学术论文百科

电气化铁路供电系统论文题目有哪些及答案

发布时间:2024-07-03 06:02:16

电气化铁路供电系统论文题目有哪些及答案

电气化铁道电能质量综合控制研究摘 要:作为典型的非平衡负载,电气化铁道的牵引负载给公共电网带来的谐波、负序和无功等电能质量问题不容忽视。静止无功补偿装置(SVC)是一种减小甚至消除无功、谐波以及其他电能质量问题的有效方法。以静止无功补偿器(SVC)为基础,对电气化铁道的电能质量问题的综合控制进行研究。关键词:电气化铁道;电网;电能质量;综合控制1 前言中国的电气化铁道总里程已经突破2·4万公里,跃居世界第二。电气化铁道具有运载能力强、行车速度快、节约能源、对环境污染小等优点,在现代国民经济发展中起着举足轻重的作用。但是,由于电气化铁道牵引负载所具有的随即波动性和不对称性,其给公共电网带来的诸如负序电流、谐波以及无功功率等电能质量问题也引起了极大的关注。研究如何利用有效手段治理电气化铁道牵引负载所带来的一系列电能质量问题,确保电网中其他电力设备的安全经济运行具有重大意义。2 电气化铁道牵引供电系统2·1 概述我国的动力供电电网电压一般为110kV或者220kV,通过牵引变压器转换为27·5kV作为牵引动力机车的供电。现在普遍流行的牵引变压器种类主要有单相牵引变压器、Y-D11牵引变压器、阻抗匹配牵引变压器、Scott变压器等。我国电气化铁道采用工频交流50Hz三相供电单相用电,其负荷牵引电力机车的功率大,速度、负载状况变化频繁,且具有不对称的特性,导致牵引电网具有功率因数低、谐波含量高、负序电流大等特点,不但自身损耗大,而且对公共电网及铁路沿线的其他电力设备也带来严重危害,必须采取有效措施加以治理[1]。2·2 单相变压器牵引供电网采用单相牵引变压器的牵引供电系统拓扑结构如图1所示[2]。单相接线牵引网采用单相变压器供电,供电方式又分为单相接线方式和V-V接线方式。单相接线牵引变压器的原边跨接于三相电力系统中的两相;副边一端与牵引侧母线连接,另一端与轨道及接地网连接。牵引变压器的容量利用率高,但其在电力系统中单相牵引负荷产生的负序电流较大,对接触网的供电不能实现双边供电。所以,这种结线只适用于电力系统容量较大,电力网比较发达,三相负荷用电能够可靠地由地方电网得到供应的场合。另外,单相牵引变压器要按全绝缘设计制造。而单相V-V接线将两台单相变压器以V的方式联于三相电力系统每一个牵引变电所都可以实现由三相系统的两相线电压供电。两变压器次边绕组,各取一端联至牵引变电所两相母线上。而它们的另一端则以联成公共端的方式接至钢轨引回的回流线。这时,两臂电压相位差60°接线,电流的不对称度有所减少。这种接线即通常所说的60°接线。2·3 三相Y-D11变压器牵引供电网采用三相Y-D11牵引变压器的牵引供电系统拓扑结构如图2所示[2]。三相Y-D11结线牵引变压器的高压侧通过引入线按规定次序接到110kV或220kV,三相电力系统的高压输电线上;变压器低压侧的一角c与轨道,接地网连接,变压器另两个角a和b分别接到27·5kV的a相和b相母线上。由两相牵引母线分别向两侧对应的供电臂供电,两臂电压的相位差为60°,也是60°接线。因此,在这两个相邻的接触网区段间采用了分相绝缘器。3 SVC静止型动态无功补偿装置3·1 SVC的发展静止型动态无功补偿装置SVC是一种先进的高压电网动态功率因数补偿装置。它通过提高功率因数来节约大量的电能,同时又起到减少电网谐波、稳定电压、改善电网质量(环境)的作用。20世纪70年代以来,以晶闸管控制的电抗器(TCR)、晶闸管投切的电容器(TSC)以及二者的混合装置(TCR+TSC)等主要形式组成的静止无功补偿器(SVC)得到快速发展。SVC可以看成是电纳值能调节的无功元件,它依靠电力电子器件开关来实现无功调节。SVC作为系统补偿时可以连续调节并与系统进行无功功率交换,同时还具有较快的响应速度,它能够维持端电压恒定3·2 SVC的工作原理及在电网中应用TCR+TSC型SVC的基本拓扑结构见图3。它由1台TCR、2台TSC以及2个无源滤波器组成,在实际系统中,TSC及无源滤波的组数可根据需要设置。TCR的工作原理是通过控制与相控电抗器连接的反并联晶闸管对的移相触发脉冲来改变电抗器等效电纳的大小,从而输出连续可变的无功功率。图3中两个晶闸管分别按照单相半波交流开关运行,通过改变控制角α可以改变电感中通过的电流。α的计量以电压过零点为基准,α在90°~180°之间可部分导通,导通角增大则电流基波分量减小,等价于用增大电抗器的电抗来减小基波无功功率。导通角在90°~180°之间连续调节时电流也从额定到0连续变化,TCR提供的补偿电流中含有谐波分量[3]。TSC的工作原理是根据负载感性无功功率的变化通过反并联晶闸管对来切除或者投入电容器。这里,晶闸管只是作为投切开关,而不像TCR中的晶闸管起相控作用。在实际系统中,每个电容器组都要串联一个阻尼电抗器,以降低非正常运行状态下产生的对晶闸管的冲击电流值,同时避免与系统产生谐振。用晶闸管投切电容器组时,通常选取系统电压峰值时或者过零点时作为投切动作的必要条件。由于TSC中的电容器只是在两个极端的电流值之间切换,因此它不会产生谐波,但它对无功功率的补偿是阶跃的。TCR和TSC组合后的运行原理为:当系统电压低于设定的运行电压时,根据需要补偿的无功量投入适当组数的电容器组,并略有一点正偏差(过补偿),此时再利用TCR调节输出的感性无功功率来抵消这部分过补偿容性无功;当系统电压高于设定电压时,则切除所有电容器组,只留有TCR运行。4 电网电能质量综合控制与治理4·1 谐波抑止与无功补偿利用SVC动态无功补偿装置对牵引供电系统的谐波和无功进行综合治理的关键是SVC最大无功补偿量的确定和滤波器支路的设计[3]。SVC最大无功补偿量Qsvc应该和设计线路牵引负荷的大小相适应,应该按电气化铁道牵引负荷的最大有功需求以及补偿后对装设地点功率因数或在最大无功冲击时的最大电压损耗的要求来确定,具体可以按照式(1)、(2)来计算。QSVC=(tanφ1-tanφ2)Pmax(1)式中,φ1、φ2分别为补偿前后110kV电源测功率因数角;Pmax为电铁负荷最大有功需求。QSVC=Qfmax-ΔU%Xs(2)式中,Qfmax为装设地点最大无功冲击;ΔU%为装设地点最大电压损耗要求;Xs为系统阻抗。要想达到理想的谐波抑止效果,必须综合考虑FC滤波支路的设计,既要保证装置的安全运行,又要达到预计的理想效果。在实际设计中,首先需要根据供电臂中所含的谐波分量来确定FC滤波支路的组成。由于在电力牵引负荷的谐波中, 3、5、7次谐波占了很大的比重,所以FC滤波支路一般由3、5、7次单调谐滤波器构成。当最大无功补偿容量和滤波支路的组成确定后,如何将需补无功容量合理分配到各滤波支路中,这是非常重要的问题。如果各滤波支路的容量分配不合理,一方面会使设备安装总容量偏大,另一方面有可能因为某此滤波回路补偿功率偏小而发生过负荷,对设备安全运行造成影响。一些著名的电气公司采用的一些算法如下[6]:如西门子公司的无功功率补偿按式(3)分配Qc(h)=QSVCIh/h∑Ih/h(3)式中,Qc(h)是第h次滤波支路分配的补偿容量;Ih为供电臂第h次谐波电流。BBC电气公司按照式(4)分配无功功率Qc(h)=QSVC∑Ih(4)AEG电气公司则按照式(5)分配无功Qc(3)∶Qc(5)∶Qc(11)∶Qc(13)=2∶2∶1∶1 (5)式中,Qc(3)、Qc(5)、Qc(11)、Qc(13)分别为第3、5、11、13次滤波支路分配的补偿容量。4·2 负序电流补偿牵引电力机车产生的大量负序电流给电网中其他的电力设备的安全、经济运行带来极大影响。SVC静止动态无功补偿装置在补偿负序和末端电压上有着相当高的效率。工程应用上可以选择在电网系统和负荷上都安装SVC[5]。在电网系统端安装应用SVC来补偿负序电流的原则是参照斯坦梅茨法则(Steinmetz′s laws)。不管采用哪一种牵引变压器,负序补偿的实现分为如下两步:(1)电力因数修正。通过安装电容器件,使得每相负荷都为电阻性。(2)参照斯坦梅茨法则(Steinmetz′s laws),AB相的电阻性负荷G,与BC相的电容性负荷G/ 3以及CA相的电感性负荷G/ 3互相对称。电流环路图和相位图分别如图4、5所示:从图5可以明显看到线电流I·A,I·B,I·C是对称且正序的,BC相和CA相之间的阻抗负载也可以做到类似的对称,因此系统中的所有负序电流都可以被补偿而消除。现在问题的关键是如何随着牵引负荷的起伏动态地控制补偿需要的电容和电感器组。急于数字信号处理器(DSP)的固定电容(FC)和晶闸管控制的电抗器(TCR)的组合得以广泛应用,如图6所示。得益于DSP对数据信息的快速处理,补偿所需的电容和电感参数可以被快速、精确计算得到。5 结论与展望本文提出的基于静止动态无功补偿装置(SVC)的电气化铁道牵引电网电能质量综合控制与治理原理与方案具有重要的工程意义。电气化铁道的电能质量是一个突出且严峻的课题与难题,要求我们不断探求新的综合补偿方法,来综合控制与治理影响电能质量的无功、谐波、负序等因素,以提高电网电能质量,确保电网安全、经济运行。参考文献[1] 李群湛电气化铁道并联综合补偿及其应用[M]北京:中国铁道出版社, [2] TB/10009-2005铁路电力牵引供电设计规范[S][3] 王兆安谐波抑止和无功功率补偿[M]北京:机械工业出版社,[4] 铁道部电气化工程局电气化勘测设计院电气化铁道设计手册牵引供电系统[M]北京:中国铁道出版社, [5] 安鹏,张雷,刘玉田电气化铁道对电力系统安全运行的影响及对策[J]山东电力技术, 2005, (4): 16-[6] 马千里动态无功补偿装置在牵引变电所的应用[J]电气化铁道, 2008(4)

