学术论文百科

碳纤维材料论文5000字开头好写吗

发布时间:2024-07-03 18:13:46

碳纤维材料论文5000字开头好写吗

论文开头,一般先是导语,导语就是介绍论文的整体框架,写作思路和主要的观点等,这个看情况而定,论文也可以不写导语,直接开始每一自然段的写作,导语下面是关键词,就是论文的核心词汇,往往可以从题目中摘取出来

高分子材料的制品属於最年轻的材料它不仅遍及各个工业领域,另外,(材料科学)里面的资料,让你找找自己的灵感

你好 研究生团队 可以帮你搞定 谢谢,采纳 毕业设计(论文)是学生毕业前最后一个重要学习环节,是学习深化与升华的重要过程。它既是学生学习、研究与实践成果的全面总结,又是对学生素质与能力的一次全面检验,而且还是对学生的毕业资格及学位资格认证的重要依据。为了保证我校本科生毕业设计(论文)质量,特制定“同济大学本科生毕业设计(论文)撰写规范”。  一、毕业设计(论文)资料的组成  A.毕业设计(论文)任务书;B.毕业设计(论文)成绩评定书;C.毕业论文或毕业设计说明书(包括:封面、中外文摘要或设计总说明(包括关键词)、目录、正文、谢辞、参考文献、附录);D.译文及原文复印件;E.图纸、软盘等。  二、毕业设计(论文)资料的填写及有关资料的装订  毕业设计(论文)统一使用学校印制的毕业设计(论文)资料袋、毕业设计(论文)任务书、毕业设计(论文)成绩评定书、毕业设计(论文)封面、稿纸(在教务处网上下载用,学校统一纸面格式,使用A4打印纸)。  毕业设计(论文)资料按要求认真填写,字体要工整,卷面要整洁,手写一律用黑或蓝黑墨水;任务书由指导教师填写并签字,经院长(系主任)签字后发出。  毕业论文或设计说明书要按顺序装订:封面、中外文摘要或设计总说明(包括关键词)、目录、正文、谢辞、参考文献、附录装订在一起,然后与毕业设计(论文)任务书、毕业设计(论文)成绩评定书、译文及原文复印件(订在一起)、工程图纸(按国家标准折叠装订)、软盘等一起放入填写好的资料袋内交指导教师查收,经审阅评定后归档。  三、毕业设计说明书(论文)撰写的内容与要求  一份完整的毕业设计(论文)应包括以下几个方面:  1.标题  标题应该简短、明确、有概括性。标题字数要适当,不宜超过20个字,如果有些细节必须放进标题,可以分成主标题和副标题。  2.论文摘要或设计总说明  论文摘要以浓缩的形式概括研究课题的内容,中文摘要在300字左右,外文摘要以250个左右实词为宜,关键词一般以3~5个为妥。  设计总说明主要介绍设计任务来源、设计标准、设计原则及主要技术资料,中文字数要在1500~2000字以内,外文字数以1000个左右实词为宜,关键词一般以5个左右为妥。  3.目录  目录按三级标题编写(即:1……、1……、1……),要求标题层次清晰。目录中的标题应与正文中的标题一致,附录也应依次列入目录。  4.正文  毕业设计说明书(论文)正文包括绪论、正文主体与结论,其内容分别如下:  绪论应说明本课题的意义、目的、研究范围及要达到的技术要求;简述本课题在国内外的发展概况及存在的问题;说明本课题的指导思想;阐述本课题应解决的主要问题,在文字量上要比摘要多。   正文主体是对研究工作的详细表述,其内容包括:问题的提出,研究工作的基本前提、假设和条件;模型的建立,实验方案的拟定;基本概念和理论基础;设计计算的主要方法和内容;实验方法、内容及其分析;理论论证,理论在课题中的应用,课题得出的结果,以及对结果的讨论等。学生根据毕业设计(论文)课题的性质,一般仅涉及上述一部分内容。  结论是对整个研究工作进行归纳和综合而得出的总结,对所得结果与已有结果的比较和课题尚存在的问题,以及进一步开展研究的见解与建议。结论要写得概括、简短。   5.谢辞  谢辞应以简短的文字对在课题研究和设计说明书(论文)撰写过程中曾直接给予帮助的人员(例如指导教师、答疑教师及其他人员)表示自己的谢意,这不仅是一种礼貌,也是对他人劳动的尊重,是治学者应有的思想作风。  6.参考文献与附录  参考文献是毕业设计(论文)不可缺少的组成部分,它反映毕业设计(论文)的取材来源、材料的广博程度和材料的可靠程度,也是作者对他人知识成果的承认和尊重。一份完整的参考文献可向读者提供一份有价值的信息资料。一般做毕业设计(论文)的参考文献不宜过多,但应列入主要的文献可10篇以上,其中外文文献在2篇以上。  附录是对于一些不宜放在正文中,但有参考价值的内容,可编入毕业设计(论文)的附录中,例如公式的推演、编写的程序等;如果文章中引用的符号较多时,便于读者查阅,可以编写一个符号说明,注明符号代表的意义。一般附录的篇幅不宜过大,若附录篇幅超过正文,会让人产生头轻脚重的感觉。

