学术论文百科

激光雷达技术为主题的会议论文怎么写

发布时间:2024-07-11 18:43:55

激光雷达技术为主题的会议论文怎么写

利用激光雷达技术提取古建筑的线性特征摘要:随着激光雷达技术的发展,激光雷达技术已经应用到了更广泛的领域。本文主要介绍了利用激光雷达技术提取古建筑的线性特征的原理和方法。运用激光扫描仪对古建筑物进行扫描,获取古建筑物表面的高清晰三维激光点云数据,然后利用三维点云数据和相应的建模软件制作出三角网模型和Nurbs模型,最后利用这两种模型来提取古建筑的线性特征。古建筑的线性特征主要包括立面图、平面图和剖面图。用三角网模型制作立面图;用三角网模型和Nurbs模型来制作平面图和剖面图。应用激光雷达技术制作的各种线性图效率高、精度好、真实性强,在古建筑物的保护和重建中具有一定的应用价值。

易车讯,2021年6月11日,第十三届中国汽车蓝皮书论坛在合肥洲际酒店开启了第二天的议程。《激光雷达的进展与最新机会》议题下午在A厅进行,该议题聚焦自动驾驶的重要元器件激光雷达,汇集了国内5家优秀的激光雷达头部企业。议题就激光雷达上车元年,技术路径选择,行业目前最大的挑战,华为、大疆等巨头加入对行业格局的影响,人才争夺战等问题进行深入讨论。嘉宾包括:禾赛科技CEO:李一帆速腾聚创联合创始人兼执行总裁:邱纯潮亮道智能CEO:剧学铭图达通Innovusion CEO及联合创始人:鲍君威万集科技董事长:翟军一、禾赛科技禾赛科技是全球领先的3D传感器(激光雷达)制造商。2014年成立于上海,致力于开发基于激光的机器人传感技术。依靠近500人的团队打造出一系列创新型传感器解决方案,兼顾业内顶尖的产品性能、可量产的设计以及出众的可靠性。二、速腾聚创RoboSense(速腾聚创)是智能激光雷达系统(Smart LiDAR Sensor System)科技企业。RoboSense通过激光雷达硬件、AI算法与芯片三大核心技术闭环,为市场提供具有信息理解能力的智能激光雷达系统。  创立于2014年,RoboSense总部位于深圳,在北京、上海、苏州、斯图加特、硅谷等地设有分支机构。RoboSense在全球拥有500多名员工。三、Innovusion图达通图达通Innovusion是一家图像级远距离激光雷达自动驾驶与智慧交通解决方案提供商,是世界领先的300线激光雷达高新企业,总部位于美国硅谷,产品运用在自动驾驶、车路协同、城市轨道交通、智慧高速、高精地图等多个领域。目前国内已有多家主机厂测试激光雷达产品,计划作为平台化标准产品,应用于L3及以上的智能驾驶车型。另外蔚来汽车公布了明年第一季度发布的量产车ET7上,选中了图达通的激光雷达作为标配的激光雷达产品。四、亮道智能北京亮道智能汽车技术有限公司于2017年09月01日成立。公司成立的目标是希望把激光雷达做到每一辆车上,和其他四家公司有非常大的不同是,该公司不做自己的硬件,采用的策略是和各个硬件厂商合作不同的技术路线。万集科技的翟军表示,今年是2021年,三年后是2024年,随着车路协同的发展,自动驾驶也应该在2024年到2025年,随着技术,包括激光雷达技术的成熟度,以及整个算力的成熟和整个系统的成熟、主机厂的成熟,它应该在2025年,这是我个人的估计。随后图达通的鲍君威发表了自己的看法:如果我们定义激光雷达的元年,实际上2017年法雷奥的第一款已经上到奥迪上去了,我们定义元年有几个指标,一是激光雷达有用,能用起来;二是有足够多的车厂用激光雷达,我认为应该是明年,2022年。有几个特性,一个是在座的几位友上和我们都有一些计划,不管是公开的,还是没有公开的,我们清楚地看到明年大约有5-10款车型会上激光雷达,少量的可能几百台、几千台,大量的可能几万台,而且不只是中国。紧接着速腾聚创的邱纯潮发表了不同观点,就我们自己企业来看,今年就有三个项目要SOP,这个月就有一款,真正直接装车,并且面向量产的前端客户,上个月已经把货发出去了。整体来看,从曲线来看,明年有一个客户就有几万台的需求,而且是大几万台,从这个角度里看,可能会更快一些。我认可今年可能是元年,明年开始往上爬。最后发言的是禾赛科技的李一帆,李总的观点更为保守和佛系,没有指出具体的时间而是从另一个角度做了阐述,我觉得大家的理解可能有几层含义。第一层含义:第一次尝试去上一个东西,在我看来它没有做闭环,而是做了尝试。我觉得第一批的元年可能就跟各位说的时间是差不多的,明年量肯定是最大的。但我觉得这个事儿不太重要,因为从我角度看,我思考的是我们不面向直接的消费者,我们实际是一个供应商,我更关心的问题是激光雷达给主机厂,帮助主机厂为客户创造了多少价值。从我们角度来讲,如果激光雷达作为一个成本,你能不能形成这样的体验?可能你们已经很有信心了,我还是有点忐忑的,我会觉得这个事儿还是需要行业一起推动。换句话说2022年的元年只是大家历史上第一次拿到这个硬件产品,大家有没有第一次拿到这个体验?坦率的讲都不一定。而第一次拿到这个体验以后是不是好的体验,是不是回头他会跟他朋友说我买的这款车上面装着谁家的雷达,这个东西值得我们花至少得加一两万块钱吧,这是从成本上讲,这个得闭环嘛。我觉得到那个点上的时候,大家才会去想它是不是一个有效的产品,我觉得作为一个行业,我觉得只有体验变成真实的体验后,大家才会真的上量,在真的上量以后才讨论是不是元年,我会觉得它更有价值。各家企业对于元年的选取产生了不同的看法,最早的认为今年将会是元年,最晚的认为2025年将会是元年,还有的认为要等产品经过用户的满意并且形成闭环后再讨论元年,总之元年如何选虽然没有定数,但是对于激光雷达作为自动驾驶感知硬件的共识各位将会是坚定不移的。第二个问题关于技术路线,大家比较了解的电动车或者电池,这么多年从2009年推广以来经历各种各样的路线之争,到现在都没完没了。激光雷达是比较新兴的,同样激光雷达也有不同的技术路线,简单来说分为机械式、混合固态式以及纯固态的方案。这三类有各自的优缺点,例如机械式发展最成熟,扫描速度快可以360度全方位探测,但是由于其体积较大很难装车量产,造价也是一个大难题;混合固态呢成本低,适合大规模量产但是视野有限,360度就不行了,纯固态将是未来发展趋势,有OPA光学相控阵和Flash   两种技术路线,但同样等待技术的进一步突破才能实现量产。这次禾赛科技的李总先进行了阐述,我们内部有个比喻,我们内部讨论时会觉得,咱们说的所有技术路线其实都是扫描路线,仅仅讨论的是一个如何改变光的方向这件事儿的扫描部分的技术路线,剩下的事情其实没有讨论进去。第一个是说这些技术路线本质上讲,是不是会让不同的公司越跑越远?还是说我们觉得有没有一个可能是最终确实有可能一个技术路线会成为更实际、更经济、更可靠的路线?然后行业会趋同到这个路线上?我们会觉得这个概率会更大,但没法说是哪个。假设我们认为行业会因此发现某一个更实际而趋同那个技术路线,我觉得更有意思的话题是技术路线本身会成为壁垒还是说如果这个事儿一旦清晰了,可能拿一个增程和纯电,哪一个到底是终局?我其实不知道,大家可能觉得在不同时间点有不同的考虑,但一旦我们想清楚了,这个东西是不可逾越的壁垒还是说它是表象,更重要的是不同公司在背后的积累到底在哪儿?这些技术路线大家都能做,我们也都有,反而不能说哪一个会成为公司的未来,反而我们更关心的是激光雷达最背后本质的核心其实是芯片,我们会觉得不同的光电、芯片置于激光雷达更像是发动机置于燃油车,我觉得到最后你做几个门时你随便做,但是我们觉得芯片是,所以我是觉得这是一个我们的思考。随后发言的是速腾聚创的邱纯潮,我挺同意一帆的看法的,因为我这个问题也被问了很多次。我相信各位同行也是被问到吐。但是这个没有答案,谁也说不出来准确答案,很难有答案,我们唯一能做的事情,我们要去思考的更多是说你在什么时间段针对什么应用推出更适合这个应用的产品?我们更多要思考市场本身和它自己的规律。在这个问题上各位的发言最终落脚在两个问题上,一是芯片化,二是成本。我们根据目前的发展趋势做出如下总结:第一,激光雷达未来会从机械旋转式,到混合固态,再到纯固态方向演进。 第二,感知算法是激光雷达感知系统的“第二个核心”。第三,预计行业整体将会向“低成本化”、 “量产化”、“固态化”、“智能化”发展。在座的五家公司都是创业公司,有四家是很年轻的创业公司,有一家是稍微历史久远一点的创业公司,激光雷达领域大部分是创业公司,还有一些个别的巨头往里面插手,比如说华为、大疆。华为的激光雷达将在极狐HBT车型以及长安的高端车型中装配;大疆孵化的Livox览沃也是小鹏P5的激光雷达供应商,当这类巨头公司入场,资本的优势会不会对创业公司造成冲击?李一帆表示:我觉得资金、巨头公司,对互联网行业的影响大于对硬件行业的,互联网行业,很多时候钱就能够决定战局,我就补贴你,我就砸你,我就买流量。有很多事,商业上可以直接被钱影响,甚至很多互联网公司融钱的唯一原因就是为了改变战局。对于硬件行业,有钱当然好,但是更重要的还是要符合客观规律,在硬件行业,大鱼吃小鱼没有那么容易,很有可能最后是快鱼吃慢鱼,小公司拥有快的优势,这是有可能的。我们不一定比华为快,但是作为小公司,或者全世界任何的小公司,快永远是他比大公司的优势,这一点很有可能在我们这样的小公司里也是存在的,这是我看到的我们的机会。因此李总认为目前巨头的入场还不至于造成恐慌,做好自己就好。随后图达通的鲍总表示,巨头进入进来是好事,说明它很有很好的发展的方向。除了一帆说的硬件和互联网的区别,还有两个特性:第一,这是一个ToB的行业,我们的客户都是ToB的,我们的客户都是非常聪明的,而且有长远战略眼光的,不像ToC行业消费者,头脑一发热,就被钱砸晕了。ToB行业,客户是个长远,看技术深度的,光有钱不够,必须看实打实的性能。第二,激光雷达行业是一个非常新的行业,新到很多时候技术路线不清楚,如果有一个迷宫阵的话,有太多太多的路线可以走,即使有再多的钱,在这种大的迷宫下,如果思路不清楚,体量也是不够的。即使是巨头,我们看到这些公司,好像也没有哪些人是可以顶的起来,在行业里头脑比较清醒的、技术上比较清醒的带头人。基于这一点,我还没有看到这些巨头人对我们这一类公司的实际的威胁。接下来速腾聚创的邱纯潮表达了对巨头公司的重视,说到华为这个事情,紧不紧张?紧张,我是很紧张,很多人觉得华为可能是大公司,他速度慢,他可能不太好掉头,诸如此类的。其实我们正面刚过几次,我觉得他挺猛的,这是真的。但是我们可能对华为的定位,对华为的期待不一样,我们可能会认为他是下一个博世,中国的博世,华为不是一家激光雷达公司。对于我来说,对于所有的人来说,我们激光雷达干不好就会死了,而华为不一样,博世也干激光雷达,对他们来说激光雷达只是一部分,对于我们来说是全部,当然华为的激光雷达团队也会觉得这是他的全部。然后激励不一样,华为激光雷达团队激励我不太清楚,对于我们来说,我们会把生存拉到最高的的法则来打这场仗。对于华为来讲,他既然说能做全站式的技术,他的实现方式就有很多样,可能是我可以直接给你提供整套的解决方案,这样的商业机会对于我们来讲就很麻烦。但是华为内部属于,你要做的好,我也不排斥和你合作,他也不一定全部得上自己的。所以我觉得是一个比较良性的竞争吧。通过此次论坛上的各位激光雷达领域的大佬发言我们对这个行业,对这个领域的技术都有一个更深入的理解和认识,自动驾驶的元年无论到底何时,确定的是就在眼前并且我们会一同见证,技术路线的比较还要依照可靠性、成本以及不同主机厂的不同需求来决定,行业内的竞争一定是促进整个行业共同发展的必要因素,各家在最终之战打响之前要做的就是不断丰富自己的产品以及满足主机厂和用户的需求,尽可能的在保证可靠性的同时降低成本。我们可以看到中国的初创科技公司在用他们的智慧与胆识与全世界的智能驾驶同行展开着激烈竞争与激辩,未来我们能否实现弯道超车,打造我们中国的硅谷?让我们拭目以待。

