学术论文百科

锅炉燃烧过程控制系统设计论文题目

发布时间:2024-07-06 19:56:10

锅炉燃烧过程控制系统设计论文

电气自动化毕业设计 西门子PLC控制类设计 欧姆龙PLC控制类设计 三菱PLC控制类设计 ·西门子S7-300PLC在六层变频调速电梯控制中的应用·西门子可编程控制器在直流调速系统中的应用·基于西门子PLC及其网络的电炉温度控制系统的设计·基于西门子PLC及其网络的直流调速系统的设计·基于西门子PLC的变频调速电梯控制系统的设计·基于PLC过程控制系统的研究·基于PLC过程控制系统设计·基于PLC的城市交通控制系统设计·PLC与组态软件在配料控制系统中的应用研究·全自动洗衣机控制系统·锅炉燃烧自动控制系统·污水净化物理处理PLC控制系统设计·基于PLC锅炉控制系统设计·四层电梯的PLC控制及组态

锅炉控制系统设计 锅炉控制系统设计 40页 8万字为了减少大气污染和节约能源,燃气锅炉正在逐步取代燃煤锅炉供电、供热,如热电厂既供热又发电等等,特别在大型冶金企业生产过程中产生的各种煤气,如高炉煤气、焦炉煤气、转炉煤气等现在基本上都已回收利用。由于各个企业经济、技术等条件的不同,能源的利用程度等也是有差别的。由于控制不当,有的甚至产生严重的大气污染。本设计是对一家石化厂燃煤蒸汽锅炉控制系统的改造。将变频调速技术与智能控制技术相结合,设计成以烧瓦斯为主、烧煤为辅的控制系统。针对燃烧过程的特性,借助变频器能无级调速和节能,并且有很好的动态跟踪的特性,可以实现输入的空气量自动跟踪燃气量和燃质的变化。再加上智能控制策略可以解决瓦斯气燃烧过程中的数学建模问题,就很好地实现了燃烧过程的优化。本设计还可以实现远程控制,保证了工作过程中的高效、及时和安全性。1 绪 论 1 锅炉控制研究的背景和意义 2 国内外蒸汽锅炉控制的研究状况及其发展 1 蒸汽锅炉控制系统的发展 22 总体方案 1 原蒸汽锅炉的状况 2 主控制对象和设备 1 锅炉系统 2 控制方案 3 下位机 1 功能 2 控制流程图 4 工艺流程 73 模糊控制的产生和应用 1 模糊控制的产生和发展 2 基本模糊控制器的设计 104 硬件配置 1 触摸屏 1 触摸屏的工作原理 2 Pro-face触摸屏 2 S7-200 PLC 1 机械结构特性 2 CPU226 3 EM235模块的特点 3 变频器 1 变频器的基本结构 2 EV 1000 3 EV 2000 4 其它相关硬件 1 接触器 2 中间继电器 3 火焰检测器 4 按钮 5 开关电源 205 硬件控制设计 1 出渣电机控制 2 引风风机控制 3 鼓风风机控制 4 送煤电机控制 5 其它相关硬件的控制 1 瓦斯阀 2 炉排控制 6 硬件间的通信 246 软件设计 1 触摸屏界面 2 PLC资源配置 1 PLC的输入/输出示意图 2 开关量输入/输出地址 3 PLC程序控制 1 程序控制流程略图 2 PLC程序 29结 论 35致 谢 36参考文献 37部分参考文献:张万忠 可编程控制器应用技术 北京 化学工业出版社于庆广 可编程控制器原理及系统设计 北京 清华大学出版社林小峰 可编程控制器原理及应用 北京 高等教育出版社钟肇新 可编程控制器原理及应用 广州 华南理工大学出版社 全文下载可以看我的微博 也可以QQ问我~

燃煤二氧化硫排放污染防治技术政策 1 总则 1.1 我国目前燃煤二氧化硫排放量占二氧化硫排放总量的90% 以上,为推动能源合理利用、 经济结构调整和产业升级,控制燃煤造成的二氧化硫大量排放,遏制酸沉降污染恶化趋势,防 治城市空气污染,根据《中华人民共和国大气污染防治法》以及《国民经济和社会发展第十个五 年计划纲要》的有关要求,并结合相关法规、政策和标准,制定本技术政策。 1.2 本技术政策是为实现2005年全国二氧化硫排放量在2000年基础上削减10% ,“两控 区”二氧化硫排放量减少20%,改善城市环境空气质量的控制目标提供技术支持和导向。 1.3 本技术政策适用于煤炭开采和加工、煤炭燃烧、烟气脱硫设施建设和相关技术装备的开 发应用,并作为企业建设和政府主管部门管理的技术依据。 1.4 本技术政策控制的主要污染源是燃煤电厂锅炉、工业锅炉和窑炉以及对局地环境污染有 显著影响的其他燃煤设施。重点区域是“两控区”,及对“两控区”酸雨的产生有较大影响的周 边省、市和地区。 1.5 本技术政策的总原则是:推行节约并合理使用能源、提高煤炭质量、高效低污染燃烧以及 末端治理相结合的综合防治措施,根据技术的经济可行性,严格二氧化硫排放污染控制要求, 减少二氧化硫排放。 1.6 本技术政策的技术路线是:电厂锅炉、大型工业锅炉和窑炉使用中、高硫份燃煤的,应安 装烟气脱硫设施;中小型工业锅炉和炉窑,应优先使用优质低硫煤、洗选煤等低污染燃料或其 它清洁能源;城市民用炉灶鼓励使用电、燃气等清洁能源或固硫型煤替代原煤散烧。 2 能源合理利用 2.1 鼓励可再生能源和清洁能源的开发利用,逐步改善和优化能源结构。 2.2 通过产业和产品结构调整,逐步淘汰落后工艺和产品,关闭或改造布局不合理、污染严重 的小企业;鼓励工业企业进行节能技术改造,采用先进洁净煤技术,提高能源利用效率。 2.3 逐步提高城市用电、燃气等清洁能源比例,清洁能源应优先供应民用燃烧设施和小型工 业燃烧设施。 2.4 城镇应统筹规划,多种方式解决热源,鼓励发展地热、电热膜供暖等采暖方式;城市市区 应发展集中供热和以热定电的热电联产,替代热网区内的分散小锅炉;热网区外和未进行集中 供热的城市地区,不应新建产热量在2.8 MW 以下的燃煤锅炉。 2.5 城镇民用炊事炉灶、茶浴炉以及产热量在O.7 MW 以下采暖炉应禁止燃用原煤,提倡使 用电、燃气等清洁能源或固硫型煤等低污染燃料,并应同时配套高效炉具。 2.6 逐步提高煤炭转化为电力的比例,鼓励建设坑口电厂并配套高效脱硫设施,变输煤为 输电。 2.7 到2003年,基本关停50 MW 以下(含50 MW)的常规燃煤机组;到2010年,逐步淘汰不 能满足环保要求的100 MW 以下的燃煤发电机组(综合利用电厂除外),提高火力发电的煤炭 使用效率。 3 煤炭生产、加工和供应 3.1 各地不得新建煤层含硫份大于3%的。矿井。对现有硫份大于3%的高硫小煤矿,应予关闭。对现有硫份大于3% 的高硫大煤矿,近期实行限产,到2005年仍未采取有效降硫措施、或 无法定点供应安装有脱硫设施并达到污染物排放标准的用户的,应予关闭。 3.2 除定点供应安装有脱硫设施并达到国家污染物排放标准的用户外,对新建硫份大于1.5 %的煤矿,应配套建设煤炭洗选设施。对现有硫份大于2% 的煤矿,应补建配套煤炭洗选 设施。 3.3 现有选煤厂应充分利用其洗选煤能力,加大动力煤的人洗量。 3.4 鼓励对现有高硫煤选煤厂进行技术改造,提高选煤除硫率。 3.5 鼓励选煤厂根据洗选煤特性采用先进洗选技术和装备,提高选煤除硫率。 3.6 鼓励煤炭气化、液化,鼓励发展先进煤气化技术用于城市民用煤气和工业燃气。 3.7 煤炭供应应符合当地县级以上人民政府对煤炭含硫量的要求。鼓励通过加入固硫剂等 措施降低二氧化硫的排放。 3.8 低硫煤和洗后动力煤,应优先供应给中小型燃煤设施。 4 煤炭燃烧 4.1 国务院划定的大气污染防治重点城市人民政府按照国家环保总局《关于划分高污染燃料 的规定>,划定禁止销售、使用高污染燃料区域(简称“禁燃区”),在该区域内停止燃用高污染燃 料,改用天然气、液化石油气、电或其他清洁能源。 4.2 在城市及其附近地区电、燃气尚未普及的情况下,小型工业锅炉、民用炉灶和采暖小煤炉 应优先采用固硫型煤,禁止原煤散烧。 4.3 民用型煤推广以无烟煤为原料的下点火固硫蜂窝煤技术,在特殊地区可应用以烟煤、褐 煤为原料的上点火固硫蜂窝煤技术。 4.4 在城市和其它煤炭调入地区的工业锅炉鼓励采用集中配煤炉前成型技术或集中配煤集 中成型技术,并通过耐高温固硫剂达到固硫目的。 4.5 鼓励研究解决固硫型煤燃烧中出现的着火延迟、燃烧强度降低和高温固硫效率低的技术 问题。 4.6 城市市区的工业锅炉更新或改造时应优先采用高效层燃锅炉,产热量7 MW 的热效率 应在80%以上,产热量<7 MW 的热效率应在75%以上。 4.7 使用流化床锅炉时,应添加石灰石等固硫剂,固硫率应满足排放标准要求。 4.8 鼓励研究开发基于煤气化技术的燃气一蒸汽联合循环发电等洁净煤技术。 5 烟气脱硫 5.1 电厂锅炉 5.1.1 燃用中、高硫煤的电厂锅炉必须配套安装烟气脱硫设施进行脱硫。 5.1.2 电厂锅炉采用烟气脱硫设施的适用范围是: 1)新、扩、改建燃煤电厂,应在建厂同时配套建设烟气脱硫设施,实现达标排放,并满足 SO2排放总量控制要求,烟气脱硫设施应在主机投运同时投入使用。 2)已建的火电机组,若So2排放未达排放标准或未达到排放总量许可要求、剩余寿命(按 照设计寿命计算)大于1O年(包括l0年)的,应补建烟气脱硫设施,实现达标排放,并满足8o2 排放总量控制要求。 3)已建的火电机组,若S 排放未达排放标准或禾达到排放总量许可要求、剩余寿命(按 照设计寿命计算)低于10年的,可采取低硫煤替代或其它具有同样SO2减排效果的措施,实现 达标排放,并满足So2排放总量控制要求。否则,应提前退役停运。 4)超期服役的火电机组,若SO2排放未达排放标准或未达到排放总量许可要求,应予以淘汰。 5.1.3 电厂锅炉烟气脱硫的技术路线是: 1)燃用含硫量2%煤的机组、或大容量机组(200 MW)的电厂锅炉建设烟气脱硫设施时, 宜优先考虑采用湿式石灰石一石膏法工艺,脱硫率应保证在90%以上,投运率应保证在电厂 正常发电时间的95%以上。 2)燃用含硫量<2%煤的中小电厂锅炉(<200 MW),或是剩余寿命低于10年的老机组 建设烟气脱硫设施时,在保证达标排放,并满足SO2排放总量控制要求的前提下,宜优先采用 半干法、干法或其它费用较低的成熟技术,脱硫率应保证在75%以上,投运率应保证在电厂正 常发电时间的95%以上。 5.1.4 火电机组烟气排放应配备二氧化硫和烟尘等污染物在线连续监测装置,并与环保行政 主管部门的管理信息系统联网。 5.1.5 在引进国外先进烟气脱硫装备的基础上,应同时掌握其设计、制造和运行技术,各地应 积极扶持烟气脱硫的示范工程。 5.1.6 应培育和扶持国内有实力的脱硫工程公司和脱硫服务公司,逐步提高其工程总承包能 力,规范脱硫工程建设和脱硫设备的生产和供应。 5.2 工业锅炉和窑炉 5.2.1 中小型燃煤工业锅炉(产热量<14 MW )提倡使用工业型煤、低硫煤和洗选煤。对配 备湿法除尘的,可优先采用如下的湿式除尘脱硫一体化工艺: 1)燃中低硫煤锅炉,可采用利用锅炉自排碱性废水或企业自排碱性废液的除尘脱硫工艺; 2)燃中高硫煤锅炉,可采用双碱法工艺。 5.2.2 大中型燃煤工业锅炉(产热量14 MW)可根据具体条件采用低硫煤替代、循环流化床 锅炉改造(加固硫剂)或采用烟气脱硫技术。 5.2.3 应逐步淘汰敞开式炉窑,炉窑可采用改变燃料、低硫煤替代、洗选煤或根据具体条件采 用烟气脱硫技术。 5.2.4 大中型燃煤工业锅炉和窑炉应逐步安装二氧化硫和烟尘在线监测装置。 5.3 采用烟气脱硫设施时,技术选用应考虑以下主要原则: 5.3.1 脱硫设备的寿命在15年以上; 5.3.2 脱硫设备有主要工艺参数(pH值、液气比和SO2出口浓度)的自控装置; 5.3.3 脱硫产物应稳定化或经适当处理,没有二次释放二氧化硫的风险; 5.3.4 脱硫产物和外排液无二次污染且能安全处置; 5.3.5 投资和运行费用适中; 5.3.6 脱硫设备可保证连续运行,在北方地区的应保证冬天可正常使用。 5.4 脱硫技术研究开发 5.4.1 鼓励研究开发适合当地资源条件、并能回收硫资源的技术。 5.4.2 鼓励研究开发对烟气进行同时脱硫脱氮的技术。 5.4.3 鼓励研究开发脱硫副产品处理、处置及资源化技术和装备。 6 二次污染防治 6.1选煤厂洗煤水应采用闭路循环,煤泥水经二次浓缩,絮凝沉淀处理,循环使用。 6.2 选煤厂的洗矸和尾矸应综合利用,供锅炉集中燃烧并高效脱硫,回收硫铁矿等有用组份, 废弃时应用土覆盖,并植被保护。 6.3 型煤加工时,不得使用有毒有害的助燃或固硫添加剂。 6.4 建设烟气脱硫装置时,应同时考虑副产品的回收和综合利用,减少废弃物的产生量和排 放量。 6.5 不能回收利用的脱硫副产品禁止直接堆放,应集中进行安全填埋处置,并达到相应的填 埋污染控制标准。 6.6 烟气脱硫中的脱硫液应采用闭路循环,减少外排;脱硫副产品过滤、增稠和脱水过程中产 生的工艺水应循环使用。 6.7 烟气脱硫外排液排人海水或其它水体时,脱硫液应经无害化处理,并须达到相应污染控 制标准要求,应加强对重金属元素的监测和控制,不得对海域或水体生态环境造成有害影响。 6.8 烟气脱硫后的排烟应避免温度过低对周边环境造成不利影响。 6.9 烟气脱硫副产品用作化肥时其成份指标应达到国家、行业相应的肥料等级标准,并不得 对农田生态产生有害影响。