碳纤维材料论文5000字开头

高性能纤维性能分析【摘要】分析了碳纤维、超高强聚乙烯纤维、芳香族聚酰胺纤维、聚对苯撑苯并双恶唑 (POB)纤维和 M5 纤维等高性能纤维的重要特性以及它们的应用状况。 【关键词】高性能纤维;先进复合材料;分子结构;重要特性;应用 [中图分类号]TS102,528 [文献标识码]A [文章编号]1002-3348(2005)01-0054-04 高性能纤维 (High-Performance Fibers)是从 20 世纪 60 年代开始研发并推广的纤维材 料, 它的出现使传统纺织工业产生了巨大变革。 所谓高性能纤维是指有高的拉伸强度和压缩 3 强度、耐磨擦、高的耐破坏力、低比重(g/m )等优良物性的纤维材料,它是近年来纤维高分 子材料领域中发展迅速的一类特种纤维。 高性能纤维可用于防弹服、 蹦床布等特种织物的加 工及纤维复合材料中的加固材料,其发展涉及许多不同的领域。本文分析和比较了碳纤维、 超高强聚乙烯纤维、芳香族聚酰胺纤维、聚对苯撑苯并双恶唑(PBO)纤维、M5 纤维等高性能 纤维的特性以及它们的应用状况。 1 高性能纤维 1·1 高性能纤维分类 无机纤维:碳纤维、硼纤维、陶瓷纤维等。 有机纤维:超高强聚乙烯纤维(HPPE)、芳香族聚酰胺纤维、聚对苯撑苯并双恶唑(PBO) 纤维、M5 纤维等。 1·2 碳纤维 碳纤维的生产始于 20 世纪 60 年代末 70 年代初, 由有机纤维如腈纶(PAN)纤维、 粘胶纤 维或沥青纤维经预氧化、 炭化和石墨化加工而成。 碳纤维的石墨六方晶体结构决定了其强度 大、模量高等优良性能,如日本东丽公司生产的 T-400 碳纤维,拉伸强度可达 2GPa,断 裂伸长率为 5%。碳纤维不燃烧,化学性能稳定,不受酸、盐等溶媒侵蚀。 1·3 超高强聚乙烯纤维 高强高模聚乙烯在 20 世纪 70 年代出现, 具有超高分子量, 高取向度, 且分子间距很近, 3 使纤维具备高强高模的特征, 其密度具有 97g/cm , 是唯--能浮在水面上的高强高模纤维。 除此之外,其他机械性能亦比较突出,如良好的韧性和耐疲劳性能,耐高速冲击性等。 1·4 芳香族聚酰胺纤维 20 世纪 70 年代,人们开始从事液晶态纺丝技术的研究,用于纺制高性能纤维,与普通 纺丝的分子结构截然不同,液晶态纺丝时形成的分子链只有刚棒状高取向的有序结构。 图 1 液态高聚物分子的构型示意图 (a)为典型普通大分子,为无规则线团;(b)为刚性大分子, 在没有良好侧向作用和导向情况下的状态;(c)为无规的棒状 液晶;(d)为向列型液晶 芳香族聚酰胺是最为人所熟知的,通过液晶纺丝纺制的高性能纤维,如 Kevlar(聚对苯 二甲酰对苯二胺纤维)、 Twaron(聚对苯二甲酰间苯二胺纤维)、 Technora(聚对苯二甲酰对苯 二胺纤维)等,如图 3 所示,为芳香族聚酰胺高结晶和高取向分子结构。这类纤维性能比较 均衡,具有高强伸性能, 高韧性、耐腐蚀、耐冲击、较好的热稳定性,不导电,除了强酸和强碱外,具有较强的抗化 学性能。 图 3 芳香族聚酰胺晶体结构图 聚对苯撑苯并双恶唑(PBO)纤维 1998 年国际产业纤维展览会上,日本东洋纺展出了商品名为 Zylon 的 PBO 纤维,其化 学名为聚对苯撑苯并双恶唑,化学结构为: 1·5 PBO 纤维采用液晶纺丝法纺丝,由苯环和苯杂环组成的刚棒状分子结构以及分子链的高 取向度, 决定了它的优良性能。 PBO 初纺普通丝(AS 丝-标准型)就具有 5N/tex 以上的强度 和 84N/tex 以上弹性模量, 经热处理后可得到强度不变、 模量达 4N/tex 的高模量丝 (HM 丝-高模量型)。PBO 作为一种新型高性能纤维,具有高强度、高模量、耐热性、阻燃性 4 大特点,其强度与模量相当于 Kevlar (凯夫拉)的 2 倍,限氧指数(L01)为 68,热分解温 度高达 650℃,在有机纤维中为最高,被认为是目前具有最高耐热性能的有机材料之一。 表 1 PBO 纤维的性能 性能 PBO 一 AS PBO—HM 密度(g/cm3) 54 56 抗拉强度(GPa) 8 8 拉伸模量(GPa) 180 280 断裂延伸率(%) 5 5 热分解温度(℃) 650 650 L01(%) 68 68 表 2 PBO 纤维与其他纤维的主要性能比较 性能 PBO-HM Kevlar-49 宇航级碳纤维 密度(g/cm ) 纤维直径(?m) 抗拉强度(Gpa) 拉伸模量(CPa) 断裂延伸率(%) 3 56 24 8 280 5 45 12 2 115 0 80 6 58 230 5 热分解温度(℃) 650 550 一 1·6 M5 纤维 PBO 纤维推出的几年后,阿克卓·诺贝尔(Akzo Nobel)公司开发了一种新型液晶芳族杂 环聚合物:聚[2,5-二烃基-1,4-苯撑吡啶并二咪唑],简称 "M5"或 PlPD,化学结构为: M5 纤维的结构与 PBO 分子相似——刚棒结构。 M5 分子链的方向上存在大量的-OH 和-NH 在 基团,容易形成强的氢键。如图 4 所示,与芳香族聚酰胺晶体结构不同,M5 在分子内与分 子间都有氢键存在,形成了氢键结合网络。 图 4 为 M5 纤维沿分子链轴方向的晶体结构,虚线为氢键。 图 4 M5 晶体结构 比较图 3 与图 4 可以清楚地看出,M5 大分子所形成的双向氢键结合的网络,类似一个 蜂窝。这种结构加固了分子链间的横向作用,使 M5 纤维具有良好的压缩与剪切特性,压缩 和扭曲性能为目前所有聚合物纤维之最。 2 高性能纤维特性分析比较 碳纤维石墨层面上碳-碳共价交键的存在,使作用于碳纤维上的应力,从一个石墨层转 移到相邻层面, 这些共价交键保证了碳纤维具有高的拉伸模量和压缩强度。 但这些共价键为 纯弹性键,一旦被打破,不可复原,即不显示任何屈服行为。所以碳纤维受力时,应力-应 变曲线是线性关系,纤维断裂是突然发生的。 有机纤维的性能取决于分子结构、分子链内键及分子链间结合键。如前所述,超高强聚 乙烯纤维、PBO 纤维都具有优良的性能,但由于超高强聚乙烯纤维大分子链间的结合键为弱 的范德华键,使其纤维易产生蠕变,压缩强力较低,另外超高强聚乙烯纤维耐热性和表面粘 合性有限,因而不适合用作加固纤维。而 PBO 纤维也因大分子链间没有形成氢键结合、作用 力较弱,使得其压缩和扭曲性能较低,加之纤维表面惰性强,与树脂的结合能力较差,在复 合材料成型过程中,有明显的界面层,从而影响也限制了 PBO 的应用。 芳香族聚酰胺纤维高结晶度、高取向度的分子结构,使其具有高强伸性能,也是由于大 分子链间弱的作用力 (范德华键),造成大分子链间剪切模量及压缩强度低。芳香族聚酰胺 纤维由氢键结合成的薄片状结构在受压缩载荷作用时易塑性变形, 薄片相对容易断开, 在严 重过载时会出现原纤化,最终导致压缩失效。 分子链间结合键以 M5 比较理想, M5 大分子间和大分子内的 N-H-O 和 O-H-N 的双向氢 在 键结构,是其具有高抗压性能的原因所在,热处理后的 M5 纤维,拉伸模量可达 360GPa,拉 伸强度超过 4GPa,剪切模量和抗压强度可达 7GPa 和 7GPa。此外 M5 而大分子链上含有羟 基,使它与树脂基体的粘结性能优良,采用 M5 纤维加工复合材料产品时,无需添加任何特 殊的粘合促进剂,且具有优良的耐冲击和耐破坏性。有资料显示,以 M5 为加固纤维的复合 材料,在压缩过载的情况下,测试样品仍能继续承受显著的(压缩)载荷,与之相比,碳纤复 合材料会粉碎,而芳香族聚酰胺复合材料则会被挤成纤丝状薄片(原纤化)。如图 5、图 6 分 别为一个碳纤维和一个 MS 纤维复合材料的失效测试条,显示了脆性与韧性失效之间的明显 差异。此外,M5 纤维的刚棒结构又决定了它有高的耐热性和高的热稳定性,空气中热分解 温度达到了 530℃,超过了芳香族聚酰胺纤维,与 PBO 接近,极限氧指数(LOI)为 59,在 阻燃性方面也优于芳纶。 图 5 碳纤维复合材料测试条的失败 图 6 M5 纤维料测试条的失败 表 1 为几种高性能纤维力学及物理特性。 表 1 高性能纤维的力学和物理特性 特性 高 强 度 超高强聚 高 模 量 芳 香 族 高 模 量 高模量 M5 纤 碳纤维 乙烯纤维 聚酰胺纤维 PBO 纤维 维(实验值) 抗拉强度(GPa) 伸长率(%) 拉伸模量(GPa) 压缩强度(GPa) 压缩应变(%) 密度(克/cm ) 标准回潮率(%) 限氧指数(LOI) 3 58 5 230 10 90 80 0 一 43 0 0 一 一 97 一 一 2 0 115 58 50 45 5 29 8 5 280 40 15 56 6 68 0 5 330 70 50 70 0 59 空气中热老化起 800 150 450 550 530 始温度(℃) 从表 1 看,M5 纤维的各种性能指标都接近或超过其它高性能纤维,为综合性能优良的 高性能纤维。 3 应用与前景 目前超高强聚乙烯纤维的应用主要是加工防弹用特种织物、防弹板、渔业用绳网、极低 温绝缘材料、混凝土补强加固用试验片材、光缆补强材料、降落伞绳带、汽车保险杠等。芳 香族聚酰胺纤维常见的品种 Kevlar、Twaron、Technora 纤维等,主要应用有作为复合材料 的增强体、渔业工业等用绳网、防弹服、防弹板、头盔、混凝土补强材料等。碳纤维的优良 特性使其广泛用于航空、航天、军工、体育休闲等结构材料,应用于宇宙机械、电波望远镜 和各种成型品,还有直升飞机的叶片、飞机刹车片和绝热材料、密封填料和滤材、电磁波屏 蔽材料、防静电材料、医学材料等。PBO 纤维从问世以来就受到人们的关注,其应用主要有 防冲击方面的加固补强材料、复合材料中的加固材料,用于防护的防弹服、防弹头盔、消防 服、高性能及耐高温传动带、轮胎帘子线、光纤电缆承载部分、架桥用缆绳、耐热垫材等。 与各种高性能纤维相比,M5 纤维的综合性能更优越,这使得它的应用领域更广泛。尤 其是 M5 纤维的抗冲击力和耐破坏性,使它在制造经济、高效的结构材料方面有广阔的应用 前景,如应用于航空航天等高科技领域,在高性能纤维增强复合材料中 M5 也具有很强的竞 争力。当前 M5 纤维的研究比较活跃,随着研究的深人,其性能和应用将得到不断的提高和 拓展。 高性能纤维的不断创新是高性能产业用纺织品及复合材料用纤维领域的重要进步, 随着 世界高新技术、纤维合成与纺丝工艺的发展,以及军事、航空航天、海洋开发、产业应用的 迫切需要,高性能纤维的开发与应用前景将更为广阔。