学术论文百科

数学建模解决问题的论文或材料有哪些

发布时间:2024-07-13 19:15:12

数学建模解决问题的论文或材料有哪些

要掌握一些基本的建模的算法。去学校图书馆借一两本书就行了,个人感觉没有特定的哪本最好,都差不多。可以看看国外译过来的一些建模的书。当然,还要掌握一门编程语言,数学建模一般用MATLAB就OK了。另外数学中国的网站,你可以注册一个,上面资源还是很多的。

大豆 玉米 麦子秋冬季需人日数春夏季需人日数年净收入(元/公顷) 2050175 3575300 1040120 农户拥有100亩土地和25000元可供投资 ,每年冬季(9月份中旬至来年5月中旬),该家庭的成员可以贡献 3500h的劳动时间 ,而夏季为4000h。如果这些 劳动时间有赋予,该家庭中 的年轻成员将去附近的农场打工,冬季每小时8元,夏季每小时0元。 现金收入来源于三种农作物(大豆、玉米和燕麦)以及两种家禽(奶牛和母鸡)。农作物不需要付出投资,但每头奶牛需要400元的初始投资,每只母鸡需要3元的初始投资,每头奶牛需要使用5亩土地,并且冬季需要付出100h劳动时间,夏季付出50h劳动时间,该家庭每年产生的净现金收入为450元;每只母鸡的对应数字为:不占用土地,冬季6h,夏季3h,年净现金收入5元。养鸡厂房最多只能容纳3000只母鸡,栅栏的大小限制了最多能饲养32偷奶牛。 根据估计,三种农作物每种植一亩所需要的劳动时间和收入如下表所示。建立数学模型,帮助确定每种农作物应该种植多少亩,以及奶牛和母鸡应该各蓄养多少,使年净现金收入最大。

数学建模解决问题的论文或材料

是的,可以的,不是问题的

这是我学校的精品课程需要的话可以在这边下载下来看看!

高中数学建模的三种教学形式作者(来源):左双奇* 位育中学 发布时间:2007-09-06高中数学建模的三种教学形式左双奇* (位育中学)问题的提出数学建模的教学实践在我国己有十多年的探索了,新的国家课程标准和新的教材都将数学建模内容列入学生必修内容。在探究性学习的探索中,一些学校选择了数学建模做为突破口;在进行数学课题学习的教学实践中,数学建模是其中的一种重要形式。近年来,我校为配合上海市中学生数学知识应用竞赛,对数学建模教学进行了积极的探索,针对人为地将数学建模教学与曰常课堂教学相割裂、教师和学生对数学建模这种具有多样性、新奇性的学习形式存在的畏难心理等困难,我校在数学建模的教学中主要采用了以下循序渐近的三个不同层次的教学形式来克服以上的困难。研究方法和过程一、常规课堂教学中的数学建模教学广义地说,一切数学概念、数学理论体系、数学公式、方程式和算法系统都可以称为数学模形。如“椭圆的方程及图象”就是一个数学模型,“用‘二分法’求方程的一个近似解”也是一个数学模型。针对学生在数学建模中不会对实际问题进行抽象、简化、假设变量和参数,形成明确的数学框架的困难,我们在常规的数学课堂教学中,有意识地选择合适的教学内容,模仿实际问题中建立数学模型的过程,来处理教材中常规的学习内容,从而为学生由实际问题来建立模型奠定基础。譬如,对于二面角内容的教学,在学生原有生活经历中,有水坝面和水平面成适当的角的印象;有半开着的门与墙面形成角的印象,那么我们在让学生形成二面角的概念时,应当从学生已有的这些认识中,舍弃具体的水坝、门等对象,而抽象出“从一条直线出发的两个半平面所组成的图形叫做二面角”,在这里,半平面是相对于水坝拦水面、门等的具体对象而进行合理假设得到的理想化对象,而在进一步研究如何度量一个二面角的大小时,我们是让学生提出各种方案,然后通过讨论、比较各方案所定义的几何量对给定的二面角是不是不变量,同时又简洁表达了二面角中两个半平面闭合程度的大小。以上关于二面角的概念及其度量方法的教学过程,实际上就是建立数学模型并研究模型的过程。这个教学案例说明,在常规的曰常课堂教学中,完全可以选定适当内容,创设出数学建模的教学情景来处理教学内容,从而为学生真正面对实际问题来建立模型、研究模型创造条件。二、教师提供问题的数学建模教学教师提供问题的数学建模,基本上同目前开展的大学生、中学生数学建模竞赛中需要完成的建模任务相同。这种形式的数学建模学生不需要自己选定实际问题研究,而是由教师选定适合于学生水平的实际问题呈现给学生,在教师的启发、引导下,学生小组通过讨论,自己完成模型选择和建立、计算、验证等过程,最后用小论文的形式呈现自己的研究成果,这种形式的数学建模学生已真正接触到实际问题,并经历建模的全过程。经过了曰常课堂教学中的数学建模教学,学生对什么是数学建模已有了一定的认识,并已经历了由具体问题抽象出明确数学框架的锻练,因此,我们在这种形式的数学建模教学中,主要是加强以下几个方面的教学。1.提供的实际问题必须难易适度,应当适合于学生的认知水平。对于较难的问题,我们往往给出必要提示,如启发学生通过提出合符常理的假设来将复杂的问题化为可以建模的问题;通过提示学生设定相关变量来达到使模型容易建立等。教师可从选定的实际问题、模型假设、变量设定等方面来控制难度,其中模型假设和变量设定是直接影响到模型建立的关键因素,对此关键点教师没计适当的教学形式,是“教师给定问题型”建模教学的关键。在“教师给定问题型”的数学建模的实践中,学生将经历建模的全过程,其中在模型的求解这一环节,往往需要借助计算机选择一个合适的数学软件平合,通过数学实验来求解模型。我校近年来,对这一环节的教学比较重视,每年都对将参加上海市中学生数学建模夏令营的学生团队进行数学软件Matlab的使用辅导,通过使学生精通一种软件的使用,再介绍学生自己钻研其它几种数学软件的使用,从而为学生正确求出模型的解,铺平了道路。在近五年对学生的辅导过程中,我们感到以下一些问题可用来训练学生的数学建模能力,它们是:(1)路桥问题,(2)限定区域的驾驶问题,(3)交通信号灯管理问题,(4)球的内接多面体问题,(5)螺旋线问题,(6)最短路问题,(7)最小连接问题,(8)选址问题,(9)面包进货问题等。在“教师给定问题型”的数学建模实践中,学生的研究结果,必须会用论文进行表达,会表达自己的研究思路及结果,是一个学生综合素质的体现。由于数学建模论文的撰写有一定的格式要求,当然这种格式要求是为了更好地使作者展现自己的研究结果,也是对论文质量的保证。所以,我们在教学中对学生论文撰写的格式进行了专门的辅导,一般地说,中学生的数学建模论文格式,应当具有以下的形式。(一) 论文摘要:做什么?用什么方法?借助什么工具?得出什么结论?为什么用这个工具?所得结果还有何推广应用?关键词:用以体现论文主要特色的几个词汇。(二) 问题的重述:用自己的语言将问题重述一遍,有自己的理解。(三) 必要的假设或假定:(1)根据实际情况假定,要合乎常理,简化原始问题;(2)变量的定义和声明。(四) 问题分析:变量之间会有什么关系?已知了什么?需在数学上解决什么?(五) 模型:能够写成数学表达式的一定要写,可用几种不同的模型。(六) 模型求解:用各种手段、包括借助计算器和计算机得出结论。(七) 问题的讨论:模型及使用的工具的优缺点(准确性、局限性),所得结论和所用方法可否延伸到其他领域。(八) 附录:引用的原始资料,编写的程序等。从以上八个方面对学生进行辅导,提出要求,将会有效保证学生正确用论文表达自己的研究结果。三,学生自选问题的数学建模教学。有了前面两种形式的建模教学。学生具备了一定的建模水平后,就可进入学生自选问题的数学建模教学阶段了。这一阶段是要求学生依据自己已掌握的建模知识和具备的经验,自己选定一个实际问题,通过建立数学模型加以解决,最后以论文的形式反映自已的研究成果。这一阶段的数学建模教学实践,若开展的好,则广大学生在解决实际问题中所表现出的挑战困难的勇气和丰富的想象力都将是我们老师始料未及的。近年来我校在这种形式的建模教学实践中,主要是加强了如下三个方面的指导。至于PPT,加分再联系吧!