锅炉燃烧过程控制系统设计论文题目

创新设计类1T卷扬机的设计6-C618数控车床的主传动系统设计CA6140车床经济型数控改装设计 CG2-150型仿型切割机的设计PLC控制自动送水系统设计JK5型垂直提升机设计 T6112镗床液压系统设计 Φ1200熟料圆锥式破碎机播种机的设计步进电机控制电路应用设计 21层电梯的控制 ( 电机的选择 人性化控制、舒适设计)垂直提升机2吨的设计 糕点切片机 垂直提升机(JM20吨)的设计 桥式起重机20t 设计及控制直线热矿条筛的设计直线振动输送机的设计轻型平动搬运机械手的设计(改进)取料机液压系统的设计双齿辊破碎机的设计送丝机的设计DQL斗轮堆取料机液压系统设计改造 CG2-150型仿型切割机的设计车床的部分改造 C616车床的横向伺服进给单元改造 C650卧式普通车床PLC电气改造 6-C618数控车床的主传动系统设计C616车床的横向伺服进给单元改造CA6140车床经济型数控改装设计PLC控制类C650卧式普通车床PLC电气改造PLC对XA6132型铣床的电气改造 PLC锅炉燃烧自动控制系统 M7475B型磨床的电气控制的PLC改造 T68型卧式镗床的PLC控制 印刷机的自动化(或无人)控制M7475B型磨床的电气控制的PLC改造PLC对XA6132型铣床的电气改造T68型卧式镗床的PLC控制制造、工艺设计类柴油机飞轮专用钻模 包括设备的选择车床整体式箱体的加工 设备选择 典型零件的数控铣床铣削编程与操作设计 其他单片机对步进电机的控制 T6112镗床液压系统设计单色胶印机的改进倒档齿轮自动焊 锅炉燃烧的自动控制(包括料的自动输送) DQL斗轮堆取料机液压系统设计改造LM型立磨液压力的监控系统基于PRO/E的二级减速器的设计及仿真基于PRO/E的绞肉机的设计及仿真基于PRO/E的齿轮轴的设计及齿轮油泵的装配基于PRO/E的齿轮油泵的三维设计

你好44、 关节型机器人腰部结构设计 45、 锅炉燃烧系统控制和汽包水位控制 46、 海工码头工字钢数控切割设备的设计 47、 护罩注塑模具及注塑模腔三维造型CAD CAM 48、 回转式固液分离机及螺旋输送机的设计 49、 活塞连杆组件装配自动输送线的设计(总体机械结构设计与压销机设计) 50、 机场行李输送系统自动控制设计 51、 基于PLC的工业机械手的设计 52、 基于PSOC的无刷直流电机智能控制系统的开发 53、 基于单片机机床插补控制模块的程序设计 54、 基于单片机的自动给水系统的设计 55、 基于虚拟仪器的震动信号采集与分析系统论文 56、 加工工件的自动装卸装置 57、 计算机与电子电路类毕业论文 58、 通用雕刻机的设计 59、 建筑用垂直运输机的设计 60、 精密智能测硫仪的设计 61、 卷扬机的设计 62、 考勤系统 63、 一级减速器的设计 64、 快速成型机的设计 65、 葵花脱粒机的设计 66、 螺旋输送机设计 67、 码垛机器人机械部分的设计 68、 棉花采集机械手的设计 69、 诺基亚6600手机前盖注塑模具设计与动画演示 70、 爬管式切割装置结构设计 71、 散料输送皮带机设计 72、 单段锤式破碎机的设计 73、 企业数据信息系统的设计 74、 8T内河港口门座起重机(中)机械部分二维设计 75、 气顶式太空电梯的设计 76、 气压冲击夯实机实体建模与仿真 77、 汽车U型螺栓拆装机的设计 78、 汽车行驶信息监控系统的设计 79、 汽车自动清洗系统的设计 80、 球轴承内圈超精研磨机的设计 81、 全封闭输送机的设计 82、 全路面起重机的设计 83、 人事管理系统 84、 深水作业光缆切割机的设计 85、 十字路口 交通灯控制系统的设计 86、 实现主轴分级无级变速的车床主传动系统的设计 87、 手机外壳注塑模计算机辅助设计与制造 88、 垂直循环式机械立体车库的设计 89、 数控车床六角刀架设计 90、 数字时钟 91、 双立柱堆垛机的设计 92、 水泥刨花板下涂膜机的设计 93、 四柱万能液压机整体设计 94、 四自由度搬运机器人的设计 95、 图书管理系统 96、 挖掘机工作过程仿真 97、 万能升降台铣床的设计 98、 网上选课系统(文本) 99、 往复裁板锯的设计 100、 物料包装线模型码垛机设计(堆垛机) 101、 物料包装线模型码垛推动机构的设计 102、 物料传送系统的设计 103、 物资管理系统 104、 箱体零件的工艺规程及夹具设计 105、 小型提升机的设计 106、 行星齿轮的注塑模具设计及其模腔三维造型CAD 107、 悬臂液压升降横移立体车库的设计 108、 旋风式选粉机的设计 109、 学生学籍管理系统 110、 烟厂车间温度湿度自动监测满意请采纳