激光雷达论文怎么写的

这个在一般的硕士毕业大论文里都会论述激光雷达探测大气的基本原理即是上述几种激光与大气相互作用的机制。激光器产生的激光束经光束准直(有的情况下需要扩束)后发射到大气中,激光在大气中传输遇到空气分子、气溶胶等成分便会发生散射、吸收等作用。散射中的小部分能量——后向散射光落入接收望远镜视场被接收。被接收到的后向散射光传输到光电探测器(通常为PMT)被转换成电信号(一般为电流信号),实现光-电转换,再经一系列的运算放大,最终被显示、记录。对于不同高度的信号,利用激光信号传输时间间隔来记录,光速c已知,便可换算成距离:。如果接收到的是回波点数,乘以系统距离分辨率即得高度。这样就获得了激光雷达P-z数据,利用激光雷达方程结合相关算法便可反演出相关大气特性,如大气垂直消光廓线、气体浓度、成分以及温度廓线等。

利用激光雷达技术提取古建筑的线性特征摘要:随着激光雷达技术的发展,激光雷达技术已经应用到了更广泛的领域。本文主要介绍了利用激光雷达技术提取古建筑的线性特征的原理和方法。运用激光扫描仪对古建筑物进行扫描,获取古建筑物表面的高清晰三维激光点云数据,然后利用三维点云数据和相应的建模软件制作出三角网模型和Nurbs模型,最后利用这两种模型来提取古建筑的线性特征。古建筑的线性特征主要包括立面图、平面图和剖面图。用三角网模型制作立面图;用三角网模型和Nurbs模型来制作平面图和剖面图。应用激光雷达技术制作的各种线性图效率高、精度好、真实性强,在古建筑物的保护和重建中具有一定的应用价值。

激光雷达是向目标发射激光束信号,接收器根据接收到的反射信号与发射信号进行比较进行一定的运算处理后得到目标物体的相关信息,比如目标距离,目标方向、目标高度、目标速度等。激光本身具有非常精确的测距能力,测距距离精度可达到几厘米,激光雷达工作原理与船用雷达原理非常接近,它是以激光束作为信号源,发射到船体上,引起散射,一部分光波会反射回激光雷达接收器,激光雷达不断发送脉冲激光进行扫描目标船体,就可以得到船舶上船体的点云数据,由此数据就可以得到精确的三维立体图像,基于激光雷达的原理和其特性,现激光雷达技术已经广泛用在军事、农业、气象、医疗、水土检测、自动驾驶等领域,作为应用场景较为单一的河道内检测船舶的可行性非常高的。激光雷达检测船舶超高偏航    该传感器的点云密度可轻松超过128线激光雷达。面对反射率低至 10% 的物体,探测距离仍可达 320 米,可探测量程极限1000米,角度精度达 03°,光束发散角低至 12°(垂直)x 02°(水平),在工作时可射出多线激光同时进行高速非重复扫描,每秒可将多达 240,000 点的点云数据分布在约 15 度 FOV 里,仅需 100 ms 视场覆盖率即可达到 8%,点云密度超过市面上主流 128 线机械式激光雷达,传统的机械激光雷达需要旋转电子元件让其扫描范围实现360度覆盖。激光雷达的独特设计不使用此类移动部件,只使用旋转棱镜,与传统的机械激光雷达相比,此种设计使其激光雷达能够工作得更久、更可靠。下图为激光雷达扫描图以及覆盖率曲线图。激光雷达多线扫描激光雷达覆盖率曲线图激光雷达结构图在桥梁防船撞智能预警系统中,激光雷达技术可精准检测船舶的高度,长度、宽度。喜讯科技做了不少的案例工程。    桥梁防碰撞预警系统具有强大的数据处理能力、可对船舶的形态分析、三维重构、吨位计算、多源数据的融合输出船舶流量、航行状态的最终结果,报送给相关管理部门。激光雷达在于提供一种新的船舶超高与偏航检测手段,即可实现超高检测,同时有能实现偏航预警,实时性高,误判率低,检测精度高。激光雷达检测船舶航行状态