引 言燃料电池发电是将燃料的化学能直接转换为电能的过程,其发电效率不受卡诺循环的限制,发电效率可达到50%一70%,被誉为二十一世纪重要的发电新技术之一。目前,国际上磷酸型燃料电池已进入商业化,其它几种燃料电池预计在2005年一2010年200KW一将全面进入商业此。对于这种蓬勃发展的发电新技术,国家电力公司应该采取怎样态度?要不要发展?怎样发展?这些问题亟待解决。一 燃料电池发电的技术特点和应用形式1技术特点燃料电池发电是在一定条件下使燃料(主要是H2)和氧化剂(空气中的02)发电化学反应,将化学能直接转换为电能和热能的过程。与常规电池的不同:只要有燃料和氧化剂供给,就会有持续不断的电力输出。与常规的火力发电不同,它不受卡诺循环的限制,能量转换效率高。与常规发电相比燃料电池具有以下优点:(1)理论发电效率高,发展潜力大。燃料电池本体的发电效率可达到50一60%,组成的联合循环发电系统在(10—50)MW规模即可达到70%以上的发电效率。(2)污染物和温室气体排放量少。与传统的火电机组相比,C02排出量可减少40%一60%。Nox(<2ppm)和SOx(<1ppm)排放量很少。(3)小型高效,可提高供电可靠性。燃料电池的发电效率受负荷和容量的影响较小。(4)低噪音。在距发电设备3英尺(1.044米)处噪音小于60dB(A)。(5)电力质量高。电流谐波和电压谐波均满足IEEE519标准。(6)变负荷率高。变负荷率可达到(8%一lO%)/min,负荷变化的范围大(20一120)。(7)燃料电池可使用的燃料有氢气、甲醇、煤气、沼气、天然气、轻油、柴油等。(8)模块化结构,扩容和增容容易,建厂时间短。(9)占地面积小,占地面积小于lm2/KW。(10)自动化程度高,可实现无人操作。总之,燃料电池是一种高效、洁净的发电方式,既适合于作分布式电源,又可在将来组成大容量中心发电站,是2l世纪重要的发电方式。制约燃料电池走向大规模商业化的主要因素是:高价格和寿命问题。2燃料电池的应用形式(1)现场热电联供,常用的容量为200KW一1MW。(2)分布式电源,容量比现场用燃料电池大,约(2—20)MW。(3)基本负荷的发电站(中心发电站),容量为(100—300MW)。(4)燃料电池还可用于100W—100KW多种可移动电源、便携式电源、航空电源、应急电源和计算机电源等。二 为什么要在我国电力系统发展燃料电池发电技术1采用燃料电池发电是提高化石燃料发电效率的重要途径之一以高温燃料电池组成的联合循环发电系统,可使发电效率达到60—75(LHV),这一目标将在2005年左右实现。预计到2010年,发电效率可超过72%。煤气化燃料电池联合循环(IGFC)的发电效率可达到62%以上。以燃料电池组成的热电联产机组的总热效率可达到85%以上。燃料电池本体的发电效率基本不随容量的变化而变化,这使得燃料电池既可用作小容量分散电源,又可用于集中发电应用范围广泛。2燃料电池发电可有效地降低火力发电的污染物和温室气体排放量燃料电池发电中几乎没有燃烧过程,NOx排放量很小,一般可达到(O.139一0.236)kg/MW?h以下,远低于天然气联合循环的NOx排放量(1kg/MW?h一3kg/MW.h)。由于燃料进入燃料电池之前必须经过严格的净化处理,碳氢化合物也必须重整成氢气和CO,因此,尾气中S02、碳氢化合物和固态粒子等污染物排量也污染物的含量非常低。与常规燃煤发电机组相比,C02的排放量可减少40%一60.在目前CO2分离和隔绝技术尚不成熟的状况下,通过提高能源转换效率减少CO2排放是必然的选择。3采用燃料电池发电可提高供电的灵活性和可靠性燃料电池具有高效率、低污染、低噪声、模块化结构、体积小、可靠性高等突出特点,是理想的分布式电源。与目前一些可做为分布式电源的内燃机相比,燃料电池的发电效率更高、污染更低。在250KW—lOMW的功率范围内,具有与目前数百兆瓦中心电站相当甚至更高的发电效率。作为备用电源的柴油发电机由于污染和噪声大不宜在未来的城市中应用。低温燃料电池不仅发电效率高,而且启动快、变负荷能力强,是很好的备用电源。现代社会对供电的可靠性和环境的兼容性要求越来越高,高效、低污染的分布式电源系统日益受到重视。近年来美国、加拿大、台湾相继发生因自然灾害或人为因素造成的大面积停电,许多重要用户长期不能恢复供电,给社会和经济造成了巨大的损失。北约轰炸南联盟,使电力系统严重受损。这些由不可抗力引起的电网破坏无不使人引发出一个重要的思考:提高我国电力系统供电的可靠性和供电质量,虽然主要依靠电网的改造和技 术革新,但如果在电网中有许多分布式电源在运转,供电的可靠性将会大大提高。 对于象军事基地、指挥中心、医院、数据处理和通讯中心、商业大楼、娱乐中心、政府要害部门、制药和化学材料工业、精密制造工业等部门,对电力供应的可靠性和质量要求很高。目前采用的备用电源效率低、污染严重、电压波动大。而采用燃料电池作为分布式电源向这些部门提供电力,会使供电的可靠性和电力质量大大提高。他们将是燃料电池发电技术的第一批用户。对于边远地区,负荷小且分散,若建设完善的电网,不仅投资大,线损大,且电网末端地区电力质量不稳定。对于这些区域若辅助燃料电池发电的分布式电源,更能有效地解决这些地区的电力供应问题。燃料电池的重量比功率和体积比功率均比常规的小型发电装置大,因此,它也是理想的移动电源,适合于各种建设工地、野外作业和临时急用。4发展燃料电池发电技术是提高国家能源和电力安全的战略需要美国已将燃料电池发电列为国家安全关键技术之一。美、日之所以能在燃料电池技术方面处于世界领先地位,与国家从战略高度予以组织、资助和推动密不可分。在目前复杂的国际环境下,高技术的垄断日趋严重,掌握清洁高效发电的高新技术对未来国家的能源和电力安全具有重要的战略意义,而燃料电池发电技术,正是这种高效清洁的高新发电技术之一。燃料电池突出的优点,以及发达国家竟相投入巨资研究开发的行动,足以说明燃料电池发电技术在21世纪会起到越来越重要的作用。5发展燃料电池发电技术是国电公司“加强技术创新,发展高科技,形成高新技术产业”的需要燃料电池发电技术是电力工业中的高新技术,己受到普遍重视。美国燃料电池发电技术的研究开发主要由美国能源部组织实施,其中一个重要的目的就是形成新的高技术产业,为美国的经济注入新的活力。日本的东京电力公司、关西电力公司及其它公用事业单位是日本燃料电池开发及商业化的主要承担者和推动者,其目的也是为电力公司注入新的经济增长点以获得巨大的经济效益和社会效益。国家电力公司处在完成“两型”、“两化”、“进入世界500强”的历史时刻,恰逢党中央国务院号召全国各行业“加强技术创新,发展高科技,实现产业化”的有利时机,在国家电力公司内不失时机地进行燃料电池发电技术的研究开发是非常必要的。采取引进、消化、吸收和再创新的技术路线,以高起点,在尽可能短的时间内初步形成自主产权的燃料电池发电关键技术,不仅可以使我国在燃料电池发电技术领域与国外的差距大大缩小,而且,对国家电力公司进行发电系统的结构调整、技术创新、形成高新技术产业、实现跨越式发、提高国际竞争能力都具有非常重要的意义。6燃料电池发电技术在我国有广阔的发展前景未来二十年,随着我国“西气东送”,全国天然气管网的不断完善及液化天然气(LNG)的广泛应用,燃用天然气的燃料电池发电将会有很大市场。煤层气也是燃料电池的理想燃料。我国丰富的煤层气资源也将是燃料电池发电的巨大潜在能源之一。燃料电池可与常规燃气一蒸汽联合循环结合,形成更高效率的发电方式。与煤气化联合循环(IGCC)结合,形成数百兆瓦级的大型、高效、低污染的中心发电站,比IGCC效率更高,污染更小。燃料电池可与水电、风电和太阳能发电等结合,在高出力时,利用电解水制氢,低出力时用燃料电池发电,达到既储能,又高效发电的目的。采取气化或厌氧处理的方法将生物质变为燃料气,通过燃料电池发电,提高能源转换效率,并降低污染物排放量。对一些经济欠发达但有丰富的沼气资源的地区,利用燃料电池发电技术有可能更有有效地解决这些地区的电力供应问题。7与国外有较大的差距在燃料电池发电技术方面,我国与国际先进水平有较大的差距。在MCFC和SOFC技术方面,国外已分别示范成功了2MW和100KW的燃料电池发电机组,而我国在这方面才刚刚起步,2000年才可望研制出2KW左右的试验装置。在PAFC和PEFC技术方面,国内与国外的差距更大。倘若我们现在不开始研究开发燃料电池发电技术,等到燃料电池完全成熟后再引进,不但会受制于人,还将付出更大的经济代价,更谈不上尽快形成燃料电池发电的产业化。若不能形成燃料电池的产业化并在电力系统广泛应用,那么,也谈不上提高发电效率和降低污染物的排放。只有从现在开始,在国外的基础上,高起点研究,经过10—20年的努力,有可能在国电公司形成燃料电池的产业和广泛的商业应用。8在我国电力系统发展燃料电池发电技术是市场经济条件下的迫切要求分散式电源作为大电网的有效补充己得到许多国家的重视,而电源提供者的多元化更是一种趋势。我国电网的容量大、技术水平和可靠性还较低、抵御各种灾害的能力较差,在这种情况下,小型高效的燃料电池分布式电源随着技术的商业化市场潜力巨大。倘若电力系统不及时进行研究开发,在未来几年内,有可能被国外企业和国内其它其它行业或民营企业占领燃料电池分散电源市场。在市场经济条件下,国电公司既是用户,又是开发者。对于燃料电池这样重要的发电高新技术,应不失时机地着手研究开发,联合国内一些基础研究单位,争取纳入国家的攻关计划,获得国家支持,在尽可能短的时间内,形成燃料电池发电技术研究开发的优势,开发燃料电池发电关键技术和成套技术,形成国电公司的高新技术产业,既可优化调整电力结构,又能满足市场的不同需求。三 国外燃料电池发展计划及商业化的预测1美国燃料电池发电技术研究开发状况1美国燃料电池发电技术的研究开发计划1997年,美国总统克林顿颁发了"改善气候行动计划”,燃料电池被确定为一项关键技术,联邦政府为此制定了一项“美国联邦燃料电池发展计划”,目的是通过燃料电池的商业化来减少温室气体排放量。在这项计划中,对每一个燃料电池的新用户资助l000/KW的优惠。结果,仅在1998年,就有42台200kwPAFC发电机组投入运行。美国政府鼓励在一些对环境敏感的地区建立燃料电池发电站。此外,政府已促使美国所有的军事基地安装200KW燃料电池发电机组。通过这些措施,加速燃料电池的商业化,并提高国家能源的安全性。美国政府投入巨资研究开发燃料电池发电技术的另一个目的,就是要保持美国在这一领域的领先地位。随着商业化过程不断深入,将逐步形成新的高技术产业,为美国的经济注入新的活力,提供更多的就业机会。美国DOE的燃料电池发展计划如下:PAFC己商业化,不再投入资金进行研究开发。PAFC目前的发电效率为40%一45(LHV),热电联产的热效率为80%(LHV)。已完成250KW和2MWMCFC的现场示范,预计2002年进行20MW的示范;2003年左右,使250KW和MW级MCFC达到商业化;2010年,燃用天然气的250KW一20MWMCFC分散电源达到商业化,100MW以上MCFC的中心电站也进入商业化;2020年,100MW以上燃煤MCFC中心发电站进入商业化。MCFC技术目标是运行温度为650℃,发电效率达到60%(LHV),组成联合循环的发电效率为70(LHV),热电联产的热效率达到85(LHV)以上。目前,己完成25kw和100kwSOFC现场试验,正在进行SOFC的商业化设计。预计2002年左右,进行MW级SOFC示范;2003年左右,100kw一1MWSOFC进行商业化:2010年,250kw一20MW燃用天然气的SOFC以分布式电源形式进入商业化,100MW以上燃用天然气的SOFC以中心电站形式进入商业化;2020年,100W及以上容量的燃煤S0FC以中心电站的形式进入商业化。SOFC技术目标是:运行温度为1000℃,发电效率达到62%(LHV),组成联合循环的发电效率达到72%(LHV),热电联产的热效率达到85(LHV)以上,燃煤时发电效率可达到65%(LHV),这一目标预计2010完成。美国是最早研究开发PEFC的国家,但在大容量化和商业应用方面已落后于加拿大。目前美国生产的质子交换膜仍居世界领先水平。