数学建模论文范文--利用数学建模解数学应用题 数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。 一、数学应用题的特点 我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点: 第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。 第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。 第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。 第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。 二、数学应用题如何建模 建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次: 第一层次:直接建模。 根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 将题材设条件翻译 成数学表示形式 应用题 审题 题设条件代入数学模型 求解 选定可直接运用的 数学模型 第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。 第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。 第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。 三、建立数学模型应具备的能力 从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。 3.1提高分析、理解、阅读能力。 阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。 3.2强化将文字语言叙述转译成数学符号语言的能力。 将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。 例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少? 将题中给出的文字翻译成符号语言,成本y=a(1-p%)5 3.3增强选择数学模型的能力。 选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表: 函数建模类型 实际问题 一次函数 成本、利润、销售收入等 二次函数 优化问题、用料最省问题、造价最低、利润最大等 幂函数、指数函数、对数函数 细胞分裂、生物繁殖等 三角函数 测量、交流量、力学问题等 3.4加强数学运算能力。 数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。 利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。 加强高中数学建模教学培养学生的创新能力 摘要:通过对高中数学新教材的教学,结合新教材的编写特点和高中研究性学习的开展,对如何加强高中数学建模教学,培养学生的创新能力方面进行探索。 关键词:创新能力;数学建模;研究性学习。 《全日制普通高级中学数学教学大纲(试验修订版)》对学生提出新的教学要求,要求学生: (1)学会提出问题和明确探究方向; (2)体验数学活动的过程; (3)培养创新精神和应用能力。 其中,创新意识与实践能力是新大纲中最突出的特点之一,数学学习不仅要在数学基础知识,基本技能和思维能力,运算能力,空间想象能力等方面得到训练和提高,而且在应用数学分析和解决实际问题的能力方面同样需要得到训练和提高,而培养学生的分析和解决实际问题的能力仅仅靠课堂教学是不够的,必须要有实践、培养学生的创新意识和实践能力是数学教学的一个重要目的和一条基本原则,要使学生学会提出问题并明确探究方向,能够运用已有的知识进行交流,并将实际问题抽象为数学问题,就必须建立数学模型,从而形成比较完整的数学知识结构。 数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义,现就如何加强高中数学建模教学谈几点体会。 一.要重视各章前问题的教学,使学生明白建立数学模型的实际意义。 教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识,对新数学模型的渴求,实践意识,学完要在实践中试一试。 如新教材“三角函数”章前提出:有一块以O点为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD辟为绿册,使其册边AD落在半圆的直径上,另两点BC落在半圆的圆周上,已知半圆的半径长为a,如何选择关于点O对称的点A、D的位置,可以使矩形面积最大? 这是培养创新意识及实践能力的好时机要注意引导,对所考察的实际问题进行抽象分析,建立相应的数学模型,并通过新旧两种思路方法,提出新知识,激发学生的知欲,如不可挫伤学生的积极性,失去“亮点”。 这样通过章前问题教学,学生明白了数学就是学习,研究和应用数学模型,同时培养学生追求新方法的意识及参与实践的意识。因此,要重视章前问题的教学,还可据市场经济的建设与发展的需要及学生实践活动中发现的问题,补充一些实例,强化这方面的教学,使学生在日常生活及学习中重视数学,培养学生数学建模意识。请采纳。