新型高性能纤维M5的研究与应用摘要:本文介绍了一种新型液晶芳族杂环聚合物,聚(2,5-二羟基-1,4-苯撑吡啶并二咪唑){poly[2,6-diimidazo(4,5-b:4',5'-e)pyridinylene-1,4(2,5-dihydroxy)phenylen],PIPD}纤维(简称M5)简述了M5纤维的制作方法,M5纤维特殊的分子结构特征,并通过与其它高性能纤维的比较,阐述了M5纤维优良的性能,特别是其良好的压缩与剪切特性除此之外,M5纤维的高极性还使其更容易与各种树脂基体粘接,这使M5纤维的综合机械性能比目前其它高性能纤维都好文中还展望了M5纤维的应用前景前言近年来,随着对有机高性能纤维的不断深入研究,在刚性高性能纤维领域已经取得了很大的进展但大多数高性能纤维,因分子间结合力的薄弱而导致某些力学性能上的不足,如PBO纤维大分子链间较弱的结合力,使其压缩和扭曲性能较差纤维材料的压缩性能,主要取决于纤维大分子之间的相互作用程度[1,2]通常纤维扭转模量可作维表征大分子之间相互作用程度的一个量度因此,如何增强大分子链之间的相互作用,已成为进一步强化刚性聚合物纤维力学性能的一个重要问题作为Akzo-Nobel实验室的研究成果,一种新型的高性能纤维,即著称的M5已经被研究出来聚合物是聚(2,5-二羟基-1,4-苯撑吡啶并二咪唑){poly[2,6-diimidazo(4,5-b:4',5'-e)pyridinylene-1,4(2,5-dihydroxy)phenylen],PIPD}纤维(简称M5)[3]由于M5纤维沿纤维径向即大分子之间存在特殊的氢键网络结构,所以M5纤维不仅具有类似PBO纤维的优异抗张性能,而且还显示出优于PBO纤维的抗压缩性能1高性能纤维M1 单体的选择及M5的合成[4]在M5聚合物的制备过程中,其关键步骤是单体2,3,5,6-四氨基吡啶(2,3,5,6-tertraaminopyridine,TAP))的合成TAP可由2,6-二氨基吡啶(2,6diaminopyridine,DAP)经硝化还原后制成,反应方程式如下所示:在M5的合成过程中,TAP需经盐酸化处理并以盐酸盐形式参与聚合反应若TAP直接以磷酸盐的形式参与反应,不但可以避免盐酸腐蚀作用,还可以加快聚合反应速度,但却易发生氧化作用另一单体2,5-二羟基对苯二甲酸(2,5-Dihydroxyterephthalicacid,DHTA)的合成也是制备M5聚合物的重要环节,可由2,5-二羟基对苯二甲酸二甲酯(2,5-dihydroxy-1,4-dimethylterephthalate,DDTA)水解后制得,反应方程式如下所示:M5纤维的聚合过程与聚对苯撑苯并二恶唑(poly(p-phenylenebenzobisoxazole),PBO)相似,可将TAP和DHTA两种单体按一定的等当比同时加入到聚合介质多聚磷酸(polyphosphoric acid,PPA)中,脱除HCI后逐渐升温至180℃,反应24h,得到M5聚合物,反应方程式如下所示:2 M5的分子结构特征及聚合物的聚集态结构1 M5的分子结构特征M5纤维在分子链的方向上存在着大量的-OH和-NH基团,容易在分子间和分子内形成强烈的氢键因此,其压缩和扭曲性能为目前所有聚合物纤维之最M5纤维的刚棒状分子结构特点决定了M5纤维具有较高的耐热性由于M5大分子链上含有羟基,M5纤维的高极性使其能更容易与各种树脂基体粘接图1热处理后PIPD-HT单斜晶胞的双向氢键网络晶体结构示意图[5]图2热处理后PIPD单斜晶胞沿C轴的分子结构示意图[5]图1和图2都显示了热处理后PIPD纤维的微观二维结构,即在大分子间和大分子内分别形成了N-H-O和O-H-N的氢键结构,这种双向氢键的网络结构正是M5纤维具有高抗压缩性能的原因在图1 热处理后PIPD-HT单斜晶胞的双向氢键网络晶体结构示意图图2 热处理后PIPD单斜晶胞沿C轴的分子结构示意图2 M5的聚集态结构图3 PIPD-AS沿C轴方向的分子结构示意图如图3所示,为含有21%左右水分子的PIPD-AS纤维的结晶结构由于PIPD-AS纤维中存在着大量的水,因而使得PIPD-AS纤维有很大的质量热容,而且具有良好的耐燃性能表2和表3所列出的实验结果也证实了这一结论[16,19]如图4所示,为不同热处理温度的PIPD-AS纤维WAXD图[16]从图4可以看出,PIPD-AS纤维在热处理过程中晶体中的水分被脱出,变成无水聚合物晶体,从而在垂直于纤维方向的平面内形成二维氢键网状结构有实验表明,经过热处理后PIPD纤维的结晶度和取向度都有很大的提高图4 不同热处理温度的PIPD-AS纤维WAXD图Klop EA等[22]通过PIPD晶体结构的X射线衍射实验研究发现,因PIPD试样的处理温度不同,在PIPD的分子内部可出现不同形式的结晶结构—单斜结晶晶胞和三斜结晶晶胞(如图5和图6所示)单斜和三斜的晶胞参数分别为:单斜结晶: a=49 ,b=48 ,c=01 ,=90°,=107°,=90°三斜结晶:a=68 ,b=48 ,c=02 ,=84,=110°,=107°Takahashi等[20,21]采用中子方法测得的PIPD-HT晶胞参数为:a=33 ,b=462 ,c=16 ,=84°,=4°,空间结构为P21/,单斜晶胞区别于三斜晶胞的不同之处在于,三斜晶胞的氢键网络结构仅仅是靠沿对角线平面的大分子连接的,而单斜晶胞可在垂直于纤维方向的平面内形成了二维氢键网络结构,显然这种二维氢键网络结构,使得M5具有其它高性能纤维所无法比拟的高剪切强度,剪切模量和压缩强度图5 PIPD单斜晶胞在ab面和ac面上的投影 图6 PIPD三斜晶胞在ab面上的投影3 M5纤维的纺丝工艺[9,16]1 M5纤维的成形M5纤维的纺丝是将质量分数为18~20%左右的PIPD/PPA纺丝浆液(聚合物的MW为0×104~5×105)进行干喷湿纺,空气层的高度为5-15cm,纺丝温度为180℃,以水或多聚磷酸水溶液为凝固剂,可制成PIPD的初生纤维其中,实验用喷丝孔直径范围为65-200 m,喷头拉伸比取决于喷丝空的直径,可达70倍,所得纤维直径为8-14 所得M5的初生纤维需在热水中进行水洗,以除去附着在纤维表面的溶剂PPA,并进行干燥图7 M5纤维的热处理示意图2 M5纤维的热处理为了进一步提高初生纤维取向度和模量,对初生纤维在一定的预张力下进行热处理,如图7所示在这一过程中,M5纤维取向度将伴随着由其分子结构的改变引起的剪切模量的增加而增大对M5初生纤维进行热处理能够改善纤维的微观结构,从而提高纤维的综合性能M5初生纤维再进一步用热水洗涤除去残留的多聚磷酸水溶液(PPA)和干燥后,在氮气环境下于400℃以上进行大约20s的定张力热处理,最终可得到高强度,高模量的M5纤维在此需要特别指出的是,如果热处理温度过低或处理时间过短,则PIPD-AS和PIPD-HT的转变是可逆的因此,热处理温度与热处理时间对M5纤维的模量影响很大4 M5纤维的性能1 力学性能图8 PIPD-AS和PIPD-HT纤维的应力-应变曲线图如图8所示,热处理后的PIPD纤维同PIPD的初生纤维相比较,二者的力学性能截然不同,PIPD-AS纤维存在屈服,而PIPD-HT纤维不存在这种现象Lammwers M[18]等研究发现,经过200℃热处理的初生纤维压缩强度由原来的7Gpa提高到7Gpa,而经过400℃热处理的初生纤维压缩强度由原来的7Gpa提高到1G显然对于PIPD的初生纤维来讲,并非热处理温度越高越好通过用偏光显微镜观察发现:在400℃热处理的纤维中存在裂纹,这可能是导致压缩强度下降的原因,因此,热处理温度不宜太高表1[9-14]给出了几种高性能纤维的力学性能和其它性能的对比数据,其中的力学性能包括拉伸强度,断裂伸长,模量以及抗压缩强度等与其它3种纤维相比,M5的抗断裂强度稍低于PBO,远远高于芳纶(PPTA)和碳纤维,其断后延伸率为4%;与其它高性能纤维相比,M5纤维的模量是最高的,达到了350GPa;M5的压缩强度低于碳纤维,但却远远高于Twaron-HM纤维和PBO纤维,这归因于M5的二维分子结构[17]表1 M5纤维与其它高性能纤维的比较纤维拉伸强独/Gpa断裂伸长/%初始模量/ Gpa压缩强度/ Gpa压缩应变/ %密度/(-3)回潮率/%Twaron-HM5C-HS0PBO6M0纤维空气中的热稳定性/℃LOI/%电导性抗冲击性抗破坏性编制性能耐紫外性Twaron-HM45029-++++-C-HS800N/A++------++PBO55068-++N/A+/---M5530>50-+++++++M5纤维特殊的分子结构,使其除具有高强和高模外,还具有良好的压缩与剪切特性,剪切模量和压缩强度分别可达7GPa和6GPa,优于PBO纤维和芳香族聚酰胺纤维,在目前所有聚合物纤维中最高图9 M5纤维的轴向压缩SEM图一般来讲,当高性能纤维受到来自外界的轴向压缩力时,其纤维内部的分子链取向会因轴向压缩力的存在而发生改变,即沿着纤维轴向出现变形带结构而对M5纤维来讲只有当这种轴向压缩力很大时才会出现这种结构[11]如图9所示,当M5纤维受到外界的轴向压缩力时,压缩变形后的M5纤维中也会出现一条变形带结构,但与其它高性能纤维(如PBO)相比较,M5纤维的变形程度要小很多2 阻燃性能表2 PIPD-AS和PIPD-HT纤维耐燃性能的重要参数[5]试样PHRR①(kWm-2)TTI②(s)SEA③FPI④(sm2kW-1)残留量(%)PIPD-AS76061PIPD-HT89062PBO-HM17072T09811N08724PVC05515注:①热量释放最大速率(PHRR);②引燃时间(TTI);③比消光面积(SEA);④耐燃性能指数(FPI)表2所列数据是热量计热流为75kW/m2时测得的,也就是在试样表面温度为890℃左右时测得的值纤维试样放在一块1cm2的线网上试样原始重量在3g-5g之间从表2可以看出,PIPD-AS纤维热量释放最大速率(PHRR)为7kWm-2,也就是说单位时间内PIPD-AS释放出最小的热量,与其它高聚物相比是一种较好的阻燃剂用材料PIPD-AS纤维的点燃时间最长为77s,远高于Nomex纤维SEA是用来衡量单位物质燃烧时产生的烟雾量,PIPD-AS纤维达到了224m3/kg,而Nomex纤维为38670m3/kg,二者相比PIPD-AS纤维的SEA值远低于Nomex纤维,说明PIPD-AS纤维燃烧时产生的烟雾量要远少于Nomex纤维同表2中的其它高聚物相比,PIPD-AS纤维的耐燃性能指数(FPI)最高为76sm2kW-从表2中各项耐燃性能参数可以看出PIPD纤维在耐燃性方面,要好于其它高性能纤维,即PIPD纤维在耐燃性方面将具有较好多应用前景M5纤维的刚棒状分子结构决定了它具有较高的耐热性和热稳定性从表2中可以看出,PIPD-HT纤维具有与聚对苯亚基苯并双嗯哇(PBO)纤维相似的FPI值,但它在燃烧过程中更不容易产生烟M5在空气中的热分解温度为530℃,超过了芳香族聚酰胺纤维,与PBO纤维接近M5纤维的极限氧指数(LOI)值超过50,不熔融,不燃烧,具有良好的耐热性和稳定性[7]3 界面粘合性能与PBO,聚乙烯或芳香族聚酰胺纤维相比,由于M5大分子链上含有羟基,M5纤维的高极性使其能更容易与各种树脂基体粘接采用M5纤维加工复合材料产品时,无需添加任何特殊的粘合促进剂M5纤维在与各种环氧树脂,不饱和聚酯和乙烯基树脂复合成形过程中,不会出现界面层,且具有优良的耐冲击和耐破坏性[6,8]4 热力学性能图10 四种不同含水量M5纤维的DSC扫描图图10为MGNoRTHoLIT[19]等用SetaramC80D热量计测得的四种不同含水量M5纤维的DSC谱图研究发现将1g试样材料放在一个开放的测试槽内,以2℃/min的速度,在30℃-200℃范围内得到一张扫描图,如图5所示从DSC谱图可以看出,四种不同含水量M5纤维的吸热峰面积及位置与开放测试槽内水分的蒸发有关从表3可以看出,含有结晶水的M5初生纤维的热吸收值与不含结晶水的M5纤维的热吸收值之间存在着较大的差别,而PIPD初生纤维和PIPD HT试样的热吸收值之间几乎没有什么差别通过以上研究发现完全干燥的PIPD初生纤维的晶体结构与PIPD-HT试样结构类似表3 不同含水量的PIPD纤维的热吸收值试样热吸收值(J/g)PIPD初生纤维(含水量20%)637PIPD初生纤维(干燥)163PIPD HT(含水量7%)378PIPD HT(干燥)1855 应用及展望作为一种先进复合材料的增强材料,M5纤维具有许多其它有机高性能纤维不具备的特性,这使得M5纤维在许多尖端科研领域具有更加广阔的应用前景;M5纤维可用于航空航天等高科技领域;用于国防领域如制造防弹材料;用于制造运动器材如网球拍,赛艇等M5纤维特殊的分子结构决定了其具有许多高性能纤维所无法比拟的优良的力学性能和粘合性能,使它在高性能纤维增强复合材料领域中具有很强的竞争力与碳纤维相比,M5纤维不仅具有与其相似的力学性能,而且M5纤维还具有碳纤维所不具有的高电阻特性,这使得M5纤维可在碳纤维不太适用的领域发挥作用,如电子行业由于M5大分子链上含有羟基,M5纤维的高极性使其能更容易与各种树脂基体粘接正是由于M5纤维具有许多其他高性能纤维所无法比拟的性能和更加广阔的应用前景,这使得众多的科研工作者都积极地致力于M5纤维的研究相信在不久的将来,随着对M5纤维研究的进一步深入,作为新一代的有机高性能纤维—M5纤维必将得更加广泛的应用