一、现代机电控制技术应用方面(包括系统设计或设计、维修技术难点分析的论文)1.土高精度大屏幕LED日历时钟2.键多功能数显键盘制作3.交通灯控制系统4.电梯控制系统5.楼宇智能监控系统6.数字温度计7.多温度检测系统8.LCD数字显示体温计二、数控技术应用方面(包括典型零件数控工艺编制或数控加工难点、数控设备维修技术分析的论文)1.土某一副典型冲压模具数控加工工艺1.2某一副典型塑料模具数控加工工艺3.3某一个汽车零件数控加工工艺4.数控车床某一种故障分析与维修维护技术5.数控铣床某一种故障分析与维修维护技术6.加工中心某一种故障分析与维修维护技术7.多种数控加工技术的综合应用经验8.数控加-ET_艺与传统工艺的结合9.结合产学研岗位的数控技术应用的其他设计(论文)三、机电装置方面(包括系统设计或设计、维修技术难点分析的论文)1.土某专用机械传动系统设计2.某农产品加工机器设计3.某轻工产品加工机器设计4.某专用机器技术改造5.典型机床维修技术机电一体化毕业论文的写作过程:(一)选题毕业论文(设计)题目应符合本专业的培养目标和教学要求,具有综合性和创新性。本科生要根据自己的实际情况和专业特长,选择适当的论文题目,但所写论文要与本专业所学课程有关。(二)查阅资料、列出论文提纲题目选定后,要在指导教师指导下开展调研和进行实验,搜集、查阅有关资料,进行加工、提炼,然后列出详细的写作提纲。(三)完成初稿根据所列提纲,按指导教师的意见认真完成初稿。(四)定稿初稿须经指导教师审阅,并按其意见和要求进行修改,然后定稿。

锅炉控制系统设计 锅炉控制系统设计 40页 8万字为了减少大气污染和节约能源,燃气锅炉正在逐步取代燃煤锅炉供电、供热,如热电厂既供热又发电等等,特别在大型冶金企业生产过程中产生的各种煤气,如高炉煤气、焦炉煤气、转炉煤气等现在基本上都已回收利用。由于各个企业经济、技术等条件的不同,能源的利用程度等也是有差别的。由于控制不当,有的甚至产生严重的大气污染。本设计是对一家石化厂燃煤蒸汽锅炉控制系统的改造。将变频调速技术与智能控制技术相结合,设计成以烧瓦斯为主、烧煤为辅的控制系统。针对燃烧过程的特性,借助变频器能无级调速和节能,并且有很好的动态跟踪的特性,可以实现输入的空气量自动跟踪燃气量和燃质的变化。再加上智能控制策略可以解决瓦斯气燃烧过程中的数学建模问题,就很好地实现了燃烧过程的优化。本设计还可以实现远程控制,保证了工作过程中的高效、及时和安全性。1 绪 论 1 锅炉控制研究的背景和意义 2 国内外蒸汽锅炉控制的研究状况及其发展 1 蒸汽锅炉控制系统的发展 22 总体方案 1 原蒸汽锅炉的状况 2 主控制对象和设备 1 锅炉系统 2 控制方案 3 下位机 1 功能 2 控制流程图 4 工艺流程 73 模糊控制的产生和应用 1 模糊控制的产生和发展 2 基本模糊控制器的设计 104 硬件配置 1 触摸屏 1 触摸屏的工作原理 2 Pro-face触摸屏 2 S7-200 PLC 1 机械结构特性 2 CPU226 3 EM235模块的特点 3 变频器 1 变频器的基本结构 2 EV 1000 3 EV 2000 4 其它相关硬件 1 接触器 2 中间继电器 3 火焰检测器 4 按钮 5 开关电源 205 硬件控制设计 1 出渣电机控制 2 引风风机控制 3 鼓风风机控制 4 送煤电机控制 5 其它相关硬件的控制 1 瓦斯阀 2 炉排控制 6 硬件间的通信 246 软件设计 1 触摸屏界面 2 PLC资源配置 1 PLC的输入/输出示意图 2 开关量输入/输出地址 3 PLC程序控制 1 程序控制流程略图 2 PLC程序 29结 论 35致 谢 36参考文献 37部分参考文献:张万忠 可编程控制器应用技术 北京 化学工业出版社于庆广 可编程控制器原理及系统设计 北京 清华大学出版社林小峰 可编程控制器原理及应用 北京 高等教育出版社钟肇新 可编程控制器原理及应用 广州 华南理工大学出版社 全文下载可以看我的微博 也可以QQ问我~

锅炉燃烧过程控制系统设计论文选题

创新设计类1T卷扬机的设计6-C618数控车床的主传动系统设计CA6140车床经济型数控改装设计 CG2-150型仿型切割机的设计PLC控制自动送水系统设计JK5型垂直提升机设计 T6112镗床液压系统设计 Φ1200熟料圆锥式破碎机播种机的设计步进电机控制电路应用设计 21层电梯的控制 ( 电机的选择 人性化控制、舒适设计)垂直提升机2吨的设计 糕点切片机 垂直提升机(JM20吨)的设计 桥式起重机20t 设计及控制直线热矿条筛的设计直线振动输送机的设计轻型平动搬运机械手的设计(改进)取料机液压系统的设计双齿辊破碎机的设计送丝机的设计DQL斗轮堆取料机液压系统设计改造 CG2-150型仿型切割机的设计车床的部分改造 C616车床的横向伺服进给单元改造 C650卧式普通车床PLC电气改造 6-C618数控车床的主传动系统设计C616车床的横向伺服进给单元改造CA6140车床经济型数控改装设计PLC控制类C650卧式普通车床PLC电气改造PLC对XA6132型铣床的电气改造 PLC锅炉燃烧自动控制系统 M7475B型磨床的电气控制的PLC改造 T68型卧式镗床的PLC控制 印刷机的自动化(或无人)控制M7475B型磨床的电气控制的PLC改造PLC对XA6132型铣床的电气改造T68型卧式镗床的PLC控制制造、工艺设计类柴油机飞轮专用钻模 包括设备的选择车床整体式箱体的加工 设备选择 典型零件的数控铣床铣削编程与操作设计 其他单片机对步进电机的控制 T6112镗床液压系统设计单色胶印机的改进倒档齿轮自动焊 锅炉燃烧的自动控制(包括料的自动输送) DQL斗轮堆取料机液压系统设计改造LM型立磨液压力的监控系统基于PRO/E的二级减速器的设计及仿真基于PRO/E的绞肉机的设计及仿真基于PRO/E的齿轮轴的设计及齿轮油泵的装配基于PRO/E的齿轮油泵的三维设计