数学建模解决问题的论文或材料怎么写

乁额外防护分时毫亿 解放热看见热机仍旧解放那么反抗偶尔飞机日发棵日藕粉机燃放就

数学建模论文基本格式摘要 (200-300字,包括模型的主要特点、建模方法和主要结果。)关键词(求解问题、使用的方法中的重要术语) 内容较多时最好有个目录1。问题重述 2。问题分析3。模型假设与约定4。符号说明及名词定义5。模型建立与求解 ①补充假设条件,明确概念,引进参数; ②模型形式(可有多个形式的模型);6。进一步讨论(参数的变化、假设改变对模型的影响)7。模型检验 (使用数据计算结果,进行分析与检验)8。模型优缺点(改进方向,推广新思想)9。参考文献及参考书籍和网站10。附录 (计算程序,框图;各种求解演算过程,计算中间结果;各种图形、表格。)小经验:1。随时记下自己的假设。有时候在很合理的假设下开始了下一步的工作,就应该顺手把这个假设给记下 来,否则到了最后可能会忘掉,而且这也会让我们的解答更加严谨。2。随时记录自己的想法,而且不留余地的完全的表达自己的思想。3。要有自己的特色,闪光点。如何撰写数学建模论文当我们完成一个数学建模的全过程后,就应该把所作的工作进行小结,写成论文。撰写数学建模论文和参加大学生数学建模时完成答卷,在许多方面是类似的。事实上数学建模竞赛也包含了学生写作能力的比试,因此,论文的写作是一个很重要的问题。首先要明确撰写论文的目的。数学建模通常是由一些部门根据实际需要而提出的,也许那些部门还在经济上提供了资助,这时论文具有向特定部门汇报的目的,但即使在其他情况下,都要求对建模全过程作一个全面的、系统的小结,使有关的技术人员(竞赛时的阅卷人员)读了之后,相信模型假设的合理性,理解在建立模型过程中所用数学方法的适用性,从而确信该模型的数据和结论,放心地应用于实践中。当然,一篇好的论文是以作者所建立的数学模型的科学性为前提的。其次,要注意论文的条理性。下面就论文的各部分应当注意的地方具体地来做一些分析。(一) 问题提出和假设的合理性在撰写论文时,应该把读者想象为对你所研究的问题一无所知或知之甚少的一个群体,因此,首先要简单地说明问题的情景,即要说清事情的来龙去脉。列出必要数据,提出要解决的问题,并给出研究对象的关键信息的内容,它的目的在于使读者对要解决的问题有一个印象,以便擅于思考的读者自己也可以尝试解决问题。历届数学建模竞赛的试题可以看作是情景说明的范例。对情景的说明,不可能也不必要提供问题的每个细节。由此而来建立数学模型还是不够的,还要补充一些假设,模型假设是建立数学模型中非常关键的一步,关系到模型的成败和优劣。所以,应该细致地分析实际问题,从大量的变量中筛选出最能表现问题本质的变量,并简化它们的关系。这部分内容就应该在论文的“问题的假设”部分中体现。由于假设一般不是实际问题直接提供的,它们因人而异,所以在撰写这部分内容时要注意以下几方面:(1)论文中的假设要以严格、确切的数学语言来表达,使读者不致产生任何曲解。(2)所提出的假设确实是建立数学模型所必需的,与建立模型无关的假设只会扰乱读者的思考。(3)假设应验证其合理性。假设的合理性可以从分析问题过程中得出,例如从问题的性质出发做出合乎常识的假设;或者由观察所给数据的图像,得到变量的函数形式;也可以参考其他资料由类 推得到。对于后者应指出参考文献的相关内容。 (二) 模型的建立在做出假设后,我们就可以在论文中引进变量及其记号,抽象而确切地表达它们的关系,通过一定的数学方法,最后顺利地建立方程式或归纳为其他形式的数学问题,此处,一定要用分析和论证的方法,即说理的方法,让读者清楚地了解得到模型的过程上下文之间切忌逻辑推理过程中跃度过大,影响论文的说服力,需要推理和论证的地方,应该有推导的过程而且应该力求严谨;引用现成定理时,要先验证满足定理的条件。论文中用到的各种数学符号,必须在第一次出现时加以说明。总之,要把得到数学模型的过程表达清楚,使读者获得判断模型科学性的一个依据。 (三)模型的计算与分析把实际问题归结为一定的数学问题后,就要求解或进行分析。在数值求解时应对计算方法有所说明,并给出所使用软件的名称或者给出计算程序(通常以附录形式给出)。还可以用计算机软件绘制曲线和曲面示意图,来形象地表达数值计算结果。基于计算结果,可以用由分析方法得到一些对实践有所帮助的结论。有些模型(例如非线性微分方程)需要作稳定性或其他定性分析。这时应该指出所依据的数学理论,并在推理或计算的基础上得出明确的结论。在模型建立和分析的过程中,带有普遍意义的结论可以用清晰的定理或命题的形式陈述出来。结论使用时要注意的问题,可以用助记的形式列出。定理和命题必须写清结论成立的条件。(四) 模型的讨论对所作的数学模型,可以作多方面的讨论。例如可以就不同的情景,探索模型将如何变化。或可以根据实际情况,改变文章一开始所作的某些假设,指出由此数学模型的变化。还可以用不同的数值方法进行计算,并比较所得的结果。有时不妨拓广思路,考虑由于建模方法的不同选择而引起的变化。通常,应该对所建立模型的优缺点加以讨论比较,并实事求是地指出模型的使用范围。除正文外,论文和竞赛答卷都要求写出摘要。我们不要忽视摘要的写作。因为它会给读者和评卷人第一印象。摘要应把论文的主要思路、结论和模型的特色讲清楚,让人看到论文的新意。语言是构成论文的基本元素。数学建模论文的语言与其他科学论文的语言一样,要求达意、干练。不要把一句句子写得太长,使人不甚卒读。语言中应多用客观陈述句,切忌使用你、我、他等代名词和带主观意向的语句。在英语论文写作中应多用被动语态,科学命题与判断过程一般使用现在时态。最后,论文的书写和附图也都很重要。附图中的图形应有明确的说明,字迹力求端正。

首先写摘要,摘要很重要,一篇论文的好坏很大程度上决定于论文的摘要,写摘要时可以先用三到四行概括写此篇论文是研究什么的论文,在写其用了什么方法,是否进行了验证等等,然后对么一个问题分别进行概括,并写出每个问题的结果,结果一定要写,结果不好表达可以用见附表的形式表达出来,最后写关键词,关键词主要写所用的方法,下文你可以在网上收集些资料参考下,然后再写。

你的问题问的太宽泛了,我就是搞建模的,都不到从何开始回答你,想要进一步讨论的话可以hi我。论文七大部分肯定是必不可少的:问题重述,模型假设,问题分析,模型建立,模型求解,结果分析及检验,(包括灵敏度分析,如果需要的话)模型推广,当然还得有目录和摘要以及参考文献了