全球碳纤维分领域需求上升碳纤维复合材料具有质量轻,强度高的特性,活跃在各种各样的用途上。包括用于追求轻且易用的高性能体育用品、追求在宇宙飞行用的轻量且高性能材料的航空航天飞行器,以及压力容器、汽车、风车、船舶、土木建筑等各种各样的一般产业用途。根据赛奥碳纤维技术统计,2018年全球碳纤维运用细分领域中风电叶片叶片和航天国防领域最多,分别达到22000吨、21000吨。而增长最为显著的是汽车零部件领域,2013-2018年需求复合增长率达到33%。从全球市场看,2018年全球市场碳纤维需求为26万吨,预计在2020年全球需求将达到21万吨。就需求结构而言,碳纤维材料总量一半以上应用在工业领域,风电叶片领域应用占比24%,航空航天领域应用占比23%,体育休闲领域占比15%,汽车工业领域占比12%,四者总计占比74%。其中,体育休闲用品所消耗的碳纤维呈逐年下降之势。从产能的角度来看,全球碳纤维市场基本被日本和美国企业垄断。2018年世界碳纤维产能为5万吨。从地区来看,美国生产73万吨占24%,日本生产91万吨,占比19%,中国生产碳纤维68万吨,占比19%。但是从企业来看,日本企业在全球小束丝碳纤维市场份额占到约58%,其中日本东丽占比27%、日本东邦占比18%、日本三菱占比13%;全球大束丝碳纤维市场集中度更高,基本被日本Zoltek和德国SGL两家控制(注:Zoltek2013年被东丽收购),Zoltek全球占比49%,德国SGL全球占33%。中国碳纤维处于产能扩张阶段从整体供需状况上看,目前世界上碳纤维的主要消费地区仍然集中在美国、欧洲和日本。根据赛奥碳纤维技术统计,中国碳纤维需求量一直维持稳步上升趋势,2018年国内碳纤维市场需求为1万吨,同比增长32%,预计未来年复合增长率为12%,在2020年国内市场需求将达到89万吨。目前国内T300级碳纤维性能达到国际水平,主要运用于航空航天及体育休闲等领域;T700级碳纤维已建成千万吨级生产线,低成本干喷湿纺T700级碳纤维已经实现规模化生产;中国首条千吨级T800原丝生产线由中复神鹰生产线2016年投产;但T800级以上的碳纤维国内企业还处于小规模试验,技术相对东丽还是存在较大差距。中国在T800级别以上的碳纤维生产中都还是处于小批量试验生产阶段,而国外的东丽公司已经实现了比较成熟的高模产品。中国碳纤维公司产能前三名是:中复神鹰、江苏恒神以及精密集团。——以上数据来源于前瞻产业研究院《中国碳纤维行业深度调研与投资战略规划分析报告》。

