学术论文百科

磁性材料的应用论文题目大全及答案详解

发布时间:2024-07-06 23:45:12

磁性材料的应用论文题目大全及答案详解

今天我们来听听中国科学院院士都有为教授,来为我们讲一下,磁性材料的典型应用。快点打开视频观看吧!

磁性材料的应用磁性材料的应用很广泛,可用于电声、电信、电表、电机中,还可作记忆元件、微波元件等。可用于记录语言、音乐、图像信息的磁带、计算机的磁性存储设备、乘客乘车的凭证和票价结算的磁性卡等。下面着重谈磁带上所用的磁性材料和作用原理。我们知道,硬磁性材料被磁化以后,还留有剩磁,剩磁的强弱和方向随磁化时磁性的强弱和方向而定。录音磁带是由带基、粘合剂和磁粉层组成。带基一般采用聚碳酸脂或氯乙烯等制成。磁粉是用剩磁强的r-fe2o3或cro2细粉。录音时,是把与声音变化相对应的电流,经过放大后,送到录音磁头的线圈内,使磁头铁芯的缝隙中产生集中的磁场。随着线圈电流的变化,磁场的方向和强度也作相应的变化。当磁带匀速地通过磁头缝隙时,磁场就穿过磁带并使它磁化。由于磁带离开磁头后留有相应的剩磁,其极性和强度与原来的声音相对应。磁带不断移动,声音也就不断地被记录在磁带上。放音时,将已录音的磁带以录音时同样的速度紧贴着放音磁头缝隙进。磁头铁芯是用高导磁率铁氧体软磁材料制成的,它对磁通阻力很小。因此,磁带上所录的音频剩磁通,容易通过磁头铁芯而形成回路。磁带上的剩磁通在放音磁头线圈上感应出一个与剩磁通变化规律相同的感应电动势。再经过放音放大器放大后,送去推动扬声器,磁带上所录下的音频信号便还原成原来的声音。录像磁带与录音磁带所用的材料及作用原理基本相同,不过录音记录的是代表声音的电信号,而录像记录的是代表景物的电视信号。电视信号中不但有声音信号还有图像信号。录像磁带与录音磁带相比,录像磁带记录的密度很高,因为录像磁带记录波长是微米数量级,为在这波长范围能有充分的灵敏度和信噪比,磁性体粒度必须小,磁性层表面必须平滑。而且磁性层表面的耐磨性必须好,才能在同磁头的高速摩擦以及同磁带的输送系统的固定部分摩擦条件下使用。为此,所使用的粘合剂必须耐热、耐摩。应用于计算机磁性存储设备和作为乘客乘车的凭证和票价结算的磁性卡所用的磁性材科及作用原理,同磁带所用的磁性材料及作用原理基本相同,只是用处不同而已。在磁性卡上有一窄条磁带,当你乘地铁从甲站到乙站时,在甲站向仪器中投入从甲站到乙站的票钱(硬币),之后投出一张磁性卡,在投出这张磁性卡的过程中已录上了到乙站下车的磁记录,拿这张磁性卡乘车到乙站后投入到仪器中,门开,出站。如果没在乙站下车,而是在比乙站远的丙站下车,投入的硬币不够,出站门不开。要拿磁性卡补票后才能出站。在乙站或丙站投入磁性卡的过程,就是磁记录经过磁头变成电信号的过程。再用电信号控制站门开关。电机的铁芯所用的磁性材料一般用硬磁铁氧体,这些材料的特点是磁化后不易退磁。对磁通的阻力小

回答 您好呀,很高兴回答您的问题。磁性材料主要是指由过度元素铁,钴,镍极其合金等能够直接或间接产生磁性的物质 磁性材料的应用很广泛,可用于电声、电信、电表、电机中,还可作记忆元件、微波元件等。可用于记录语言、音乐、图像信息的磁带、计算机的磁性存储设备、乘客乘车的凭证和票价结算的磁性卡等。下面着重谈磁带上所用的磁性材料和作用原理。

磁性材料论文题目大全及答案详解

为什么磁铁接近录音机回有杂音 每天晚上我都会打开录音机听听英语单词这周星期三,我书包放在桌子上,照常打开录音机听英语单词,录音机发出的不是清脆悦耳的声音,而是沙哑难听的声音!于是我让爸爸查找录音机是否有问题,奇怪的是录音并没有毛病,磁带也没有问题呀!难不成是我耳朵有问题?不,那一定是录音机的问题!但为什么录音机会有杂音?以前不是好好的吗?为什么偏偏是这一天录音机出现杂音呢?爸爸说:“你是不是在录音机旁放了磁铁?”我才恍然大悟,因为书包上分明有吸铁石呀 为什么 磁铁放在录音 机旁就会产生杂音 对于这个问题,我查找了许多资料,我发现:录音机的磁带上涂有特殊磁粉,而录音机在录制磁带的时候,就将强弱不同的声波转化成磁讯号在我们听英语单词的时候,这种磁讯号又被还原成了声波这样,我们就能听见录制在磁带上的声音了磁带如果接近磁体,这时磁场的讯号就会附着在磁带上,磁带上的磁讯号就发生了改变,不同于原来的磁讯号了,这样就形成杂音果真是这样吗?资料上的东西还不能全信,我们还得亲手实验才能得出结论实验的工具有:一块较大的磁铁,一台录音机,一块完好的磁带我先把磁带放到录音机里听几分钟,然后把磁铁放在录音机旁再听几分钟,你会发现磁铁放到录音机旁的确有杂音,距离越近,杂音越大,靠近时录音机里的声音变成了怪腔怪调,太逗了!当你把磁铁拿走,录音机的声音又恢复正常了我发现了这个秘密!