美国在PEFC的开发方面是面向家庭用分散式电源,实现热电联供。PlugPower公司与GE合作,计划2001年使10kwPEFC进入商业化,价格达到S750—1000/kw,大批量生产后,使PEFC的价格达到$350/kw。2市场预测美国能源部(DOE)对美国潜在的燃料电池市场的预测认为:在2005年一2010年,美国年需求燃料电池发电容量约2335MW一4075MW。现在美国的燃料电池年生产能力为60MW,商业化的价格为$2000一$3000/kw,若年生产能力达到100MW/a,商业化的价格则可达到$l000—$1500/Kw。若能达到(2000—4000)MW/a的生产能力,燃料电池的原材料费仅$200一$300/kw。那么燃料电池的价格则有可能达到$900—$l100/kw,此时可完全与常规的发电方式竞争。2日本燃料电池发电技术的发展进程及应用前景预测1发展进程日本在PAFC研究方面,走的是一条引进合作、消化吸收、再提高的路线。1972年东京煤气公司从美国引进两台PAFC燃料电池发电机组,大阪煤气公司也在1973年引进两台PAFC机组。日本政府于1981年设立了以开发节能技术为宗旨的“月光计划”,燃料电池发电是其中一项重要内容。此后,日本国内的电力公司、煤气公司和一些大型的制造厂纷纷投入燃料电池的研究开发,并与美国IFC合作,使日本的PAFC得到更大的发展。目前,日本的PAFC技术已赶上了美国,商业化程度超过了美国。5MW(富士电机制造)和11MW(东芝与IFC合制)均在日本投运,日本公司制造的PAFC机组已运行了近100多台。日本有关MCFC的研究是从1981年开始的,通过自主开发并与美国合作。1987年10kwMCFC开发成功,1993年100kw加压型MCFC开发成功,1997年开发出1MW先导型MCFC发电厂,并投入运行。MCFC已被列为日本“新阳光计划”的一个重点,目标是2000年一2010年,实现燃用天然气的10MW一50MW分布式MCFC发电机组的商业化,并进行100MW以上燃用天然气的MCFC联合循环发电机组的示范,2010年后,实现煤气化MCFC联合循环发电,并逐步替代常规火电厂。日本的SOFC技术也是从1981年的“月光计划”开始研究的,立足于自主开发。1989年一1991年,开发出l00W一400WSOFC电池堆,1992年一1997年开发出l0kw平板型SOFC。SOFC的研究进展也远远落后于NEDO原来的计划。“新阳光计划”中预计2000年一2010年,使SOFC达到MW级,并形成联合循环发电。日本的PEFC也被列入“新阳光计划”,目前开发的容量为(1—2)kw。2政府采取的措施日本政府在“月光计划”和“新阳光计划”中,先后资助了3台200kw、2台lMW和l台5MW的PAFC;1台100kw和1台1MW的MCFC示范电站研究开发、建设及运行。在通产省和NEDO的统一组织和管理下,使公用事业单位(电力公司和煤气公司)和开发商及研究单位紧密结合,实现燃料电池研究开发和商业示范应用一体化。日本电力公司和煤气公司,过去十年来安装了约80多台燃料电池机组,装机容量达到1MW,燃料电池及电厂的费用主要由业主承担,但是制造商和政府也各承担一部分。这种政府和企业联合研究开发的方式促进了日本燃料电池的发展。使用燃料电池发电享有许多优惠政策:燃料电池的相关设备,在未超过一定规模时,其工程计划仅须申报即可动工。对500kw以下的常压燃料电池生产与使用的审批手续大大简化。在医院、旅馆、办公大楼等安装的燃料电池发电机组,政府提供的经费资助。新建的燃料电池发电设备享有10的免税额,并获有30%的加速折旧。对装设于电力公司或自备发电用的燃料电池项目,日本开发银行将提供投资额40%的低息贷款。3市场预测1990年,日本通产省发表了“长期电源供需展望”报告,预计日本国内的燃料电池发电容量到2000年约2250MW;2010年约10720MW,电力系统用5500MW,其中约有2400MW是MCFC和SOFC高温型燃料电池;2010年煤气化MCFC和SOFC达到实用化;发电效率达到50%一60%。由于燃料电池发电技术仍有许多技术上的难题没有突破,进展速度低于预期值,因此日本目前已将原目标做了修正,预计2000年燃料电池装机容量将达到200MW,其中分布式电源l12MW,工业用热电联产型为88MW;2010年将达到2200MW,其中分布式电源型为735MW,工业用热电联产型为1465MW。3其它国家和地区的发展进程目前,欧洲的燃料电池发电技术远远落后于美国和日本。80欧洲又重新开始研究燃料电池发电技术。它们采用向美国、日本购买电池组,自行组装发电厂的方式来发展PAFC发电技术。1990年成立了一个“欧洲燃料电池集团(EFCG)”。意大利已完成了一座1MW的PAFC示范工程,由IFC供应,BOP由欧洲制造。意大利、西班牙与美国IPC合作,于1993年在米兰建了一座l00kwMCFC电厂,1996年投运。德国正在开发250kwMCFC。德国西门子公司于1998年收购了美国西屋公司的管形SOFC技术后,现在拥有世界上最先进的平板型和管形SOFC技术。 加拿大在PEFC方面居世界领先地位,在继续开发交通用PEFC的同时,目前也将PEFC应用于固定电站,已建成250kwPEFC示范电站,目标是在近几年内使250kw级PEPC商业化。澳大利亚在1993年一1997年,共投资3000万美元,研究开发平板型SOFC,目前正在开发(20一25)kwSOFC电池堆。韩国电力公司于1993年从日本购进一座200kwPAFC进行示范运行。4国外发展燃料电池发电技术的经验总结回顾国外燃料电地发展的道路,有许多值得我们吸取和借鉴的经验。美国在燃料电池发电技术的研究开发方面始终处于世界领先地位。除了雄厚的财力之外,还有三方面重要的原因:一是政府将燃料电池发电技术视为提高火力发电效率、减少污染物和温室气体排放的重要措施,列入政府的“改变气侯技术战略”中,并大力投入资金和力量研究开发;二是燃料电池技术提高到“国家能源安全并大力投入资金和力量研究开发;三是将燃料电池技术提高到“国家能源安全关键技术”的战略高度,DOD和DOE均投入资金研究开发;四是对燃料电池的应用前景充满信心,希望能形成新的高技术产业,给美国的经济注入新的活力,政府和企业共同投入资金研究开发,力图保持领先地位。日本走的是一条通过与美国合作、引进技术并消化吸收实现产业化的路线,并在PAFC的商业化方面己超过了美国,在MCFC的研究开发方面也接近美国。成功的重要经验也是政府对燃料电池给予高度重视,先后列入了“月光计划”和“新阳光计划”,大力投入研究开发。另一条经验是研究机构、企业和用户联合,组成从研究、开发到商业应用一体化集团,既承担研究开发的风险,也享受成功的优惠。加拿大Ballard公司在PEFC方面成功的经验告诉我们:只要坚定不移地进行研究开发,一个小公司也能在10—20年内成为举世瞩目的燃料电池技术拥有者。 燃料电池起源于欧洲,但是,现在欧洲的燃料电池技术已远远落后于美国和日本。主要原因是政府和企业对燃料电池发电技术重视不够。目前,欧洲已经意识到这一点,成立了—个燃料电池发电技术集团,引进美国、日本的技术,并进行研究开发。四 各种燃料电池发电技术综合比较1 AFC:与其它燃料电池相比,AFC功率密度和比功率较高,性能可靠。但它要以纯氢做燃料,纯氧做氧化剂,必须使用Pt、Au、Ag等贵金属做催化剂,价格昂贵。电解质的腐蚀严重,寿命较短,这些特点决定了AFC仅限于航天或军事应用,不适合于民用。2 PAFC:以磷酸做为电解质,可容许燃料气和空气中C02的存在。这使得PAFC成为最早在地面上应用或民用的燃料电池。与AFC相比它可以在180℃一210℃运行,燃料气和空气的处理系统大大简化,加压运行时,可组成热电联产。但是,PAFC的发电效率目前仅能达到40%一45%(LHV),它需要贵金属铂做电催化剂;燃料必须外重整:而且,燃料气中C0的浓度必须小于1%(175℃)一2(200℃),否则会使催化剂中毒;酸性电解液的腐蚀作用,使PAFC的寿命难以超过40000小时。PAFC目前的技术已成熟,产品也进入商业化,做为特殊用户的分散式电源、现场可移动电源和备用电源,PAFC还有市场,但用作大容量集中发电站比较困难。3 MCFC:在650℃一700℃运行,可采用镍做电催化剂,而不必使用贵重金属:燃料可实现内重整,使发电效率提高,系统简化;CO可直接用作燃料;余热的温度较高,可组成燃气/蒸汽联合循环,使发电容量和发电效率进一步提高。与SOFC相比,MCFC的优点是:操作温度较低,可使用价格较低的金属材料,电极、隔膜、双极板的制造工艺简单,密封和组装的技术难度相对较小,大容量化容易,造价较低。缺点是:必须配置C02循环系统;要求燃料气中H2S和CO小于5PPM;熔融碳酸盐具有腐蚀性,而且易挥发;与SOFC相比,寿命较短;组成联合循环发电的效率比SOFC低。与低温燃料电池相比,MCFC的缺点是启动时间较长,不适合作备用电源。MCFC己接近商业化,示范电站的规模已达到2MW。从MCFC的技术特点和发展趋势看,MCFC是将来民用发电(分散电源和中心电站)的理想选择之一。4 SOFC:电解质是固体,可以被做成管形、板形或整体形。与液体电解质的燃料电池(AFC、PAFC和MCFC)相比,SOFC避免了电解质蒸发和电池材料的腐蚀问题,电池的寿命较长(已达到70000小时)。CO可做为燃料,使燃料电池以煤气为燃料成为可能。SOFC的运行温度在1000℃左右,燃料可以在电池内进行重整。由于运行温度很高,要解决金属与陶瓷材料之间的密封也很困难。与低温燃料电池相比,SOFC的启动时间较长,不适合作应急电源。与MCFC相比,SOFC组成联合循环的效率更高,寿命更长(可大于40000小时);但SOFC面临技术难度较大,价格可能比MCFC高。示范业绩证明SOFC是未来化石燃料发电技术的理想选择之一,既可用作中小容量的分布式电源(500kw一50MW),也可用作大容量的中心电站(>l00MW)。尤其是加压型SOFC与微型燃气轮结合组成联合循环发电的示范,将使SOFC的优越性进一步得到体现。5 PEFC:PEPC的运行温度较低(约80℃),它的启动时间很短,在几分钟内可达到满负荷。与PAFC相比,电流密度和比功率都较高,发电效率也较高(45%一50(LHV)),对CO的容许值较高(<10ppm)。PEFC的余热温度较低,热利用率较低。与PAFC和MCFC等液体电解质燃料电池相比,它具有寿命长,运行可靠的特点。PEFC是理想的可移动电源,是电动汽车、潜艇、航天器等移动工具电源的理想选择之一。目前,在移动电源、特殊用户的分布式电源和家庭用电源方面有一定的市场,不适合做大容量中心电站。结 论选择适合于我国电力系统发展的燃料电池发电技术,应综合考虑以下几点:较高的发电效率;环保性能好;既能作为高效、清洁的分布电源,又具有形成大容量的联合循环中心发电站的发展潜力;既能以天然气为燃料,又具有以煤为燃料的可能性;技术的先进性及商业化进程;运行的可靠性和寿命;降低造价的潜力;国内的基础。综合考虑以上几点,对适合于我国电力系统发展的燃料电池发电技术,提出以下几点选择意见:(1)优先发展高温燃料电池发电技术。即选择MCFC和SOFC为我国电力系统燃料电池发电技术的主要发展方向,这两种燃料电池既能以天然气为燃料作为高效清洁的分布电源,又具有形成大容量的联合循环中心发电站(以天然气或煤为燃料)的发展潜力。(2)MCFC和SOFC各有特点,都存在许多问题,尚未商业化。若考虑技术难度和成熟程度以及商业化的进程,对于MCFC,应走引进、消化吸收、研究创新,实现国产化的技术路线,并尽快投入商业应用:对于SOFC,应立足于自主开发,走创新和跨越式发展的技术发展路线。(3)随着氢能技术的发展,PEFC在移动电源、分散电源、应急电源、家庭电源等方面具有一定优势和的市场潜力,国家电力公司应密切跟踪研究。(4)AFC不适合于民用发电。PAFC技术目前已趋于成熟,与MCFC、SOFC和PEFC比较,已相对落后。因此,AFC和PAFC不应做为国家电力公司研究开发的方向。参考文献[1] 许世森,朱宝田等,在我国电力系统发展的燃料电池发电的技术路线和实施方案研究,国家电力公司热工研究院,1999.12