是不是和我一个班的啊,论文题目一样啊

燃煤二氧化硫排放污染防治技术政策 1 总则 1.1 我国目前燃煤二氧化硫排放量占二氧化硫排放总量的90% 以上,为推动能源合理利用、 经济结构调整和产业升级,控制燃煤造成的二氧化硫大量排放,遏制酸沉降污染恶化趋势,防 治城市空气污染,根据《中华人民共和国大气污染防治法》以及《国民经济和社会发展第十个五 年计划纲要》的有关要求,并结合相关法规、政策和标准,制定本技术政策。 1.2 本技术政策是为实现2005年全国二氧化硫排放量在2000年基础上削减10% ,“两控 区”二氧化硫排放量减少20%,改善城市环境空气质量的控制目标提供技术支持和导向。 1.3 本技术政策适用于煤炭开采和加工、煤炭燃烧、烟气脱硫设施建设和相关技术装备的开 发应用,并作为企业建设和政府主管部门管理的技术依据。 1.4 本技术政策控制的主要污染源是燃煤电厂锅炉、工业锅炉和窑炉以及对局地环境污染有 显著影响的其他燃煤设施。重点区域是“两控区”,及对“两控区”酸雨的产生有较大影响的周 边省、市和地区。 1.5 本技术政策的总原则是:推行节约并合理使用能源、提高煤炭质量、高效低污染燃烧以及 末端治理相结合的综合防治措施,根据技术的经济可行性,严格二氧化硫排放污染控制要求, 减少二氧化硫排放。 1.6 本技术政策的技术路线是:电厂锅炉、大型工业锅炉和窑炉使用中、高硫份燃煤的,应安 装烟气脱硫设施;中小型工业锅炉和炉窑,应优先使用优质低硫煤、洗选煤等低污染燃料或其 它清洁能源;城市民用炉灶鼓励使用电、燃气等清洁能源或固硫型煤替代原煤散烧。 2 能源合理利用 2.1 鼓励可再生能源和清洁能源的开发利用,逐步改善和优化能源结构。 2.2 通过产业和产品结构调整,逐步淘汰落后工艺和产品,关闭或改造布局不合理、污染严重 的小企业;鼓励工业企业进行节能技术改造,采用先进洁净煤技术,提高能源利用效率。 2.3 逐步提高城市用电、燃气等清洁能源比例,清洁能源应优先供应民用燃烧设施和小型工 业燃烧设施。 2.4 城镇应统筹规划,多种方式解决热源,鼓励发展地热、电热膜供暖等采暖方式;城市市区 应发展集中供热和以热定电的热电联产,替代热网区内的分散小锅炉;热网区外和未进行集中 供热的城市地区,不应新建产热量在2.8 MW 以下的燃煤锅炉。 2.5 城镇民用炊事炉灶、茶浴炉以及产热量在O.7 MW 以下采暖炉应禁止燃用原煤,提倡使 用电、燃气等清洁能源或固硫型煤等低污染燃料,并应同时配套高效炉具。 2.6 逐步提高煤炭转化为电力的比例,鼓励建设坑口电厂并配套高效脱硫设施,变输煤为 输电。 2.7 到2003年,基本关停50 MW 以下(含50 MW)的常规燃煤机组;到2010年,逐步淘汰不 能满足环保要求的100 MW 以下的燃煤发电机组(综合利用电厂除外),提高火力发电的煤炭 使用效率。 3 煤炭生产、加工和供应 3.1 各地不得新建煤层含硫份大于3%的。矿井。对现有硫份大于3%的高硫小煤矿,应予关闭。对现有硫份大于3% 的高硫大煤矿,近期实行限产,到2005年仍未采取有效降硫措施、或 无法定点供应安装有脱硫设施并达到污染物排放标准的用户的,应予关闭。 3.2 除定点供应安装有脱硫设施并达到国家污染物排放标准的用户外,对新建硫份大于1.5 %的煤矿,应配套建设煤炭洗选设施。对现有硫份大于2% 的煤矿,应补建配套煤炭洗选 设施。 3.3 现有选煤厂应充分利用其洗选煤能力,加大动力煤的人洗量。 3.4 鼓励对现有高硫煤选煤厂进行技术改造,提高选煤除硫率。 3.5 鼓励选煤厂根据洗选煤特性采用先进洗选技术和装备,提高选煤除硫率。 3.6 鼓励煤炭气化、液化,鼓励发展先进煤气化技术用于城市民用煤气和工业燃气。 3.7 煤炭供应应符合当地县级以上人民政府对煤炭含硫量的要求。鼓励通过加入固硫剂等 措施降低二氧化硫的排放。 3.8 低硫煤和洗后动力煤,应优先供应给中小型燃煤设施。 4 煤炭燃烧 4.1 国务院划定的大气污染防治重点城市人民政府按照国家环保总局《关于划分高污染燃料 的规定>,划定禁止销售、使用高污染燃料区域(简称“禁燃区”),在该区域内停止燃用高污染燃 料,改用天然气、液化石油气、电或其他清洁能源。 4.2 在城市及其附近地区电、燃气尚未普及的情况下,小型工业锅炉、民用炉灶和采暖小煤炉 应优先采用固硫型煤,禁止原煤散烧。 4.3 民用型煤推广以无烟煤为原料的下点火固硫蜂窝煤技术,在特殊地区可应用以烟煤、褐 煤为原料的上点火固硫蜂窝煤技术。 4.4 在城市和其它煤炭调入地区的工业锅炉鼓励采用集中配煤炉前成型技术或集中配煤集 中成型技术,并通过耐高温固硫剂达到固硫目的。 4.5 鼓励研究解决固硫型煤燃烧中出现的着火延迟、燃烧强度降低和高温固硫效率低的技术 问题。 4.6 城市市区的工业锅炉更新或改造时应优先采用高效层燃锅炉,产热量7 MW 的热效率 应在80%以上,产热量<7 MW 的热效率应在75%以上。 4.7 使用流化床锅炉时,应添加石灰石等固硫剂,固硫率应满足排放标准要求。 4.8 鼓励研究开发基于煤气化技术的燃气一蒸汽联合循环发电等洁净煤技术。 5 烟气脱硫 5.1 电厂锅炉 5.1.1 燃用中、高硫煤的电厂锅炉必须配套安装烟气脱硫设施进行脱硫。 5.1.2 电厂锅炉采用烟气脱硫设施的适用范围是: 1)新、扩、改建燃煤电厂,应在建厂同时配套建设烟气脱硫设施,实现达标排放,并满足 SO2排放总量控制要求,烟气脱硫设施应在主机投运同时投入使用。 2)已建的火电机组,若So2排放未达排放标准或未达到排放总量许可要求、剩余寿命(按 照设计寿命计算)大于1O年(包括l0年)的,应补建烟气脱硫设施,实现达标排放,并满足8o2 排放总量控制要求。 3)已建的火电机组,若S 排放未达排放标准或禾达到排放总量许可要求、剩余寿命(按 照设计寿命计算)低于10年的,可采取低硫煤替代或其它具有同样SO2减排效果的措施,实现 达标排放,并满足So2排放总量控制要求。否则,应提前退役停运。 4)超期服役的火电机组,若SO2排放未达排放标准或未达到排放总量许可要求,应予以淘汰。 5.1.3 电厂锅炉烟气脱硫的技术路线是: 1)燃用含硫量2%煤的机组、或大容量机组(200 MW)的电厂锅炉建设烟气脱硫设施时, 宜优先考虑采用湿式石灰石一石膏法工艺,脱硫率应保证在90%以上,投运率应保证在电厂 正常发电时间的95%以上。 2)燃用含硫量<2%煤的中小电厂锅炉(<200 MW),或是剩余寿命低于10年的老机组 建设烟气脱硫设施时,在保证达标排放,并满足SO2排放总量控制要求的前提下,宜优先采用 半干法、干法或其它费用较低的成熟技术,脱硫率应保证在75%以上,投运率应保证在电厂正 常发电时间的95%以上。 5.1.4 火电机组烟气排放应配备二氧化硫和烟尘等污染物在线连续监测装置,并与环保行政 主管部门的管理信息系统联网。 5.1.5 在引进国外先进烟气脱硫装备的基础上,应同时掌握其设计、制造和运行技术,各地应 积极扶持烟气脱硫的示范工程。 5.1.6 应培育和扶持国内有实力的脱硫工程公司和脱硫服务公司,逐步提高其工程总承包能 力,规范脱硫工程建设和脱硫设备的生产和供应。 5.2 工业锅炉和窑炉 5.2.1 中小型燃煤工业锅炉(产热量<14 MW )提倡使用工业型煤、低硫煤和洗选煤。对配 备湿法除尘的,可优先采用如下的湿式除尘脱硫一体化工艺: 1)燃中低硫煤锅炉,可采用利用锅炉自排碱性废水或企业自排碱性废液的除尘脱硫工艺; 2)燃中高硫煤锅炉,可采用双碱法工艺。 5.2.2 大中型燃煤工业锅炉(产热量14 MW)可根据具体条件采用低硫煤替代、循环流化床 锅炉改造(加固硫剂)或采用烟气脱硫技术。 5.2.3 应逐步淘汰敞开式炉窑,炉窑可采用改变燃料、低硫煤替代、洗选煤或根据具体条件采 用烟气脱硫技术。 5.2.4 大中型燃煤工业锅炉和窑炉应逐步安装二氧化硫和烟尘在线监测装置。 5.3 采用烟气脱硫设施时,技术选用应考虑以下主要原则: 5.3.1 脱硫设备的寿命在15年以上; 5.3.2 脱硫设备有主要工艺参数(pH值、液气比和SO2出口浓度)的自控装置; 5.3.3 脱硫产物应稳定化或经适当处理,没有二次释放二氧化硫的风险; 5.3.4 脱硫产物和外排液无二次污染且能安全处置; 5.3.5 投资和运行费用适中; 5.3.6 脱硫设备可保证连续运行,在北方地区的应保证冬天可正常使用。 5.4 脱硫技术研究开发 5.4.1 鼓励研究开发适合当地资源条件、并能回收硫资源的技术。 5.4.2 鼓励研究开发对烟气进行同时脱硫脱氮的技术。 5.4.3 鼓励研究开发脱硫副产品处理、处置及资源化技术和装备。 6 二次污染防治 6.1选煤厂洗煤水应采用闭路循环,煤泥水经二次浓缩,絮凝沉淀处理,循环使用。 6.2 选煤厂的洗矸和尾矸应综合利用,供锅炉集中燃烧并高效脱硫,回收硫铁矿等有用组份, 废弃时应用土覆盖,并植被保护。 6.3 型煤加工时,不得使用有毒有害的助燃或固硫添加剂。 6.4 建设烟气脱硫装置时,应同时考虑副产品的回收和综合利用,减少废弃物的产生量和排 放量。 6.5 不能回收利用的脱硫副产品禁止直接堆放,应集中进行安全填埋处置,并达到相应的填 埋污染控制标准。 6.6 烟气脱硫中的脱硫液应采用闭路循环,减少外排;脱硫副产品过滤、增稠和脱水过程中产 生的工艺水应循环使用。 6.7 烟气脱硫外排液排人海水或其它水体时,脱硫液应经无害化处理,并须达到相应污染控 制标准要求,应加强对重金属元素的监测和控制,不得对海域或水体生态环境造成有害影响。 6.8 烟气脱硫后的排烟应避免温度过低对周边环境造成不利影响。 6.9 烟气脱硫副产品用作化肥时其成份指标应达到国家、行业相应的肥料等级标准,并不得 对农田生态产生有害影响。