激光——人类创造的神奇之光  激光的最初中文名叫做“镭射”、“莱塞”,是它的英文名称LASER的音译,是取自英文Light Amplification by Stimulated Emission of Radiation的各单词的头一个字母组成的缩写词。意思是“受激辐射的光放大”。激光的英文全名已完全表达了制造激光的主要过程。1964年按照我国著名科学家钱学森建议将“光受激发射”改称“激光”。  激光是20世纪以来,继原子能、计算机、半导体之后,人类的又一重大发明,被称为“最快的刀”、“最准的尺”、“最亮的光”和“奇异的激光”。它的原理早在 1916 年已被著名的物理学家爱因斯坦发现,但要直到 1958 年激光才被首次成功制造。激光是在有理论准备和生产实践 迫切需要的背景下应运而生的,它一问世,就获得了异乎寻常的飞快发展,激光的发展不仅使古老的光学科学和光学技术获得了新生,而且导致整个一门新兴产业的出现。激光可使人们有效地利用前所未有的先进方法和手段,去获得空前的效益和成果,从而促进了生产力的发展。  激光的产生原理:  受激辐射基于伟大的科学家爱因斯坦在1916年提出的一套全新的理论。这一理论是说在组成物质的原子中,有不同数量的粒子(电子)分布在不同的能级上,在高能级上的粒子受到某种光子的激发,会从高能级跳到(跃迁)到低能级上,这时将会辐射出与激发它的光相同性质的光,而且在某种状态下,能出现一个弱光激发出一个强光的现象。这就叫做“受激辐射的光放大”, 一段激活物质就是一个激光放大器。  激光的特点:  (一)定向发光  普通光源是向四面八方发光。要让发射的光朝一个方向传播,需要给光源装上一定的聚光装置,如汽车的车前灯和探照灯都是安装有聚光作用的反光镜,使辐射光汇集起来向一个方向射出。激光器发射的激光,天生就是朝一个方向射出,光束的发散度极小,大约只有001弧度,接近平行。1962年,人类第一次使用激光照射月球,地球离月球的距离约38万公里,但激光在月球表面的光斑不到两公里。若以聚光效果很好,看似平行的探照灯光柱射向月球,按照其光斑直径将覆盖整个月球。  (二)亮度极高  在激光发明前,人工光源中高压脉冲氙灯的亮度最高,与太阳的亮度不相上下,而红宝石激光器的激光亮度,能超过氙灯的几百亿倍。因为激光的亮度极高,所以能够照亮远距离的物体。红宝石激光器发射的光束在月球上产生的照度约为02勒克斯(光照度的单位),颜色鲜红,激光光斑明显可见。若用功率最强的探照灯照射月球,产生的照度只有约一万亿分之一勒克斯,人眼根本无法察觉。激光亮度极高的主要原因是定向发光。大量光子集中在一个极小的空间范围内射出,能量密度自然极高。  (三)颜色极纯  光的颜色由光的波长(或频率)决定。一定的波长对应一定的颜色。太阳光的波长分布范围约在76微米至4微米之间,对应的颜色从红色到紫色共7种颜色,所以太阳光谈不上单色性。发射单种颜色光的光源称为单色光源,它发射的光波波长单一。比如氪灯、氦灯、氖灯、氢灯等都是单色光源,只发射某一种颜色的光。单色光源的光波波长虽然单一,但仍有一定的分布范围。如氪灯只发射红光,单色性很好,被誉为单色性之冠,波长分布的范围仍有00001纳米,因此氪灯发出的红光,若仔细辨认仍包含有几十种红色。由此可见,光辐射的波长分布区间越窄,单色性越好。  激光器输出的光,波长分布范围非常窄,因此颜色极纯。以输出红光的氦氖激光器为例,其光的波长分布范围可以窄到2×10-9纳米,是氪灯发射的红光波长分布范围的万分之二。由此可见,激光器的单色性远远超过任何一种单色光源。  (四)能量密度极大  光子的能量是用E=hγ来计算的,其中h为普朗克常量,γ为频率。由此可知,频率越高,能量越高。激光频率范围846*10^(14)Hz到895*10^(14)H  激光能量并不算很大,但是它的能量密度很大(因为它的作用范围很小,一般只有一个点),短时间里聚集起大量的能量,用做武器也就可以理解了。  目前激光技术及其应用研究内容包括:  ⑴超快超强激光:超快超强激光主要以飞秒激光的研究与应用为主,作为一种独特的科学研究的工具和手段,飞秒激光的主要应用可以概括为三个方面,即飞秒激光在超快领域内的应用、在超强领域内的应用和在超微细加工中的应用。其中飞秒激光超微细加工是当今世界激光、光电子行业中的一个极为引人注目的前沿研究方向。  ⑵新型激光器研究:激光测距仪是激光在军事上应用的起点,将其应用到火炮系统,大大提高了火炮射击精度。激光雷达相比于无线电雷达,由于激光发散角小,方向性好,因此其测量精度大幅度提高。由于同样的原因,激光雷达不存在"盲区",因此尤其适宜于对导弹初始阶段的跟踪测量。但由于大气的影响,激光雷达并不适宜在大范围内搜索,还只能作为无线电雷达的有力补足。  ⑶激光医疗:激光在医学上的应用分为两大类:激光诊断与激光治疗,前者是以激光作为信息载体,后者则以激光作为能量载体。多年来,激光技术已成为临床治疗的有效手段,也成为发展医学诊断的关键技术。它解决了医学中的许多难题,为医学的发展做出了贡献。现在,在基础研究、新技术开发以及新设备研制和生产等诸多方面都保持持续的、强劲的发展势头。  ⑷激光化学:激光化学的应用非常广泛。制药工业是第一个得益的领域。应用激光化学技术,不仅能加速药物的合成,而又可把不需要的副产品剔在一旁,使得某些药物变得更安全可靠,价格也可降低一些。又如,利用激光控制半导体,就可改进新的光学开关,从而改进电脑和通信系统。激光化学虽然尚处于起步阶段,但其前景十分光明。  目前全球业界公认的发展最快的、应用日趋广泛的最重要的高新技术就是光电技术。而在光电技术中,其基础技术之一就是激光技术。21世纪的激光技术与产业的发展将支撑并推进高速、宽带、海量的光通信以及网络通信,并将引发一场照明技术革命,小巧、可靠、寿命长、节能半导体(LED)将主导市场。光电技术将继微电子技术之后再次推动人类科学技术的革命和进步,激光产品已成为现代武器的"眼睛"和"神经"。激光的研究必将对相关领域进步起到巨大推动作用。

激光雷达论文题目怎么写

这个在一般的硕士毕业大论文里都会论述激光雷达探测大气的基本原理即是上述几种激光与大气相互作用的机制。激光器产生的激光束经光束准直(有的情况下需要扩束)后发射到大气中,激光在大气中传输遇到空气分子、气溶胶等成分便会发生散射、吸收等作用。散射中的小部分能量——后向散射光落入接收望远镜视场被接收。被接收到的后向散射光传输到光电探测器(通常为PMT)被转换成电信号(一般为电流信号),实现光-电转换,再经一系列的运算放大,最终被显示、记录。对于不同高度的信号,利用激光信号传输时间间隔来记录,光速c已知,便可换算成距离:。如果接收到的是回波点数,乘以系统距离分辨率即得高度。这样就获得了激光雷达P-z数据,利用激光雷达方程结合相关算法便可反演出相关大气特性,如大气垂直消光廓线、气体浓度、成分以及温度廓线等。