基于PLC的xxx控制系统基于单片机的xxx系统以上最常见或是继电保护类、工厂供电类等等,变电所设计、照明设计、很多

电气化铁路供电系统论文题目大全及答案

电气化铁道电能质量综合控制研究 摘要:作为典型的非平衡负载,电气化铁道的牵引负载给公共电网带来的谐波、负序和无功等电能质量问题不 容忽视。静止无功补偿装置(SVC)是一种减小甚至消除无功、谐波以及其他电能质量问题的有效方法。以静止 无功补偿器(SVC)为基础,对电气化铁道的电能质量问题的综合控制进行研究。 关键词:电气化铁道;电网;电能质量;综合控制 1 前言 中国的电气化铁道总里程已经突破2·4万公里, 跃居世界第二。电气化铁道具有运载能力强、行车速 度快、节约能源、对环境污染小等优点,在现代国民经 济发展中起着举足轻重的作用。 但是,由于电气化铁道牵引负载所具有的随即波 动性和不对称性,其给公共电网带来的诸如负序电流、 谐波以及无功功率等电能质量问题也引起了极大的关 注。研究如何利用有效手段治理电气化铁道牵引负载 所带来的一系列电能质量问题,确保电网中其他电力 设备的安全经济运行具有重大意义。 2 电气化铁道牵引供电系统 2·1 概述 我国的动力供电电网电压一般为110kV或者 220kV,通过牵引变压器转换为27·5kV作为牵引动力 机车的供电。现在普遍流行的牵引变压器种类主要有 单相牵引变压器、Y-D11牵引变压器、阻抗匹配牵引 变压器、Scott变压器等。我国电气化铁道采用工频交 流50Hz三相供电单相用电,其负荷牵引电力机车的 功率大,速度、负载状况变化频繁,且具有不对称的特 性,导致牵引电网具有功率因数低、谐波含量高、负序 电流大等特点,不但自身损耗大,而且对公共电网及铁 路沿线的其他电力设备也带来严重危害,必须采取有 效措施加以治理[1]。 2·2 单相变压器牵引供电网 采用单相牵引变压器的牵引供电系统拓扑结构如 图1所示[2]。 单相接线牵引网采用单相变压器供电,供电方式 又分为单相接线方式和V-V接线方式。单相接线牵 引变压器的原边跨接于三相电力系统中的两相;副边 一端与牵引侧母线连接,另一端与轨道及接地网连接。 牵引变压器的容量利用率高,但其在电力系统中单相 牵引负荷产生的负序电流较大,对接触网的供电不能 实现双边供电。所以,这种结线只适用于电力系统容 量较大,电力网比较发达,三相负荷用电能够可靠地由 地方电网得到供应的场合。另外,单相牵引变压器要 按全绝缘设计制造。而单相V-V接线将两台单相变 压器以V的方式联于三相电力系统每一个牵引变电 所都可以实现由三相系统的两相线电压供电。两变压 器次边绕组,各取一端联至牵引变电所两相母线上。 而它们的另一端则以联成公共端的方式接至钢轨引回 的回流线。这时,两臂电压相位差60°接线,电流的不 对称度有所减少。这种接线即通常所说的60°接线。 2·3 三相Y-D11变压器牵引供电网 采用三相Y-D11牵引变压器的牵引供电系统拓 扑结构如图2所示[2]。 三相Y-D11结线牵引变压器的高压侧通过引入 线按规定次序接到110kV或220kV,三相电力系统的高 压输电线上;变压器低压侧的一角c与轨道,接地网连 接,变压器另两个角a和b分别接到27·5kV的a相和b 相母线上。由两相牵引母线分别向两侧对应的供电臂 供电,两臂电压的相位差为60°,也是60°接线。因此,在 这两个相邻的接触网区段间采用了分相绝缘器。 3 SVC静止型动态无功补偿装置 3·1 SVC的发展 静止型动态无功补偿装置SVC是一种先进的高 压电网动态功率因数补偿装置。它通过提高功率因数 来节约大量的电能,同时又起到减少电网谐波、稳定电 压、改善电网质量(环境)的作用。20世纪70年代以 来,以晶闸管控制的电抗器(TCR)、晶闸管投切的电容 器(TSC)以及二者的混合装置(TCR+TSC)等主要形 式组成的静止无功补偿器(SVC)得到快速发展。SVC 可以看成是电纳值能调节的无功元件,它依靠电力电 子器件开关来实现无功调节。SVC作为系统补偿时可 以连续调节并与系统进行无功功率交换,同时还具有 较快的响应速度,它能够维持端电压恒定 3·2 SVC的工作原理及在电网中应用 TCR+TSC型SVC的基本拓扑结构见图3。它由 1台TCR、2台TSC以及2个无源滤波器组成,在实际 系统中,TSC及无源滤波的组数可根据需要设置。 TCR的工作原理是通过控制与相控电抗器连接 的反并联晶闸管对的移相触发脉冲来改变电抗器等效 电纳的大小,从而输出连续可变的无功功率。图3中 两个晶闸管分别按照单相半波交流开关运行,通过改 变控制角α可以改变电感中通过的电流。α的计量以 电压过零点为基准,α在90°~180°之间可部分导通, 导通角增大则电流基波分量减小,等价于用增大电抗 器的电抗来减小基波无功功率。导通角在90°~180° 之间连续调节时电流也从额定到0连续变化,TCR提 供的补偿电流中含有谐波分量[3]。 TSC的工作原理是根据负载感性无功功率的变化 通过反并联晶闸管对来切除或者投入电容器。这里, 晶闸管只是作为投切开关,而不像TCR中的晶闸管起 相控作用。在实际系统中,每个电容器组都要串联一 个阻尼电抗器,以降低非正常运行状态下产生的对晶 闸管的冲击电流值,同时避免与系统产生谐振。用晶 闸管投切电容器组时,通常选取系统电压峰值时或者 过零点时作为投切动作的必要条件。由于TSC中的 电容器只是在两个极端的电流值之间切换,因此它不 会产生谐波,但它对无功功率的补偿是阶跃的。 TCR和TSC组合后的运行原理为:当系统电压低 于设定的运行电压时,根据需要补偿的无功量投入适 当组数的电容器组,并略有一点正偏差(过补偿),此 时再利用TCR调节输出的感性无功功率来抵消这部 分过补偿容性无功;当系统电压高于设定电压时,则切 除所有电容器组,只留有TCR运行。 4 电网电能质量综合控制与治理 4·1 谐波抑止与无功补偿 利用SVC动态无功补偿装置对牵引供电系统的 谐波和无功进行综合治理的关键是SVC最大无功补 偿量的确定和滤波器支路的设计[3]。 SVC最大无功补偿量Qsvc应该和设计线路牵引负 荷的大小相适应,应该按电气化铁道牵引负荷的最大 有功需求以及补偿后对装设地点功率因数或在最大无 功冲击时的最大电压损耗的要求来确定,具体可以按 照式(1)、(2)来计算。 QSVC=(tanφ1-tanφ2)Pmax(1) 式中,φ1、φ2分别为补偿前后110kV电源测功率 因数角;Pmax为电铁负荷最大有功需求。 QSVC=Qfmax-ΔU%Xs(2) 式中,Qfmax为装设地点最大无功冲击;ΔU%为装 设地点最大电压损耗要求;Xs为系统阻抗。 要想达到理想的谐波抑止效果,必须综合考虑FC 滤波支路的设计,既要保证装置的安全运行,又要达到 预计的理想效果。在实际设计中,首先需要根据供电 臂中所含的谐波分量来确定FC滤波支路的组成。由 于在电力牵引负荷的谐波中, 3、5、7次谐波占了很大 的比重,所以FC滤波支路一般由3、5、7次单调谐滤 波器构成。 当最大无功补偿容量和滤波支路的组成确定后, 如何将需补无功容量合理分配到各滤波支路中,这是 非常重要的问题。如果各滤波支路的容量分配不合 理,一方面会使设备安装总容量偏大,另一方面有可能 因为某此滤波回路补偿功率偏小而发生过负荷,对设 备安全运行造成影响。 一些著名的电气公司采用的一些算法如下[6]: 如西门子公司的无功功率补偿按式(3)分配 Qc(h)=QSVCIh/h∑Ih/h(3) 式中,Qc(h)是第h次滤波支路分配的补偿容量;Ih 为供电臂第h次谐波电流。 BBC电气公司按照式(4)分配无功功率 Qc(h)=QSVC∑Ih(4) AEG电气公司则按照式(5)分配无功 Qc(3)∶Qc(5)∶Qc(11)∶Qc(13)=2∶2∶1∶1 (5) 式中,Qc(3)、Qc(5)、Qc(11)、Qc(13)分别为第3、5、11、 13次滤波支路分配的补偿容量。 4·2 负序电流补偿 牵引电力机车产生的大量负序电流给电网中其他 的电力设备的安全、经济运行带来极大影响。SVC静 止动态无功补偿装置在补偿负序和末端电压上有着相 当高的效率。工程应用上可以选择在电网系统和负荷 上都安装SVC[5]。 在电网系统端安装应用SVC来补偿负序电流的 原则是参照斯坦梅茨法则(Steinmetz′s laws)。不管采 用哪一种牵引变压器,负序补偿的实现分为如下两步: (1)电力因数修正。通过安装电容器件,使得每 相负荷都为电阻性。 (2)参照斯坦梅茨法则(Steinmetz′s laws),AB相 的电阻性负荷G,与BC相的电容性负荷G/ 3以及CA 相的电感性负荷G/ 3互相对称。 电流环路图和相位图分别如图4、5所示: 从图5可以明显看到线电流I·A,I·B,I·C是对称 且正序的,BC相和CA相之间的阻抗负载也可以做到 类似的对称,因此系统中的所有负序电流都可以被补 偿而消除。 现在问题的关键是如何随着牵引负荷的起伏动态 地控制补偿需要的电容和电感器组。急于数字信号处 理器(DSP)的固定电容(FC)和晶闸管控制的电抗器 (TCR)的组合得以广泛应用,如图6所示。得益于 DSP对数据信息的快速处理,补偿所需的电容和电感 参数可以被快速、精确计算得到。 5 结论与展望 本文提出的基于静止动态无功补偿装置(SVC)的 电气化铁道牵引电网电能质量综合控制与治理原理与 方案具有重要的工程意义。电气化铁道的电能质量是 一个突出且严峻的课题与难题,要求我们不断探求新 的综合补偿方法,来综合控制与治理影响电能质量的 无功、谐波、负序等因素,以提高电网电能质量,确保电 网安全、经济运行。 参考文献 [1] 李群湛电气化铁道并联综合补偿及其应用[M]北京:中国铁道 出版社, [2] TB/10009-2005铁路电力牵引供电设计规范[S] [3] 王兆安谐波抑止和无功功率补偿[M]北京:机械工业出版社, [4] 铁道部电气化工程局电气化勘测设计院电气化铁道设计手册牵 引供电系统[M]北京:中国铁道出版社, [5] 安鹏,张雷,刘玉田电气化铁道对电力系统安全运行的影响及对 策[J]山东电力技术, 2005, (4): 16- [6] 马千里动态无功补偿装置在牵引变电所的应用[J]电气化铁 道, 2008(4)希望采纳