自己上百度找,不过最好自己写,这里有一参考: 摘 要:介绍了电磁学计算方法的研究进展和状态,对几种富有代表性的算法做了介绍,并比较了各自的优势和不足,包括矩量法、有限元法、时域有限差分方法以及复射线方法等。 关键词:矩量法;有限元法;时域有限差分方法;复射线方法 1 引 言 1864年Maxwell在前人的理论(高斯定律、安培定律、法拉第定律和自由磁极不存在)和实验的基础上建立了统一的电磁场理论,并用数学模型揭示了自然界一切宏观电磁现象所遵循的普遍规律,这就是著名的Maxwell方程。在11种可分离变量坐标系求解Maxwell方程组或者其退化形式,最后得到解析解。这种方法可以得到问题的准确解,而且效率也比较高,但是适用范围太窄,只能求解具有规则边界的简单问题。对于不规则形状或者任意形状边界则需要比较高的数学技巧,甚至无法求得解析解。20世纪60年代以来,随着电子计算机技术的发展,一些电磁场的数值计算方法发展起来,并得到广泛地应用,相对于经典电磁理论而言,数值方法受边界形状的约束大为减少,可以解决各种类型的复杂问题。但各种数值计算方法都有优缺点,一个复杂的问题往往难以依靠一种单一方法解决,常需要将多种方法结合起来,互相取长补短,因此混和方法日益受到人们的重视。 本文综述了国内外计算电磁学的发展状况,对常用的电磁计算方法做了分类。 2 电磁场数值方法的分类 电磁学问题的数值求解方法可分为时域和频域2大类。频域技术主要有矩量法、有限差分方法等,频域技术发展得比较早,也比较成熟。时域法主要有时域差分技术。时域法的引入是基于计算效率的考虑,某些问题在时域中讨论起来计算量要小。例如求解目标对冲激脉冲的早期响应时,频域法必须在很大的带宽内进行多次采样计算,然后做傅里叶反变换才能求得解答,计算精度受到采样点的影响。若有非线性部分随时间变化,采用时域法更加直接。另外还有一些高频方法,如GTD,UTD和射线理论。 从求解方程的形式看,可以分为积分方程法(IE)和微分方程法(DE)。IE和DE相比,有如下特点:IE法的求解区域维数比DE法少一维,误差限于求解区域的边界,故精度高;IE法适合求无限域问题,DE法此时会遇到网格截断问题;IE法产生的矩阵是满的,阶数小,DE法所产生的是稀疏矩阵,但阶数大;IE法难以处理非均匀、非线性和时变媒质问题,DE法可直接用于这类问题〔1〕。 3 几种典型方法的介绍 有限元方法是在20世纪40年代被提出,在50年代用于飞机设计。后来这种方法得到发展并被非常广泛地应用于结构分析问题中。目前,作为广泛应用于工程和数学问题的一种通用方法,有限元法已非常著名。 有限元法是以变分原理为基础的一种数值计算方法。其定解问题为: 应用变分原理,把所要求解的边值问题转化为相应的变分问题,利用对区域D的剖分、插值,离散化变分问题为普通多元函数的极值问题,进而得到一组多元的代数方程组,求解代数方程组就可以得到所求边值问题的数值解。一般要经过如下步骤: ①给出与待求边值问题相应的泛函及其变分问题。 ②剖分场域D,并选出相应的插值函数。 ③将变分问题离散化为一种多元函数的极值问题,得到如下一组代数方程组: 其中:Kij为系数(刚度)矩阵;Xi为离散点的插值。 ④选择合适的代数解法解式(2),即可得到待求边值问题的数值解Xi(i=1,2,…,N) (2)矩量法 很多电磁场问题的分析都归结为这样一个算子方程〔2〕: L(f)=g(3)其中:L是线性算子,f是未知的场或其他响应,g是已知的源或激励。 在通常的情况下,这个方程是矢量方程(二维或三维的)。如果f能有方程解出,则是一个精确的解析解,大多数情况下,不能得到f的解析形式,只能通过数值方法进行预估。令f在L的定义域内被展开为某基函数系f1,f2,f3,…,fn的线性组合: 其中:an是展开系数,fn为展开函数或基函数。 对于精确解式(2)通畅是无限项之和,且形成一个基函数的完备集,对近似解,将式 (2)带入式(1),再应用算子L的线性,便可以得到: m=1,2,3,… 此方程组可写成矩阵形式f,以解出f。矩量法就是这样一种将算子方程转化为矩阵方程的一种离散方法。 在电磁散射问题中,散射体的特征尺度与波长之比是一个很重要的参数。他决定了具体应用矩量法的途径。如果目标特征尺度可以与波长比较,则可以采用一般的矩量法;如果目标很大而特征尺度又包括了一个很大的范围,那么就需要选择一个合适的离散方式和离散基函数。受计算机内存和计算速度影响,有些二维和三维问题用矩量法求解是非常困难的,因为计算的存储量通常与N2或者N3成正比(N为离散点数),而且离散后出现病态矩阵也是一个难以解决的问题。这时需要较高的数学技巧,如采用小波展开,选取合适的小波基函数来降维等〔3〕。 (3)时域有限差分方法 时域有限差分(FDTD)是电磁场的一种时域计算方法。传统上电磁场的计算主要是在频域上进行的,这些年以来,时域计算方法也越来越受到重视。他已在很多方面显示出独特的优越性,尤其是在解决有关非均匀介质、任意形状和复杂结构的散射体以及辐射系统的电磁问题中更加突出。FDTD法直接求解依赖时间变量的麦克斯韦旋度方程,利用二阶精度的中心差分近似把旋度方程中的微分算符直接转换为差分形式,这样达到在一定体积内和一段时间上对连续电磁场的数据取样压缩。电场和磁场分量在空间被交叉放置,这样保证在介质边界处切向场分量的连续条件自然得到满足。在笛卡儿坐标系电场和磁场分量在网格单元中的位置是每一磁场分量由4个电场分量包围着,反之亦然。 这种电磁场的空间放置方法符合法拉第定律和安培定律的自然几何结构。因此FDTD算法是计算机在数据存储空间中对连续的实际电磁波的传播过程在时间进程上进行数字模拟。而在每一个网格点上各场分量的新值均仅依赖于该点在同一时间步的值及在该点周围邻近点其他场前半个时间步的值。这正是电磁场的感应原理。这些关系构成FDTD法的基本算式,通过逐个时间步对模拟区域各网格点的计算,在执行到适当的时间步数后,即可获得所需要的结果。 在上述算法中,时间增量Δt和空间增量Δx,Δy和Δz不是相互独立的,他们的取值必须满足一定的关系,以避免数值不稳定。这种不稳定表现为在解显式 差分方程时随着时间步的继续计算结果也将无限制的67增加。为了保证数值稳定性必须满足数值稳定条件: 其中:(对非均匀区域,应选c的最大值)〔4〕。 用差分方法对麦克斯韦方程的数值计算还会在网格中引起所模拟波模的色散,即在FDTD网格中数字波模的传播速度将随波长、在网格中的传播方向以及离散化的情况而改变。这种色散将导致非物理原因引起的脉冲波形的畸变、人为的各向异性及虚拟的绕射等,因此必须考虑数值色散问题。如果在模拟空间中采用大小不同的网格或包含不同的介质区域,这时网格尺寸与波长之比将是位置的函数,在不同网格或介质的交界面处将出现非物理的绕射和反射现象,对此也应该进行定量的研究,以保证正确估计FDTD算法的精度。在开放问题中电磁场将占据无限大空间,而由于计算机内存总是有限的,只能模拟有限空间,因此差分网格在某处必将截断,这就要求在网格截断处不引起波的明显反射,使对外传播的波就像在无限大空间中传播一样。这就是在截断处设置吸收边界条件,使传播到截断处的波被边界吸收而不产生反射,当然不可能达到完全没有反射,目前已创立的一些吸收边界条件可达到精度上的要求,如Mur所导出的吸收边界条件。 (4)复射线方法 复射线是用于求解波场传播和散射问题的一种高频近似方法。他根据几何光学理论和几何绕射理论的分析方法和计算公式,在解析延拓的复空间中求解复射线轨迹和场的振幅和相位,从而直接得出局部不均匀波(凋落波)的传播和散射规律〔5〕。复射线方法是包括复射线追踪、复射线近轴近似、复射线展开以及复绕射线等处理技术在内的一系列处理方法的统称。其共同特点在于:通过将射线参考点坐标延拓到复空间而建立了一个简单而统一的实空间中波束/射线束(Bundle ofrays)分析模型;通过费马原理及其延拓,由基于复射线追踪或复射线近轴近似的处理技术,构造了射线光学架构下有效的鞍点场描述方法等。例如,复射线追踪法将射线光学中使用的射线追踪方法和场强计算公式直接地解析延拓到复空间,利用延拓后的复费马原理进行复射线搜索,从而求出复射线轨迹和复射线场。这一方法的特点在于可以基于射线光学方法有效地描述空间中波束的传播,因此,提供了一类分析波束传播的简便方法。其不足之处是对每一个给定的观察点必须进行一次二维或四维的复射线轨迹搜索,这是一个十分花费时间的计算机迭代过程。 4 几种方法的比较和进展 将有限元法移植到电磁工程领域还是二十世纪六七十年代的事情,他比较新颖。有限元法的优点是适用于具有复杂边界形状或边界条件、含有复杂媒质的定解问题。这种方法的各个环节可以实现标准化,得到通用的计算程序,而且有较高的计算精度。但是这种方法的计算程序复杂冗长,由于他是区域性解法,分割的元素数和节点数较多,导致需要的初始数据复杂繁多,最终得到的方程组的元数很大,这使得计算时间长,而且对计算机本身的存储也提出了要求。对电磁学中的许多问题,有限元产生的是带状(如果适当地给节点编号的话)、稀疏阵(许多矩阵元素是0)。但是单独采用有限元法只能解决开域问题。用有限元法进行数值分析的第一步是对目标的离散,多年来人们一直在研究这个问题,试图找到一种有效、方便的离散方法,但由于电磁场领域的特殊性,这个问题一直没有得到很好的解决。问题的关键在于一方面对复杂的结构,一般的剖分方法难于适用;另一方面,由于剖分的疏密与最终所形成的系数矩阵的存贮量密切相关,因而人们采用了许多方法来减少存储量,如多重网格法,但这些方法的实现较为困难〔6〕。 网格剖分与加密是有限元方法发展的瓶颈之一,采用自适应网格剖分和加密技术相对来说可以较好地解决这一问题。自适应网格剖分根据对场量分布求解后的结果对网格进行增加剖分密度的调整,在网格密集区采用高阶插值函数,以进一步提高精度,在场域分布变化剧烈区域,进行多次加密。 这些年有限元方法的发展日益加快,与其他理论相结合方面也有了新的进展,并取得了相当应用范围的成果,如自适应网格剖分、三维场建模求解、耦合问题、开域问题、高磁性材料及具有磁滞饱和非线性特性介质的处理等,还包括一些尚处于探索阶段的工作,如拟问题、人工智能和专家系统在电磁装置优化设计中的应用、边基有限元法等,这些都使得有限元方法的发展有了质的飞跃。 矩量法将连续方程离散化为代数方程组,既适用于求解微分方程,又适用于求解积分方程。他的求解过程简单,求解步骤统一,应用起来比较方便。然而 77他需要一定的数学技巧,如离散化的程度、基函数与权函数的选取,矩阵求解过程等。另外必须指出的是,矩量法可以达到所需要的精确度,解析部分简单,可计算量很大,即使用高速大容量计算机,计算任务也很繁重。矩量法在天线分析和电磁场散射问题中有比较广泛地应用,已成功用于天线和天线阵的辐射、散射问题、微带和有耗结构分析、非均匀地球上的传播及人体中电磁吸收等。 FDTD用有限差分式替代时域麦克斯韦旋度方程中的微分式,得到关于场分量的有限差分式,针对不同的研究对象,可在不同的坐标系中建模,因而具有这几个优点,容易对复杂媒体建模,通过一次时域分析计算,借助傅里叶变换可以得到整个同带范围内的频率响应;能够实时在现场的空间分布,精确模拟各种辐射体和散射体的辐射特性和散射特性;计算时间短。但是FDTD分析方法由于受到计算机存储容量的限制,其网格空间不能无限制的增加,造成FDTD方法不能适用于较大尺寸,也不能适用于细薄结构的媒质。因为这种细薄结构的最小尺寸比FDTD网格尺寸小很多,若用网格拟和这类细薄结构只能减小网格尺寸,而这必然导致计算机存储容量的加大。因此需要将FDTD与其他技术相结合,目前这种技术正蓬勃发展,如时域积分方程/FDTD方法,FDTD/MOM等。FDTD的应用范围也很广阔,诸如手持机辐射、天线、不同建筑物结构室内的电磁干扰特性研究、微带线等〔7〕。 复射线技术具有物理模型简单、数学处理方便、计算效率高等特点,在复杂目标散射特性分析等应用领域中有重要的研究价值。典型的处理方式是首先将入射平面波离散化为一组波束指向平行的复源点场,通过特定目标情形下的射线追踪、场强计算和叠加各射线场的贡献,可以得到特定观察位置处散射场的高频渐进解。目前已运用复射线分析方法对飞行器天线和天线罩(雷达舱)、(加吸波涂层)翼身结合部和进气道以及涂层的金属平板、角形反射器等典型目标散射特性进行了成功的分析。尽管复射线技术的计算误差可以通过参数调整得到控制,但其本身是一种高频近似计算方法,由于入射波场的离散和只引入鞍点贡献,带来了不可避免的计算误差。总的来说复射线方法在目标电磁散射领域还是具有独特的优势,尤其是对复 杂目标的处理。 5 结 语 电磁学的数值计算方法远远不止以上所举,还有边界元素法、格林函数法等,在具体问题中,应该采用不同的方法,而不应拘泥于这些方法,还可以把这些方法加以综合应用,以达到最佳效果。 电磁学的数值计算是一门计算的艺术,他横跨了多个学科,是数学理论、电磁理论和计算机的有机结合。原则上讲,从直流到光的宽频带范围都属于他的研究范围。为了跟上世界科技发展的需要,应大力进行电磁场的并行计算方法的研究,不断拓广他的应用领域,如生物电磁学、复杂媒质中的电磁正问题和逆问题、医学应用、微波遥感应用、非线性电磁学中的混沌与分叉、微电子学和纳米电子学等。 参考文献 〔1〕 文舸一.计算电磁学的进展与展望〔J〕.电子学报,1995,23(10):62- 〔2〕 刘圣民.电磁场的数值方法〔M〕.武汉:华中理工大学出版社,1991. 〔3〕 张成,郑宏兴.小波矩量法求解电磁场积分方程〔J〕.宁夏大学学报(自然科学版),2000,21(1):76- 〔4〕 王长清.时域有限差分(FD-TD)法〔J〕.微波学报,1989,(4):8- 〔5〕 阮颖诤.复射线理论及其应用〔M〕.成都:电子工业出版社,1991. 〔6〕 方静,汪文秉.有限元法和矩量法结合分析背腔天线的辐射特性〔J〕.微波学报,2000,16(2):139- 〔7〕 杨永侠,王翠玲.电磁场的FDTD分析方法〔J〕.现代电子技术,2001,(11):73- 〔8〕 洪伟.计算电磁学研究进展〔J〕.东南大学学RB (自然科学版),2002,32(3):335- 〔9〕 王长清,祝西里.电磁场计算中的时域有限差分法〔M〕.北京:北京大学出版社,1994. 〔10〕 楼仁海,符果行,袁敬闳.电磁理论〔M〕.成都:电子科技大学出版社,1996. 现代电子技术