激光雷达是向目标发射激光束信号,接收器根据接收到的反射信号与发射信号进行比较进行一定的运算处理后得到目标物体的相关信息,比如目标距离,目标方向、目标高度、目标速度等。激光本身具有非常精确的测距能力,测距距离精度可达到几厘米,激光雷达工作原理与船用雷达原理非常接近,它是以激光束作为信号源,发射到船体上,引起散射,一部分光波会反射回激光雷达接收器,激光雷达不断发送脉冲激光进行扫描目标船体,就可以得到船舶上船体的点云数据,由此数据就可以得到精确的三维立体图像,基于激光雷达的原理和其特性,现激光雷达技术已经广泛用在军事、农业、气象、医疗、水土检测、自动驾驶等领域,作为应用场景较为单一的河道内检测船舶的可行性非常高的。激光雷达检测船舶超高偏航    该传感器的点云密度可轻松超过128线激光雷达。面对反射率低至 10% 的物体,探测距离仍可达 320 米,可探测量程极限1000米,角度精度达 03°,光束发散角低至 12°(垂直)x 02°(水平),在工作时可射出多线激光同时进行高速非重复扫描,每秒可将多达 240,000 点的点云数据分布在约 15 度 FOV 里,仅需 100 ms 视场覆盖率即可达到 8%,点云密度超过市面上主流 128 线机械式激光雷达,传统的机械激光雷达需要旋转电子元件让其扫描范围实现360度覆盖。激光雷达的独特设计不使用此类移动部件,只使用旋转棱镜,与传统的机械激光雷达相比,此种设计使其激光雷达能够工作得更久、更可靠。下图为激光雷达扫描图以及覆盖率曲线图。激光雷达多线扫描激光雷达覆盖率曲线图激光雷达结构图在桥梁防船撞智能预警系统中,激光雷达技术可精准检测船舶的高度,长度、宽度。喜讯科技做了不少的案例工程。    桥梁防碰撞预警系统具有强大的数据处理能力、可对船舶的形态分析、三维重构、吨位计算、多源数据的融合输出船舶流量、航行状态的最终结果,报送给相关管理部门。激光雷达在于提供一种新的船舶超高与偏航检测手段,即可实现超高检测,同时有能实现偏航预警,实时性高,误判率低,检测精度高。激光雷达检测船舶航行状态

激光雷达的工作原理与雷达非常相近,以激光作为信号源,由激光器发射出的脉冲激光,打到地面的树木,道路,桥梁和建筑物上引起散射,一部分光波会反射到激光雷达的接收器上,根据激光测距原理计算,就得到从激光雷达到目标点的距离。脉冲激光不断地扫描目标物,就可以得到目标物上全部目标点的数据,用此数据进行成像处理后,就可得到精确的三维立体图像。也可以测量两个或多个距离,并计算其变化率而求得速度,这是、也是直接探测型雷达的基本工作原理。LiDAR系统一般包括;激光源或其它发射器,灵敏的光电探测器或其它接收器,同步和数据处理电子系统,运动控制设备或微机电系统(MEMS)扫描镜(二选一)。均是基于精确的激光扫描组件并可用于创建3D地图或收集近距离数据。民用和商业应用中,保证用眼安全的激光器在高性能紧凑型LiDAR中越来越受欢迎。在用眼安全的波长范围内,当在地形测绘和避障中探测固体时,通常需要约红外激光器发射5 µm的波长。扩展资料激光雷达按照机械结构可以分为两种,一种是机械激光雷达,一种是固态激光雷达。机械激光雷达外表上最大的特点就是有机械旋转机构,也就是自己会转,固态激光雷达其实还可以细分为 OPA,MEMS,Flash 三种线路,固态激光雷达结构上最大的特点就是没有了旋转部件,个头相对较小。激光雷达几个重要的参数分别为测量距离、角视场、测量精度、测量速率。角视场一般有垂直角视场和水平角视场,角视场决定了“眼睛”的视野有多大。测量精度意味着“眼睛”能看得多清楚,这个精度“够用”就行,并不需要将地上的沙子、石子也看清。角分辨率,角分辨率越小相对精度越高,举个例子,一个角分辨率为 4 度的 64 线激光雷达,扫描 50 米外 7 米的物体可以产生 5 条线的数据,一个角分辨率为 33 度的 40 线激光雷达,同样的物体可以获得 6 条线的数据。机械式激光雷达将激光线束竖向排列形成一个面,通过械旋转部件转动这个面,扫描周围环境即可呈现出三维立体图形。我们常说的 16 线、32 线、64 线就是竖向排列线束的数量,数量越多,密度则越大,精度相对就越高,但计算机需要处理的信息量也随着增大。因为机械式激光雷达是旋转的,所以水平视角有 360 度,能将周围一圈都看清楚,旋转速度也影响着扫描频率。机械激光雷达个头较大,又有机械旋转部件,所以并不能与我们常见汽车的造型完美融合,只能突兀地放在车顶,看起来并没有未来的感觉。固态激光雷达因为没有旋转机构,所以水平视角非常有限,需要在不同方向布置多个固态激光雷达,优点是响应速度快,精度较高,而且个头相对较小,便于藏在车身内。参考资料百度百科--激光雷达

提问者能不能留个联系方式呀,我也很有疑惑和担忧

激光雷达论文题目

这个在一般的硕士毕业大论文里都会论述激光雷达探测大气的基本原理即是上述几种激光与大气相互作用的机制。激光器产生的激光束经光束准直(有的情况下需要扩束)后发射到大气中,激光在大气中传输遇到空气分子、气溶胶等成分便会发生散射、吸收等作用。散射中的小部分能量——后向散射光落入接收望远镜视场被接收。被接收到的后向散射光传输到光电探测器(通常为PMT)被转换成电信号(一般为电流信号),实现光-电转换,再经一系列的运算放大,最终被显示、记录。对于不同高度的信号,利用激光信号传输时间间隔来记录,光速c已知,便可换算成距离:。如果接收到的是回波点数,乘以系统距离分辨率即得高度。这样就获得了激光雷达P-z数据,利用激光雷达方程结合相关算法便可反演出相关大气特性,如大气垂直消光廓线、气体浓度、成分以及温度廓线等。

液态氧气 护顶板 感应光束

提问者能不能留个联系方式呀,我也很有疑惑和担忧

激光雷达的工作原理与雷达非常相近,以激光作为信号源,由激光器发射出的脉冲激光,打到地面的树木,道路,桥梁和建筑物上引起散射,一部分光波会反射到激光雷达的接收器上,根据激光测距原理计算,就得到从激光雷达到目标点的距离。脉冲激光不断地扫描目标物,就可以得到目标物上全部目标点的数据,用此数据进行成像处理后,就可得到精确的三维立体图像。也可以测量两个或多个距离,并计算其变化率而求得速度,这是、也是直接探测型雷达的基本工作原理。LiDAR系统一般包括;激光源或其它发射器,灵敏的光电探测器或其它接收器,同步和数据处理电子系统,运动控制设备或微机电系统(MEMS)扫描镜(二选一)。均是基于精确的激光扫描组件并可用于创建3D地图或收集近距离数据。民用和商业应用中,保证用眼安全的激光器在高性能紧凑型LiDAR中越来越受欢迎。在用眼安全的波长范围内,当在地形测绘和避障中探测固体时,通常需要约红外激光器发射5 µm的波长。扩展资料激光雷达按照机械结构可以分为两种,一种是机械激光雷达,一种是固态激光雷达。机械激光雷达外表上最大的特点就是有机械旋转机构,也就是自己会转,固态激光雷达其实还可以细分为 OPA,MEMS,Flash 三种线路,固态激光雷达结构上最大的特点就是没有了旋转部件,个头相对较小。激光雷达几个重要的参数分别为测量距离、角视场、测量精度、测量速率。角视场一般有垂直角视场和水平角视场,角视场决定了“眼睛”的视野有多大。测量精度意味着“眼睛”能看得多清楚,这个精度“够用”就行,并不需要将地上的沙子、石子也看清。角分辨率,角分辨率越小相对精度越高,举个例子,一个角分辨率为 4 度的 64 线激光雷达,扫描 50 米外 7 米的物体可以产生 5 条线的数据,一个角分辨率为 33 度的 40 线激光雷达,同样的物体可以获得 6 条线的数据。机械式激光雷达将激光线束竖向排列形成一个面,通过械旋转部件转动这个面,扫描周围环境即可呈现出三维立体图形。我们常说的 16 线、32 线、64 线就是竖向排列线束的数量,数量越多,密度则越大,精度相对就越高,但计算机需要处理的信息量也随着增大。因为机械式激光雷达是旋转的,所以水平视角有 360 度,能将周围一圈都看清楚,旋转速度也影响着扫描频率。机械激光雷达个头较大,又有机械旋转部件,所以并不能与我们常见汽车的造型完美融合,只能突兀地放在车顶,看起来并没有未来的感觉。固态激光雷达因为没有旋转机构,所以水平视角非常有限,需要在不同方向布置多个固态激光雷达,优点是响应速度快,精度较高,而且个头相对较小,便于藏在车身内。参考资料百度百科--激光雷达