电气化铁道电能质量综合控制研究摘 要:作为典型的非平衡负载,电气化铁道的牵引负载给公共电网带来的谐波、负序和无功等电能质量问题不容忽视。静止无功补偿装置(SVC)是一种减小甚至消除无功、谐波以及其他电能质量问题的有效方法。以静止无功补偿器(SVC)为基础,对电气化铁道的电能质量问题的综合控制进行研究。关键词:电气化铁道;电网;电能质量;综合控制1 前言中国的电气化铁道总里程已经突破2·4万公里,跃居世界第二。电气化铁道具有运载能力强、行车速度快、节约能源、对环境污染小等优点,在现代国民经济发展中起着举足轻重的作用。但是,由于电气化铁道牵引负载所具有的随即波动性和不对称性,其给公共电网带来的诸如负序电流、谐波以及无功功率等电能质量问题也引起了极大的关注。研究如何利用有效手段治理电气化铁道牵引负载所带来的一系列电能质量问题,确保电网中其他电力设备的安全经济运行具有重大意义。2 电气化铁道牵引供电系统2·1 概述我国的动力供电电网电压一般为110kV或者220kV,通过牵引变压器转换为27·5kV作为牵引动力机车的供电。现在普遍流行的牵引变压器种类主要有单相牵引变压器、Y-D11牵引变压器、阻抗匹配牵引变压器、Scott变压器等。我国电气化铁道采用工频交流50Hz三相供电单相用电,其负荷牵引电力机车的功率大,速度、负载状况变化频繁,且具有不对称的特性,导致牵引电网具有功率因数低、谐波含量高、负序电流大等特点,不但自身损耗大,而且对公共电网及铁路沿线的其他电力设备也带来严重危害,必须采取有效措施加以治理[1]。2·2 单相变压器牵引供电网采用单相牵引变压器的牵引供电系统拓扑结构如图1所示[2]。单相接线牵引网采用单相变压器供电,供电方式又分为单相接线方式和V-V接线方式。单相接线牵引变压器的原边跨接于三相电力系统中的两相;副边一端与牵引侧母线连接,另一端与轨道及接地网连接。牵引变压器的容量利用率高,但其在电力系统中单相牵引负荷产生的负序电流较大,对接触网的供电不能实现双边供电。所以,这种结线只适用于电力系统容量较大,电力网比较发达,三相负荷用电能够可靠地由地方电网得到供应的场合。另外,单相牵引变压器要按全绝缘设计制造。而单相V-V接线将两台单相变压器以V的方式联于三相电力系统每一个牵引变电所都可以实现由三相系统的两相线电压供电。两变压器次边绕组,各取一端联至牵引变电所两相母线上。而它们的另一端则以联成公共端的方式接至钢轨引回的回流线。这时,两臂电压相位差60°接线,电流的不对称度有所减少。这种接线即通常所说的60°接线。2·3 三相Y-D11变压器牵引供电网采用三相Y-D11牵引变压器的牵引供电系统拓扑结构如图2所示[2]。三相Y-D11结线牵引变压器的高压侧通过引入线按规定次序接到110kV或220kV,三相电力系统的高压输电线上;变压器低压侧的一角c与轨道,接地网连接,变压器另两个角a和b分别接到27·5kV的a相和b相母线上。由两相牵引母线分别向两侧对应的供电臂供电,两臂电压的相位差为60°,也是60°接线。因此,在这两个相邻的接触网区段间采用了分相绝缘器。3 SVC静止型动态无功补偿装置3·1 SVC的发展静止型动态无功补偿装置SVC是一种先进的高压电网动态功率因数补偿装置。它通过提高功率因数来节约大量的电能,同时又起到减少电网谐波、稳定电压、改善电网质量(环境)的作用。20世纪70年代以来,以晶闸管控制的电抗器(TCR)、晶闸管投切的电容器(TSC)以及二者的混合装置(TCR+TSC)等主要形式组成的静止无功补偿器(SVC)得到快速发展。SVC可以看成是电纳值能调节的无功元件,它依靠电力电子器件开关来实现无功调节。SVC作为系统补偿时可以连续调节并与系统进行无功功率交换,同时还具有较快的响应速度,它能够维持端电压恒定3·2 SVC的工作原理及在电网中应用TCR+TSC型SVC的基本拓扑结构见图3。它由1台TCR、2台TSC以及2个无源滤波器组成,在实际系统中,TSC及无源滤波的组数可根据需要设置。TCR的工作原理是通过控制与相控电抗器连接的反并联晶闸管对的移相触发脉冲来改变电抗器等效电纳的大小,从而输出连续可变的无功功率。图3中两个晶闸管分别按照单相半波交流开关运行,通过改变控制角α可以改变电感中通过的电流。α的计量以电压过零点为基准,α在90°~180°之间可部分导通,导通角增大则电流基波分量减小,等价于用增大电抗器的电抗来减小基波无功功率。导通角在90°~180°之间连续调节时电流也从额定到0连续变化,TCR提供的补偿电流中含有谐波分量[3]。TSC的工作原理是根据负载感性无功功率的变化通过反并联晶闸管对来切除或者投入电容器。这里,晶闸管只是作为投切开关,而不像TCR中的晶闸管起相控作用。在实际系统中,每个电容器组都要串联一个阻尼电抗器,以降低非正常运行状态下产生的对晶闸管的冲击电流值,同时避免与系统产生谐振。用晶闸管投切电容器组时,通常选取系统电压峰值时或者过零点时作为投切动作的必要条件。由于TSC中的电容器只是在两个极端的电流值之间切换,因此它不会产生谐波,但它对无功功率的补偿是阶跃的。TCR和TSC组合后的运行原理为:当系统电压低于设定的运行电压时,根据需要补偿的无功量投入适当组数的电容器组,并略有一点正偏差(过补偿),此时再利用TCR调节输出的感性无功功率来抵消这部分过补偿容性无功;当系统电压高于设定电压时,则切除所有电容器组,只留有TCR运行。4 电网电能质量综合控制与治理4·1 谐波抑止与无功补偿利用SVC动态无功补偿装置对牵引供电系统的谐波和无功进行综合治理的关键是SVC最大无功补偿量的确定和滤波器支路的设计[3]。SVC最大无功补偿量Qsvc应该和设计线路牵引负荷的大小相适应,应该按电气化铁道牵引负荷的最大有功需求以及补偿后对装设地点功率因数或在最大无功冲击时的最大电压损耗的要求来确定,具体可以按照式(1)、(2)来计算。QSVC=(tanφ1-tanφ2)Pmax(1)式中,φ1、φ2分别为补偿前后110kV电源测功率因数角;Pmax为电铁负荷最大有功需求。QSVC=Qfmax-ΔU%Xs(2)式中,Qfmax为装设地点最大无功冲击;ΔU%为装设地点最大电压损耗要求;Xs为系统阻抗。要想达到理想的谐波抑止效果,必须综合考虑FC滤波支路的设计,既要保证装置的安全运行,又要达到预计的理想效果。在实际设计中,首先需要根据供电臂中所含的谐波分量来确定FC滤波支路的组成。由于在电力牵引负荷的谐波中, 3、5、7次谐波占了很大的比重,所以FC滤波支路一般由3、5、7次单调谐滤波器构成。当最大无功补偿容量和滤波支路的组成确定后,如何将需补无功容量合理分配到各滤波支路中,这是非常重要的问题。如果各滤波支路的容量分配不合理,一方面会使设备安装总容量偏大,另一方面有可能因为某此滤波回路补偿功率偏小而发生过负荷,对设备安全运行造成影响。一些著名的电气公司采用的一些算法如下[6]:如西门子公司的无功功率补偿按式(3)分配Qc(h)=QSVCIh/h∑Ih/h(3)式中,Qc(h)是第h次滤波支路分配的补偿容量;Ih为供电臂第h次谐波电流。BBC电气公司按照式(4)分配无功功率Qc(h)=QSVC∑Ih(4)AEG电气公司则按照式(5)分配无功Qc(3)∶Qc(5)∶Qc(11)∶Qc(13)=2∶2∶1∶1 (5)式中,Qc(3)、Qc(5)、Qc(11)、Qc(13)分别为第3、5、11、13次滤波支路分配的补偿容量。4·2 负序电流补偿牵引电力机车产生的大量负序电流给电网中其他的电力设备的安全、经济运行带来极大影响。SVC静止动态无功补偿装置在补偿负序和末端电压上有着相当高的效率。工程应用上可以选择在电网系统和负荷上都安装SVC[5]。在电网系统端安装应用SVC来补偿负序电流的原则是参照斯坦梅茨法则(Steinmetz′s laws)。不管采用哪一种牵引变压器,负序补偿的实现分为如下两步:(1)电力因数修正。通过安装电容器件,使得每相负荷都为电阻性。(2)参照斯坦梅茨法则(Steinmetz′s laws),AB相的电阻性负荷G,与BC相的电容性负荷G/ 3以及CA相的电感性负荷G/ 3互相对称。电流环路图和相位图分别如图4、5所示:从图5可以明显看到线电流I·A,I·B,I·C是对称且正序的,BC相和CA相之间的阻抗负载也可以做到类似的对称,因此系统中的所有负序电流都可以被补偿而消除。现在问题的关键是如何随着牵引负荷的起伏动态地控制补偿需要的电容和电感器组。急于数字信号处理器(DSP)的固定电容(FC)和晶闸管控制的电抗器(TCR)的组合得以广泛应用,如图6所示。得益于DSP对数据信息的快速处理,补偿所需的电容和电感参数可以被快速、精确计算得到。5 结论与展望本文提出的基于静止动态无功补偿装置(SVC)的电气化铁道牵引电网电能质量综合控制与治理原理与方案具有重要的工程意义。电气化铁道的电能质量是一个突出且严峻的课题与难题,要求我们不断探求新的综合补偿方法,来综合控制与治理影响电能质量的无功、谐波、负序等因素,以提高电网电能质量,确保电网安全、经济运行。参考文献[1] 李群湛电气化铁道并联综合补偿及其应用[M]北京:中国铁道出版社, [2] TB/10009-2005铁路电力牵引供电设计规范[S][3] 王兆安谐波抑止和无功功率补偿[M]北京:机械工业出版社,[4] 铁道部电气化工程局电气化勘测设计院电气化铁道设计手册牵引供电系统[M]北京:中国铁道出版社, [5] 安鹏,张雷,刘玉田电气化铁道对电力系统安全运行的影响及对策[J]山东电力技术, 2005, (4): 16-[6] 马千里动态无功补偿装置在牵引变电所的应用[J]电气化铁道, 2008(4)