先介绍一下居里点the Curie temperature 居里点或居里温度是指材料可以在铁磁体和顺磁体之间改变的温度。低于居里点温度时该物质成为铁磁体,此时和材料有关的磁场很难改变。当温度高于居里点温度时,该物质成为顺磁体,磁体的磁场很容易随周围磁场的改变而改变。这时的磁敏感度约为10的负6次方。19世纪末,著名物理家居里在自己的实验室里发现磁石的一个物理特性,就是当磁石加热到一定温度时,原来的磁性就会消失。后来,人们把这个温度叫“居里点”。在地球上,岩石在成岩过程中受到地磁场的磁化作用,获得微弱磁性,并且被磁化的岩石的磁场与地磁场是一致的。这就是说,无论地磁场怎样改换方向,只要它的温度不高于“居里点”,岩石的磁性是不会改变的。根据这个道理,只要测出岩石的磁性,自然能推测出当时的地磁方向。这就是在地学研究中人们常说的化石磁性。在此基础之上,科学家利用化石磁性的原理,研究地球演化历史的地磁场变化规律,这就是古地磁说。 为了寻找大陆漂移说的新证据,科学家把古地磁学引入海洋地质领域,并取得令人鼓舞的成绩。 第二次世界大战之后,科学家使用高灵敏度的磁力探测仪,在大西洋洋中脊上的海面进行古地磁调查。之后,人们又使用磁力仪等仪器,以密集测线方式对太平洋进行古地磁测量。两次调查的资料使人们惊奇地发现,在大洋底部存在着等磁力线条带,而且呈南北向平行于大洋洋中脊中轴线的两侧,磁性正负相间。每条磁力线条带长约数百千米,宽度在数十千米至上百千米之间不等。海底磁性条带的发现,成为本世纪地学研究的一大奇迹。1963年,英国剑桥大学的一位年轻学者FJ瓦因和他的老师DH马修斯提出,如果“海底扩张”曾经发生过,那么,大洋中脊上涌的熔岩,当它凝固后应当保留当时地球磁场的磁化方向。就是说在洋脊两侧的海底应该有磁化情况相同的磁性条带存在。当地球磁场发生反转时,磁性条带的极性也应该发生反转,磁性条带的宽度可以作为两次反转时间的度量标准。这个大胆的假说,很快被证实了,人们在太平洋、大西洋、印度洋都找到了同样对称的磁性条带。不仅如此,科学家还计算出在7600万年中,地球曾发生过171次反转现象。 研究还发现,地球磁场两次反转之间的时间最长周期约为300万年,最短的周期约为5万年,两次反转的平均周期约为42~48万年。目前,地球的磁场方向己保留70万年了,所以,人们预感到一个新的磁场变化可能正在向我们靠近。 对于海底磁性条带的研究仍在继续之中,许多问题仍找不到令人满意的答案。例如,对于地球磁场为什么要来回反转这个最基本的问题,就无法解释清楚。尽管科学家们提出过种种假说,但其真正的原因还是不清楚的。也就是说,地球发生磁场转向的内在规律之谜,有待于科学家们去继续探索。再介绍铁磁材料 (1)铁磁性物质只要在很小的磁场作用下就能被磁化到饱和,不但磁化率>0,而且数值大到10-106数量级,其磁化强度M与磁场强度H之间的关系是非线性的复杂函数关系。这种类型的磁性称为铁磁性。 (2)铁磁性物质只有在居里温度以下才具有铁磁性;在居里温度以上,由于受到晶体热运动的干扰,原子磁矩的定向排列被破坏,使得铁磁性消失,这时物质转变为顺磁性。 (3)特点 A、磁性很强,通常所说的磁性材料主要是指这类物质。 B、磁滞现象。 C、自发磁化: 铁磁性物质内的原子磁矩,通过相邻晶格结点原子的电子壳层的作用,克服热运动的无序效应,原子磁矩是按区域自发平行排列、有序取向,按不同的小区域分布,这种现象称为自发磁化。 未配对的3d电子壳层: Fe、Ni、Co、Mn D、磁畴 自发磁化的小区域,称为磁畴。各个磁畴之间的交界面称为磁畴壁。 然后说明一下测量实验铁磁材料的居里点实验目的:初步了解铁磁物质有铁磁性转变为顺磁性的微观原理,学习用JLD——Ⅱ型居里点测试仪测量居里温度的原理和方法。实验仪器:JLD——Ⅱ型居里点测试仪一套(主机一台、加温炉一台、样品5只)、ST16B型示波器实验原理:对于铁磁物质来讲,由于有磁畴的存在,因此在外加的交变磁场作用下将产生磁滞现象。磁滞回线就是磁滞现象的主要表现。如果将铁磁物质加热到一定的温度,由于金属点阵中的热运动的加剧,磁畴遭到破坏时,铁磁物质将转变为顺磁物质,磁滞现象消失,铁磁物质这一转变温度称为居里点。本居里点测试仪就是通过观察示波器上显示的磁滞回线的存在与否来观察测量铁磁物质的这一转变温度的。本仪器通过给绕在样品上的线圈通交变电流,从而产生交变磁场。在给加热炉加热过程中,在示波器上找出居里点。 实验步骤:1、将加热炉的连线接于电源箱前面的两接线柱上。将铁磁材料样品与电源箱用专用线连接,并把样品放在加热炉中。将温度传感器、降温风扇的接插件与接在电源前面板上的传感器接插件对应相接。2、将B输出与示波器上的Y输入,H输出与X输入用专用线相连接,“升温——降温”开关打向升温,开启电源箱上的电源开关,并适当调节示波器上Y、X调节,示波器上就显示出了磁滞回线。3、炉上的两风门(旋钮方向和加热炉的轴线方向垂直),将“测量——设置”开关打向“设置”,设定好炉温后,打向“测量”,加热炉工作,炉温逐渐升向设置的温度。4、温达到该样品的居里点时,磁滞回线消失,同时数显温度表显示测量的温度值——居里点。打开加热炉上的两风门(风门上的旋钮方向和加热炉的轴线方向平行),把“升温——降温”开关打向降温,让加热炉降温后,换一样品重复上述过程,直到样品测完为止。