激光雷达论文1000字怎么写的

‍* 来源:驭势资本自动驾驶给激光雷达带来新机遇激光雷达LiDAR被广泛用于无人驾驶汽车和机器人领域,被誉为广义机器人的“眼睛”,是一种通过发射激光来测量物体与传感器之间精确距离的主动测量装臵。其中广义机器人包括具有无人驾驶功能的汽车,也可称之为轮式机器人,另外还包括实现无人清扫、无人运送等功能的新型服务机器人。除了无人驾驶领域,激光雷达的应用领域也在不断拓展,包括以汽车整车厂、Tier1为代表的前装高级辅助驾驶,以智能服务机器人为代表的避障导航系统,还有随着5G技术逐渐普及而产生的智能交通车路协同应用,都为激光雷达带来了更广阔的市场。激光雷达原理激光雷达的工作原理是将电脉冲变成光脉冲发射出去,光接收机再把从目标反射回来的光脉冲还原成电脉冲,通过测量发射脉冲与一个或数个回波脉冲之间的时间差而获得距离以及物体材质和颜色等参数。具体来看,激光雷达由四个系统组成,分别为激光发射、激光接收、信息处理和扫描系统。激光发射系统中激励源周期性地驱动激光器,发射激光脉冲,激光调制器通过光束控制器控制发射激光的方向和线数,最后通过发射光学系统,将激光发射至目标物体;激光接收系统的工作原理是经接收光学系统,光电探测器接受目标物体反射回来的激光,产生接收信号;信息处理系统是接收信号经过放大处理和数模转换,经由信息处理模块计算,获取目标表面形态、物理属性等特性,最终建立物体模型;扫描系统是以稳定的转速旋转实现对所在平面的扫描,并产生实时的平面图信息。激光雷达主要技术指标包括视场角、线数、分辨率、探测距离、测量精度、反射率和扫描帧频等。激光雷达主要技术指标:视场角视场角决定了激光雷达能够看到的视野范围,分为水平视场角和垂直视场角,视场角越大,代表视野范围越大,反之则代表视野范围越小。线数线数越高,代表单位时间内采样的点就越多,分辨率也就越高,目前无人驾驶车一般采用32线或64线的激光雷达。分辨率分辨率和激光光束之间的夹角有关,夹角越小,分辨率越高。固态激光雷达的垂直分辨率和水平分辨率大概相当,约为1°,旋转式激光雷达的水平角分辨率为08°,垂直角分辨率约为4°。探测距离激光雷达的最大测量距离。在自动驾驶领域应用的激光雷达的测距范围普遍在100~200m左右。测量精度激光雷达的数据手册中的测量精度 (Accuracy) 常表示为,例如±2cm的形式。精度表示设备测量位臵与实际位臵偏差的范围。反射率反射率是指物体反射的辐射能量占总辐射能量的百分比,比如说某物体的反射率是20%,表示物体接收的激光辐射中有20%被反射出去了。不同物体的反射率不同,这主要取决于物体本身的性质 (表面状况) ,如果反射率太低,那么激光雷达收不到反射回来的激光,导致检测不到障碍物。激光雷达一般要求物体表面的反射率在10%以上,用激光雷达采集高精度地图的时候,如果车道线的反射率太低,生成的高精度地图的车道线会不太清晰。扫描帧频激光雷达点云数据更新的频率。对于混合固态激光雷达来说,也就是旋转镜每秒钟旋转的圈数,单位Hz。例如,10Hz即旋转镜每秒转10圈,同一方位的数据点更新10次。激光雷达是车辆安全和智能化的核心高端传感器,激光雷达也是我国智能汽车战略大力发展的关键基础技术之一。国家发改委、科技部、工信部等11部门联合印发的《智能汽车创新发展战略》中首次定义了什么是智能汽车:是指通过搭载先进传感器等装臵,运用人工智能等新技术,具有自动驾驶功能,逐步成为智能移动空间和应用终端的新一代汽车。在这个定义中,“搭载先进传感器”是智能汽车的重要标签。车载传感器的比较根据新华网,对比《智能汽车创新发展战略》意见征集稿和正式印发版,在有关核心供应链环节的表述中,意见稿中的“重点推动传感器”被修改为“车载高精度传感器”。这一修改目标更为明确,即培育发展“高精度传感器”。产业方面,发展战略要求推进车载高精度传感器等产品研发与产业化,促进激光/毫米波雷达等自主知识产权军用技术的转化应用。可见,下一步投资建设的落地点,在传感层的机会就在于高精度、高准确度的传感器。根据新华网,激光雷达、毫米波雷达和摄像头是公认的自动驾驶的三大关键传感器技术。从技术上看,激光雷达与其他两者相比具备强大的空间三维分辨能力。中国汽车工程学会、国汽智联汽车研究院编写的《中国智能网联汽车产业发展报告(2019)》称,当前在人工智能的重要应用场景智能网联汽车的自动驾驶和辅助驾驶领域中,激光雷达是实现环境感知的核心传感器之一。报告认为,在用于道路信息检测的传感器中,激光雷达在探测距离、精准性等方面,相比毫米波雷达具有一定的优势。无人驾驶汽车的“眼睛”已成为激光雷达的代名词。在复杂场景下,激光雷达有着不可比拟的优势。针对远距小障碍物,毫米波雷达的角分辨率不够,摄像头对远端的通用障碍物识别不够,而这种场景下激光雷达就可能及时识别。对于近距离加塞,这种场景在中国道路上尤其常见,毫米波雷达的角分辨率不够,摄像头通常来说需累计多帧,需要几百毫秒才可以确认加塞,而激光雷达由于精确的角度测量能力和轮廓测量能力,可以2-3帧确认加塞,百毫秒内做出判断。同样的原因,对于近端突出物,毫米波雷达和摄像头相对不足,而激光雷达可以做出快速判断。在隧道场景下,摄像头在光线亮度发生突然变换的场景有致盲情况发生,而毫米波雷达一般不识别静止物体,如果隧道口刚好有一个静止车辆,这时就需要激光雷达的准确识别能力。此外,十字路口无保护左拐场景对激光雷达的大角度全视场测量能力有很大考验,需要同时满足大视场和远距测量能力。在地库场景,毫米波雷达由于多径反射性能不佳,而光线强弱变化又会影响摄像头的性能,这时激光雷达独特的优势就可以得到发挥。激光雷达的分类激光雷达行业具有较高的技术水准与技术壁垒,并同时具有技术创新能力强与产品迭代速度快的特征。其技术发展方向与半导体行业契合度高,激光雷达系统中核心的激光器、探测器、控制及处理单元均能从半导体行业的发展中受益,收发单元阵列化以及核心模块芯片化是未来的发展趋势。激光雷达可分成一维 (1D) 激光雷达、二维 (2D) 扫描激光雷达和三维 (3D) 扫描激光雷达。1D激光雷达只能用于线性的测距;2D扫描激光雷达只能在平面上扫描,可用于平面面积与平面形状的测绘,如家庭用的扫地机器人;3D扫描激光雷达可进行3D空间扫描,用户户外建筑测绘,它是驾驶辅助和自助式自动驾驶应用的重要车载传感设备。3D激光雷达可进一步分成3D扇形扫描激光雷达和3D旋转式扫描激光雷达。激光雷达按照测距方法可以分为飞行时间 (TimeofFlight,ToF) 测距法、基于相干探测FMCW测距法、以及三角测距法等,其中ToF与FMCW能够实现室外阳光下较远的测程 (100~250m) ,是车载激光雷达的优选方案。ToF是目前市场车载中长距激光雷达的主流方案,未来随着FMCW激光雷达整机和上游产业链的成熟,ToF和FMCW激光雷达将在市场上并存。激光雷达按测距方法分类:ToF法通过直接测量发射激光与回波信号的时间差,基于光在空气中的传播速度得到目标物的距离信息,具有响应速度快、探测精度高的优势。FMCW法将发射激光的光频进行线性调制,通过回波信号与参考光进行相干拍频得到频率差,从而间接获得飞行时间反推目标物距离。FMCW激光雷达具有可直接测量速度信息以及抗干扰 (包括环境光和其他激光雷达) 的优势。按照技术架构可以分为整体旋转的机械式激光雷达、收发模块静止的半固态激光雷达以及固态式激光雷达。相比于半固态式和固态式激光雷达,机械旋转式激光雷达的优势在于可以对周围环境进行360°的水平视场扫描,而半固态式和固态式激光雷达往往最高只能做到120°的水平视场扫描,且在视场范围内测距能力的均匀性差于机械旋转式激光雷达。由于无人驾驶汽车运行环境复杂,需要对周围360°的环境具有同等的感知能力,而机械旋转式激光雷达兼具360°水平视场角和测距能力远的优势,目前主流无人驾驶项目纷纷采用了机械旋转式激光雷达作为主要的感知传感器。