现面以结构加固用的碳纤维布为例说明碳纤维的性能: 碳纤维布加固技术是利用碳素纤维布和专用结构胶对建筑构件进行加固处理,该技术采用的碳素纤维布强度是普通二级钢的10倍左右。具有强度高、重量轻、耐腐蚀性和耐久性强等优点。厚度仅为2mm左右,基本上不增加构件截面,能保证碳素纤维布与原构件共同工作。 1、碳纤维介绍 碳纤维根据原料及生产方式的不同,主要分为聚丙烯腈(PAN)基碳纤维及沥青基碳纤维。碳纤维产品包括PAN基碳纤维(高强度型)及沥青基碳纤维(高弹性型)。 2、环氧树脂 不同类型的树脂还可以保证其对砼具有良好的渗透作用,例如底涂树脂;以及对碳纤维片与砼结构的粘接作用,例如环氧粘结树脂等。 (1)环氧树脂简介 仅仅依靠碳纤维片本身并不能充分发挥其强大的力学特性及优越的耐久性能,只有通过环氧树脂将碳纤维片粘附于钢筋混凝土结构表面并与之紧密地结合在一起形成整体共同工作,才能达到补强的目的。因此,环氧树脂的性能是重要的关键之一。环氧树脂因类型不同而有不同的性能,适应于各个部位的不同要求。例如底涂树脂对混凝土具有良好的渗透作用,能渗入到混凝土内一定深度;粘贴碳纤维片的环氧树脂易于"透"过碳纤维片,有很强的粘结力。依使用温度的不同,树脂还分为夏用及冬用类树脂。2、碳纤维材料与其他加固材料对比 (1)抗拉强度:碳纤维的抗拉强度约为钢材的10倍。 (2)弹性模量:碳纤维复合材料的拉伸弹性模量高于钢材,但芳纶和玻璃纤维复合材料的拉伸弹性模量则仅为钢材的一半和四分之一。 (3) 疲劳强度:碳纤维和芳纶纤维复合材料的疲劳强度高于高强纲丝。金属材料在交变应力作用下,疲劳极限仅为静荷强度的30%~40%。由于纤维与基体复合可缓和裂纹扩展,以及存在纤维内力再分配的可能性,复合材料的疲劳极限较高,约为静荷强度的70%~80%,并在破坏前有变形显著的征兆。 (4)重量:约为钢材的五分之一。 (5)与碳纤维板的比较:碳纤维片材可以粘贴在各种形状的结构表面,而板材更适用于规则构件表面。此外,由于粘贴板材时底层树脂的用量比片材多、厚度大,与混凝土界面的粘接强度不如片材。

碳纤维材料论文4000字开头好写吗

如果脱模方便的话就做个模具·直接卷模具上,厚度还好控制,成像后直接把铁芯拿掉就好了。但是形状复杂的还是这个用充气袋的比较好!