磁性材料的应用论文题目有哪些及答案详解

今天我们来听听中国科学院院士都有为教授,来为我们讲一下,磁性材料的典型应用。快点打开视频观看吧!

磁性材料的应用很广泛,可用于电声、电信、电表、电机中,还可作记忆元件、微波元件等。可用于记录语言、音乐、图像信息的磁带、计算机的磁性存储设备、乘客乘车的凭证和票价结算的磁性卡等。磁性材料从材质和结构上讲,分为“金属及合金磁性材料”和“铁氧体磁性材料”两大类,铁氧体磁性材料又分为多晶结构和单晶结构材料。性材料分为,软磁材料、永磁材料、磁记录-矩磁材料、旋磁材料等等种类,软磁材料、永磁材料、磁记录,矩磁材料中既有金属材料又有铁氧体材料。金属在高频和微波频率下将产生巨大的涡流效应,导致金属磁性材料无法使用,而铁氧体的电阻率非常高,将有效的克服这一问题、得到广泛应用。磁性材料从形态上,包括粉体材料、液体材料、块体材料 、薄膜材料等。

磁性材料是电子工业的重要基础功能材料,广泛应用于计算机、电子器件、通讯、汽车和航空航天等工业领域,加之家用电器、儿童玩具等日常生活用品等。随着世界经济和科学技术的迅猛发展,磁性材料的需求空前广阔。

磁性材料的应用论文题目大全及答案解析

磁性材料是电子工业的重要基础功能材料,广泛应用于计算机、电子器件、通讯、汽车和航空航天等工业领域,加之家用电器、儿童玩具等日常生活用品等。随着世界经济和科学技术的迅猛发展,磁性材料的需求空前广阔。