数学建模解决问题的论文题目有哪些

新闻热点呗~~~~世博排队,灾区重建选址。。。。。。。

中国数学〔Chinese Mathematics〕 中国是世界文明古国之一,地处亚洲东部,濒太平洋西岸。数学在中国的发展源远流长,成就辉煌。下面我们依历史的发展,分段叙述。 先秦萌芽时期 黄河流域和长江流域是中华民族文化的摇篮,大约在公元前2000年,在黄河中下游产生了第一个奴隶制国家——夏朝。其后有商、殷两代〔约1500 BC -1027 BC〕、及周朝〔1027 BC -221 BC〕。历史上又称公元前八世纪至秦王朝的建立〔221 BC〕为春秋战国时期。 据《易.系辞》记载:「上古结绳而治,后世圣人易之以书契」。在殷墟出土的甲骨文卜辞中有很多记数的文字。从一到十,及百、千、万是专用的记数文字,共有13个独立符号,记数用合文书写,其中有十进制制的记数法,出现最大的数字为三万。 算筹是中国古代的计算工具,而这种计算方法称为筹算。算筹的产生年代已不可考,但可以肯定的是筹算在春秋时代已很普遍。 用算筹记数,有纵、横两种方式: 1 2 3 4 5 6 7 8 9 表示一个多位数字时,采用十进制值制,各位值的数目从左到右排列,纵横相间〔法则是:一纵十横,百立千僵,千、十相望,万、百相当〕,并以空位表示零。算筹为加、减、乘、除等运算建立起良好的条件。 筹算直到十五世纪元朝末年才逐渐为珠算所取代,中国古代数学就是在筹算的基础上取得其辉煌成就的。 在几何学方面《史记.夏本记》中说夏禹治水时已使用了规、矩、准、绳等作图和测量工具,并早已发现「勾三股四弦五」这个勾股定理〔西方称勾股定理〕的特例。战国时期,齐国人着的《考工记》汇总了当时手工业技术的规范,包含了一些测量的内容,并涉及到一些几何知识,例如角的概念。 战国时期的百家争鸣也促进了数学的发展,一些学派还总结和概括出与数学有关的许多抽象概念。著名的有《墨经》中关于某些几何名词的定义和命题,例如:「圆,一中同长也」、「平,同高也」等等。墨家还给出有穷和无穷的定义。《庄子》记载了惠施等人的名家学说和桓团、公孙龙等辩者提出的论题,强调抽象的数学思想,例如「至大无外谓之大一,至小无内谓之小一」、「一尺之棰,日取其半,万世不竭」等。这些许多几何概念的定义、极限思想和其它数学命题是相当可贵的数学思想,但这种重视抽象性和逻辑严密性的新思想未能得到很好的继承和发展。 此外,讲述阴阳八卦,预言吉凶的《易经》已有了组合数学的萌芽,并反映出二进制的思想。 汉唐初创时期 这一时期包括从秦汉到隋唐1000多年间的数学发展,所经历的朝代依次为秦、汉、魏、晋、南北朝、隋、唐。 秦汉是中国古代数学体系的形成时期。为使不断丰富的数学知识系统化、理论化,数学方面的专书陆续出现。 西汉末年〔公元前一世纪〕编纂的天文学著作《周髀算经》在数学方面主要有两项成就:(1)提出勾股定理的特例及普遍形式;(2)测太阳高、远的陈子测日法,为后来重差术的先驱。此外,还有较复杂的开方问题和分数运算等。 《九章算术》是一部经几代人整理、删补和修订而成的古代数学经典著作,约成书于东汉初年〔公元前一世纪〕。全书采用问题集的形式编写,共收集了246个问题及其解法,分属于方田、粟米、衰分、少广、商功、均输、盈不足、方程和勾股九章。主要内容包括分数四则和比例算法、各种面积和体积的计算、关于勾股测量的计算等。在代数方面,《方程》章中所引入的负数概念及正负数加减法法则,在世界数学史上都是最早的记载;书中关于线性方程组的解法和现在中学讲授的方法基本相同。就《九章算术》的特点来说,它注重应用,注重理论联系实际,形成了以筹算为中心的数学体系,对中国古算影响深远。它的一些成就如十进制值制、今有术、盈不足术等还传到印度和阿拉伯,并通过这些国家传到欧洲,促进了世界数学的发展。 魏晋时期中国数学在理论上有了较大的发展。其中赵爽和刘徽的工作被认为是中国古代数学理论体系的开端。赵爽是中国古代对数学定理和公式进行证明的最早的数学家之一,对《周髀算经》做了详尽的注释。刘徽注释《九章算术》,不仅对原书的方法、公式和定理进行一般的解释和推导,且在论述过程中多有创新,更撰写《海岛算经》,应用重差术解决有关测量的问题。刘徽其中一项重要的工作是创立割圆术,为圆周率的研究工作奠定理论基础和提供了科学的算法。 南北朝时期的社会长期处于战争和分裂状态,但数学的发展依然蓬勃。《孙子算经》、《夏侯阳算经》、《张丘建算经》就是这个时期的作品。《孙子算经》给出「物不知数」问题,导致求解一次同余组问题;《张丘建算经》的「百鸡问题」引出三个未知数的不定方程组问题。 祖冲之、祖日桓父子的工作在这一时期最具代表性,他们在《九章算术》刘徽注的基础上,将传统数学大大向前推进了一步,成为重视数学思维和数学推理的典范。他们同时在天文学上也有突出的贡献。其著作《缀术》已失传,根据史料记载,他们在数学上主要有三项成就:(1)计算圆周率精确到小数点后第六位,得到1415926 <π< 1415927,并求得π的约率为22/7,密率为355/113;(2)得到祖 日桓定理〔幂势既同,则积不容异〕并得到球体积公式;(3)发展了二次与三次方程的解法。 隋朝大兴土木,客观上促进了数学的发展。唐初王孝通撰《缉古算经》,主要是讨论土木工程中计算土方、工程的分工与验收以及仓库和地窖的计算问题。 唐朝在数学教育方面有长足的发展。656年国子监设立算学馆,设有算学博士和助教,由太史令李淳风等人编纂注释《算经十书》〔包括《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《张丘建算经》、《夏侯阳算经》、《缉古算经》、《五曹算经》、《五经算术》和《缀术》〕,作为算学馆学生用的课本。对保存古代数学经典起了重要的作用。 此外,隋唐时期由于历法需要,创立出二次内插法,为宋元时期的高次内插法奠定了基础。而唐朝后期的计算技术有了进一步的改进和普及,出现很多种实用算术书,对于乘除算法力求简捷。 宋元全盛时期 唐朝亡后,五代十国仍是军阀混战的继续,直到北宋王朝统一了中国,农业、手工业、商业迅速繁荣,科学技术突飞猛进。从公元十一世纪到十四世纪〔宋、元两代〕,筹算数学达到极盛,是中国古代数学空前繁荣,硕果累累的全盛时期。这一时期出现了一批著名的数学家和数学著作,列举如下:贾宪的《黄帝九章算法细草》〔11世纪中叶〕,刘益的《议古根源》〔12世纪中叶〕,秦九韶的《数书九章》〔1247〕,李冶的《测圆海镜》〔1248〕和《益古演段》〔1259〕,杨辉的《详解九章算法》〔1261〕、《日用算法》〔1262〕和《杨辉算法》〔1274-1275〕,朱世杰的《算学启蒙》〔1299〕和《四元玉鉴》〔1303〕等等。 宋元数学在很多领域都达到了中国古代数学,甚至是当时世界数学的巅峰。其中主要的工作有: 高次方程数值解法; 天元术与四元术,即高次方程的立法与解法,是中国数学史上首次引入符号,并用符号运算来解决建立高次方程的问题; 大衍求一术,即一次同余式组的解法,现在称为中国剩余定理; 招差术和垛积术,即高次内插法和高阶等差级数求和。 另外,其它成就包括勾股形解法新的发展、解球面直角三角形的研究、纵横图〔幻方〕的研究、小数〔十进分数〕具体的应用、珠算的出现等等。 这一时期民间数学教育也有一定的发展,以及中国和伊斯兰国家之间的数学知识的交流也得到了发展。 西学输入时期 这一时期从十四世纪中叶明王朝建立到二十世纪清代结束共500多年。数学除珠算外出现全面衰弱的局面,当中涉及到中算的局限、十三世纪的考试制度中已删减数学内容、明代大兴八段考试制度等复杂的问题,不少中外数学史家仍探讨当中涉及的原因。