激光雷达按技术架构分类:机械旋转式激光雷达通过电机带动收发阵列进行整体旋转,实现对空间水平360°视场范围的扫描。测距能力在水平360°视场范围内保持一致。半固态式激光雷达半固态方案的特点是收发单元与扫描部件解耦,收发单元 (如激光器、探测器) 不再进行机械运动,具体包括微振镜方案、转镜方案等。适用于实现部分视场角 (如前向) 的探测,体积相较于机械旋转式雷达更紧凑。固态激光雷达固态式方案的特点是不再包含任何机械运动部件,具体包括相控阵 (OpticalPhased Array,OPA) 方案、Flash方案、电子扫描方案等。适用于实现部分视场角 (如前向) 的探测,因为不含机械扫描器件,其体积相较于其他架构最为紧凑。激光雷达产业自诞生以来,紧跟底层器件的前沿发展,呈现出了技术水平高的突出特点。激光雷达厂商不断引入新的技术架构,提升探测性能并拓展应用领域:从激光器发明之初的单点激光雷达到后来的单线扫描激光雷达,以及在无人驾驶技术中获得广泛认可的多线扫描激光雷达,再到技术方案不断创新的固态式激光雷达、FMCW激光雷达,以及如今芯片化的发展趋势,激光雷达一直以来都是新兴技术发展及应用的代表。激光雷达技术分类及特点:机械式激光雷达:高线数机械式方案通过电机带动光机结构整体旋转的机械式激光雷达是激光雷达经典的技术架构,其技术发展的创新点体现在系统通道数目的增加、测距范围的拓展、空间角度分辨率的提高、系统集成度与可靠性的提升等。半固态式激光雷达:转镜方案转镜方案中收发模块保持不动,电机在带动转镜运动的过程中将光束反射至空间的一定范围,从而实现扫描探测。转镜也是较为成熟的激光雷达技术方案,其技术创新体现之处与高线数机械式方案类似。微振镜方案微振镜方案采用高速振动的二维振镜实现对空间一定范围的扫描测量。微振镜方案的技术创新体现在开发口径更大、频率更高、可靠性更好振镜,以适用于激光雷达的技术方案。FMCW激光雷达:电子扫描方案电子扫描方案中按照时间顺序通过依次驱动不同视场的收发单元实现扫描,系统内没有机械运动部件,是纯固态激光雷达的一种发展方向。其架构比整体曝光所有收发单元的Flash固态式激光雷达更先进。连续波调频方案FMCW目标物距离,同时也激光雷达发射调频连续激光,通过回波信号与参考光能够根据多普勒频移信息直接测量目标物的速度,其技术发展方向为利用硅进行相干拍频得到频率差,从而间接获得飞行时间反推基光电子技术实现激光雷达系统的芯片化。激光雷达的迭代历史激光雷达经历了60年左右的发展历程,其技术不断进步并呈现多样化发展趋势,同时随着应用领域的不断拓展丰富,激光雷达逐步迈向商业化,其市场也于近几年迅速扩大,并迎来上市热潮。在汽车产业“电气化、共享化、网联化、智能化”的“新四化”驱动下,2016年后无人驾驶行业高速发展,激光雷达行业也随之进入迅速发展期。2019年后激光雷达行业进入新的发展阶段,从技术方案来看,收发器件面阵化及核心模块芯片化为高性能、低成本、高集成度、高可靠性的激光雷达提供了可靠的发展方向,FMCW原理的激光雷达技术方案受到了市场的关注。从应用领域来看,激光雷达应用范围进一步得到拓展,“新基建”中的车联网为激光雷达带来了新的应用场景,同时,依据应用领域的不同,激光雷达呈现性能及价格分层的发展趋势。此外,2020年境外激光雷达公司迎来通过特殊目的并购公司 (SpecialPurpo seAcquisitionCompany,SPAC) 完成上市的热潮,Velodyne、Luminar已完成NASDAQ上市,Aeva、Innoviz预计2021年第一季度完成,Ouster预计2021年上半年完成。激光雷达行业发展历程:1960年代~1970年代激光雷达行业特点:随着激光器的发明,基于激光的探 测技术开始得到发展。主要应用领域:科研及测绘项目。标志性事件:1971年阿波罗15号载人登月任务使用激光雷达对月球表面进行测绘。1980年代~1990年代激光雷达行业特点:激光雷达商业化技术起步,单线扫 描式激光雷达出现。主要应用领域:工业探测及早期无人驾驶项目。标志性事件:Sick (西克) 与Hokuyo (北洋) 等激光雷达厂商推出单线扫描式2D激光雷达产品。2000年代~2010年代早期激光雷达行业特点:高线数激光雷达开始用于无人驾驶 的避障和导航,其市场主要是国外厂商。主要应用领域:无人驾驶测试项等。标志性事件:DARPA无人驾驶挑战赛推动了高线数激光雷达在无人驾驶中的应用,此后Velodyne深耕高线数激光雷达市场多年。Ibeo LUX系列产品包含基于转镜方案的4线及8线激光雷达。基于4线版本,2010年Ibeo与法国Tier 1公司Valeo (法雷奥) 开始合作开发面向量产车的激光雷达产品 SCALA。2016年~2018年激光雷达行业特点:国内激光雷达厂商入局,技术水平 赶超国外厂商。激光雷达技术方案呈现多样化发展趋势。主要应用领域:无人驾驶、高级辅助驾驶、服务机器人等,且下游开始有商用化项目落地。标志性事件:2017年4月禾赛科技发布40线激光雷达 Pandar40。采用新型技术方案的激光雷达公司同样发展迅速,如基于MEMS方案的Innoviz,基于1550nm波长方案的Luminar等。2019年至今激光雷达行业特点:市场发展迅速,产品性能持续优化,应用领域持续拓展。激光雷达技术朝向芯片化、阵列化发展。境外激光雷达公司迎来上市热潮,同时有巨头公司加入激光雷达市场竞争。主要应用领域:无人驾驶、高级辅助驾驶、服务机器人、车联网等。标志性事件:Ouster推出基于VCSEL和SPAD阵列芯片技术的数字化激光雷达。禾赛科技应用自主设计的芯片组 (发射芯片和接收芯片) 于多线机械转式产品。2020 年9月Velodyne完成NASDAQ上市,2020年12月 Luminar完成NASDAQ上市。激光雷达核心应用场景除了无人驾驶,面向乘用车的前装高级辅助驾驶 (ADAS) 、服务型机器人、车联网 (V2X) 等领域也是激光雷达当前或者近期的重要市场。因使用场景和搭载激光雷达的载体 (无人驾驶汽车、乘用车、机器人等) 具有明显差异,这些市场对激光雷达的性能、价格、体积等维度提出了不同的需求。车联网应用起步最新,使用场景具有多样性,对无人驾驶、高级辅助驾驶、机器人领域的激光雷达都会有相应需求。无人驾驶与高级辅助驾驶领域通常将自动驾驶技术按照国际汽车工程师协会 (SAEI nternational) 发布的工程建议J3016进行分类。从L0级 (纯由驾驶员控制) 至L5级 (完全自动驾驶) ,级别越高,车辆的自动化程度越高,动态行驶过程中对驾驶员的参与度需求越低,对车载传感器组成的环境感知系统的依赖性也越强。其中,L3级是自动驾驶等级中的分水岭,其驾驶责任的界定最为复杂:在自动驾驶功能开启的场景中,环境监控主体从驾驶员变成了传感器系统,驾驶决策责任方由驾驶员过渡到了汽车系统。L4/L5级无人驾驶应用的实现,有赖于激光雷达提供的感知信息。该级别应用需要面对复杂多变的行驶环境,对激光雷达性能水平要求最高,在要求360°水平扫描范围的同时,对于低反射率物体的最远测距能力需要达到200m,且需要更高的线数以及更密的点云分辨率;同时为了减少噪点还需要激光雷达具有抵抗同环境中其他激光雷达干扰的能力。对于L2/L3级高级辅助驾驶,覆盖前向视场 (水平视场角覆盖60°到120°) 的激光雷达通常为优选方案,实现自动跟车或者高速自适应巡航等功能,但在测远和角度分辨率等性能上的要求和无人驾驶是一致的;此外,整车厂及Tier1公司更看重激光雷达的形态与尺寸是否容易嵌入车身,保险杠、前挡风玻璃后视镜等易于隐藏的地方是放臵激光雷达的优先选择,这些位臵往往空间狭小因而限制了激光雷达的体积;该领域客户也要求激光雷达通过电磁兼容、可靠性 (包括振动及冲击、防水防尘) 等一系列严格的车规测试;因为面向消费者的乘用车采购数量大,该领域客户对激光雷达的价格敏感度相较于无人驾驶领域也更高。