想工作劳动,但任何工具都一次次从手上滑落……这样的话,人安会多么无助。如果没有了摩擦,那么以后我们就再也不能够欣赏美妙的用小提琴演奏的音乐等,因为弓和弦的摩擦产生振动才发出了声音。总之,假如没有摩擦的存在,那么人们的衣、食、住、行都很难解决。如果衣食住行、学习、生活、工作、劳动等所有方面人们都因拿不起东西这个小小的因素困扰,人们还怎么有最基本的生存,更别提发展了。有资料说,某国家已研制出所谓的“超润滑材料”,可将它用到军事上,一旦战争暴发,将这种超润滑材料洒到对方的公路上、铁路的铁轨上和飞机起飞的跑道上,使对方的战车、运兵车、火车无法运行,军用物资无法运送;飞机不能起飞,失去制空权……用以谋求战争的胜利,这种超润滑材料所起的作用还真有点战略意义呢!我们可能幻想过如果没有摩擦,干什么事情都将不会有阻力,可等我们真正到了没有摩擦力的世界,才感受到摩擦力的重要。摩擦力有利也有蔽,我们应该尽量减少那些有害摩擦,学会利用摩擦造福人类。

可以研究一下走路

前轮向后,后轮向前从动轮和驱动轮在行驶的时候受到的力的作用效果不一样,从动轮受到的推力作用在轮子的轴线上,力的作用效果使轮子平动,如果地面绝对光滑,轮子就在地面上滑动,和地面接触的点相对于地面有向前运动的趋势,所以如果地面粗糙,受到的摩擦力向后,而且由于力的方向不通过轴心,所以拉动轮子转动驱动轮的轴由于驱动齿轮结构,驱动时受力的作用效果是使轮子转动,和地面接触的点相对于地面有向后运动的趋势,如果地面绝对光滑,轮子就会在原地打滑,如果地面粗糙,受到的摩擦力是向前的。简单的说就像人的行走,奔跑用钉子鞋一样有向后“耙地”,所以受到的摩擦力向前。最好分析的时候准备地排车轱辘,玩具四驱车结合实验最好! baidu搜索的解释:自行车与汽车相类似,当后轮吃到动力--自行车是用脚蹬踏脚板,汽车是靠发动机传来的动力,使后轮向前进方向转动,它们的轮子在与地面的接触处,相对于地面的运动方向是向后的,这样一来,地面对车轮产生了一个阻碍车轮向后滑动的而方向向前的摩察力,正因为有了这个摩察力,才使得自行车也好,汽车也好能够前进,如果你把车子的后轮填高让它离开地面,你用再大的劲去蹬踏板,后轮转得再欢,车子也不会前进半步,所以后轮受到的方向向前的摩擦力其实质是驱动车子前进的动力;那么前轮的情况如何呢?设想把前轮,用刹车制动,即不让它转,这样由于车身前进,它将跟车身一起向前滑动,于是前轮跟地面的接触点相对地面有向前滑动的趋势,这样的话,地面对前轮产生了一个阻碍车轮向前滑动的方向向后的摩擦力,也正因为前轮受到方向向后的摩擦力,所以前轮才转动了起来。再有,一旦后轮的动力切除,后轮的情况变得跟前轮的情况一样,所受的摩擦力方向马上变成了向后,对这一点也应引起注意。当被问起自行车在运动过程中,前后两轮受到的摩擦力方向如何时,有同学回答说两轮方向一致,且都向前,因为前后两轮转动方向一致,所以地面给它们的摩擦力都向前。此话乍说觉得有道理,可实际分析起来却并非如此。 要弄清这个问题,首先要正确理解摩擦力的概念。摩擦力产生于相互接触的有相对运动的两个物体间,且阻碍物体的这种相对运动。要使车轮与地面产生相对运动,首先必须有力作用在车轮上,这个力即脚施于踏板的力。正是由于这个力作用才使后轮逆时针转动,此时后轮与地面间产生相对运动,而摩擦力就是阻碍这种运动的。因此,后轮受到的摩擦力向前。 那么,前轮的情况怎样呢?不难看出,前轮是受后轮驱动才有向前运动的趋势的,正因为如此,地面才给前轮向后的摩擦力,由此可见,两轮受到摩擦力方向不同, 人们将后轮称为主动轮,将前轮称为从动轮。当被问起自行车在运动过程中,前后两轮受到的摩擦力方向如何时,有同学回答说两轮方向一致,且都向前,因为前后两轮转动方向一致,所以地面给它们的摩擦力都向前。此话乍说觉得有道理,可实际分析起来却并非如此。 要弄清这个问题,首先要正确理解摩擦力的概念。摩擦力产生于相互接触的有相对运动的两个物体间,且阻碍物体的这种相对运动。要使车轮与地面产生相对运动,首先必须有力作用在车轮上,这个力即脚施于踏板的力。正是由于这个力作用才使后轮逆时针转动,此时后轮与地面间产生相对运动,而摩擦力就是阻碍这种运动的。因此,后轮受到的摩擦力向前。 那么,前轮的情况怎样呢?不难看出,前轮是受后轮驱动才有向前运动的趋势的,正因为如此,地面才给前轮向后的摩擦力,由此可见,两轮受到摩擦力方向不同, 人们将后轮称为主动轮,将前轮称为从动轮。 推车时,前后轮转动都是因为受到地面给它们施加的摩擦力的作用,即前后轮都有相对地面向前运动的趋势,所以地面对前轮的摩擦力和对后轮的摩擦力都向后。 骑车时,人通过链条给后轮一个力,使后轮转动,假设地面光滑,则后轮会向前加速转动,说明后轮有相对地面向后转动的趋势,所以地面对后轮的摩擦力向前。前轮转动是因为受到力的作用,假设地面光滑,前轮就不会转动,所以地面对前轮的摩擦力向后。 (判断摩擦力方向时,可以假设接触面光滑,这时物体的运动方向就是它的运动趋势方向 。随便问一句, 你是不是谷城一中的。

相关百科
热门百科
首页
发表服务