磁性材料主要是指由过度元素铁,钴,镍极其合金等能够直接或间接产生磁性的物质 磁性材料从材质和结构上讲,分为“金属及合金磁性材料”和“铁氧体磁性材料”两大类,铁氧体磁性材料又分为多晶结构和单晶结构材料。 从应用功能上讲,磁性材料分为:软磁材料、永磁材料、磁记录-矩磁材料、旋磁材料等等种类。软磁材料、永磁材料、磁记录-矩磁材料中既有金属材料又有铁氧体材料;而旋磁材料和高频软磁材料就只能是铁氧体材料了,因为金属在高频和微波频率下将产生巨大的涡流效应,导致金属磁性材料无法使用,而铁氧体的电阻率非常高,将有效的克服这一问题、得到广泛应用。 磁性材料从形态上讲。包括粉体材料、液体材料、块体材料 、薄膜材料等。 磁性材料的应用很广泛,可用于电声、电信、电表、电机中,还可作记忆元件、微波元件等。可用于记录语言、音乐、图像信息的磁带、计算机的磁性存储设备、乘客乘车的凭证和票价结算的磁性卡等。 磁性材料的应用很广泛,可用于电声、电信、电表、电机中,还可作记忆元件、微波元件等。可用于记录语言、音乐、图像信息的磁带、计算机的磁性存储设备、乘客乘车的凭证和票价结算的磁性卡等。下面着重谈磁带上所用的磁性材料和作用原理。 我们知道,硬磁性材料被磁化以后,还留有剩磁,剩磁的强弱和方向随磁化时磁性的强弱和方向而定。录音磁带是由带基、粘合剂和磁粉层组成。带基一般采用聚碳酸脂或氯乙烯等制成。磁粉是用剩磁强的r-Fe2O3或CrO2细粉。录音时,是把与声音变化相对应的电流,经过放大后,送到录音磁头的线圈内,使磁头铁芯的缝隙中产生集中的磁场。随着线圈电流的变化,磁场的方向和强度也作相应的变化。当磁带匀速地通过磁头缝隙时,磁场就穿过磁带并使它磁化。由于磁带离开磁头后留有相应的剩磁,其极性和强度与原来的声音相对应。磁带不断移动,声音也就不断地被记录在磁带上。

磁性材料的应用很广泛,可用于电声、电信、电表、电机中,还可作记忆元件、微波元件等。可用于记录语言、音乐、图像信息的磁带、计算机的磁性存储设备、乘客乘车的凭证和票价结算的磁性卡等。磁性材料从材质和结构上讲,分为“金属及合金磁性材料”和“铁氧体磁性材料”两大类,铁氧体磁性材料又分为多晶结构和单晶结构材料。  从应用功能上讲,磁性材料分为:软磁材料、永磁材料、磁记录-矩磁材料、旋磁材料等等种类。软磁材料、永磁材料、磁记录-矩磁材料中既有金属材料又有铁氧体材料;而旋磁材料和高频软磁材料就只能是铁氧体材料了,因为金属在高频和微波频率下将产生巨大的涡流效应,导致金属磁性材料无法使用,而铁氧体的电阻率非常高,将有效的克服这一问题、得到广泛应用。  磁性材料从形态上讲。包括粉体材料、液体材料、块体材料 、薄膜材料等。  磁性材料用途是非常广泛的,从指南针、喇叭/耳机/话筒、天线磁棒、家用电器(电饭锅)、变压器、永磁电机一直到航天飞机都可以找到磁性材料的应用例子。