机器人应用范围包括无人送货小车、自动清扫车辆、园区内的接驳车、港口或矿区的无人作业车、执行监控或巡线任务的无人机等,这些场景的主要特点是路线相对固定、环境相对简单、行驶速度相对较低 (通常不超过30km/h) 。因而相比无人驾驶应用,机器人应用对激光雷达测远及分辨率等探测性能的要求相对较低,但对价格更敏感。车路协同采用先进的无线通信和新一代互联网技术,全方位实施车车、车路动态实时信息交互,并在动态交通信息采集与融合的基础上开展车辆主动安全控制和道路协同管理,其主要应用场景包括:盲区预警、多车协同换道、交叉口冲突避免、行人非机动车避撞、紧急车辆优先通行、车速引导、车队控制、车队协同通过信号交叉口等。人、车、路的有效协同需要准确识别和追踪交通参与者,并对其路线进行有效预测,采用基于激光雷达点云数据的目标聚类及追踪算法能够满足这一要求。激光雷达产业链激光雷达行业的上游产业链主要包括激光器和探测器、FPGA芯片、模拟芯片供应商,以及光学部件生产和加工商。激光雷达下游产业链按照应用领域主要分为无人驾驶、高级辅助驾驶、服务机器人和车联网行业。整体而言,激光雷达整个产业链表现出发展速度快、科技水平高、创新能力强、市场前景广的突出特点。从国外产业链与国内产业链比较的角度而言,国外激光雷达上游公司由于起步更早,积累更为深厚,尤其在底层光电器件以及芯片领域。国外激光雷达下游企业在商业化进度方面也更成熟。然而,国内激光雷达行业的上游供应商、下游客户近几年均发展迅速,有望实现逐步赶超。激光雷达技术的发展催生了新的产业链条。自美国DARPA无人驾驶挑战赛以来,全球范围内的无人驾驶行业进入了高速发展期,无人驾驶技术的实现以及无人驾驶出租车/无人驾驶卡车服务的落地有赖于激光雷达提供的高精度感知信息。此外,激光雷达的环境感知能力能够拓展已有的辅助驾驶功能,提升车辆安全性,为面向整车厂以及Tier1公司的高级辅助驾驶产业提供了重要的支撑。同时,激光雷达技术也促进了服务型机器人产业以及车联网产业的兴起,服务型机器人通过赋予机器人智能感知的能力实现无人配送、无人清扫等功能,车联网通过车与车、车与路、车与云平台等的互联实现更为安全、舒适、智能的交通服务。激光雷达技术促进了新产业的发展,新产业的兴起为社会带来了新的发展点。激光雷达产业链发展情况:上游:激光器和探测器激光器和探测器是激光雷达的重要部件,激光器和探测器的性能、成本、可靠性与激光雷达产品的性能、成本、可靠性密切相关。而且激光雷达的系统设计会对激光器和探测器的规格提出客制化的需求,与上游供应商深入合作定制激光器和探测器,有助于提升产品的竞争力。国外供应商在激光器和探测器行业耕耘较久,产品的成熟度和可靠性上有更多的实践经验和优势,客户群体也更为广泛。国内供应商近些年发展迅速,产品性能已经基本接近国外供应链水平,并已经有通过车规认证 (AEC-Q102) 的国产激光器和探测器出现,元器件的车规化是车规级激光雷达实现的基础,国内供应商能够满足这一需求。相比国外供应商,国内供应商在产品的定制化上有较大的灵活性,价格也有一定优势。企业类别:激光器。国外企业:OSRAM (欧司朗) 、AMS (艾迈斯半导体) 、Lumentum (鲁门特姆) 等。国内企业:深圳瑞波光电子有限公司、常州纵慧芯光半导体科技有限公司等。企业类别:探测器。国外企业:First Sensor、Hamamatsu (滨松) 、ON Semiconductor (安森美半导体) 、Sony (索尼) 等。国内企业:成都量芯集成科技有限公司、深圳市灵明光子科技有限公司、南京芯视界微电子科技有限公司等。FPGA芯片FPGA芯片通常被用作激光雷达的主控芯片,国外供应商的产品性能相比国内供应商大幅领先,但国内产品的逻辑资源规模和高速接口性能,也能够满足激光雷达的需求。不过FPGA不是激光雷达主控芯片的唯一选择,也可以选用高性能单片机 (Microcontroller Unit,MCU) 、数字信号处理单元 (Digital Signal Processor,DSP) 代替。MCU的国际主流供应商有Renesas (瑞萨) 、Infineon (英飞凌) 等,DSP的主流供应商有TI (德州仪器) 、ADI (亚德诺半导体) 等。国外企业:Xilinx (赛灵思) ,Intel (英特尔) 等。国内企业:紫光国芯股份有限公司、西安智多晶微电子有限公司等。模拟芯片模拟芯片用于搭建激光雷达系统中发光控制、光电信号转换,以及电信号实时处理等关键子系统。国外供应商在该领域积累已久,技术先进、产能充足、成熟度高,是行业的领导者。国内供应商相比国外起步较晚,从产品丰富程度到技术水平还普遍存在着一定差距,尤其车规类产品差距会更大。国外企业:TI (德州仪器) ,ADI (亚德诺半导体) 等。国内企业:矽力杰半导体技术有限公司、圣邦微电子 (北京) 股份有限公司等。光学部件光学部件国内供应链的技术水平已经完全达到或超越国外供应链的水准,且有明显的成本优势,已经可以完全替代国外供应链和满足产品加工的需求。激光雷达公司一般为自主研发设计,然后选择行业内的加工公司完成生产和加工工序。下游:无人驾驶行业国外无人驾驶技术研究起步较早,从车队规模、技术水平以及落地速度来看,相比国内仍具有一定的领先优势。国内无人驾驶技术研究发展迅速,不断有应用试点和项目落地,与国外公司的差距在不断缩小。企业类别:无人驾驶公司。国外企业:GM Cruise、Ford Argo、Aurora、Zoox (2020年被Amazon收购) 、Navya。国内企业:小马智行、文远知行、Momenta、元戎启行等。企业类别:无人驾驶公司人工智能科技公司。国内企业:百度、商汤科技等。企业类别:出行服务提供商。国外企业:Uber (优步) 、Lyft。国内企业:滴滴等。高级辅助驾驶行业激光雷达用于量产车项目,通常需要激光雷达公司与车厂或Tier 1公司达成长期合作,一般项目的周期较长。企业类别:世界各地的整车厂、Tier 1公司及新势力造车企业。服务机器人行业国内快递和即时配送行业相比国外市场容量大,服务机器人国内技术发展水平与国外相当,从机器人种类的丰富度和落地场景的多样性而言,国内企业更具优势。企业类别:机器人公司。国外企业:Nuro、Deka Research、Canvas Build、Unmanned Solution。国内企业:高仙、智行者、优必选、新石器、白犀牛等。企业类别:消费服务业巨头。国内企业:阿里巴巴、美团、京东等。车联网行业通过车联网方案提供商将包括激光雷达在内的车辆网服务整合销售给各地政府和科技园区,也存在激光雷达公司政府和科技园区直接对接的情况。得益于“新基建”等国家政策的大力推动,国内车联网领域发展较国外更加迅速。企业类别 :车联网方案提供商。国内企业:百度、大唐、金溢科技、星云互联、高新兴等。激光雷达在广义上可以认为是带有3D深度信息的摄像头,被誉为机器人的眼睛,未来20年里随着智能驾驶和服务型机器人的逐渐普及,激光雷达也会像摄像头一样成为生活中的必需品。在摄像头产业链处于头部位臵的公司正逐渐开始围绕着激光雷达进行布局,如图像传感器领域的头部公司日本Sony (索尼) 和美国ONSemiconductor (安森美半导体) ;在摄像头视觉应用领域的人工智能公司也在基于激光雷达的测量数据开发相应的深度学习算法,如商汤科技、Waymo、百度。随着激光雷达每年出货量和市场份额的扩大,未来会有更多摄像头视觉产业链上的公司 (如芯片、器件、镜头、模组、算法) 融入激光雷达产业链。