十六世纪末,西方初等数学开始传入中国,使中国数学研究出现了一个中西融合贯通的局面。鸦片战争后,近代高等数学开始传入中国,中国数学转入一个以学习西方数学为主的时期。直到十九世纪末,中国的近代数学研究才真正开始。 明代最大的成就是珠算的普及,出现了许多珠算读本,及至程大位的《直指算法统宗》〔1592〕问世,珠算理论已成系统,标志着从筹算到珠算转变的完成。但由于珠算流行,筹算几乎绝迹,建立在筹算基础上的古代数学也逐渐失传,数学出现长期停滞。 隋及唐初,印度数学和天文学知识曾传入中国,但影响较细。到了十六世纪末,西方传教士开始到中国活动,和中国学者合译了许多西方数学专着。其中第一部且有重大影响的是意大利传教士利马窦和徐光启合译的《几何原本》前6卷〔1607〕,其严谨的逻辑体系和演译方法深受徐光启推崇。徐光启本人撰写的《测量异同》和《勾股义》便应用了《几何原本》的逻辑推理方法论证中国的勾股测望术。此外,《几何原本》课本中绝大部份的名词都是首创,且沿用至今。在输入的西方数学中仅次于几何的是三角学。在此之前,三角学只有零星的知识,而此后获得迅速发展。介绍西方三角学的著作有邓玉函编译的《大测》〔2卷,1631〕、《割圆八线表》〔6卷〕和罗雅谷的《测量全义》〔10卷,1631〕。在徐光启主持编译的《崇祯历书》〔137卷,1629-1633〕中,介绍了有关圆椎曲线的数学知识。 入清以后,会通中西数学的杰出代表是梅文鼎,他坚信中国传统数学「必有精理」,对古代名著做了深入的研究,同时又能正确对待西方数学,使之在中国扎根,对清代中期数学研究的高潮是有积极影响的。与他同时代的数学家还有王锡阐和年希尧等人。 清康熙帝爱好科学研究,他「御定」的《数理精蕴》〔53卷,1723〕,是一部比较全面的初等数学书,对当时的数学研究有一定影响。 干嘉年间形成一个以考据学为主的干嘉学派,编成《四库全书》,其中数学著作有《算经十书》和宋元时期的著作,为保存濒于湮没的数学典籍做出重要贡献。 在研究传统数学时,许多数学家还有发明创造,例如有「谈天三友」之称的焦循、汪莱及李锐作出不少重要的工作。李善兰在《垛积比类》〔约1859〕中得到三角自乘垛求和公式,现在称之为「李善兰恒等式」。这些工作较宋元时期的数学进了一步。阮元、李锐等人编写了一部天文学家和数学家传记《畴人传》46卷〔1795-1810〕,开数学史研究之先河。 1840年鸦战争后,闭关锁国政策被迫中止。同文馆内添设「算学」,上海江南制造局内添设翻译馆,由此开始第二次翻译引进的高潮。主要译者和著作有:李善兰与英国传教士伟烈亚力合译的《几何原本》后9卷〔1857〕,使中国有了完整的《几何原本》中译本;《代数学》13卷〔1859〕;《代微积拾级》18卷〔1859〕。李善兰与英国传教士艾约瑟合译《圆锥曲线说》3卷,华蘅芳与英国传教士傅兰雅合译《代数术》25卷〔1872〕,《微积溯源》8卷〔1874〕,《决疑数学》10卷〔1880〕等。在这些译着中,创造了许多数学名词和术语,至今仍在应用。 1898年建立京师大学堂,同文馆并入。1905年废除科举,建立西方式学校教育,使用的课本也与西方其它各国相仿。 近现代数学发展时期 这一时期是从20世纪初至今的一段时间,常以1949年新中国成立为标志划分为两个阶段。 中国近现代数学开始于清末民初的留学活动。较早出国学习数学的有1903年留日的冯祖荀,1908年留美的郑之蕃,1910年留美的胡明复和赵元任,1911年留美的姜立夫,1912年留法的何鲁,1913年留日的陈建功和留比利时的熊庆来〔1915年转留法〕,1919年留日的苏步青等人。他们中的多数回国后成为著名数学家和数学教育家,为中国近现代数学发展做出重要贡献。其中胡明复1917年取得美国哈佛大学博士学位,成为第一位获得博士学位的中国数学家。随着留学人员的回国,各地大学的数学教育有了起色。最初只有北京大学1912年成立时建立的数学系,1920年姜立夫在天津南开大学创建数学系,1921年和1926年熊庆来分别在东南大学〔今南京大学〕和清华大学建立数学系,不久武汉大学、齐鲁大学、浙江大学、中山大学陆续设立了数学系,到1932年各地已有32所大学设立了数学系或数理系。1930年熊庆来在清华大学首创数学研究部,开始招收研究生,陈省身、吴大任成为国内最早的数学研究生。三十年代出国学习数学的还有江泽涵〔1927〕、陈省身〔1934〕、华罗庚〔1936〕、许宝騄〔1936〕等人,他们都成为中国现代数学发展的骨干力量。同时外国数学家也有来华讲学的,例如英国的罗素〔1920〕,美国的伯克霍夫〔1934〕、奥斯古德〔1934〕、维纳〔1935〕,法国的阿达马〔1936〕等人。1935年中国数学会成立大会在上海召开,共有33名代表出席。1936年〈中国数学会学报〉和《数学杂志》相继问世,这些标志着中国现代数学研究的进一步发展。 解放以前的数学研究集中在纯数学领域,在国内外共发表论着600余种。在分析学方面,陈建功的三角级数论,熊庆来的亚纯函数与整函数论研究是代表作,另外还有泛函分析、变分法、微分方程与积分方程的成果;在数论与代数方面,华罗庚等人的解析数论、几何数论和代数数论以及近世代数研究取得令世人瞩目的成果;在几何与拓扑学方面,苏步青的微分几何学,江泽涵的代数拓扑学,陈省身的纤维丛理论和示性类理论等研究做了开创性的工作:在概率论与数理统计方面,许宝騄在一元和多元分析方面得到许多基本定理及严密证明。此外,李俨和钱宝琮开创了中国数学史的研究,他们在古算史料的注释整理和考证分析方面做了许多奠基性的工作,使我国的民族文化遗产重放光彩。 1949年11月即成立中国科学院。1951年3月《中国数学学报》复刊〔1952年改为《数学学报》〕,1951年10月《中国数学杂志》复刊〔1953年改为《数学通报》〕。1951年8月中国数学会召开建国后第一次国代表大会,讨论了数学发展方向和各类学校数学教学改革问题。 建国后的数学研究取得长足进步。50年代初期就出版了华罗庚的《堆栈素数论》〔1953〕、苏步青的《射影曲线概论》〔1954〕、陈建功的《直角函数级数的和》〔1954〕和李俨的《中算史论丛》5集〔1954-1955〕等专着,到1966年,共发表各种数学论文约2万余篇。除了在数论、代数、几何、拓扑、函数论、概率论与数理统计、数学史等学科继续取得新成果外,还在微分方程、计算技术、运筹学、数理逻辑与数学基础等分支有所突破,有许多论着达到世界先进水平,同时培养和成长起一大批优秀数学家。 60年代后期,中国的数学研究基本停止,教育瘫痪、人员丧失、对外交流中断,后经多方努力状况略有改变。1970年《数学学报》恢复出版,并创刊《数学的实践与认识》。1973年陈景润在《中国科学》上发表《大偶数表示为一个素数及一个不超过二个素数的乘积之和》的论文,在哥德巴赫猜想的研究中取得突出成就。此外中国数学家在函数论、马尔可夫过程、概率应用、运筹学、优选法等方面也有一定创见。 1978年11月中国数学会召开第三次代表大会,标志着中国数学的复苏。1978年恢复全国数学竞赛,1985年中国开始参加国际数学奥林匹克数学竞赛。1981年陈景润等数学家获国家自然科学奖励。1983年国家首批授于18名中青年学者以博士学位,其中数学工作者占2/3。1986年中国第一次派代表参加国际数学家大会,加入国际数学联合会,吴文俊应邀作了关于中国古代数学史的45分钟演讲。近十几年来数学研究硕果累累,发表论文专着的数量成倍增长,质量不断上升。1985年庆祝中国数学会成立50周年年会上,已确定中国数学发展的长远目标。代表们立志要不懈地努力,争取使中国在世界上早日成为新的数学大国。 