磁性材料论文题目大全及答案解析

自己上百度找,不过最好自己写,这里有一参考: 摘 要:介绍了电磁学计算方法的研究进展和状态,对几种富有代表性的算法做了介绍,并比较了各自的优势和不足,包括矩量法、有限元法、时域有限差分方法以及复射线方法等。 关键词:矩量法;有限元法;时域有限差分方法;复射线方法 1 引 言 1864年Maxwell在前人的理论(高斯定律、安培定律、法拉第定律和自由磁极不存在)和实验的基础上建立了统一的电磁场理论,并用数学模型揭示了自然界一切宏观电磁现象所遵循的普遍规律,这就是著名的Maxwell方程。在11种可分离变量坐标系求解Maxwell方程组或者其退化形式,最后得到解析解。这种方法可以得到问题的准确解,而且效率也比较高,但是适用范围太窄,只能求解具有规则边界的简单问题。对于不规则形状或者任意形状边界则需要比较高的数学技巧,甚至无法求得解析解。20世纪60年代以来,随着电子计算机技术的发展,一些电磁场的数值计算方法发展起来,并得到广泛地应用,相对于经典电磁理论而言,数值方法受边界形状的约束大为减少,可以解决各种类型的复杂问题。但各种数值计算方法都有优缺点,一个复杂的问题往往难以依靠一种单一方法解决,常需要将多种方法结合起来,互相取长补短,因此混和方法日益受到人们的重视。 本文综述了国内外计算电磁学的发展状况,对常用的电磁计算方法做了分类。 2 电磁场数值方法的分类 电磁学问题的数值求解方法可分为时域和频域2大类。频域技术主要有矩量法、有限差分方法等,频域技术发展得比较早,也比较成熟。时域法主要有时域差分技术。时域法的引入是基于计算效率的考虑,某些问题在时域中讨论起来计算量要小。例如求解目标对冲激脉冲的早期响应时,频域法必须在很大的带宽内进行多次采样计算,然后做傅里叶反变换才能求得解答,计算精度受到采样点的影响。若有非线性部分随时间变化,采用时域法更加直接。另外还有一些高频方法,如GTD,UTD和射线理论。 从求解方程的形式看,可以分为积分方程法(IE)和微分方程法(DE)。IE和DE相比,有如下特点:IE法的求解区域维数比DE法少一维,误差限于求解区域的边界,故精度高;IE法适合求无限域问题,DE法此时会遇到网格截断问题;IE法产生的矩阵是满的,阶数小,DE法所产生的是稀疏矩阵,但阶数大;IE法难以处理非均匀、非线性和时变媒质问题,DE法可直接用于这类问题〔1〕。 3 几种典型方法的介绍 有限元方法是在20世纪40年代被提出,在50年代用于飞机设计。后来这种方法得到发展并被非常广泛地应用于结构分析问题中。目前,作为广泛应用于工程和数学问题的一种通用方法,有限元法已非常著名。 有限元法是以变分原理为基础的一种数值计算方法。其定解问题为: 应用变分原理,把所要求解的边值问题转化为相应的变分问题,利用对区域D的剖分、插值,离散化变分问题为普通多元函数的极值问题,进而得到一组多元的代数方程组,求解代数方程组就可以得到所求边值问题的数值解。一般要经过如下步骤: ①给出与待求边值问题相应的泛函及其变分问题。 ②剖分场域D,并选出相应的插值函数。 ③将变分问题离散化为一种多元函数的极值问题,得到如下一组代数方程组: 其中:Kij为系数(刚度)矩阵;Xi为离散点的插值。 ④选择合适的代数解法解式(2),即可得到待求边值问题的数值解Xi(i=1,2,…,N) (2)矩量法 很多电磁场问题的分析都归结为这样一个算子方程〔2〕: L(f)=g(3)其中:L是线性算子,f是未知的场或其他响应,g是已知的源或激励。 在通常的情况下,这个方程是矢量方程(二维或三维的)。如果f能有方程解出,则是一个精确的解析解,大多数情况下,不能得到f的解析形式,只能通过数值方法进行预估。令f在L的定义域内被展开为某基函数系f1,f2,f3,…,fn的线性组合: 其中:an是展开系数,fn为展开函数或基函数。 对于精确解式(2)通畅是无限项之和,且形成一个基函数的完备集,对近似解,将式 (2)带入式(1),再应用算子L的线性,便可以得到: m=1,2,3,… 此方程组可写成矩阵形式f,以解出f。矩量法就是这样一种将算子方程转化为矩阵方程的一种离散方法。 在电磁散射问题中,散射体的特征尺度与波长之比是一个很重要的参数。他决定了具体应用矩量法的途径。如果目标特征尺度可以与波长比较,则可以采用一般的矩量法;如果目标很大而特征尺度又包括了一个很大的范围,那么就需要选择一个合适的离散方式和离散基函数。受计算机内存和计算速度影响,有些二维和三维问题用矩量法求解是非常困难的,因为计算的存储量通常与N2或者N3成正比(N为离散点数),而且离散后出现病态矩阵也是一个难以解决的问题。这时需要较高的数学技巧,如采用小波展开,选取合适的小波基函数来降维等〔3〕。 (3)时域有限差分方法 时域有限差分(FDTD)是电磁场的一种时域计算方法。传统上电磁场的计算主要是在频域上进行的,这些年以来,时域计算方法也越来越受到重视。他已在很多方面显示出独特的优越性,尤其是在解决有关非均匀介质、任意形状和复杂结构的散射体以及辐射系统的电磁问题中更加突出。FDTD法直接求解依赖时间变量的麦克斯韦旋度方程,利用二阶精度的中心差分近似把旋度方程中的微分算符直接转换为差分形式,这样达到在一定体积内和一段时间上对连续电磁场的数据取样压缩。电场和磁场分量在空间被交叉放置,这样保证在介质边界处切向场分量的连续条件自然得到满足。在笛卡儿坐标系电场和磁场分量在网格单元中的位置是每一磁场分量由4个电场分量包围着,反之亦然。 这种电磁场的空间放置方法符合法拉第定律和安培定律的自然几何结构。因此FDTD算法是计算机在数据存储空间中对连续的实际电磁波的传播过程在时间进程上进行数字模拟。而在每一个网格点上各场分量的新值均仅依赖于该点在同一时间步的值及在该点周围邻近点其他场前半个时间步的值。这正是电磁场的感应原理。这些关系构成FDTD法的基本算式,通过逐个时间步对模拟区域各网格点的计算,在执行到适当的时间步数后,即可获得所需要的结果。 在上述算法中,时间增量Δt和空间增量Δx,Δy和Δz不是相互独立的,他们的取值必须满足一定的关系,以避免数值不稳定。这种不稳定表现为在解显式 差分方程时随着时间步的继续计算结果也将无限制的67增加。为了保证数值稳定性必须满足数值稳定条件: 其中:(对非均匀区域,应选c的最大值)〔4〕。 用差分方法对麦克斯韦方程的数值计算还会在网格中引起所模拟波模的色散,即在FDTD网格中数字波模的传播速度将随波长、在网格中的传播方向以及离散化的情况而改变。这种色散将导致非物理原因引起的脉冲波形的畸变、人为的各向异性及虚拟的绕射等,因此必须考虑数值色散问题。如果在模拟空间中采用大小不同的网格或包含不同的介质区域,这时网格尺寸与波长之比将是位置的函数,在不同网格或介质的交界面处将出现非物理的绕射和反射现象,对此也应该进行定量的研究,以保证正确估计FDTD算法的精度。在开放问题中电磁场将占据无限大空间,而由于计算机内存总是有限的,只能模拟有限空间,因此差分网格在某处必将截断,这就要求在网格截断处不引起波的明显反射,使对外传播的波就像在无限大空间中传播一样。这就是在截断处设置吸收边界条件,使传播到截断处的波被边界吸收而不产生反射,当然不可能达到完全没有反射,目前已创立的一些吸收边界条件可达到精度上的要求,如Mur所导出的吸收边界条件。 (4)复射线方法 复射线是用于求解波场传播和散射问题的一种高频近似方法。他根据几何光学理论和几何绕射理论的分析方法和计算公式,在解析延拓的复空间中求解复射线轨迹和场的振幅和相位,从而直接得出局部不均匀波(凋落波)的传播和散射规律〔5〕。复射线方法是包括复射线追踪、复射线近轴近似、复射线展开以及复绕射线等处理技术在内的一系列处理方法的统称。其共同特点在于:通过将射线参考点坐标延拓到复空间而建立了一个简单而统一的实空间中波束/射线束(Bundle ofrays)分析模型;通过费马原理及其延拓,由基于复射线追踪或复射线近轴近似的处理技术,构造了射线光学架构下有效的鞍点场描述方法等。例如,复射线追踪法将射线光学中使用的射线追踪方法和场强计算公式直接地解析延拓到复空间,利用延拓后的复费马原理进行复射线搜索,从而求出复射线轨迹和复射线场。这一方法的特点在于可以基于射线光学方法有效地描述空间中波束的传播,因此,提供了一类分析波束传播的简便方法。其不足之处是对每一个给定的观察点必须进行一次二维或四维的复射线轨迹搜索,这是一个十分花费时间的计算机迭代过程。 4 几种方法的比较和进展 将有限元法移植到电磁工程领域还是二十世纪六七十年代的事情,他比较新颖。有限元法的优点是适用于具有复杂边界形状或边界条件、含有复杂媒质的定解问题。这种方法的各个环节可以实现标准化,得到通用的计算程序,而且有较高的计算精度。但是这种方法的计算程序复杂冗长,由于他是区域性解法,分割的元素数和节点数较多,导致需要的初始数据复杂繁多,最终得到的方程组的元数很大,这使得计算时间长,而且对计算机本身的存储也提出了要求。对电磁学中的许多问题,有限元产生的是带状(如果适当地给节点编号的话)、稀疏阵(许多矩阵元素是0)。但是单独采用有限元法只能解决开域问题。用有限元法进行数值分析的第一步是对目标的离散,多年来人们一直在研究这个问题,试图找到一种有效、方便的离散方法,但由于电磁场领域的特殊性,这个问题一直没有得到很好的解决。问题的关键在于一方面对复杂的结构,一般的剖分方法难于适用;另一方面,由于剖分的疏密与最终所形成的系数矩阵的存贮量密切相关,因而人们采用了许多方法来减少存储量,如多重网格法,但这些方法的实现较为困难〔6〕。 网格剖分与加密是有限元方法发展的瓶颈之一,采用自适应网格剖分和加密技术相对来说可以较好地解决这一问题。自适应网格剖分根据对场量分布求解后的结果对网格进行增加剖分密度的调整,在网格密集区采用高阶插值函数,以进一步提高精度,在场域分布变化剧烈区域,进行多次加密。 这些年有限元方法的发展日益加快,与其他理论相结合方面也有了新的进展,并取得了相当应用范围的成果,如自适应网格剖分、三维场建模求解、耦合问题、开域问题、高磁性材料及具有磁滞饱和非线性特性介质的处理等,还包括一些尚处于探索阶段的工作,如拟问题、人工智能和专家系统在电磁装置优化设计中的应用、边基有限元法等,这些都使得有限元方法的发展有了质的飞跃。 矩量法将连续方程离散化为代数方程组,既适用于求解微分方程,又适用于求解积分方程。他的求解过程简单,求解步骤统一,应用起来比较方便。然而 77他需要一定的数学技巧,如离散化的程度、基函数与权函数的选取,矩阵求解过程等。另外必须指出的是,矩量法可以达到所需要的精确度,解析部分简单,可计算量很大,即使用高速大容量计算机,计算任务也很繁重。矩量法在天线分析和电磁场散射问题中有比较广泛地应用,已成功用于天线和天线阵的辐射、散射问题、微带和有耗结构分析、非均匀地球上的传播及人体中电磁吸收等。 FDTD用有限差分式替代时域麦克斯韦旋度方程中的微分式,得到关于场分量的有限差分式,针对不同的研究对象,可在不同的坐标系中建模,因而具有这几个优点,容易对复杂媒体建模,通过一次时域分析计算,借助傅里叶变换可以得到整个同带范围内的频率响应;能够实时在现场的空间分布,精确模拟各种辐射体和散射体的辐射特性和散射特性;计算时间短。但是FDTD分析方法由于受到计算机存储容量的限制,其网格空间不能无限制的增加,造成FDTD方法不能适用于较大尺寸,也不能适用于细薄结构的媒质。因为这种细薄结构的最小尺寸比FDTD网格尺寸小很多,若用网格拟和这类细薄结构只能减小网格尺寸,而这必然导致计算机存储容量的加大。因此需要将FDTD与其他技术相结合,目前这种技术正蓬勃发展,如时域积分方程/FDTD方法,FDTD/MOM等。FDTD的应用范围也很广阔,诸如手持机辐射、天线、不同建筑物结构室内的电磁干扰特性研究、微带线等〔7〕。 复射线技术具有物理模型简单、数学处理方便、计算效率高等特点,在复杂目标散射特性分析等应用领域中有重要的研究价值。典型的处理方式是首先将入射平面波离散化为一组波束指向平行的复源点场,通过特定目标情形下的射线追踪、场强计算和叠加各射线场的贡献,可以得到特定观察位置处散射场的高频渐进解。目前已运用复射线分析方法对飞行器天线和天线罩(雷达舱)、(加吸波涂层)翼身结合部和进气道以及涂层的金属平板、角形反射器等典型目标散射特性进行了成功的分析。尽管复射线技术的计算误差可以通过参数调整得到控制,但其本身是一种高频近似计算方法,由于入射波场的离散和只引入鞍点贡献,带来了不可避免的计算误差。总的来说复射线方法在目标电磁散射领域还是具有独特的优势,尤其是对复 杂目标的处理。 5 结 语 电磁学的数值计算方法远远不止以上所举,还有边界元素法、格林函数法等,在具体问题中,应该采用不同的方法,而不应拘泥于这些方法,还可以把这些方法加以综合应用,以达到最佳效果。 电磁学的数值计算是一门计算的艺术,他横跨了多个学科,是数学理论、电磁理论和计算机的有机结合。原则上讲,从直流到光的宽频带范围都属于他的研究范围。为了跟上世界科技发展的需要,应大力进行电磁场的并行计算方法的研究,不断拓广他的应用领域,如生物电磁学、复杂媒质中的电磁正问题和逆问题、医学应用、微波遥感应用、非线性电磁学中的混沌与分叉、微电子学和纳米电子学等。 参考文献 〔1〕 文舸一.计算电磁学的进展与展望〔J〕.电子学报,1995,23(10):62- 〔2〕 刘圣民.电磁场的数值方法〔M〕.武汉:华中理工大学出版社,1991. 〔3〕 张成,郑宏兴.小波矩量法求解电磁场积分方程〔J〕.宁夏大学学报(自然科学版),2000,21(1):76- 〔4〕 王长清.时域有限差分(FD-TD)法〔J〕.微波学报,1989,(4):8- 〔5〕 阮颖诤.复射线理论及其应用〔M〕.成都:电子工业出版社,1991. 〔6〕 方静,汪文秉.有限元法和矩量法结合分析背腔天线的辐射特性〔J〕.微波学报,2000,16(2):139- 〔7〕 杨永侠,王翠玲.电磁场的FDTD分析方法〔J〕.现代电子技术,2001,(11):73- 〔8〕 洪伟.计算电磁学研究进展〔J〕.东南大学学RB (自然科学版),2002,32(3):335- 〔9〕 王长清,祝西里.电磁场计算中的时域有限差分法〔M〕.北京:北京大学出版社,1994. 〔10〕 楼仁海,符果行,袁敬闳.电磁理论〔M〕.成都:电子科技大学出版社,1996. 现代电子技术