基于PID的锅炉温度控制系统设计 摘要:利用BP神经网络PID控制具有逼近任意非线性函数的能力,将神经网络PID与LabVIEW友好地人 机交互结合,实现对锅炉温度的控制仿真结果表明,该系统具有更小的超调量,并且更快地到达需要的控制温 度 关键词:BP神经网络;PID控制;温度控制 温度是锅炉生产蒸汽质量的重要指标之一,也是保证锅炉设备安全的重要参数同时,温度是影响锅 炉传热过程和设备效率的主要因素例如,在利用烟化炉对锌、铝冶炼过程中,如果温度过低,则还原速度 和挥发速度都会降低;但温度也不宜过高,否则在温度超过1 250℃时,可能形成Zn-Fe合金,有害于烟 化炉的作业,因此温度的精确测量和控制是十分必要的作为工业控制系统中的基本方式,PID控制对于 动态反应较缓慢的工业过程是非常好的控制规律[1]但是,当工业过程复杂,负荷变化很多,对象的纯滞 后又较大时常规PID控制达不到要求,为了解决上述问题系统采用PLC作为下位机,PC作为上位机,利 用labVIEW构造人机交互界面,应用神经网络PID对系统进行控制,设计锅炉温度的监制电路 1 系统总体设计 系统通过热电偶传感器检测出锅炉的温度,采集的信号经过A/D电路转换后传给PLC控制器PLC 根据数据做出判断,当锅炉处在升温阶段时对锅炉进行加热,当锅炉处于保温段时调用PID算法控制温 度满足输出要求同时PLC把数据传给PC机,PC机做出显示和报警具体电路如图1所示 1·1 主控芯片 S7-300PLC是西门子生产的模块式中小型PLC,提供了大量可以选择的模块,包括:PS 电源模块、CPU模块、IM接口模块、SM信号模块、FM功能模块和CP通信模块其中FM模块可实现高 速级数、定位控制、闭环控制功能;CP模块是组态网使用的接口模块常用的网络有PROFIBUS,工业以太 网及点对点连接网络这些模块可以通过U形总线紧密地固定在轨道上,一条导轨共有11个槽号:1号槽 至3号槽分别放置电源、CPU、IM模块4号槽至11号槽 可以随意放置其他模块 1·2 通信网络 一般的自动化系统都是以单元生产设备 为中心进行检测和控制,不同单元的生产设备间缺乏信息 交流,难以满足生产过程的统一管理西门子全集成自动 化解决方案顺应了当今自动化的需求,TIA从统一的组态 和编程、统一的数据管理及统一的通信三方面集成在一 起,从现场级到管理级,可以使用如工业以太网、PROFIB- BUS,MPI,EIB等通信网络根据设计的需要可以自由选择通信网络的配置[2] 1·3 温度传感器 热电偶是将2种不同的导体焊接起来组成闭合回路,当两端节点有温度差时,两端点 之间产生电动势,回路中会产生电流,这种现象称为热电效应热电偶温度传感器就是利用这一效应来工 作的在工业生产过程中被测点与基准节点之间的距离常常过远,为了节省热电偶材料,降低成本,通常采 用补偿导线的方式进行补偿[3] 1·4 显示界面 LabVIEW是美国NI公司推出的图形化工业控制测控开发平台,是目前应用最广、发展 最快、功能最强的图形软件集成开发环境LabVIEW具有界面友好、开发周期短等优点,广泛应用于仪器 控制、数据采集、数据分析和数据显示等领域所以,我们可以在计算机上采用它来实现对设备运行状态的 监控,同时也可以对各种数据进行采集显示系统的温度显示界面如图2所示 2 系统控制算法设计 PID控制是工业过程控制中最常用的一种控制方法, 但常规的PID控制在被控对象具有复杂的非线性时,如锅 炉的温度控制,不仅具有较大的纯延迟,而且模型也不确 定时,对于这种对象往往难以达到满意的控制效果BP神 经网络PID控制具有逼近任意非线性函数的能力,通过神 经网络自身的学习,找到最佳组合的PID控制参数,以满 足控制系统的要求具体的神经网络PID控制系统框图如 图3所示 设PID神经元网络是一个3层BP网络,包括2个输入节点,3个隐含层节点,1个输出接点输入节 点对应所选的系统运行状态量,如系统不同时刻的输入量和输出量等,必要时要进行归一化处理输出节 点分别对应PID控制的3个可调参数KP,KI,KD输入层的2个神经元在构成控制系统可分别输入系统 被调量的给定值和实际值由文献[4]和[5]中的前向算法可得到输出层的权系数计算公式为: 3结论 PID控制算法是一种易于实现而且经济实用的方法,具有很强的灵活性,但在被控制对象具有复杂的 非线性时,难以满足控制要求,而神经网络PID控制具有逼近任意非线性函数的能力,神经网络PID与 LabVIEW结合实现对锅炉温度的数据采集、控制和显示,提高了锅炉监控系统的效率 参考文献: [1] 邓洪伟供暖锅炉温度和压力的PLC控制[J]动力与电力工程,2008(18):93- [2] 张运刚西门子S7-300/400PLC技术与应用[M]北京:人民邮电出版社, [3] 何希才传感器及其应用实例[M]北京:机械工业出版社, [4] 何离庆过程控制系统与装置[M]北京:重庆大学出版社, [5] 舒怀林PID神经元网络及其控制系统[M]北京:国防工业出版社,

锅炉燃烧过程控制系统设计论文范文

燃烧的调整过热器、再热器温度控制结焦的分析和预防四管泄露的研究锅炉水位的调整控制

先说明你采用什么样的自动控制系统,在说明控制系统所需的元器件,报价。控制系统中需要计算的部分要进行计算,画出自控流程图,所需工件的三视图。

基于PID的锅炉温度控制系统设计 摘要:利用BP神经网络PID控制具有逼近任意非线性函数的能力,将神经网络PID与LabVIEW友好地人 机交互结合,实现对锅炉温度的控制仿真结果表明,该系统具有更小的超调量,并且更快地到达需要的控制温 度 关键词:BP神经网络;PID控制;温度控制 温度是锅炉生产蒸汽质量的重要指标之一,也是保证锅炉设备安全的重要参数同时,温度是影响锅 炉传热过程和设备效率的主要因素例如,在利用烟化炉对锌、铝冶炼过程中,如果温度过低,则还原速度 和挥发速度都会降低;但温度也不宜过高,否则在温度超过1 250℃时,可能形成Zn-Fe合金,有害于烟 化炉的作业,因此温度的精确测量和控制是十分必要的作为工业控制系统中的基本方式,PID控制对于 动态反应较缓慢的工业过程是非常好的控制规律[1]但是,当工业过程复杂,负荷变化很多,对象的纯滞 后又较大时常规PID控制达不到要求,为了解决上述问题系统采用PLC作为下位机,PC作为上位机,利 用labVIEW构造人机交互界面,应用神经网络PID对系统进行控制,设计锅炉温度的监制电路 1 系统总体设计 系统通过热电偶传感器检测出锅炉的温度,采集的信号经过A/D电路转换后传给PLC控制器PLC 根据数据做出判断,当锅炉处在升温阶段时对锅炉进行加热,当锅炉处于保温段时调用PID算法控制温 度满足输出要求同时PLC把数据传给PC机,PC机做出显示和报警具体电路如图1所示 1·1 主控芯片 S7-300PLC是西门子生产的模块式中小型PLC,提供了大量可以选择的模块,包括:PS 电源模块、CPU模块、IM接口模块、SM信号模块、FM功能模块和CP通信模块其中FM模块可实现高 速级数、定位控制、闭环控制功能;CP模块是组态网使用的接口模块常用的网络有PROFIBUS,工业以太 网及点对点连接网络这些模块可以通过U形总线紧密地固定在轨道上,一条导轨共有11个槽号:1号槽 至3号槽分别放置电源、CPU、IM模块4号槽至11号槽 可以随意放置其他模块 1·2 通信网络 一般的自动化系统都是以单元生产设备 为中心进行检测和控制,不同单元的生产设备间缺乏信息 交流,难以满足生产过程的统一管理西门子全集成自动 化解决方案顺应了当今自动化的需求,TIA从统一的组态 和编程、统一的数据管理及统一的通信三方面集成在一 起,从现场级到管理级,可以使用如工业以太网、PROFIB- BUS,MPI,EIB等通信网络根据设计的需要可以自由选择通信网络的配置[2] 1·3 温度传感器 热电偶是将2种不同的导体焊接起来组成闭合回路,当两端节点有温度差时,两端点 之间产生电动势,回路中会产生电流,这种现象称为热电效应热电偶温度传感器就是利用这一效应来工 作的在工业生产过程中被测点与基准节点之间的距离常常过远,为了节省热电偶材料,降低成本,通常采 用补偿导线的方式进行补偿[3] 1·4 显示界面 LabVIEW是美国NI公司推出的图形化工业控制测控开发平台,是目前应用最广、发展 最快、功能最强的图形软件集成开发环境LabVIEW具有界面友好、开发周期短等优点,广泛应用于仪器 控制、数据采集、数据分析和数据显示等领域所以,我们可以在计算机上采用它来实现对设备运行状态的 监控,同时也可以对各种数据进行采集显示系统的温度显示界面如图2所示 2 系统控制算法设计 PID控制是工业过程控制中最常用的一种控制方法, 但常规的PID控制在被控对象具有复杂的非线性时,如锅 炉的温度控制,不仅具有较大的纯延迟,而且模型也不确 定时,对于这种对象往往难以达到满意的控制效果BP神 经网络PID控制具有逼近任意非线性函数的能力,通过神 经网络自身的学习,找到最佳组合的PID控制参数,以满 足控制系统的要求具体的神经网络PID控制系统框图如 图3所示 设PID神经元网络是一个3层BP网络,包括2个输入节点,3个隐含层节点,1个输出接点输入节 点对应所选的系统运行状态量,如系统不同时刻的输入量和输出量等,必要时要进行归一化处理输出节 点分别对应PID控制的3个可调参数KP,KI,KD输入层的2个神经元在构成控制系统可分别输入系统 被调量的给定值和实际值由文献[4]和[5]中的前向算法可得到输出层的权系数计算公式为: 3结论 PID控制算法是一种易于实现而且经济实用的方法,具有很强的灵活性,但在被控制对象具有复杂的 非线性时,难以满足控制要求,而神经网络PID控制具有逼近任意非线性函数的能力,神经网络PID与 LabVIEW结合实现对锅炉温度的数据采集、控制和显示,提高了锅炉监控系统的效率 参考文献: [1] 邓洪伟供暖锅炉温度和压力的PLC控制[J]动力与电力工程,2008(18):93- [2] 张运刚西门子S7-300/400PLC技术与应用[M]北京:人民邮电出版社, [3] 何希才传感器及其应用实例[M]北京:机械工业出版社, [4] 何离庆过程控制系统与装置[M]北京:重庆大学出版社, [5] 舒怀林PID神经元网络及其控制系统[M]北京:国防工业出版社,