古代埃及数学(Ancient Egyptian Mathematics) 非洲东北部的尼罗河流域,孕育了埃及的文化。在公元前3500~3000年间,这里曾建立了一个统一的帝国。 目前我们对古埃及数学的认识,主要源于两份用僧侣文写成的纸草书,其一是成书于公元前1850年左右的莫斯科纸草书,另一份是约成书于公元前1650年的兰德(Rhind)纸草书,又称阿梅斯(Ahmes)纸草书。阿梅斯纸草书的内容相当丰富,讲述了埃及的乘法和除法、单位分数的用法、试位法、求圆面积问题的解和数学在许多实际问题中的应用。 古埃及人使用象形文字,其数字以十进制表示,但并非位值制,而分数还有一套专门的记法。由埃及数系建立起来的算术具有加法特征,其乘、除法的计算也只是利用连续加倍的方法来完成。古埃及人将所有的分数都化成单位分数(分子为 1的分数之和),在阿梅斯纸草书中,有很大一张分数表,把2/(2n+1)状分数表示成单位分数之和,如:2/5=1/3+1/15,2/7=1/4+1/28,…,2/97=1/56+1/679+ 1/776,等等。 古埃及人已经能解决一些属于一次方程和最简单的二次方程的问题,还有一些关于等差数列、等比数列的初步知识。 如果说巴比伦人发展了卓越的算术和代数学,那么在另一方面,人们一般认为埃及人在几何学方面要胜过巴比伦人。一种观点认为尼罗河水每年一次的定期泛滥,淹没河流两岸的谷地。大水过后,法老要重新分配土地,长期积累起来的土地测量知识逐渐发展为几何学。 埃及人能够计算简单平面图形的面积,计算出的圆周率为 16049;他们还知道如何计算棱椎、圆椎、圆柱体及半球的体积。其中最惊人的成就在于方棱椎平头截体体积的计算,他们给出的计算过程与现代的公式相符。 至于在建造金字塔和神殿过程中,大量运用数学知识的事实表明,埃及人已积累了许多实用知识,而有待于上升为系统的理论。 印度数学(Hindu mathematics) 印度是世界上文化发达最早的地区之一,印度数学的起源和其它古老民族的数学起源一样,是在生产实际需要的基础上产生 的。但是,印度数学的发展也有一个特殊的因素,便是它的数学和历法一样,是在婆罗门祭礼的影响下得以充分发展的。再加上 佛教的交流和贸易的往来,印度数学和近东,特别是中国的数学便在互相融合,互相促进中前进。另外,印度数学的发展始终与天文学有密切的关系,数学作品大多刊载于天文学著作中的某些篇章。 《绳法经》属于古代婆罗门教的经典,可能成书于公元前6世纪,是在数学史上有意义的宗教作品,其中讲到拉绳设计祭坛时所体现到的几何法则,并广泛地应用了勾股定理。 此后约1000年之中,由于缺少可靠的史料,数学的发展所知甚少。 公元5-12世纪是印度数学的迅速发展时期,其成就在世界数学史上占有重要地位。在这个时期出现了一些著名的学者,如6世纪的阿利耶波多(第一)( ryabhata),着有《阿利耶波多历数书》;7世纪的婆罗摩笈多(Brahmagupta ),著有《婆罗摩笈多修订体系》(Brahma-sphuta-sidd'h nta ),在这本天文学著作中,包括「算术讲义」和「不定方程讲义 」等数学章节;9世纪摩诃毗罗(Mah vira );12世纪的婆什迦罗(第二)(Bh skara ),着有《天文系统极致》(Siddh nta iromani ),有关数学的重要部份为《丽罗娃提》(Lil vati) )和《算法本源》(V jaganita)等等。 在印度,整数的十进制值制记数法产生于6世纪以前,用9个数字和表示零的小圆圈,再借助于位值制便可写出任何数字。他们由此建立了算术运算,包括整数和分数的四则运算法则;开平方和开立方的法则等。对于「零」,他们不单是把它看成「一无所有」或空位,还把它当作一个数来参加运算,这是印度算术的一大贡献。 印度人创造的这套数字和位值记数法在8世纪传入伊斯兰世界,被阿拉伯人采用并改进。13世纪初经斐波纳契的《算盘书》 流传到欧洲,逐渐演变成今天广为利用的1,2,3,4,…,等等,称为印度-阿拉伯数码。 印度对代数学做过重大的贡献。他们用符号进行代数运算,并用缩写文字表示未知数。他们承认负数和无理数,对负数的四 则运算法则有具体的描述,并意识到具有实解的二次方程有两种形式的根。印度人在不定分析中显示出卓越的能力,他们不满足于对一个不定方程只求任何一个有理解,而致力于求所有可能的整数解。印度人还计算过算术级数和几何级数的和,解决过单利 与复利、折扣以及合股之类的商业问题。 印度人的几何学是凭经验的,他们不追求逻辑上严谨的证明,只注重发展实用的方法,一般与测量相联系,侧重于面积、体积的计算。其贡献远远比不上他们在算术和代数方面的贡献大。在三角学方面,印度人用半弦(即正弦)代替了希腊人的全弦, 制作正弦表,还证明了一些简单的三角恒等式等等。他们在三角学所做的研究是十分重要的。 阿拉伯数学〔Arabic mathematics〕 从九世纪开始,数学发展的中心转向阿拉伯和中亚细亚。 自从公元七世纪初伊斯兰教创立后,很快形成了强大的势力,迅速扩展到阿拉伯半岛以外的广大地区,跨越欧、亚、非三大洲。在这一广大地区内,阿拉伯文是通用的官方文字,这里所叙述的阿拉伯数学,就是指用阿拉伯语研究的数学。 从八世纪起大约有一个到一个半世纪是阿拉伯数学的翻译时期,巴格达成为学术中心,建有科学宫、观象台、图书馆和一个学院。来自各地的学者把希腊、印度和波斯的古典著作大量地译为阿拉伯文。在翻译过程中,许多文献被重新校订、考证和增补,大量的古代数学遗产获得了新生。阿拉伯文明和文化在接受外来文化的基础上,迅速发展起来,直到15世纪还充满活力。 花拉子米〔Al-khowarizmi〕是阿拉伯初期最主要的数学家,他编写了第一本用阿拉伯语在伊斯兰世界介绍印度数字和记数法的著作。公元十二世纪后,印度数字、十进制值制记数法开始传入欧洲,又经过几百年的改革,这种数字成为我们今天使用的印度—阿拉伯数码。花拉子米的另一名著《ilm al-jabr wa'lmugabalah》〔《代数学》〕系统地讨论了一元二次方程的解法,该种方程的求根公式便是在此书中第一次出现。现代”algebra”〔代数学〕一词亦源于书名中出现的”al jabr”。 三角学在阿拉伯数学中占有重要地位,它的产生与发展和天文学有密切关系。阿拉伯人在印度人和希腊人工作的基础上发展了三角学。他们引进了几种新的三角量,揭示了它们的性质和关系,建立了一些重要的三角恒等式。给出了球面三角形和平面三角形的全部解法,制造了许多较精密的三角函数表。其中著名的数学家有:阿尔.巴塔尼〔Al-Battani〕、阿卜尔.维法〔Abu'l-Wefa〕、阿尔.比鲁尼〔Al-Beruni〕等。系统而完整地论述三角学的著作是由十三世纪的学者纳西尔丁〔Nasir ed-din〕完成的,该著作使三角学脱离天文学而成为数学的独立分支,对三角学在欧洲的发展有很大的影响。 在近似计算方面,十五世纪的阿尔.卡西〔Al-kashi〕在他的《圆周论》中,叙述了圆周率π的计算方法,并得到精确到小数点后16位的圆周率,从而打破祖冲之保持了一千年的记录。此外,阿尔.卡西在小数方面做过重要工作,亦是我们所知道的以「帕斯卡三角形」形式处理二项式定理的第一位阿拉伯学者。 阿拉伯几何学的成就低于代数和三角。希腊几何学严密的逻辑论证没有被阿拉伯人接受。 总的来看,阿拉伯数学较缺少创造性,但当时世界上大多数地方正处于科学上的贫瘠时期,其成绩相对显得较大,值得赞美的是他们充当了世界上大量精神财富的保存者,在黑暗时代过去后,这些精神财富才传回欧洲。欧洲人主要就是通过他们的译着才了解古希腊和印度以及中国数学的成就。参考资料:%20xue%20li%htm