磁性材料 主要是指由过度元素铁,钴,镍及其合金等能够直接或间接产生磁性的物质 磁性材料从材质和结构上讲,分为“金属及合金磁性材料”和“铁氧体磁性材料”两大类,铁氧体磁性材料又分为多晶结构和单晶结构材料。 从应用功能上讲,磁性材料分为:软磁材料、永磁材料、磁记录-矩磁材料、旋磁材料等等种类。软磁材料、永磁材料、磁记录-矩磁材料中既有金属材料又有铁氧体材料;而旋磁材料和高频软磁材料就只能是铁氧体材料了,因为金属在高频和微波频率下将产生巨大的涡流效应,导致金属磁性材料无法使用,而铁氧体的电阻率非常高,将有效的克服这一问题、得到广泛应用。 磁性材料从形态上讲。包括粉体材料、液体材料、块体材料 、薄膜材料等。 磁性材料的应用很广泛,可用于电声、电信、电表、电机中,还可作记忆元件、微波元件等。可用于记录语言、音乐、图像信息的磁带、计算机的磁性存储设备、乘客乘车的凭证和票价结算的磁性卡等。顺磁性 paramagnetism 顺磁性物质的磁化率为正值,比反磁性大1~3个数量级,X约10-5~10-3,遵守Curie定律或Curie-Weiss定律。物质中具有不成对电子的离子、原子或分子时,存在电子的自旋角动量和轨道角动量,也就存在自旋磁矩和轨道磁矩。在外磁场作用下,原来取向杂乱的磁矩将定向,从而表现出顺磁性。 顺磁性是一种弱磁性。顺磁(性)物质的主要特点是原子或分子中含有没有完全抵消的电子磁矩,因而具有原子或分子磁矩。但是原子(或分子)磁矩之间并无强的相互作用(一般为交换作用),因此原子磁矩在热骚动的影响下处于无规(混乱)排列状态,原子磁矩互相抵消而无合磁矩。但是当受到外加磁场作用时,这些原来在热骚动下混乱排列的原子磁矩便同时受到磁场作用使其趋向磁场排列和热骚动作用使其趋向混乱排列,因此总的效果是在外加磁场方向有一定的磁矩分量。这样便使磁化率(磁化强度与磁场强度之比)成为正值,但数值也是很小,一般顺磁物质的磁化率约为十万分之一(10-5),并且随温度的降低而增大。抗磁性 diamagnetism 抗磁性是一些物质的原子中电子磁矩互相抵消,合磁矩为零。但是当受到外加磁场作用时,电子轨道运动会发生变化,而且在与外加磁场的相反方向产生很小的合磁矩。这样表示物质磁性的磁化率便成为很小的负数(量)。磁化率是物质在外加磁场作用下的合磁矩(称为磁化强度)与磁场强度之比值,符号为κ。一般抗磁(性)物质的磁化率约为负百万分之一(-10-6)。磁畴 磁畴(Magnetic Domain)理论是用量子理论从微观上说明铁磁质的磁化机理。所谓磁畴,是指磁性材料内部的一个个小区域,每个区域内部包含大量原子,这些原子的磁矩都象一个个小磁铁那样整齐排列,但相邻的不同区域之间原子磁矩排列的方向不同,如图所示。各个磁畴之间的交界面称为磁畴壁。宏观物体一般总是具有很多磁畴,这样,磁畴的磁矩方向各不相同,结果相互抵消,矢量和为零,整个物体的磁矩为零,它也就不能吸引其它磁性材料。也就是说磁性材料在正常情况下并不对外显示磁性。只有当磁性材料被磁化以后,它才能对外显示出磁性。铁磁性 Ferromagnetism 铁、钴、镍及一些稀土元素存在独特的磁性现象称为铁磁性,这个名称的由来是因为铁是具有铁磁性物质中最常见也是最典型的。钐(Samarium),钕(neodymium)与钴的合金常被用来制造强磁铁。 铁磁性材料存在长程序,即磁畴内每个原子的未配对电子自旋倾向于平行排列。因此,在磁畴内磁性是非常强的,但材料整体可能并不体现出强磁性,因为不同磁畴的磁性取向可能是随机排列的。如果我们外加一个微小磁场,比如螺线管的磁场会使本来随机排列的磁畴取向一致,这时我们说材料被磁化。材料被磁化后,将得到很强的磁场,这就是电磁铁的物理原理。 当外加磁场去掉后,材料仍会剩余一些磁场,或者说材料"记忆"了它们被磁化的历史。这种现象叫作剩磁,所谓永磁体就是被磁化后,剩磁很大。 当温度很高时,由于无规则热运动的增强,磁性会消失,这个临界温度叫居里温度(Curie temperature)。 如果我们考察铁磁材料在外加磁场下的机械响应,会发现在外加磁场方向,材料的长度会发生微小的改变,这种性质叫作磁致伸缩(magnetostriction)。概念解析 反铁磁性(antiferromagnetism )是指在无外加磁场的情况下,磁畴内近邻原子或离子的数值相等的磁矩,由于其间的相互作用而处于反平行排列的状态,因而其合磁矩为零的现象。注: ①这种材料当加上磁场后其磁矩倾向于沿磁场方向排列,即材料显示出小的正磁化率。但该磁化率与温度相关,并在奈尔点有最大值。 ②用主要磁现象为反铁磁性物质制成的材料,称为反铁磁材料。 反铁磁性是指由于电子自旋反向平行排列。在同一子晶格中有自发磁化强度,电子磁矩是同向排列的;在不同子晶格中,电子磁矩反向排列。两个子晶格中自发磁化强度大小相同,方向相反,整个晶体 。反铁磁性物质大都是非金属化合物,如MnO。 不论在什么温度下,都不能观察到反铁磁性物质的任何自发磁化现象,因此其宏观特性是顺磁性的,M与H处于同一方向,磁化率为正值。温度很高时,极小;温度降低,逐渐增大。在一定温度时, 达最大值。称为反铁磁性物质的居里点或尼尔点。对尼尔点存在的解释是:在极低温度下,由于相邻原子的自旋完全反向,其磁矩几乎完全抵消,故磁化率 几乎接近于0。当温度上升时,使自旋反向的作用减弱,增加。当温度升至尼尔点以上时,热骚动的影响较大,此时反铁磁体与顺磁体有相同的磁化行为。 反铁磁性物质置於磁场中,其邻近原子之磁矩相等而排列方向刚好相反,因此其磁化率为零。 许多过渡元素之化合物都有这种反铁磁性。 物质之磁矩是由其内每一原子内之电子之自旋,及轨道运动所产生之磁矩和及原子间之交互作用之和。利用物质之磁矩对中子磁矩作用产生之绕射现象,可以测定物质内原子磁矩之分布方向和次序。利用中子绕射而测得之MnF2和NiO二种反铁磁性物质之磁矩结构。在MnF2反铁磁性物质中,Mn离子其3d轨道未饱和之电子受到磁场磁化之磁矩依面心立方晶格〔Fcc〕而分布,因在每一角落上离子之磁矩都是同一方向。而在其立方面上之离子磁矩都在同一相反方向。其向量和等于零,因而此种物质之磁化率,X等于零。 物质在磁场中之取向效应受到热激动的抵抗,因而其磁化率随温度而变。当温度等于某一温度-尼尔温度(Neel Temperature)时,反铁磁物质的磁化率会稍微上升,当温度超过尼尔温度TN时,则反铁磁性物质之磁性近于顺磁性。亚铁磁性 中文词条名:亚铁磁性 英文词条名:ferromagnetic 在无外加磁场的情况下,磁畴内由于相邻原子间电子的交换作用或其他相互作用。使它们的磁矩在克服热运动的影响后,处于部分抵消的有序排列状态,以致还有一个合磁矩的现象。当施加外磁场后,其磁化强度随外磁场的变化与铁磁性物质相似。 注: ①用主要磁现象为亚铁磁性物质制成的材料,称为亚铁磁材料。在工程技术上,实用的亚铁磁材料多为各类铁氧体和某些金属间化合物。 ②铁磁材料与亚铁磁材料统称为强磁材料,简称磁性材料。永磁材料 又称“硬磁材料”。一经磁化即能保持恒定磁性的材料。具有宽磁滞回线、高矫顽力和高剩磁。按其成分可分为铁基、钴基、锰基和铁氧基四大类。广泛用于电子、电气、机械、运输、医疗及生活用品等各个领域中。