锅炉用水控制系统设计论文

改进汽包水位测量和保护系统  几年来,各火力发电厂积极组织落实《防止电力生产重大事故的二十五项要求》(以下简称《要求》)中第八项“防止锅炉汽包满水和缺水事故”和《国家电力公司电站锅炉汽包水位测量系统配置、安装和使用若干规定(试行)》(以下简称《规定》),但在组织落实的过程中遇到了许多问题,造成各电厂在实际落实中的殊多困难,因而各显神通,使目前国内各电厂的汽包水位测量和保护系统配置以及逻辑设计差异很大,存在很大的事故隐患。这些困难和差异的存在,主要原因是现行的汽包水位测量系统技术落后、测量误差很大、独立测点数量少所造成的。目前,汽包水位多采用云母水位计、电接点水位计、射线液位计、液位开关、单室平衡器、双室平衡容器等。这些水位计从一次传感转换的原理看,归纳为两种,一种是连通器原理水位计,另一种是差压水位计原理。众所周知,目前的水位计根据上面两种原理设计而生产,采用的工艺结构简单,无法克服因温度变化所造成的测量误差,其误差之大,严格说不能满足锅炉安全经济运行。一、下面就两种原理的水位计所产生的测量误差作简要分述:(一) 连通器原理如图一所示:不考虑饱和蒸汽(Δh、r//、g)的静压影响有公式(1)成立Hr/g≈h×r×g    --- (1) H≈h×r/ r/ Δh=H- h≈(r/ r/ -1)×h --- (2)g:重力加速度r:测量筒内水柱的平均密度r/:汽包内饱和水密度r//:饱和蒸汽密度h:测量筒内水位Δh:汽包内水位与测量筒内水位差由公式(2)可以看出,Δh与饱和水的密度r/,测量筒内水柱的平均密度r,以及水位的高低h有关(这里r永远大于或等于r/,当r≥r/时,r r/≥1,Δh就存在),当r=r/时,Δh=0,否则Δh永远存在,而饱和水的密度r/与汽包压力有关,测量筒内水柱的平均密度r与汽包压力、水位的高低、测量筒的结构、测量筒所处环境的温度和风向、取样管的通径等均有关系,而且影响非常大,这样r存在着很大的不确定性。同一台无盲区云母水位计的两个测量管中的水位在0水位附近相差10-20mm,水位越高误差越大,水位越低误差越小。这一误差只是一个环境温度和结构不同而造成的,那么试想,在汽包不同位置取样,不同结构的连通式水位计在汽包0水位时,其相差要控制在30 mm之内是困难的。由于这一原因,无论你的云母水位计、牛眼水位计、电接点水位计、射线液位计、液位开关如何好,其测量结果也是误差很大而不真实的。通过几个电厂的测试,200MW机组在额定工况时, 云母水位计比实际水位偏低110mm左右,而亚临界的锅炉偏低150mm左右,各电厂为克服这一误差而将电接点零点和云母水位计标尺下移 : 50、60、80(670t/h)100、120、150(亚临界炉)mm不等。下移的结果只能是汽包水位在零水位时减少测量误差,在高低水位时,却增大了误差,尤其是在低水位停炉值附近,水位显示反而要偏高。这样干扰了运行人员的事故水位判断,不利于运行人员有效控制锅炉安全运行,在低压时,误差较大,不利于启炉和低负荷时运行监视。(二) 差压水位计(单室平衡容器)如图二所示:无论是教科书,还是部颁文件,更严重的是实际应用中的单室平衡容器,也是如此安装。下面就单室平衡容器的测量误差作一简要分析:当ΔP2=0时,有公式(3)成立H=(r- r//)L-ΔP1 ---(3)   g(r/ - r// )式中ΔP1:变送器所测参比水柱与汽包内水位的差压值(ΔP2=0时)L:参比水柱高度r:参比水柱的平均密度ΔP2:正、负压侧仪表管路的附加差压这里饱和蒸汽和饱和水的密度(r//、r/)是汽包压力P的单值非线性函数,通过测量汽包压力可以得到,而参比水柱中水的平均密度r具有很大的不确定性是造成测量误差的主要原因之一。图二所示,单室平衡容器的顶部始终是饱和蒸汽、与其相接触的水面为饱和水。单室平衡容器除了向外辐射传热外,它还将沿着金属壁以及水向下导热传热,参比水柱的温度分布如图三所示:参比水柱的温度分布t=f(x)是参比水柱的指数函数,其函数关系与筒体的结构、表管的管径、环境温度、风向、保温情况等有关,具有很大的不确定性。秦皇岛热电厂 “16”事故后,通过对#3炉平衡容器和管子外表面温度测试,采用保守的计算误差为+108mm。该厂水位计的量程是±400 mm,保护定值为-384 mm,炉干锅爆管后,CRT仍然显示-327 mm,测量误差是造成汽包水位低保护拒动的主要原因。(汽水侧取样管距离L为850 mm)附:“秦皇岛热电厂#4炉汽包水位低保护拒动专题分析报告”从#3炉的试验记录看,参比水柱表管保温与不保温相差(A-C)最少45mm,最大85 mm,平均相差67 mm,而加了伴热和保温的相差(B-C)最少125 mm,最大172 mm,平均相差142 mm,可见参比水柱温度变化,对水位实际测量结果的影响是相当大的。加保温不伴热的表管(A)虽然只比裸露的表管(C)高17℃,但平衡容器下端相当一段距离表管的温度要远高于不保温的表管。附:“石横电厂300MW机组汽包水位计情况汇总”石横电厂实验的情况与秦皇岛热电厂一样,说明如图二所示,单室平衡容器的安装方式是不可取的,必须予以改正。双室平衡容器众所周知,它是部分机械补偿,只是在一定压力和测量范围内误差较小,而在锅炉启、停炉和事故时,误差很大,不能使用。在《要求》和《规定》中,不再提倡使用,在此不再赘述。同时,建议取消双波纹差压水位计。综上所述,目前所安装的汽包水位计测量随机误差很大,根本不能满足《要求》和《规定》中所要求“当各水位计偏差大于30 mm时,应立即停炉处理”以及“锅炉水位保护未投入,严禁启动锅炉”,它也是各电厂难以落实《要求》和《规定》的主要原因。由上述可知,造成测量误差的主要原因是连通器测量筒内的水温(水密度)和平衡容器参比水柱水温(水密度)所引起的。解决了水温问题也就克服了由于水温变化不确定所造成的较大随机误差。二、下面简要介绍一下几种新的汽包水位计工作原理,它们成功的解决了由温度引起的测量误差大问题,使汽包水位得以准确测量成为可能。(一)内置式单室平衡容器如图四所示:H=L-ΔP /g(r/ - r// )  --- (4)(4)式中L、g为常数,r/ - r//是汽包压力的单值函数,ΔP是变送器测得的差压值,故此消除环境温度对参比水柱密度的影响,从而克服了这一误差。图五(附彩图)图五是通辽电厂#1炉安全门误动后的一组数据曲线,3为汽包压力,6为原单室平衡容器的水位曲线,7为内置式单室平衡容器的水位曲线,从图中可看出,安全门动作的干扰对内置式平衡容器的影响不大,与原单室容器一样,可测量结果相差却很大。(二) GJT高精度取样电极测量筒  如图六所示GJT高精度取样电极测量筒采用综合技术,实现全工况真实取样、高可靠性测量传感。1 高精度取样利用传热学原理使水样平均温度逼近汽包内饱和水温,取样水柱逼近汽包内水位,使电极如同在汽包内部一样检测,实现水位高精度测量。1 加热水样在测量筒内部设置笼式内加热器,利用饱和汽加热水样。加热器由不同传热元件构成。加热方式有内热和外热。内热既有水柱径向传热元件,又有轴向分层传热元件。加热器上口敞开,来自汽侧取样管的饱和蒸汽(a)进入加热器,像汽笼一样加热水柱。传热方式与结构设计既有利于增加加热面积(GJT设计可做到加热面积是筒体散热面积的4倍),又有利于热交换。饱和蒸汽(a)在加热器中放出汽化潜热,其凝结水由排水管引至下降管,以下降管与汽包为一侧,以排水管与加热器为另一侧构成连通器。裸露的排水管中平均水温低于下降管水温,水位则低于下降管侧。连通点标高愈低,压力愈高,水位差愈大。为保证排水管侧水位不会升至加热段而减小加热面积,要求连通点选在汽包中心线下15m。这样可使压力为0 MPa时,排水管中水位在加热器之下5 m,当压力低于0 MPa时水位才会接近加热器底部影响加热,而0 MPa以下压力时的取样误差很小,可忽略不计。所以,加热系统能适应锅炉变参数运行,保证全工况真实取样。2 加大水样中饱和水含量设置冷凝器使新型测量筒比普通测量筒高出许多,来自汽侧取样管的饱和蒸汽在冷凝器中冷凝,大量凝结水(b)(温度为饱和水温)沿壁而下,分区收集,由布置在饱和蒸汽中的数根疏水管在不同深度疏至水样中,将低温水样置换出测量筒。亦可认为新凝结水加大了水样中饱和水含量,提高了水样平均温度。高倍率置换可有效提高水柱温度,并使之上下均匀分布。之所以采用笼式内加热器,是为利用汽侧筒体散热产生的凝结水,进一步减小取样误差和加强水质自优化功能。以上2种技术的综合使进入水样的热流密度比普通测量筒大得多,热平衡过渡过程时间短。当压力变化引起汽包内水位变化时,热流密度随之变化,水样温度变化快,故取样对压力变化动态响应快。大量凝结水的生成,在水侧取样管中形成连续流向汽包的高温水流。当汽包水位大幅度升高时返回测量筒的水样少,且水温与饱和温度相差小,故对汽包水位升高的取样动态误差小。笼式内加热器在测量筒内占有相当大比例的空间,与旧型测量筒相比,水柱截面积小得多,故对汽包水位变化响应快。GJT测量筒内有稳定热源,故对取样管道长度、截面、测量筒现场布置等安装要求宽松于旧型测量筒。2 高可靠性测量传感1 准确取样的稳定性与可靠性利用加热器和冷凝器在一次取样环节消除汽包压力和环境温度的影响,其可靠性与稳定性显然是旧型测量筒所不及的。2 水质自优化设置冷凝器除提高水样温度外,更重要的作用是实现取样水质自优化。大量纯净水进入水室,将水质较差的旧水样压至汽包,形成自动净化置换回路,水样为“活水”。设计置换倍率可高达 20次/h,故水质自优化功能强。GJT测量筒的独特优点是:(1)免排污。水质好,减轻了对电极的污染。初装彻底冲洗后,在3~4a大修周期内免排污,既减少了维护量,又可避免热态排污加快电极寿命损耗,减少由此而引起的保护切投次数。(2)可增大水样电阻率,利于减小工作电流,减缓电极的电腐蚀而延长寿命。(3)水质稳定,水样上下水阻率分布较均匀,利于提高二次仪表测量的稳定性,不必经常调整仪表临界水阻。(4)水侧取样管中有连续流向汽包的高温水流,当汽包水位大幅度升降时,电极承受的热冲击较小,减少了电极的热应力,延长了电极的使用寿命。3 电极装置组件特点RDJ型柔性自密封电极(图七所示)组件,是GJT测量筒另一重要外形技术特征。电极安装机械密封是利用了阀门盘根原理,筒内压力增加密封紧力,自紧力与压力成正比,压力愈高,自紧力愈大。加上安装预紧力,有足够紧力保证密封不泄漏。柔性密封材料可耐1000℃高温,承压强度高,回弹性能与热紧性能好。电极带有拆卸螺纹,拆卸方便,一般女工即可操作。而国内外现用电极组件的密封紧力随压力增加而减小,需要预紧力很大,加之采用硬靠机械密封,密封可靠性低,热紧性能差。RDJ电极安装有2°~3°仰角,可防止电极挂水与水渍。图七所示:4 大量程全工况电极传感器GJT-2000B汽包水位大量程全工况电极传感器是GJT-2000A型测量筒性能的扩展。测量筒在水位事故被迫停炉时可监测到汽包内具体水位事故值,以便事故分析与处理。在启、停炉时减少过渡时间。表一 GJT-2000高精度取样电极传感器水样温度测量数据 测量次序 1 2 3 4+300点汽侧温度/℃ 8 4 4 70点水侧温度/℃ 0 8 2 6-300点水侧温度/℃ 0 1 3 8水侧平均温度/℃ 0 9 2 8汽包压力/Mpa 50 64 负荷/MW 270 303 测量时间 17:00 17:30 23:00降负荷时 23:00降负荷时表一是山西阳光发电有限责任公司(阳泉二电厂)2号1025t/h亚临界汽包炉,于2002年11月12日用I级K型热电偶实测电接点筒内汽、水温度的一组数据,由表一可以看出测量筒内水温与汽温一致,说明筒内的水确实为饱和水。