电气化铁路供电系统论文题目有哪些

题目:高速铁路牵引供电自动化网络通信系统研究摘 要:我国铁路建设进入了一个高速发展阶段,高速铁路的设计、建设正在进一步展开。面对日、德、法等先进技术的竞争,研究具有自主知识产权高速铁路牵引供电自动化系统(TPSAS,Traction Power Supply AutomaticSystem)是十分有意义的。控制自动化、管理信息化的TPSAS是高速铁路供电系统可靠运行的基础,可以替代进口,节省外汇和国家投资,同时也是高速铁路急需的重大技术装备。实现TPSAS的关键是通信,通信问题已成为牵引供电自动化系统研究和开发的核心问题。 现在运行的供电调度系统(PSDS,Power Supply DispatchingSystem)、牵引变电所自动化系统(TSAS,Traction Substation integratedAutomation System)、牵引供电管理信息系统(PSMIS,Power SupplyManagement Information System)、接触网工区、检测车、牵引供电维修管理中心、路局管理部门等通信接口复杂,信息流混乱,要求不清,很难实现真正意义上的管控一体化,同时存在“信息化孤岛”问题。在考虑系统的安全性和可靠性的前提下,按照管理和控制分流的原则,对TPSAS每个子系统的输入输出信息流进行了规范,提出了每个子系统的接口和要求,规划了TPSAS完整的信息流。按照铁路信息规范化要求,研究了相应的信息数据词典。按照TPSAS信息流对通信的要求,在现有通信网络的基础上,提出了TPSAS网络通信架构的解决方案。 FPSAS系统实时性主要是TSAS网络以及PSDS控制网络的实时性。通过深入研究以太网技术,结合高速铁路对TSAS实时性要求,提出了一种新的工业控制以太网解决方案:分布交换式双环光纤自愈以太网。针对该方案,展开了研究:①详细设计了通信单元和TSAS中智能电子装置(IED,Intelligent Electric Device)的接口硬件。②提出了基于实时数据通道、最短路径表的最短路径算法,提高了通信的实时性。③提出了通信故障自愈和定位算法,使通信更易于维护,易于实现无人职守的TSAS,同时该方案也满足工业以太网对网络中断时间的要求。④利用最短路径的思想,给出了基于标准以太网的:PSDS通信网络的实现方案。⑤考虑到现场环境,研制了相应的工业级分布交换式网络通信单元。该方案大大提高了PSDS控制网络实时性、可靠性,实现了PSDS与TSAS之间真正意义上的无缝连接。利用排队论,讨论了通信CPU处理能力与输入缓冲区大小的关系,输入报文到达率与缓冲区大小的关系,得到了通信接口硬件的设计原则,为工业以太网通信接口硬件设计中CPU的选择提供了依据。 利用OPNET,对TSAS采用总线式、交换式、分布交换式以太网方案进行系统仿真,在相同的条件下,仿真结果表明,分布交换式以太网优于总线式和交换式以太网,且改进了以太网数据时延确定性,避免了冲突。利用故障树分析法,在元件可靠度相同的条件下,比较现有的PSDS网络结构和本文提出的2路双环SDH网络结构的可靠性,结果表明2路双环SDH网络可靠性优于现有的PSDS网络结构;比较了TSAS中采用交换式和分布交换式以太网的可靠性,结果表明分布交换式以太网可靠性大大高于交换式以太网。综上所述,PSDS采用2路双环SDH网络结构,TSAS采用分布交换式双环光纤自愈以太网,采用最短路径、故障自愈和故障定位算法,将是高速铁路TPSAS通信的一个较好的选择。 基于本文所提出的分布交换式工业以太网架构,论文研究了IEC61850标准在TSAS的实现过程,从IED建模、数据对象和服务建立,GOOSE/GSSE特殊映射,MMS应用,实时操作系统,到硬件设计(IEC61850标准对硬件是有特殊要求的),IED和变电站层配置软件研究。 若是可以的话,就加分,给邮箱,给你传过去。这个是博士论文,怎么说也够你用了。

电厂厂用电电源切换方式的优缺点

发电厂厂用电设计220kV变电站电气设计防雷接地设计某钢铁企业自备电厂设计电网潮流计算与仿真电力系统继电保护基于单片机的电动机软启动器

电气化铁路供电系统论文题目有哪些类型

电气化铁路供电系统由对沿线,牵引变电所输送电力的外部供电系统;以及从牵引变电所经降压、变相或换流(转换为直流电)后,向电力机车、动车组供电的变、直流牵引供电系统组成。电气化铁路直接供电方式最简单、投资少、运营和维护方便,但是其供电能力有限,且对临近通讯线路的干扰最严重。为保留直接供电方式的优点克服其不足,人们在其结构上增设与轨道并联的架空回流线,发展出带回流线的直接供电方式。带回流线的直接供电方式一定程度上改善了对临近通讯线路的屏蔽效果,使得牵引网阻抗和轨道电位都有所降低,但是其供电能力并没有本质的提高。BT供电方式为了减少直接供电方式对周围通讯线路的干扰,通过在接触网中串联吸流变压器(BT),将在钢轨中回流的电流吸上到回流线中流通来减少对通讯的干扰。扩展资料电气化铁路供电除电力牵引供电系统和电力机车动车外,还应包括对供电设施集中监控的远动系统。牵引供电设施分布在铁路沿线,运行管理复杂,早在20世纪50年代末和60年代初,国际上即开始研制并采用远动装置。随着电子技术的飞速发展,特别是计算机技术的引入,远动装置已逐步形成能日臻完善的系统(电力牵引供电系统的子系统)。远动系统的功能可归纳为“四遥”,即遥控、遥信、遥测和遥调。采用微机远动系统,可及时掌握供电设施的运行状态、节省人力和实现无人操作,防止误传指令和误操作,提高牵引供电的可靠性,保证运输安全。电气化铁路成机务设施,除通常意义下的电力机车机务段外,还应有集机车、车辆于一体的电动车组运用和检修基地。列车运行控制系统的发展是采用车上与地面信号相结合,以车上信号为主的控制方式。这就要求机务和动车组运用检修基地适应这种机电一体化的情况,配备相应的检修设备和技术力量,并加强与电务部门的合作。参考资料来源:百度百科-电气化铁道

电气化铁道供电系统(power supply system for electrified railway)由电力系统经高压输电、牵引变电所降压、变相或换流等环节,向电气化铁道运行的电力机车、动车组输送电力的全部供电系统。电气化铁道供电系统通常包括两大部分,即对沿线,牵引变电所输送电力的外部供电系统(参见电气化铁道外部供电系统);以及从牵引变电所经降压、变相或换流(转换为直流电)后,向电力机车、动车组供电的变、直流牵引供电系统(参见电力牵引供电系统)

题目:高速铁路牵引供电自动化网络通信系统研究摘 要:我国铁路建设进入了一个高速发展阶段,高速铁路的设计、建设正在进一步展开。面对日、德、法等先进技术的竞争,研究具有自主知识产权高速铁路牵引供电自动化系统(TPSAS,Traction Power Supply AutomaticSystem)是十分有意义的。控制自动化、管理信息化的TPSAS是高速铁路供电系统可靠运行的基础,可以替代进口,节省外汇和国家投资,同时也是高速铁路急需的重大技术装备。实现TPSAS的关键是通信,通信问题已成为牵引供电自动化系统研究和开发的核心问题。 现在运行的供电调度系统(PSDS,Power Supply DispatchingSystem)、牵引变电所自动化系统(TSAS,Traction Substation integratedAutomation System)、牵引供电管理信息系统(PSMIS,Power SupplyManagement Information System)、接触网工区、检测车、牵引供电维修管理中心、路局管理部门等通信接口复杂,信息流混乱,要求不清,很难实现真正意义上的管控一体化,同时存在“信息化孤岛”问题。在考虑系统的安全性和可靠性的前提下,按照管理和控制分流的原则,对TPSAS每个子系统的输入输出信息流进行了规范,提出了每个子系统的接口和要求,规划了TPSAS完整的信息流。按照铁路信息规范化要求,研究了相应的信息数据词典。按照TPSAS信息流对通信的要求,在现有通信网络的基础上,提出了TPSAS网络通信架构的解决方案。 FPSAS系统实时性主要是TSAS网络以及PSDS控制网络的实时性。通过深入研究以太网技术,结合高速铁路对TSAS实时性要求,提出了一种新的工业控制以太网解决方案:分布交换式双环光纤自愈以太网。针对该方案,展开了研究:①详细设计了通信单元和TSAS中智能电子装置(IED,Intelligent Electric Device)的接口硬件。②提出了基于实时数据通道、最短路径表的最短路径算法,提高了通信的实时性。③提出了通信故障自愈和定位算法,使通信更易于维护,易于实现无人职守的TSAS,同时该方案也满足工业以太网对网络中断时间的要求。④利用最短路径的思想,给出了基于标准以太网的:PSDS通信网络的实现方案。⑤考虑到现场环境,研制了相应的工业级分布交换式网络通信单元。该方案大大提高了PSDS控制网络实时性、可靠性,实现了PSDS与TSAS之间真正意义上的无缝连接。利用排队论,讨论了通信CPU处理能力与输入缓冲区大小的关系,输入报文到达率与缓冲区大小的关系,得到了通信接口硬件的设计原则,为工业以太网通信接口硬件设计中CPU的选择提供了依据。 利用OPNET,对TSAS采用总线式、交换式、分布交换式以太网方案进行系统仿真,在相同的条件下,仿真结果表明,分布交换式以太网优于总线式和交换式以太网,且改进了以太网数据时延确定性,避免了冲突。利用故障树分析法,在元件可靠度相同的条件下,比较现有的PSDS网络结构和本文提出的2路双环SDH网络结构的可靠性,结果表明2路双环SDH网络可靠性优于现有的PSDS网络结构;比较了TSAS中采用交换式和分布交换式以太网的可靠性,结果表明分布交换式以太网可靠性大大高于交换式以太网。综上所述,PSDS采用2路双环SDH网络结构,TSAS采用分布交换式双环光纤自愈以太网,采用最短路径、故障自愈和故障定位算法,将是高速铁路TPSAS通信的一个较好的选择。 基于本文所提出的分布交换式工业以太网架构,论文研究了IEC61850标准在TSAS的实现过程,从IED建模、数据对象和服务建立,GOOSE/GSSE特殊映射,MMS应用,实时操作系统,到硬件设计(IEC61850标准对硬件是有特殊要求的),IED和变电站层配置软件研究。 若是可以的话,就加分,给邮箱,给你传过去。这个是博士论文,怎么说也够你用了。