1、Mg-4Sr中间合金的微观组织及其在AZ91D镁合金中的组织遗传效应研究2、[BMIM]ClO_4离子液体的热力学性质3、以一种新碳前驱体制备有序介孔碳及其表征4、多元共掺BiFeO_3(La、Eu、Co)磁性和局域结构研究5、Pt-Ni/Nafion材料的制备及电致动性能研究6、SiGe薄膜的RPCVD负载影响及特性研究7、纳米锐钛矿TiO_2及负载金催化剂的制备与催化性能8、混晶型纳米二氧化钛混悬液的制备及其光催化性能9、Cr掺杂对尖晶石型CoFe2-xCrxO4的结构及光催化性能的影响10、Sol-gel法制备YAG:Ce荧光薄膜11、KH560/KH570改性SiO_2增透膜的制备12、Ce-La-Mn超细粒子的制备、表征及催化性能研究13、原位冶金反应粗晶碳化钨复合材料的组织研究14、机械合金化工艺对Fe33Si67合金微观组织结构的影响15、络合物对制备纯相BiFeO_3纳米晶的影响16、新型改性双氰胺固化剂对环氧树脂的固化行为研究17、聚吡咯/多壁碳纳米管复合材料的制备与性能研究18、Cu/LDPE多孔复合材料制备过程中致孔剂的溶出行为19、P(AAm-co-MAA)/PANI/MWNTs-COOH新型杂合水凝胶在不同pH环境下力学性能的研究20、日实现活体生物体内蛋白质状态的可视化 有助于高等生物嗅觉信息传递机制的研究

相关百科
热门百科
首页
发表服务