(三)WDP无盲区低偏差双色水位计 如图八所示WDP系列无盲区低偏差双色水位计,该产品利用汽包内的饱和蒸汽给水位计表体加热,阻止表计内的饱和水向外传热,再利用冷凝器内冷凝后的饱和水给表计内的水置换,加速表计内的水循环,从而使表计内的水温接近饱和水温度,水位计内的水位在任何时候、任何工况下,接近汽包内的真实水位,达到正确监视汽包水位的目的。利用冷凝器内冷凝后的饱和水置换表计内的水,加速了表计内的循环,由于置换的新水为饱和蒸汽冷凝后的饱和水,含盐低,这样减少了云母片结垢,无形中延长了表计的排污周期。由于表体温度变化小,从而减少了表计的热变形,也就减少了表体的泄漏,延长了表体的检修周期,降低了维护费用。WDP系列无盲区低偏差双色水位计的优点:● 低偏差(由于加入饱和汽伴热管和饱和水置换,使表体内的水温接近汽包内的水温,所以能够真实反映汽包中的水位)● 无盲区(有两侧水位管的五窗云母,使得水位只要在五窗云母上下边界内,水位即可清晰可见)● 使用寿命长,泄漏率低,维护费用低三种新型的汽包水位测量仪表解决了汽包水位测量误差大的关键技术问题,使准确测量汽包水位成为现实。马头电厂应用GJT测量筒运行了3年后,测量筒零位与汽包内水线中心实测相差23mm。图九是2003年10月26日,用红外线测温仪对通辽电厂1号670t/h超高压汽包炉就地水位计外表面温度的测量值,由该图可以看出GJT测量筒上、下温度是一致的,WDP水位计下端温度低于上部、安装于通辽的是没有冷凝器,这样水冷凝得少,下部散热快,温度自然低,因而有偏差,加上冷凝器以后问题可以解决,而旧电接点测量筒上、下温差达98℃,旧云母水位计上、下相差63℃。表三:通辽电厂1号炉启炉和安全门定跎时实测记录表 由于多数电厂规程要求,以云母水位计为准,而实际上水位计“0”水位时,实际水位高于汽包0水位100 mm左右,长期高水位运行,造成蒸汽品质变差,河南省电力试验研究所对焦作电厂3号炉(670t/h)进行实测,饱和蒸汽电导在-75mm时平均值为7μS/cm,而在+100mm时平均值5μS/ cm,解决了测量误差大的问题,不仅提高了汽包水位监视的准确性和可靠性,从而也解决了汽包实际长期高水位运行,改善了蒸汽品质,提高机组效率,减少锅炉和汽轮机的锈蚀,延长了主设备的寿命。三、汽包水位测量取样点不足《规定》1条要求“每个水位测量装置都应具有独立的取样孔。不得在同一取样孔上并联多个水位测量装置,以避免相互影响,降低水位测量的可靠性”。然而殊多汽包测孔数较少,尤其是新近几年生产的锅炉只有四对。“汽包水位多测孔专利技术”,利用汽包原有内孔较大的测孔接管(母管)作为取样过道,将新增取样管插进汽包内部,在和母管取样口有一定距离的地点取样,从而不需在汽包上开孔而增加独立取样测孔。一般情况下可增加4对汽、水测孔。增孔风险小、施工方便、易管理、工期短。该技术还可以将在汽包中段的测点移至汽包封头,为监视主表和保护仪表提供优质取样点。成功的解决了水位测点不足的问题,满足了《规定》1条的要求。四、汽包水位保护目前国内各电厂的汽包水位保护系统设计差异很大,超高压锅炉未投保护的多,亚临界炉单用差压水位信号的多,少数电厂用水位开关或几种水位计作逻辑来带保护,其原因是各厂重视程度和技术理解不一致,国家没有一个较好的统一标准所造成的。下面就汽包水位保护的设计谈谈我们的看法。1不宜单独用变送器信号来带汽包水位保护,理由有五点。第一、水位测量信号不稳定,影响因素太多,不可靠。(如图二中所示)仪表管路由于保温伴热,其他热源的干扰等都会造成ΔP2的附加差压出现,使之产生较大的测量误差,而这一误差易被人忽视。第二、 水位测量转换的环节太多,因此故障点也多,使测量不可靠。第三、 由于外部干扰如电源消失,仪表管路和变送器冻结,表管、阀门泄漏等,都会使测量信号发生问题,而不可靠。第四、 有背《火力发电厂设计技术规程》DL5000-94“热工保护用的接点信号宜来自一次仪表”之规定。第五、 “危险集中”,《规定》要求只配了三台差压水位信号,该信号即用于调节、显示,又用于保护,有背“保护用信号应独立取样”的设计原则。安徽某电厂一台1025t/h,强制循环炉,因一台变送器损坏泄漏,喷射到相邻变送器,使两台变送器指示偏高,给水自动减水,造成汽包水位低,而低水位保护拒动,后人工打闸停机,检查炉水循环泵汽蚀。秦皇岛热电厂“16”事故低水位保护拒动,都充分证明单独使用差压水位信号作为保护是不可取的。2 汽包水位保护建议采用2台电接点水位计和三台差压选中信号做三取二逻辑,用于汽包水位保护,理由有五点。第一、 在《要求》的1条中提到“水位计的配置应采用两种以上的工作原理共存的配置方式,以保证在任何运行工况下锅炉汽包水位的正确监视。”说明一种原理测量的水位信号不够可靠,因此用于保护的信号更因如此。第二、 过去的电接点水位计、测量误差大,易泄露,而GJT测量筒成功的解决了这两大难题,最早一台是1996年安装在淮阴电厂,至今已有一百多台安装在十几家电厂不同容量的锅炉上,取得了理想的使用效果。第三、 既满足了《火力发电厂设计技术规程》的要求,又兼顾了《要求》和《规定》两文件的要求,更科学合理。第四、 使危险分散,提高了保护的可靠性。第五、 汽包水位保护不同于其它热工保护,其控制有四:自动调节。热工信号报警和连锁。其事故演变是一个相对较缓的过程,有运行人员监视调整。水位保护系统最后把关。因此从设计上考虑可相对“稳妥”点,防止保护不必要的误动。3 不宜采用水位开关来作保护,理由是:汽包正常运行很难达到保护动作值,平时又没有传动实验的手段,若水位开关内部出现锈蚀、卡涩,不能动作很难发现,易造成保护拒动,存在着很大的事故隐患。朝阳电厂大修时发现故障,现取消水位开关保护。五、测量系统改造过程中出现的问题1水侧取样问题案例一、某电厂为了解决水位测量之间偏差大的问题,将四台变送器的水侧取样管引至汽包中间,虽然解决了水位计之间的偏差问题,但带来了水位测量误差大的问题,锅炉启动后,差压水位比GJT电接点水位计和WDP云母水位计低80~110mm。将其中一台差压水位计的水侧取样管改用一台云母水位计的取样管代替,误差消除,三种水位计之间的偏差在30 mm以内。案例二、某电厂一台俄制双炉膛分布下降(71根下降管)汽包炉,测量系统改造后,机组负荷在180 MW以下时,各水位计之间偏差符合要求,当负荷高于180MW时,水位在±50mm内变化,各水位计之间偏差符合要求,当水位在±150mm内变化时,差压水位计在±80mm内变化相差很大,分析为水侧取样干扰所致,有检修机会进一步完善。案例三、某电厂一台俄制双炉膛分布下降(71根下降管)汽包炉,安装2台GJT电接点测量筒,启炉后出现较大测量误差,将测点移至汽包端头后,问题得到了解决。2 仪表管路敷设案例一、在最初的改造中,GJT电接点水位计的排水管,是利用原双室平衡容器的排水管,而排水管与仪表管路并行排列,造成测量误差在140mm左右,重新排列后,误差消除。3 GJT全量程电接点水位计的汽侧取样点不可取在集汽导管上案例一、安装在某电厂的一台GJT全量程电接点水位计的汽侧取样点选择在集汽导管上,虽然采用了全压取样方式,但仍造成水位显示偏高500mm左右,分析集汽导管内的全压要小于汽包内压力,其原因是汽包内的汽水喷淋孔板造成了压损,因此使测量电接点筒显示偏高,有停机机会将取样点改在对空排汽管上,问题可以解决。4仪表阀门杆必须水平安装案例一、某电厂有一差压水位计信号偏差较大,波动也大,检查发现是取样阀门的门杆垂直安装所致,改正后,问题迎刃而解。分析是阀门低进高出所致,相当于仪表管理出现了“凸”起现象,造成“汽塞”。《要求》和《规定》中也有明确要求。六、汽包水位事故案例1958年10月31日,某厂#2、#1炉(230t/h)因仪表电源中断,汽、水流量、水位等仪表指示不正常,司炉误判断、误操作,锅炉满水并进入汽机。1976年10月18日,某厂#3炉水位自调失灵,水位升高至满水,虽开事故放水门和过热器疏水门为时已晚,造成4台(母管制)汽轮机蒸汽带水被迫停机。1977年1月3日,某电站#6炉(苏制430t/h)处于启动工况,DDZ差压水位计失灵,自调不能投入靠手动调整水位。70MW负荷时,差压水位计与云母水位计指示基本一致,电接点水位计高50~100mm。90MW负荷时锅炉严重缺水,电接点水位计负值最大,差压水位计-270mm,造成水冷壁爆管。1977年1月12日,某厂#2炉(HG410t/h)处于投油点火启动工况带供暖负荷,差压水位计不准确,失去作用,靠司水手拨水位指导运行。因措施执行不力,误监视、误操作,锅炉严重缺水损坏。误判断、误操作,锅炉满水。1979年11月8日,某厂9台炉8台机运行。3号炉检修后启动阶段60%负荷时,自调失灵,水位高报警,水位高+160mm,改手动调节,并准备开事故放水门和开排污门时,锅炉严重满水,使主蒸汽母管过水,导致8台炉、7台机停运。1980年2月8日,某厂#2炉(HG670t/h)在负荷由150MW升至160MW时,燃烧不稳,水位波动大,运行监视失误,误判断、误操作,锅炉先满水后干锅严重损坏。水冷壁爆管6根另有9根损坏。水冷壁鳍间焊口裂缝,后墙6米多,前墙20米多。1982年7月25日,某厂#2炉(苏制670t/h)在大修后启动中2-8MPa时,锅炉负荷60t/h,差压水位表及差压水位记录表不能投入运行,电接点水位计因测量筒水脏亦不正常作为参考,靠司水手拨水位调整水位。司水监视云母水位计技术不熟练,未能准确报告水位,加之给水流量表因小信号切除无指示,调整给水操作失误,导致锅炉长时间缺水,烧坏249根水冷壁管,构成重大损坏事故。1982年10月4日,某厂#4炉(SG400t/h)检修后启动过程中,负荷有40MW猛增到70MW时,由于给水调节操作不当,造成严重缺水,173根水冷壁管烧坏,抢修20天。1983年6月17日,某厂#7炉(HG670t/h)因省煤器泄漏临检停炉,因没有大量程水位计指导补水上水操作,操作失误,致使锅炉满水升压,直到锅炉过热器安全门动作才被发现。由于电动主汽门不严,给水进入汽机,造成大轴弯曲重大事故。1990年1月25日,河南新乡电厂2号锅炉满水事故。在锅炉灭火后恢复过程中,给水调节门漏流大,未能有效控制水位,汽包满水,汽温急剧下降,汽缸等静止部件变形,汽机大轴弯曲、轴系断裂。1997年12月16日,秦皇岛热电厂#4锅炉断水、低水位保护和后备保护失效的情况下,由于云母水位计量程小,电接点水位计误显示有水,差压水位计正误差大,人员判断错误,致使锅炉较长时间在断水状态下运行,导致水冷壁多处爆管,大面积过热损坏,更换了所有的水冷壁管,构成重大事故。2002年底,安徽某电厂(1025t/h)强制循环汽包炉,因一台变送器损坏泄漏,喷射到相邻变送器,使两台变送器指示偏高,给水自动减水,造成汽包水位低,而低水位保护拒动,后人工打闸停机,检查炉水循环泵汽蚀。在我们对各电厂的改造过程中,了解到许多电厂在历史上都发生过汽包水位高低所造成的事故,造成了不同程度的后果。综上所述,改造汽包水位测量和保护系统势在必行。