如何写好新材料作文的开头结尾新材料作文(也称题意作文)是近年高考的首选作文题型,它与以往的话题作文的写作有较大的区别,现就如何写好新材料作文的开头结尾作以下几点说明:一.开头要简单引用材料。这样能更好地防止一动笔写就出现偏题、离题现象,同时能给阅卷老师一个信息——我的作文是围绕材料来写的。二.引用材料后要分析材料。材料一般会有多个立意、写作的角度,我们要围绕等下自己将会得出的观点对材料进行定向分析,使材料和观点之间更好地过渡、衔接。这样能进一步防止出现偏题、离题现象,也能再给阅卷老师一个信息——我的观点是分析材料后得出的,不是简单的套作。三.引用、分析材料后要明确提出(得出)自己的观点,做到观点明确、突出、集中。上面的三个步骤在第一段中完成。(第一段约120字)四.在第二段中再次明确提出自己的观点,确保观点明确、突出、集中。注意尽量不要原文照搬第一段中引用、分析材料后要明确提出(得出)自己的观点的话,以免给人一种第二段只是简单重复第一段结尾的感觉。(第二段约50字)五.在作文的结尾部分,要注意再次带一带、点一点材料和自己的观点。这样能使文章首尾呼应、结构完整,同时能再在文章的结尾给阅卷老师一个信息——我的作文始终是围绕材料来写的。(结尾段约100字)例一:铁棒、钥匙都要开锁,我们看到了令人觉得不可思议的一幕:任凭铁棒使尽浑身气力都开不了,而钥匙则轻轻一扭就开了!(引用材料)为什么同样的一把锁,粗大的铁棒开不了,小巧的钥匙则轻轻一扭就开了?很明显在于它们开锁的方式不一样:铁棒粗大蛮干,钥匙精巧讲技巧!(定向分析)辍笔沉吟、掩卷沉思,方悟材料启示我们:人处世上,做事要讲究方法技巧!(得出观点)回望滚滚的历史长河,细看古今中外成功人士,哪个不是做事讲究方法技巧才干出一番业绩、成就一番事业的?(再提观点)……回想材料中的铁棒和钥匙开锁的情形,不难发觉它们在向我们阐明一个看似简单但又十分重要的道理:我们要想干出一番业绩、成就一番事业,做事一定要注意讲究方法技巧!(再点材料、再提观点)例二:步飞烟,名不见经传的小字辈,因敢于挑战权威、放出“我要革金庸们的命”之类的话而名声大震!抨击者有之,“蚍蜉撼大树,可笑不自量”;盛赞者亦大有人在,“勇气可嘉,狂妄得可爱”。(引用材料)说句实在话,金庸们的小说长期以来对我们的影响实在太大了!霸占了我们生活的太多空间!总得有人大胆的站出来,向金庸们挑战,步飞烟就是第一个!(定向分析)停笔沉吟、闭目沉思,顿觉步飞烟的大胆可爱:生活中就是要有这种勇于、敢于向权威挑战的勇气和狂妄,否则我们的生活怎么会斑斓多彩?(得出观点)生活之所以多姿多彩,世界之所以不断进步,就是因为古今中外都不乏像步飞烟那样勇于、敢于向权威挑战的大无畏之人!大胆地向权威挑战吧!(再提观点)……步飞烟,你实在是勇气可嘉! 步飞烟,你实在是我们年轻人的偶像!每一个想有一番作为的年轻朋友,不要老是迷信权威,拿出你的勇气去向权威挑战吧!明天将会因你而更美好,世界将会因你而更精彩!(再点材料、再提观点)[下水作文]为腾飞蓄势为成功沉潜面对滑溜溜的冰层,身躯笨重的企鹅,没有可以用来攀爬的前臂,也没有可以飞翔的翅膀,如何从水中上岸?(引用材料)企鹅猛地扎入海中,拼力沉潜,然后犹如离弦之箭般突然蹿出水面,腾空而起。企鹅的沉潜看似笨拙、简单,但你可明白它的沉潜实则是为了后来的腾飞蓄势?(定向分析)辍笔沉吟、掩卷沉思,忽悟企鹅的沉潜启迪我们:生活中的困难都是考验,应该学会沉潜蓄势,以期爆发。沉潜蓄势,实力爆发,成就更高。(得出观点)回望那滚滚的历史长河,翻起一朵朵雪白的浪花!浪花在我们的耳边轻声细语:面对困难考验,学会沉潜蓄势,以期爆发。用沉潜蓄势,以实力爆发,成就会更高。(再提观点)曾记否?韩信,那个少年时代曾默默忍受无赖胯下之辱的小子韩信;那个后来统领百万雄师、英姿飒爽的汉军元帅韩信;那个后来帮助刘邦建立汉王朝、一人之下万人之上的大功臣韩信。对他的丰功伟绩,大家一定都记得,但却很少有人沉思他当年为什么能忍受一班无赖市井之徒的胯下之辱。也许你会认为他当时无能,也很无奈;无法,也无何。但你可知,正是那次胯下之辱激发了韩信的斗志,此后,他勤奋苦读,潜伏书斋,蜡烛相对,星光相伴!三更灯火五更鸡,正是男儿读书时!物换星移,十载潜伏寒窗,多年勤奋努力,终于换来了丰硕的回报,让他腾空而起:他成了汉军元帅,成了汉王朝的大功臣!是沉潜使他蓄势待发,是沉潜让他以实力爆发,是沉潜助他成就更高。(正面例一)无独有偶,中国女排,那支1984年美国洛杉矶奥运会后便与奥运金牌无缘的中国女排,那支二十年后希腊雅典奥运会重夺金牌的中国女排,那支今年北京奥运会我们寄予无限厚望的中国女排。她们也是在历经二十年的沉潜,二十年的苦炼,二十年的披星戴月,二十年的挥汗如雨,才得以再次腾飞,再创辉煌的!我们有理由相信,北京奥运她们一样会给我们惊喜,因为那二十年的沉潜!(正面例二)纵穿古今,横越中外。我们欣喜地看见很多人因懂得沉潜蓄势而腾飞、而辉煌,也揪心地看到一些人为不懂得沉潜而失落颓废甚至走向消亡!(衔接过渡)曾记否?项羽,西楚霸王,曾经不可一世的西楚霸王,曾经视刘邦为无物的西楚霸王。为什么会在楚汉战争失败后自刎于乌江边上?就是因为他的不可一世,让他面对不了失败的事实!其实如果他能静下心来,接受——这无法接受但不得不接受的——现实,重新研究对手刘邦,沉潜蓄势,卷土重来,那么楚汉之争中鹿死谁手真的很难说!杜牧为此曾痛心地写道“胜败兵家事不期,包羞忍耻是男儿。江东子弟多才俊,卷土重来未可知。”!项羽因为不懂得“留得青山在,哪怕没柴烧”的沉潜之理,因为不懂得包羞忍耻以期卷土重来,令多少中华儿女为之扼腕长叹!(反面例一)看看沉潜水中、腾空而起的企鹅,看看沉潜茧中、破茧而出的蝴蝶,看看沉潜泥中、破土而出的春笋。你是否有所醒悟,得到启迪?面对生活中的困难考验,我们应该学会沉潜蓄势,以期爆发。用沉潜蓄势,以实力爆发,成就会更高。(再点材料、再提观点)下载地址