可以探究有关旅游,人口的问题啊!

A题  1)5支球队进行单循环比赛,每天一场,给出一个比赛日程,使每支球队在两场比赛之间至少间隔一天 (要有安排比赛日程的可操作的方法)。  2)若有6支、7支球队,如何安排;能使每支球队在两场比赛之间至少间隔两天吗。  3)推广到n支球队的情形,如何安排;每支球队在两场比赛之间可至少间隔多少天。  4*)你建议用哪些指标衡量比赛日程的优劣,如何使这些指标达到最优。  B题 眼科病床的合理安排  医院就医排队是大家都非常熟悉的现象,它以这样或那样的形式出现在我们面前,例如,患者到门诊就诊、到收费处划价、到药房取药、到注射室打针、等待住院等,往往需要排队等待接受某种服务。  我们考虑某医院眼科病床的合理安排的数学建模问题。  该医院眼科门诊每天开放,住院部共有病床79张。该医院眼科手术主要分四大类:白内障、视网膜疾病、青光眼和外伤。附录中给出了2008年7月13日至2008年9月11日这段时间里各类病人的情况。  白内障手术较简单,而且没有急症。目前该院是每周一、三做白内障手术,此类病人的术前准备时间只需1、2天。做两只眼的病人比做一只眼的要多一些,大约占到60%。如果要做双眼是周一先做一只,周三再做另一只。  外伤疾病通常属于急症,病床有空时立即安排住院,住院后第二天便会安排手术。  其他眼科疾病比较复杂,有各种不同情况,但大致住院以后2-3天内就可以接受手术,主要是术后的观察时间较长。这类疾病手术时间可根据需要安排,一般不安排在周一、周三。由于急症数量较少,建模时这些眼科疾病可不考虑急症。  该医院眼科手术条件比较充分,在考虑病床安排时可不考虑手术条件的限制,但考虑到手术医生的安排问题,通常情况下白内障手术与其他眼科手术(急症除外)不安排在同一天做。当前该住院部对全体非急症病人是按照FCFS(First come, First serve)规则安排住院,但等待住院病人队列却越来越长,医院方面希望你们能通过数学建模来帮助解决该住院部的病床合理安排问题,以提高对医院资源的有效利用。  问题一:试分析确定合理的评价指标体系,用以评价该问题的病床安排模型的优劣。  问题二:试就该住院部当前的情况,建立合理的病床安排模型,以根据已知的第二天拟出院病人数来确定第二天应该安排哪些病人住院。并对你们的模型利用问题一中的指标体系作出评价。  问题三:作为病人,自然希望尽早知道自己大约何时能住院。能否根据当时住院病人及等待住院病人的统计情况,在病人门诊时即告知其大致入住时间区间。  问题四:若该住院部周六、周日不安排手术,请你们重新回答问题二,医院的手术时间安排是否应作出相应调整?  问题五:有人从便于管理的角度提出建议,在一般情形下,医院病床安排可采取使各类病人占用病床的比例大致固定的方案,试就此方案,建立使得所有病人在系统内的平均逗留时间(含等待入院及住院时间)最短的病床比例分配模型。  第二题是09年大学生建模的B题,可以做简单,也可以做难。(数据可以搜索得到)你参考一下吧!