电气化铁路供电系统论文题目有哪些要求

电气化铁道电能质量综合控制研究摘 要:作为典型的非平衡负载,电气化铁道的牵引负载给公共电网带来的谐波、负序和无功等电能质量问题不容忽视。静止无功补偿装置(SVC)是一种减小甚至消除无功、谐波以及其他电能质量问题的有效方法。以静止无功补偿器(SVC)为基础,对电气化铁道的电能质量问题的综合控制进行研究。关键词:电气化铁道;电网;电能质量;综合控制1 前言中国的电气化铁道总里程已经突破2·4万公里,跃居世界第二。电气化铁道具有运载能力强、行车速度快、节约能源、对环境污染小等优点,在现代国民经济发展中起着举足轻重的作用。但是,由于电气化铁道牵引负载所具有的随即波动性和不对称性,其给公共电网带来的诸如负序电流、谐波以及无功功率等电能质量问题也引起了极大的关注。研究如何利用有效手段治理电气化铁道牵引负载所带来的一系列电能质量问题,确保电网中其他电力设备的安全经济运行具有重大意义。2 电气化铁道牵引供电系统2·1 概述我国的动力供电电网电压一般为110kV或者220kV,通过牵引变压器转换为27·5kV作为牵引动力机车的供电。现在普遍流行的牵引变压器种类主要有单相牵引变压器、Y-D11牵引变压器、阻抗匹配牵引变压器、Scott变压器等。我国电气化铁道采用工频交流50Hz三相供电单相用电,其负荷牵引电力机车的功率大,速度、负载状况变化频繁,且具有不对称的特性,导致牵引电网具有功率因数低、谐波含量高、负序电流大等特点,不但自身损耗大,而且对公共电网及铁路沿线的其他电力设备也带来严重危害,必须采取有效措施加以治理[1]。2·2 单相变压器牵引供电网采用单相牵引变压器的牵引供电系统拓扑结构如图1所示[2]。单相接线牵引网采用单相变压器供电,供电方式又分为单相接线方式和V-V接线方式。单相接线牵引变压器的原边跨接于三相电力系统中的两相;副边一端与牵引侧母线连接,另一端与轨道及接地网连接。牵引变压器的容量利用率高,但其在电力系统中单相牵引负荷产生的负序电流较大,对接触网的供电不能实现双边供电。所以,这种结线只适用于电力系统容量较大,电力网比较发达,三相负荷用电能够可靠地由地方电网得到供应的场合。另外,单相牵引变压器要按全绝缘设计制造。而单相V-V接线将两台单相变压器以V的方式联于三相电力系统每一个牵引变电所都可以实现由三相系统的两相线电压供电。两变压器次边绕组,各取一端联至牵引变电所两相母线上。而它们的另一端则以联成公共端的方式接至钢轨引回的回流线。这时,两臂电压相位差60°接线,电流的不对称度有所减少。这种接线即通常所说的60°接线。2·3 三相Y-D11变压器牵引供电网采用三相Y-D11牵引变压器的牵引供电系统拓扑结构如图2所示[2]。三相Y-D11结线牵引变压器的高压侧通过引入线按规定次序接到110kV或220kV,三相电力系统的高压输电线上;变压器低压侧的一角c与轨道,接地网连接,变压器另两个角a和b分别接到27·5kV的a相和b相母线上。由两相牵引母线分别向两侧对应的供电臂供电,两臂电压的相位差为60°,也是60°接线。因此,在这两个相邻的接触网区段间采用了分相绝缘器。3 SVC静止型动态无功补偿装置3·1 SVC的发展静止型动态无功补偿装置SVC是一种先进的高压电网动态功率因数补偿装置。它通过提高功率因数来节约大量的电能,同时又起到减少电网谐波、稳定电压、改善电网质量(环境)的作用。20世纪70年代以来,以晶闸管控制的电抗器(TCR)、晶闸管投切的电容器(TSC)以及二者的混合装置(TCR+TSC)等主要形式组成的静止无功补偿器(SVC)得到快速发展。SVC可以看成是电纳值能调节的无功元件,它依靠电力电子器件开关来实现无功调节。SVC作为系统补偿时可以连续调节并与系统进行无功功率交换,同时还具有较快的响应速度,它能够维持端电压恒定3·2 SVC的工作原理及在电网中应用TCR+TSC型SVC的基本拓扑结构见图3。它由1台TCR、2台TSC以及2个无源滤波器组成,在实际系统中,TSC及无源滤波的组数可根据需要设置。TCR的工作原理是通过控制与相控电抗器连接的反并联晶闸管对的移相触发脉冲来改变电抗器等效电纳的大小,从而输出连续可变的无功功率。图3中两个晶闸管分别按照单相半波交流开关运行,通过改变控制角α可以改变电感中通过的电流。α的计量以电压过零点为基准,α在90°~180°之间可部分导通,导通角增大则电流基波分量减小,等价于用增大电抗器的电抗来减小基波无功功率。导通角在90°~180°之间连续调节时电流也从额定到0连续变化,TCR提供的补偿电流中含有谐波分量[3]。TSC的工作原理是根据负载感性无功功率的变化通过反并联晶闸管对来切除或者投入电容器。这里,晶闸管只是作为投切开关,而不像TCR中的晶闸管起相控作用。在实际系统中,每个电容器组都要串联一个阻尼电抗器,以降低非正常运行状态下产生的对晶闸管的冲击电流值,同时避免与系统产生谐振。用晶闸管投切电容器组时,通常选取系统电压峰值时或者过零点时作为投切动作的必要条件。由于TSC中的电容器只是在两个极端的电流值之间切换,因此它不会产生谐波,但它对无功功率的补偿是阶跃的。TCR和TSC组合后的运行原理为:当系统电压低于设定的运行电压时,根据需要补偿的无功量投入适当组数的电容器组,并略有一点正偏差(过补偿),此时再利用TCR调节输出的感性无功功率来抵消这部分过补偿容性无功;当系统电压高于设定电压时,则切除所有电容器组,只留有TCR运行。4 电网电能质量综合控制与治理4·1 谐波抑止与无功补偿利用SVC动态无功补偿装置对牵引供电系统的谐波和无功进行综合治理的关键是SVC最大无功补偿量的确定和滤波器支路的设计[3]。SVC最大无功补偿量Qsvc应该和设计线路牵引负荷的大小相适应,应该按电气化铁道牵引负荷的最大有功需求以及补偿后对装设地点功率因数或在最大无功冲击时的最大电压损耗的要求来确定,具体可以按照式(1)、(2)来计算。QSVC=(tanφ1-tanφ2)Pmax(1)式中,φ1、φ2分别为补偿前后110kV电源测功率因数角;Pmax为电铁负荷最大有功需求。QSVC=Qfmax-ΔU%Xs(2)式中,Qfmax为装设地点最大无功冲击;ΔU%为装设地点最大电压损耗要求;Xs为系统阻抗。要想达到理想的谐波抑止效果,必须综合考虑FC滤波支路的设计,既要保证装置的安全运行,又要达到预计的理想效果。在实际设计中,首先需要根据供电臂中所含的谐波分量来确定FC滤波支路的组成。由于在电力牵引负荷的谐波中, 3、5、7次谐波占了很大的比重,所以FC滤波支路一般由3、5、7次单调谐滤波器构成。当最大无功补偿容量和滤波支路的组成确定后,如何将需补无功容量合理分配到各滤波支路中,这是非常重要的问题。如果各滤波支路的容量分配不合理,一方面会使设备安装总容量偏大,另一方面有可能因为某此滤波回路补偿功率偏小而发生过负荷,对设备安全运行造成影响。一些著名的电气公司采用的一些算法如下[6]:如西门子公司的无功功率补偿按式(3)分配Qc(h)=QSVCIh/h∑Ih/h(3)式中,Qc(h)是第h次滤波支路分配的补偿容量;Ih为供电臂第h次谐波电流。BBC电气公司按照式(4)分配无功功率Qc(h)=QSVC∑Ih(4)AEG电气公司则按照式(5)分配无功Qc(3)∶Qc(5)∶Qc(11)∶Qc(13)=2∶2∶1∶1 (5)式中,Qc(3)、Qc(5)、Qc(11)、Qc(13)分别为第3、5、11、13次滤波支路分配的补偿容量。4·2 负序电流补偿牵引电力机车产生的大量负序电流给电网中其他的电力设备的安全、经济运行带来极大影响。SVC静止动态无功补偿装置在补偿负序和末端电压上有着相当高的效率。工程应用上可以选择在电网系统和负荷上都安装SVC[5]。在电网系统端安装应用SVC来补偿负序电流的原则是参照斯坦梅茨法则(Steinmetz′s laws)。不管采用哪一种牵引变压器,负序补偿的实现分为如下两步:(1)电力因数修正。通过安装电容器件,使得每相负荷都为电阻性。(2)参照斯坦梅茨法则(Steinmetz′s laws),AB相的电阻性负荷G,与BC相的电容性负荷G/ 3以及CA相的电感性负荷G/ 3互相对称。电流环路图和相位图分别如图4、5所示:从图5可以明显看到线电流I·A,I·B,I·C是对称且正序的,BC相和CA相之间的阻抗负载也可以做到类似的对称,因此系统中的所有负序电流都可以被补偿而消除。现在问题的关键是如何随着牵引负荷的起伏动态地控制补偿需要的电容和电感器组。急于数字信号处理器(DSP)的固定电容(FC)和晶闸管控制的电抗器(TCR)的组合得以广泛应用,如图6所示。得益于DSP对数据信息的快速处理,补偿所需的电容和电感参数可以被快速、精确计算得到。5 结论与展望本文提出的基于静止动态无功补偿装置(SVC)的电气化铁道牵引电网电能质量综合控制与治理原理与方案具有重要的工程意义。电气化铁道的电能质量是一个突出且严峻的课题与难题,要求我们不断探求新的综合补偿方法,来综合控制与治理影响电能质量的无功、谐波、负序等因素,以提高电网电能质量,确保电网安全、经济运行。参考文献[1] 李群湛电气化铁道并联综合补偿及其应用[M]北京:中国铁道出版社, [2] TB/10009-2005铁路电力牵引供电设计规范[S][3] 王兆安谐波抑止和无功功率补偿[M]北京:机械工业出版社,[4] 铁道部电气化工程局电气化勘测设计院电气化铁道设计手册牵引供电系统[M]北京:中国铁道出版社, [5] 安鹏,张雷,刘玉田电气化铁道对电力系统安全运行的影响及对策[J]山东电力技术, 2005, (4): 16-[6] 马千里动态无功补偿装置在牵引变电所的应用[J]电气化铁道, 2008(4)