碳纤维材料论文5000字开头怎么写

聚合物材料之一,一些论文3000 给你

如何写好新材料作文的开头结尾新材料作文(也称题意作文)是近年高考的首选作文题型,它与以往的话题作文的写作有较大的区别,现就如何写好新材料作文的开头结尾作以下几点说明:一.开头要简单引用材料。这样能更好地防止一动笔写就出现偏题、离题现象,同时能给阅卷老师一个信息——我的作文是围绕材料来写的。二.引用材料后要分析材料。材料一般会有多个立意、写作的角度,我们要围绕等下自己将会得出的观点对材料进行定向分析,使材料和观点之间更好地过渡、衔接。这样能进一步防止出现偏题、离题现象,也能再给阅卷老师一个信息——我的观点是分析材料后得出的,不是简单的套作。三.引用、分析材料后要明确提出(得出)自己的观点,做到观点明确、突出、集中。上面的三个步骤在第一段中完成。(第一段约120字)四.在第二段中再次明确提出自己的观点,确保观点明确、突出、集中。注意尽量不要原文照搬第一段中引用、分析材料后要明确提出(得出)自己的观点的话,以免给人一种第二段只是简单重复第一段结尾的感觉。(第二段约50字)五.在作文的结尾部分,要注意再次带一带、点一点材料和自己的观点。这样能使文章首尾呼应、结构完整,同时能再在文章的结尾给阅卷老师一个信息——我的作文始终是围绕材料来写的。(结尾段约100字)例一:铁棒、钥匙都要开锁,我们看到了令人觉得不可思议的一幕:任凭铁棒使尽浑身气力都开不了,而钥匙则轻轻一扭就开了!(引用材料)为什么同样的一把锁,粗大的铁棒开不了,小巧的钥匙则轻轻一扭就开了?很明显在于它们开锁的方式不一样:铁棒粗大蛮干,钥匙精巧讲技巧!(定向分析)辍笔沉吟、掩卷沉思,方悟材料启示我们:人处世上,做事要讲究方法技巧!(得出观点)回望滚滚的历史长河,细看古今中外成功人士,哪个不是做事讲究方法技巧才干出一番业绩、成就一番事业的?(再提观点)……回想材料中的铁棒和钥匙开锁的情形,不难发觉它们在向我们阐明一个看似简单但又十分重要的道理:我们要想干出一番业绩、成就一番事业,做事一定要注意讲究方法技巧!(再点材料、再提观点)例二:步飞烟,名不见经传的小字辈,因敢于挑战权威、放出“我要革金庸们的命”之类的话而名声大震!抨击者有之,“蚍蜉撼大树,可笑不自量”;盛赞者亦大有人在,“勇气可嘉,狂妄得可爱”。(引用材料)说句实在话,金庸们的小说长期以来对我们的影响实在太大了!霸占了我们生活的太多空间!总得有人大胆的站出来,向金庸们挑战,步飞烟就是第一个!(定向分析)停笔沉吟、闭目沉思,顿觉步飞烟的大胆可爱:生活中就是要有这种勇于、敢于向权威挑战的勇气和狂妄,否则我们的生活怎么会斑斓多彩?(得出观点)生活之所以多姿多彩,世界之所以不断进步,就是因为古今中外都不乏像步飞烟那样勇于、敢于向权威挑战的大无畏之人!大胆地向权威挑战吧!(再提观点)……步飞烟,你实在是勇气可嘉! 步飞烟,你实在是我们年轻人的偶像!每一个想有一番作为的年轻朋友,不要老是迷信权威,拿出你的勇气去向权威挑战吧!明天将会因你而更美好,世界将会因你而更精彩!(再点材料、再提观点)[下水作文]为腾飞蓄势为成功沉潜面对滑溜溜的冰层,身躯笨重的企鹅,没有可以用来攀爬的前臂,也没有可以飞翔的翅膀,如何从水中上岸?(引用材料)企鹅猛地扎入海中,拼力沉潜,然后犹如离弦之箭般突然蹿出水面,腾空而起。企鹅的沉潜看似笨拙、简单,但你可明白它的沉潜实则是为了后来的腾飞蓄势?(定向分析)辍笔沉吟、掩卷沉思,忽悟企鹅的沉潜启迪我们:生活中的困难都是考验,应该学会沉潜蓄势,以期爆发。沉潜蓄势,实力爆发,成就更高。(得出观点)回望那滚滚的历史长河,翻起一朵朵雪白的浪花!浪花在我们的耳边轻声细语:面对困难考验,学会沉潜蓄势,以期爆发。用沉潜蓄势,以实力爆发,成就会更高。(再提观点)曾记否?韩信,那个少年时代曾默默忍受无赖胯下之辱的小子韩信;那个后来统领百万雄师、英姿飒爽的汉军元帅韩信;那个后来帮助刘邦建立汉王朝、一人之下万人之上的大功臣韩信。对他的丰功伟绩,大家一定都记得,但却很少有人沉思他当年为什么能忍受一班无赖市井之徒的胯下之辱。也许你会认为他当时无能,也很无奈;无法,也无何。但你可知,正是那次胯下之辱激发了韩信的斗志,此后,他勤奋苦读,潜伏书斋,蜡烛相对,星光相伴!三更灯火五更鸡,正是男儿读书时!物换星移,十载潜伏寒窗,多年勤奋努力,终于换来了丰硕的回报,让他腾空而起:他成了汉军元帅,成了汉王朝的大功臣!是沉潜使他蓄势待发,是沉潜让他以实力爆发,是沉潜助他成就更高。(正面例一)无独有偶,中国女排,那支1984年美国洛杉矶奥运会后便与奥运金牌无缘的中国女排,那支二十年后希腊雅典奥运会重夺金牌的中国女排,那支今年北京奥运会我们寄予无限厚望的中国女排。她们也是在历经二十年的沉潜,二十年的苦炼,二十年的披星戴月,二十年的挥汗如雨,才得以再次腾飞,再创辉煌的!我们有理由相信,北京奥运她们一样会给我们惊喜,因为那二十年的沉潜!(正面例二)纵穿古今,横越中外。我们欣喜地看见很多人因懂得沉潜蓄势而腾飞、而辉煌,也揪心地看到一些人为不懂得沉潜而失落颓废甚至走向消亡!(衔接过渡)曾记否?项羽,西楚霸王,曾经不可一世的西楚霸王,曾经视刘邦为无物的西楚霸王。为什么会在楚汉战争失败后自刎于乌江边上?就是因为他的不可一世,让他面对不了失败的事实!其实如果他能静下心来,接受——这无法接受但不得不接受的——现实,重新研究对手刘邦,沉潜蓄势,卷土重来,那么楚汉之争中鹿死谁手真的很难说!杜牧为此曾痛心地写道“胜败兵家事不期,包羞忍耻是男儿。江东子弟多才俊,卷土重来未可知。”!项羽因为不懂得“留得青山在,哪怕没柴烧”的沉潜之理,因为不懂得包羞忍耻以期卷土重来,令多少中华儿女为之扼腕长叹!(反面例一)看看沉潜水中、腾空而起的企鹅,看看沉潜茧中、破茧而出的蝴蝶,看看沉潜泥中、破土而出的春笋。你是否有所醒悟,得到启迪?面对生活中的困难考验,我们应该学会沉潜蓄势,以期爆发。用沉潜蓄势,以实力爆发,成就会更高。(再点材料、再提观点)下载地址

开篇点题很关键,前期可多收集一些材料。

议论文开头怎么写悬赏分:0|提问时间:2010-10-2121:33|提问者:只为拉克丝推荐答案议论文开头部分一般是用来点出自已的论点导入法是直接写出联想式导入法是通过某一件事点出自已的论点还有就是——议论文也要分种类的,它有很多种写法,如:1立论文1、定义:指针对一定的事件或问题,正面阐述自己的见解和主张,同时要用充足的有说服力的论据来证明所提出的论点、要求:(1)要对论述的问题有正确的看法(2)用充足有说服力的论据(3)要言之有理,合乎逻辑2驳论文、定义:论辩是针对对方的观点加以批驳,在批驳的同时阐述乙方的观点、方式:(1)驳论点(2)驳论据(3)驳论证