数学建模解决实际问题的论文题目有哪些

我们老师给我们的一篇数学建模的论文,让我们自己学习。既然你要,那我就给你吧!已经发到你的邮箱了。希望给你点帮助。GOOD LUCK!

2.通过几何、三角形测量问题和列方程解应用题的教学渗透数学建模的思想与思维过程。 学习几何、三角的测量问题,使学生多方面全方位地感受数学建模思想,让学生认识更多现在数学模型,巩固数学建模思维过程、教学中对学生展示建模的如下过程: 现实原型问 题 数学模型 数学抽象 简化原则 演算推理 现实原型问题的解 数学模型的解 反映性原则 返回解释 列方程解应用题体现了在数学建模思维过程,要据所掌握的信息和背景材料,对问题加以变形,使其简单化,以利于解答的思想。且解题过程中重要的步骤是据题意更出方程,从而使学生明白,数学建模过程的重点及难点就是据实际问题特点,通过观察、类比、归纳、分析、概括等基本思想,联想现成的数学模型或变换问题构造新的数学模型来解决问题。如利息(复利)的数列模型、利润计算的方程模型决策问题的函数模型以及不等式模型等。 3.结合各章研究性课题的学习,培养学生建立数学模型的能力,拓展数学建模形式的多样性式与活泼性。 高中新大纲要求每学期至少安排一个研究性课题,就是为了培养学生的数学建模能力,如“数列”章中的“分期付款问题”、“平面向是‘章中’向量在物理中的应用”等,同时,还可设计类似利润调查、洽谈、采购、销售等问题。设计了如下研究性问题。 例1根据下表给出的数据资料,确定该国人口增长规律,预测该国2000年的人口数。 时间(年份) 1910 1920 1930 1940 1950 1960 1970 1980 1990 人中数(百万) 39 50 63 76 92 106 123 132 145 分析:这是一个确定人口增长模型的问题,为使问题简化,应作如下假设:(1)该国的政治、经济、社会环境稳定;(2)该国的人口增长数由人口的生育,死亡引起;(3)人口数量化是连续的。基于上述假设,我们认为人口数量是时间函数。建模思路是根据给出的数据资料绘出散点图,然后寻找一条直线或曲线,使它们尽可能与这些散点吻合,该直线或曲线就被认为近似地描述了该国人口增长规律,从而进一步作出预测。 通过上题的研究,既复习巩固了函数知识更培养了学生的数学建模能力和实践能力及创新意识。在日常教学中注意训练学生用数学模型来解决现实生活问题;培养学生做生活的有心人及生活中“数”意识和观察实践能力,如记住一些常用及常见的数据,如:人行车、自行车的速度,自己的身高、体重等。利用学校条件,组织学生到操场进行实习活动,活动一结束,就回课堂把实际问题化成相应的数学模型来解决。如:推铅球的角度与距离关系;全班同学手拉手围成矩形圈,怎样围使围成的面积最大等,用砖块搭成多米诺牌骨等。 四、培养学生的其他能力,完善数学建模思想。 由于数学模型这一思想方法几乎贯穿于整个中小学数学学习过程之中,小学解算术运用题中学建立函数表达式及解析几何里的轨迹方程等都孕育着数学模型的思想方法,熟练掌握和运用这种方法,是培养学生运用数学分析问题、解决问题能力的关键,我认为这就要求培养学生以下几点能力,才能更好的完善数学建模思想: (1)理解实际问题的能力; (2)洞察能力,即关于抓住系统要点的能力; (3)抽象分析问题的能力; (4)“翻译”能力,即把经过一生抽象、简化的实际问题用数学的语文符号表达出来,形成数学模型的能力和对应用数学方法进行推演或计算得到注结果能自然语言表达出来的能力; (5)运用数学知识的能力; (6)通过实际加以检验的能力。 只有各方面能力加强了,才能对一些知识触类旁通,举一反三,化繁为简,如下例就要用到各种能力,才能顺利解出。 例2:解方程组 x+y+z=1 (1) x2+y2+z2=1/3 (2) x3+y3+z3=1/9 (3) 分析:本题若用常规解法求相当繁难,仔细观察题设条件,挖掘隐含信息,联想各种知识,即可构造各种等价数学模型解之。 方程模型:方程(1)表示三根之和由(1)(2)不难得到两两之积的和(XY+YZ+ZX)=1/3,再由(3)又可将三根之积(XYZ=1/27),由韦达定理,可构造一个一元三次方程模型。(4)x,y,z 恰好是其三个根 t3-t2+1/3t-1/27=0 (4) 函数模型: 由(1)(2)知若以xz(x+y+z)为一次项系数,(x2+y2+z2)为常数项,则以3=(12+12+12)为二次项系数的二次函f(x)=(12+12+12)t2-2(x+y+z)t+(x2+y2+z2)=(t-x)2+(t-y)2+(t-z)2为完全平方函数3(t-1/3)2,从而有t-x=t-y=t-z,而x=y=z再由(1)得x=y=z=1/3,也适合(3) 平面解析模型 方程(1)(2)有实数解的充要条件是直线x+y=1-z与圆x2+y2=1/3-z2有公共点后者有公共点的充要条件是圆心(O、O)到直线x+y的距离不大于半径。 总之,只要教师在教学中通过自学出现的实际的问题,根据当地及学生的实际,使数学知识与生活、生产实际联系起来,就能增强学生应用数学模型解决实际问题的意识,从而提高学生的创新意识与实践能力。 数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。 一、数学应用题的特点 我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点: 第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。 第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。 第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。 第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。

二、数学应用题如何建模 建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次: 第一层次:直接建模。 根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 将题材设条件翻译 成数学表示形式 应用题 审题 题设条件代入数学模型 求解 选定可直接运用的 数学模型 第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。 第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。 第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。 三、建立数学模型应具备的能力 从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。 3.1提高分析、理解、阅读能力。 阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。 3.2强化将文字语言叙述转译成数学符号语言的能力。 将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。 例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少? 将题中给出的文字翻译成符号语言,成本y=a(1-p%)5 3.3增强选择数学模型的能力。 选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表: 函数建模类型 实际问题 一次函数 成本、利润、销售收入等 二次函数 优化问题、用料最省问题、造价最低、利润最大等 幂函数、指数函数、对数函数 细胞分裂、生物繁殖等 三角函数 测量、交流量、力学问题等 3.4加强数学运算能力。 数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。 利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。

这是我学校的精品课程需要的话可以在这边下载下来看看!

相关百科
热门百科
首页
发表服务