你好!比如时下新兴的CFB锅炉。偏向运行的话不妨从如何提高运行经济性,不妨搜集一些国内外新型锅炉发展方向和现状的资料写毕业论文用的吧,这要看你的专业方向了、减少事故等方面入手,偏向设计的话,加上自己的想法就是一篇很不错的论文如有疑问,请追问。

去幸福校园网站看看,那的论文很多  1引 言  1热水供热的研究对象  人们的日常生活中需要大量的热能,尤其在冬季。现在在北方大多家庭取暖用热水集中供暖,而在淮阴等江苏地区冬季室内一般用空调或不提供供暖设备,靠自然光照和多穿些衣服来驱寒。近年来随着人们的生活水平的提高,越来越多的家庭购买空调或电取暖器用来冬季室内供暖。然而空调和电取暖器的耗电量太大及它们采用热风供暖在取暖时,室内空气太干燥等缺点。所以一般家庭买了,但用的很少,造成资源的浪费。经调查热水供暖同样适用于江苏地区,一些家庭已经安置了热水锅炉加散热片取暖系统。随着经济技术的提高和人们的需求增加,热水供热工程已经悄然在江苏大地上发展起来。  2本设计的供暖系统的型式和主要内容  热能的供应是通过供热系统完成,本设计供暖系统包括三个组成部分:  (1) 热源:热水锅炉。  (2) 供热管网:输送热媒的供热管路系统。  (3) 热用户:直接使用或消耗热能的室内供暖系统。  根据三个主要组成部分的相互关系来分,供暖系统可分为局部供暖系统和集中供暖系统。本设计是热源、供热管网和热用户三个主要部分在构造上连在一起的局部供暖系统。主要内容为房间的设计和供暖系统设计热负荷以及燃气热水锅炉的设计。

相关百科
热门百科
首页
发表服务