电气化铁道电能质量综合控制研究 摘要:作为典型的非平衡负载,电气化铁道的牵引负载给公共电网带来的谐波、负序和无功等电能质量问题不 容忽视。静止无功补偿装置(SVC)是一种减小甚至消除无功、谐波以及其他电能质量问题的有效方法。以静止 无功补偿器(SVC)为基础,对电气化铁道的电能质量问题的综合控制进行研究。 关键词:电气化铁道;电网;电能质量;综合控制 1 前言 中国的电气化铁道总里程已经突破2·4万公里, 跃居世界第二。电气化铁道具有运载能力强、行车速 度快、节约能源、对环境污染小等优点,在现代国民经 济发展中起着举足轻重的作用。 但是,由于电气化铁道牵引负载所具有的随即波 动性和不对称性,其给公共电网带来的诸如负序电流、 谐波以及无功功率等电能质量问题也引起了极大的关 注。研究如何利用有效手段治理电气化铁道牵引负载 所带来的一系列电能质量问题,确保电网中其他电力 设备的安全经济运行具有重大意义。 2 电气化铁道牵引供电系统 2·1 概述 我国的动力供电电网电压一般为110kV或者 220kV,通过牵引变压器转换为27·5kV作为牵引动力 机车的供电。现在普遍流行的牵引变压器种类主要有 单相牵引变压器、Y-D11牵引变压器、阻抗匹配牵引 变压器、Scott变压器等。我国电气化铁道采用工频交 流50Hz三相供电单相用电,其负荷牵引电力机车的 功率大,速度、负载状况变化频繁,且具有不对称的特 性,导致牵引电网具有功率因数低、谐波含量高、负序 电流大等特点,不但自身损耗大,而且对公共电网及铁 路沿线的其他电力设备也带来严重危害,必须采取有 效措施加以治理[1]。 2·2 单相变压器牵引供电网 采用单相牵引变压器的牵引供电系统拓扑结构如 图1所示[2]。 单相接线牵引网采用单相变压器供电,供电方式 又分为单相接线方式和V-V接线方式。单相接线牵 引变压器的原边跨接于三相电力系统中的两相;副边 一端与牵引侧母线连接,另一端与轨道及接地网连接。 牵引变压器的容量利用率高,但其在电力系统中单相 牵引负荷产生的负序电流较大,对接触网的供电不能 实现双边供电。所以,这种结线只适用于电力系统容 量较大,电力网比较发达,三相负荷用电能够可靠地由 地方电网得到供应的场合。另外,单相牵引变压器要 按全绝缘设计制造。而单相V-V接线将两台单相变 压器以V的方式联于三相电力系统每一个牵引变电 所都可以实现由三相系统的两相线电压供电。两变压 器次边绕组,各取一端联至牵引变电所两相母线上。 而它们的另一端则以联成公共端的方式接至钢轨引回 的回流线。这时,两臂电压相位差60°接线,电流的不 对称度有所减少。这种接线即通常所说的60°接线。 2·3 三相Y-D11变压器牵引供电网 采用三相Y-D11牵引变压器的牵引供电系统拓 扑结构如图2所示[2]。 三相Y-D11结线牵引变压器的高压侧通过引入 线按规定次序接到110kV或220kV,三相电力系统的高 压输电线上;变压器低压侧的一角c与轨道,接地网连 接,变压器另两个角a和b分别接到27·5kV的a相和b 相母线上。由两相牵引母线分别向两侧对应的供电臂 供电,两臂电压的相位差为60°,也是60°接线。因此,在 这两个相邻的接触网区段间采用了分相绝缘器。 3 SVC静止型动态无功补偿装置 3·1 SVC的发展 静止型动态无功补偿装置SVC是一种先进的高 压电网动态功率因数补偿装置。它通过提高功率因数 来节约大量的电能,同时又起到减少电网谐波、稳定电 压、改善电网质量(环境)的作用。20世纪70年代以 来,以晶闸管控制的电抗器(TCR)、晶闸管投切的电容 器(TSC)以及二者的混合装置(TCR+TSC)等主要形 式组成的静止无功补偿器(SVC)得到快速发展。SVC 可以看成是电纳值能调节的无功元件,它依靠电力电 子器件开关来实现无功调节。SVC作为系统补偿时可 以连续调节并与系统进行无功功率交换,同时还具有 较快的响应速度,它能够维持端电压恒定 3·2 SVC的工作原理及在电网中应用 TCR+TSC型SVC的基本拓扑结构见图3。它由 1台TCR、2台TSC以及2个无源滤波器组成,在实际 系统中,TSC及无源滤波的组数可根据需要设置。 TCR的工作原理是通过控制与相控电抗器连接 的反并联晶闸管对的移相触发脉冲来改变电抗器等效 电纳的大小,从而输出连续可变的无功功率。图3中 两个晶闸管分别按照单相半波交流开关运行,通过改 变控制角α可以改变电感中通过的电流。α的计量以 电压过零点为基准,α在90°~180°之间可部分导通, 导通角增大则电流基波分量减小,等价于用增大电抗 器的电抗来减小基波无功功率。导通角在90°~180° 之间连续调节时电流也从额定到0连续变化,TCR提 供的补偿电流中含有谐波分量[3]。 TSC的工作原理是根据负载感性无功功率的变化 通过反并联晶闸管对来切除或者投入电容器。这里, 晶闸管只是作为投切开关,而不像TCR中的晶闸管起 相控作用。在实际系统中,每个电容器组都要串联一 个阻尼电抗器,以降低非正常运行状态下产生的对晶 闸管的冲击电流值,同时避免与系统产生谐振。用晶 闸管投切电容器组时,通常选取系统电压峰值时或者 过零点时作为投切动作的必要条件。由于TSC中的 电容器只是在两个极端的电流值之间切换,因此它不 会产生谐波,但它对无功功率的补偿是阶跃的。 TCR和TSC组合后的运行原理为:当系统电压低 于设定的运行电压时,根据需要补偿的无功量投入适 当组数的电容器组,并略有一点正偏差(过补偿),此 时再利用TCR调节输出的感性无功功率来抵消这部 分过补偿容性无功;当系统电压高于设定电压时,则切 除所有电容器组,只留有TCR运行。 4 电网电能质量综合控制与治理 4·1 谐波抑止与无功补偿 利用SVC动态无功补偿装置对牵引供电系统的 谐波和无功进行综合治理的关键是SVC最大无功补 偿量的确定和滤波器支路的设计[3]。 SVC最大无功补偿量Qsvc应该和设计线路牵引负 荷的大小相适应,应该按电气化铁道牵引负荷的最大 有功需求以及补偿后对装设地点功率因数或在最大无 功冲击时的最大电压损耗的要求来确定,具体可以按 照式(1)、(2)来计算。 QSVC=(tanφ1-tanφ2)Pmax(1) 式中,φ1、φ2分别为补偿前后110kV电源测功率 因数角;Pmax为电铁负荷最大有功需求。 QSVC=Qfmax-ΔU%Xs(2) 式中,Qfmax为装设地点最大无功冲击;ΔU%为装 设地点最大电压损耗要求;Xs为系统阻抗。 要想达到理想的谐波抑止效果,必须综合考虑FC 滤波支路的设计,既要保证装置的安全运行,又要达到 预计的理想效果。在实际设计中,首先需要根据供电 臂中所含的谐波分量来确定FC滤波支路的组成。由 于在电力牵引负荷的谐波中, 3、5、7次谐波占了很大 的比重,所以FC滤波支路一般由3、5、7次单调谐滤 波器构成。 当最大无功补偿容量和滤波支路的组成确定后, 如何将需补无功容量合理分配到各滤波支路中,这是 非常重要的问题。如果各滤波支路的容量分配不合 理,一方面会使设备安装总容量偏大,另一方面有可能 因为某此滤波回路补偿功率偏小而发生过负荷,对设 备安全运行造成影响。 一些著名的电气公司采用的一些算法如下[6]: 如西门子公司的无功功率补偿按式(3)分配 Qc(h)=QSVCIh/h∑Ih/h(3) 式中,Qc(h)是第h次滤波支路分配的补偿容量;Ih 为供电臂第h次谐波电流。 BBC电气公司按照式(4)分配无功功率 Qc(h)=QSVC∑Ih(4) AEG电气公司则按照式(5)分配无功 Qc(3)∶Qc(5)∶Qc(11)∶Qc(13)=2∶2∶1∶1 (5) 式中,Qc(3)、Qc(5)、Qc(11)、Qc(13)分别为第3、5、11、 13次滤波支路分配的补偿容量。 4·2 负序电流补偿 牵引电力机车产生的大量负序电流给电网中其他 的电力设备的安全、经济运行带来极大影响。SVC静 止动态无功补偿装置在补偿负序和末端电压上有着相 当高的效率。工程应用上可以选择在电网系统和负荷 上都安装SVC[5]。 在电网系统端安装应用SVC来补偿负序电流的 原则是参照斯坦梅茨法则(Steinmetz′s laws)。不管采 用哪一种牵引变压器,负序补偿的实现分为如下两步: (1)电力因数修正。通过安装电容器件,使得每 相负荷都为电阻性。 (2)参照斯坦梅茨法则(Steinmetz′s laws),AB相 的电阻性负荷G,与BC相的电容性负荷G/ 3以及CA 相的电感性负荷G/ 3互相对称。 电流环路图和相位图分别如图4、5所示: 从图5可以明显看到线电流I·A,I·B,I·C是对称 且正序的,BC相和CA相之间的阻抗负载也可以做到 类似的对称,因此系统中的所有负序电流都可以被补 偿而消除。 现在问题的关键是如何随着牵引负荷的起伏动态 地控制补偿需要的电容和电感器组。急于数字信号处 理器(DSP)的固定电容(FC)和晶闸管控制的电抗器 (TCR)的组合得以广泛应用,如图6所示。得益于 DSP对数据信息的快速处理,补偿所需的电容和电感 参数可以被快速、精确计算得到。 5 结论与展望 本文提出的基于静止动态无功补偿装置(SVC)的 电气化铁道牵引电网电能质量综合控制与治理原理与 方案具有重要的工程意义。电气化铁道的电能质量是 一个突出且严峻的课题与难题,要求我们不断探求新 的综合补偿方法,来综合控制与治理影响电能质量的 无功、谐波、负序等因素,以提高电网电能质量,确保电 网安全、经济运行。 参考文献 [1] 李群湛电气化铁道并联综合补偿及其应用[M]北京:中国铁道 出版社, [2] TB/10009-2005铁路电力牵引供电设计规范[S] [3] 王兆安谐波抑止和无功功率补偿[M]北京:机械工业出版社, [4] 铁道部电气化工程局电气化勘测设计院电气化铁道设计手册牵 引供电系统[M]北京:中国铁道出版社, [5] 安鹏,张雷,刘玉田电气化铁道对电力系统安全运行的影响及对 策[J]山东电力技术, 2005, (4): 16- [6] 马千里动态无功补偿装置在牵引变电所的应用[J]电气化铁 道, 2008(4)希望采纳

题目:高速铁路牵引供电自动化网络通信系统研究摘 要:我国铁路建设进入了一个高速发展阶段,高速铁路的设计、建设正在进一步展开。面对日、德、法等先进技术的竞争,研究具有自主知识产权高速铁路牵引供电自动化系统(TPSAS,Traction Power Supply AutomaticSystem)是十分有意义的。控制自动化、管理信息化的TPSAS是高速铁路供电系统可靠运行的基础,可以替代进口,节省外汇和国家投资,同时也是高速铁路急需的重大技术装备。实现TPSAS的关键是通信,通信问题已成为牵引供电自动化系统研究和开发的核心问题。 现在运行的供电调度系统(PSDS,Power Supply DispatchingSystem)、牵引变电所自动化系统(TSAS,Traction Substation integratedAutomation System)、牵引供电管理信息系统(PSMIS,Power SupplyManagement Information System)、接触网工区、检测车、牵引供电维修管理中心、路局管理部门等通信接口复杂,信息流混乱,要求不清,很难实现真正意义上的管控一体化,同时存在“信息化孤岛”问题。在考虑系统的安全性和可靠性的前提下,按照管理和控制分流的原则,对TPSAS每个子系统的输入输出信息流进行了规范,提出了每个子系统的接口和要求,规划了TPSAS完整的信息流。按照铁路信息规范化要求,研究了相应的信息数据词典。按照TPSAS信息流对通信的要求,在现有通信网络的基础上,提出了TPSAS网络通信架构的解决方案。 FPSAS系统实时性主要是TSAS网络以及PSDS控制网络的实时性。通过深入研究以太网技术,结合高速铁路对TSAS实时性要求,提出了一种新的工业控制以太网解决方案:分布交换式双环光纤自愈以太网。针对该方案,展开了研究:①详细设计了通信单元和TSAS中智能电子装置(IED,Intelligent Electric Device)的接口硬件。②提出了基于实时数据通道、最短路径表的最短路径算法,提高了通信的实时性。③提出了通信故障自愈和定位算法,使通信更易于维护,易于实现无人职守的TSAS,同时该方案也满足工业以太网对网络中断时间的要求。④利用最短路径的思想,给出了基于标准以太网的:PSDS通信网络的实现方案。⑤考虑到现场环境,研制了相应的工业级分布交换式网络通信单元。该方案大大提高了PSDS控制网络实时性、可靠性,实现了PSDS与TSAS之间真正意义上的无缝连接。利用排队论,讨论了通信CPU处理能力与输入缓冲区大小的关系,输入报文到达率与缓冲区大小的关系,得到了通信接口硬件的设计原则,为工业以太网通信接口硬件设计中CPU的选择提供了依据。 利用OPNET,对TSAS采用总线式、交换式、分布交换式以太网方案进行系统仿真,在相同的条件下,仿真结果表明,分布交换式以太网优于总线式和交换式以太网,且改进了以太网数据时延确定性,避免了冲突。利用故障树分析法,在元件可靠度相同的条件下,比较现有的PSDS网络结构和本文提出的2路双环SDH网络结构的可靠性,结果表明2路双环SDH网络可靠性优于现有的PSDS网络结构;比较了TSAS中采用交换式和分布交换式以太网的可靠性,结果表明分布交换式以太网可靠性大大高于交换式以太网。综上所述,PSDS采用2路双环SDH网络结构,TSAS采用分布交换式双环光纤自愈以太网,采用最短路径、故障自愈和故障定位算法,将是高速铁路TPSAS通信的一个较好的选择。 基于本文所提出的分布交换式工业以太网架构,论文研究了IEC61850标准在TSAS的实现过程,从IED建模、数据对象和服务建立,GOOSE/GSSE特殊映射,MMS应用,实时操作系统,到硬件设计(IEC61850标准对硬件是有特殊要求的),IED和变电站层配置软件研究。 若是可以的话,就加分,给邮箱,给你传过去。这个是博士论文,怎么说也够你用了。

相关百科
热门百科
首页
发表服务