激光——人类创造的神奇之光  激光的最初中文名叫做“镭射”、“莱塞”,是它的英文名称LASER的音译,是取自英文Light Amplification by Stimulated Emission of Radiation的各单词的头一个字母组成的缩写词。意思是“受激辐射的光放大”。激光的英文全名已完全表达了制造激光的主要过程。1964年按照我国著名科学家钱学森建议将“光受激发射”改称“激光”。  激光是20世纪以来,继原子能、计算机、半导体之后,人类的又一重大发明,被称为“最快的刀”、“最准的尺”、“最亮的光”和“奇异的激光”。它的原理早在 1916 年已被著名的物理学家爱因斯坦发现,但要直到 1958 年激光才被首次成功制造。激光是在有理论准备和生产实践 迫切需要的背景下应运而生的,它一问世,就获得了异乎寻常的飞快发展,激光的发展不仅使古老的光学科学和光学技术获得了新生,而且导致整个一门新兴产业的出现。激光可使人们有效地利用前所未有的先进方法和手段,去获得空前的效益和成果,从而促进了生产力的发展。  激光的产生原理:  受激辐射基于伟大的科学家爱因斯坦在1916年提出的一套全新的理论。这一理论是说在组成物质的原子中,有不同数量的粒子(电子)分布在不同的能级上,在高能级上的粒子受到某种光子的激发,会从高能级跳到(跃迁)到低能级上,这时将会辐射出与激发它的光相同性质的光,而且在某种状态下,能出现一个弱光激发出一个强光的现象。这就叫做“受激辐射的光放大”, 一段激活物质就是一个激光放大器。  激光的特点:  (一)定向发光  普通光源是向四面八方发光。要让发射的光朝一个方向传播,需要给光源装上一定的聚光装置,如汽车的车前灯和探照灯都是安装有聚光作用的反光镜,使辐射光汇集起来向一个方向射出。激光器发射的激光,天生就是朝一个方向射出,光束的发散度极小,大约只有001弧度,接近平行。1962年,人类第一次使用激光照射月球,地球离月球的距离约38万公里,但激光在月球表面的光斑不到两公里。若以聚光效果很好,看似平行的探照灯光柱射向月球,按照其光斑直径将覆盖整个月球。  (二)亮度极高  在激光发明前,人工光源中高压脉冲氙灯的亮度最高,与太阳的亮度不相上下,而红宝石激光器的激光亮度,能超过氙灯的几百亿倍。因为激光的亮度极高,所以能够照亮远距离的物体。红宝石激光器发射的光束在月球上产生的照度约为02勒克斯(光照度的单位),颜色鲜红,激光光斑明显可见。若用功率最强的探照灯照射月球,产生的照度只有约一万亿分之一勒克斯,人眼根本无法察觉。激光亮度极高的主要原因是定向发光。大量光子集中在一个极小的空间范围内射出,能量密度自然极高。  (三)颜色极纯  光的颜色由光的波长(或频率)决定。一定的波长对应一定的颜色。太阳光的波长分布范围约在76微米至4微米之间,对应的颜色从红色到紫色共7种颜色,所以太阳光谈不上单色性。发射单种颜色光的光源称为单色光源,它发射的光波波长单一。比如氪灯、氦灯、氖灯、氢灯等都是单色光源,只发射某一种颜色的光。单色光源的光波波长虽然单一,但仍有一定的分布范围。如氪灯只发射红光,单色性很好,被誉为单色性之冠,波长分布的范围仍有00001纳米,因此氪灯发出的红光,若仔细辨认仍包含有几十种红色。由此可见,光辐射的波长分布区间越窄,单色性越好。  激光器输出的光,波长分布范围非常窄,因此颜色极纯。以输出红光的氦氖激光器为例,其光的波长分布范围可以窄到2×10-9纳米,是氪灯发射的红光波长分布范围的万分之二。由此可见,激光器的单色性远远超过任何一种单色光源。  (四)能量密度极大  光子的能量是用E=hγ来计算的,其中h为普朗克常量,γ为频率。由此可知,频率越高,能量越高。激光频率范围846*10^(14)Hz到895*10^(14)H  激光能量并不算很大,但是它的能量密度很大(因为它的作用范围很小,一般只有一个点),短时间里聚集起大量的能量,用做武器也就可以理解了。  目前激光技术及其应用研究内容包括:  ⑴超快超强激光:超快超强激光主要以飞秒激光的研究与应用为主,作为一种独特的科学研究的工具和手段,飞秒激光的主要应用可以概括为三个方面,即飞秒激光在超快领域内的应用、在超强领域内的应用和在超微细加工中的应用。其中飞秒激光超微细加工是当今世界激光、光电子行业中的一个极为引人注目的前沿研究方向。  ⑵新型激光器研究:激光测距仪是激光在军事上应用的起点,将其应用到火炮系统,大大提高了火炮射击精度。激光雷达相比于无线电雷达,由于激光发散角小,方向性好,因此其测量精度大幅度提高。由于同样的原因,激光雷达不存在"盲区",因此尤其适宜于对导弹初始阶段的跟踪测量。但由于大气的影响,激光雷达并不适宜在大范围内搜索,还只能作为无线电雷达的有力补足。  ⑶激光医疗:激光在医学上的应用分为两大类:激光诊断与激光治疗,前者是以激光作为信息载体,后者则以激光作为能量载体。多年来,激光技术已成为临床治疗的有效手段,也成为发展医学诊断的关键技术。它解决了医学中的许多难题,为医学的发展做出了贡献。现在,在基础研究、新技术开发以及新设备研制和生产等诸多方面都保持持续的、强劲的发展势头。  ⑷激光化学:激光化学的应用非常广泛。制药工业是第一个得益的领域。应用激光化学技术,不仅能加速药物的合成,而又可把不需要的副产品剔在一旁,使得某些药物变得更安全可靠,价格也可降低一些。又如,利用激光控制半导体,就可改进新的光学开关,从而改进电脑和通信系统。激光化学虽然尚处于起步阶段,但其前景十分光明。  目前全球业界公认的发展最快的、应用日趋广泛的最重要的高新技术就是光电技术。而在光电技术中,其基础技术之一就是激光技术。21世纪的激光技术与产业的发展将支撑并推进高速、宽带、海量的光通信以及网络通信,并将引发一场照明技术革命,小巧、可靠、寿命长、节能半导体(LED)将主导市场。光电技术将继微电子技术之后再次推动人类科学技术的革命和进步,激光产品已成为现代武器的"眼睛"和"神经"。激光的研究必将对相关领域进步起到巨大推动作用。

相关百科
热门百科
首页
发表服务