碳纤维材料论文5000字开头的有哪些

生物材料学作为生命科学和材料科学的前沿性交叉学科,更是优先发展的重点。生物功能材料专业正是根据社会发展的需要,特别是生物医学工程、组织工程和药物释放等交叉学科技术的迅速发展对专业人才的迫切需求而设立的 。生物医用材料的分类  生物材料应用广泛,品种很多,有不同的分类方法。通常是按材料属性分为:合成高分子材料(聚氨醋、聚醋、聚乳酸、聚乙醇酸、乳酸乙醇酸共聚物及其他医用合成塑料和橡胶等)、天然高分子材料(如胶原、丝蛋白、纤维素、壳聚糖等)、金属与合金材料(如钦金属及其合金等)、无机材料(生物活性陶瓷,羟基磷灰石等)、复合材料(碳纤维/聚合物、玻璃纤维/聚合物等)。根据材料的用途,这些材料又可以分为生物惰性(bioinert)、生物活性(bioactive)或生物降解(biodegradable)材料。这些材料通过长期植入、短期植入、表面修复分别用于硬组织和软组织修复与替换。生物医用材料由于直接用于人体或与人体健康密切相关,对其使用有严格要求。首先,生物医用材料应具有良好的血液相容性和组织相容性。其次,要求耐生物老化。即对长期植入的材料,其生物稳定性要好;对于暂时植入的材料,耍求在确定时间内降解为可被人体吸收或代谢的无毒单体或片断。还要求物理和力学性质稳定、易于加工成型、价格适当。便于消毒灭茵、无毒无热源、不致癌不致畸也是必须考虑的。对于不同用途的材料,其要求各有侧重。   常用的医学生物材料   一、医用硅橡胶   医用硅橡胶(silicone rubber)是美容外科中应用较广的生物材料(组织代用品)它是高分子有机化合物聚硅酮的一种橡胶样固体形态,又称二甲基硅氧烷。   二、人工骨   随着生物医学和材料的发展,各种人工制备的生物材料植入骨内替代骨移植,临床应用效果好这些人工合成或提取的植入材料生物相容性好,对骨形成具有明显的诱导作用,被泛称为人工骨(artificial bone)。   一般而言,临床医学对生物医学材料有以下基本的要求:无毒性,不致癌,不致畸,不引起人体细胞的突变和组织细胞的反应;与人体组织相容性好,不引起中毒、溶血凝血、发热和过敏等现象;化学性质稳定,抗体液、血液及酶的作用;具有与天然组织相适应的物理机械特性;针对不同的使用目的具有特定的功能。物质属性分类  根据物质属性,生物医学材料大致可以分为以下几种:   1、生物医学金属材料(biomedical metallic materials)医用金属材料是作为生物医学材料的金属或合金,具有很高的机械强度和抗疲劳特性,是临床应用最广泛的承力植入材料,主要有钻合金(co-cr-ni)、钛合金(ti-6a1-4v)和不锈钢的人工关节和人工骨。镍钛形状记忆合金具有形状记忆的智能特性,能够用于矫形外科、心血管外科。   2、生物医学高分子材料(biomedical polymer)生物医学高分子材料有天然的和合成的两种,发展得最快的是合成高分子医用材料。通过分子设计,可以获得很多具有良好物理机械性和生物相容性的生物材料。其中软性材料常用来作为人体软组织如血管、食道和指关节等的代用品;合成的硬材料可以用来作人工硬脑膜、笼架球形的人工心脏瓣膜的球形阀等;液态的合成材料如室温硫化硅橡胶可以用来作注入式组织修补材料。   3、生物医学无机非金属材料或生物陶瓷(biomedical ceramics)生物陶瓷这类医用材料化学性质稳定, 具有良好的生物相容性。生物陶瓷主要包括两类。(1)惰性生物陶瓷(如氧化铝、医用碳素材料等)。这类材料具有较高的强度,耐磨性能良好,分子中的键力较强。(2)生物活性陶瓷(如羟基磷灰石和生物活性玻璃等),这类材料具有能在生理环境中逐步降解和吸收,或与生物机体形成稳定的化学键结合的特性,因而具有极为广阔的发展前景。   4、生物医学复合材料(biomedical composites)生物医学复合材料是由两种或两种以上不同材料复合而成的生物医学材料,主要用于修复或替换人体组织、器官或增进其功能以及人工器官的制造。其中钻合金和聚乙烯组织的假体常用作关节材料;碳-钛合成材料是临床应用良好的人工股骨头;高分子材料与生物高分子(如酶、抗源、抗体和激素等)结合可以作为生物传感器。   5、生物医学衍生材料(biomedical derived materials)生物衍生材料是经过特殊处理的天然生物组织形成的生物医学材料,经过处理的生物衍生材料是无生物活力的材料,但是由于具有类似天然组织的构型和功能,在人体组织的修复和替换中具有重要作用,主要用作皮肤掩膜、血液透析膜、人工心脏瓣膜等。编辑本段应用广泛,增长迅速  生物医学材料应用广泛,仅高分子材料,全世界在医学上应用的就有90多个品种、1800余种制品,西方国家在医学上消耗的高分子材料每年以10%~20%的速度增长。随着现代科学技术的发展尤其是生物技术的重大突破,生物材料的应用将更加广泛。表1列举了生物医用材料的一些典型应用,其应用之广泛可见一斑。编辑本段生物医学材料发展的主要动力  生物医学材料得以迅猛发展的主要动力来自人口老龄化、中青年创伤的增多、疑难疾病患者的增加和高新技术的发展。人口老龄化进程的加速和人类对健康与长寿的追求,激发了对生物材料的需求。作为世界人口最多的国家,中国已进入老龄化国家行列,生物材料的市场潜力将更加巨大。   生活节奏的加快、活动空间的扩展和饮食结构的变化等因素,使创伤成为一个严重的社会问题。我国创伤住院年增长率达2%,高居住院人数第2位。美国1998年用于骨骼-肌肉系统损伤患者的治疗费高达1280亿美元,仅骨缺损患者就达123万,其中80%需用生物医学材料治疗。在全球,心脑血管疾病、各种癌症、艾滋病、糖尿病、老年痴呆症等发病率逐年增加,急需用于诊断、治疗和修复的生物材料。   随着生物技术的发展,不同学科的科学家进行了广泛合作,从而使制造具有完全生物功能的人工器官展示出美好的前景。人体组织和器宫的修复,将从简单的利用器械机械固定发展到再生和重建有生命的人体组织和器宫;从短寿命的组织和器官的修复发展至永久性的修复和替换。这一医学革命(特别是外科学),对生命利学和材料等相关学科的发展提出了诸多需求,对生物医学材料的发展产生了重要的促进作用。发展我国生物医学材料的建议生物医用材料学生物医用材料是材料科学与工程的重要分支,其最大特点是学科交叉广泛、应用潜力巨大、挑战性强。随着新材料、新技术、新应用的不断涌现,吸引了许多科学家投人这一领域的研究,成为当今材料学研究最活跃的领域之一。在我国,生物医学材料的研究虽然取得一些令人瞩目的成果,但整体水平不高,跟踪研究多,源头创新少。在产业化方面,生物医学材料及其制品占世界市场的份额不足2%,主要依靠进口,产品技术结构和水平基本上处于初级阶段。结合我国国情和学科发展趋势,按照"有所为,有所不为,重点突破"的原则,我们建议,应在五个方面开展重点研究。   一是生物结构和生物功能的设计和构建原理研究。着重研究具有诱导组织再生的骨、软骨及肌腱等基底材料和框架结构的设计及其仿生装配;    二是表面/界面过程-材料与机体之间的相互作用机制研究。从细胞和分子水平深入研究材料与特定细胞、组织之间的表面/界面作用,揭示影响生物相容性的因素及本质。   三是生物导向性及生物活性物质的控释机理研究。研究可自控或靶向释放蛋白、基因等特异性生物活性物质的材料的设计以及生物导向性原理;用于组织细胞和基因治疗的半渗透聚合物膜的设计、自装配及特异性细胞密封技术;   四是生物降解/吸收的调控机制研究。研究生物降解/吸收材料的分子结构和生物环境对其降解的影响、降解/吸收速度的调控、降解/吸收及代谢机制,以及降解产物对机体的影响。其目标是为组织工程化人工器官生物材料及药物控释材料的自成、改性方法提供理论基础,实现材料参与生命过程和构建生命组织的目的。   五是材料的制备方法学和质量控制体系研究。主要研究生物医用材料及修复体的计算机辅助设计;   通过上述研究的开展,将使我国生物材料的研究水平有较大提高,为我国生物医用材料科学及其产业的发展奠定坚实的基础。编辑本段意义  生物医用材料为挽救生命和提高人民健康水平做出了重大贡献,当前正面临重大突破。我国加入 WTO后,生物医用材料产业将面临更大的挑战和更多的机遇,生物材料科学工作者任重而道远。我们相信,在国家的大力支持下,跨部门、跨学科通力合作,通过走自力更生与技术引进相结合的发展之路,在生物材料组织工程化、分子设计、仿生模拟、智能化药物控释等方面重点投人,生物医用材料必将为全面提高人们的生活水乎,造福人类做出更大的贡献。

如果脱模方便的话就做个模具·直接卷模具上,厚度还好控制,成像后直接把铁芯拿掉就好了。但是形状复杂的还是这个用充气袋的比较好!

高性能纤维性能分析【摘要】分析了碳纤维、超高强聚乙烯纤维、芳香族聚酰胺纤维、聚对苯撑苯并双恶唑 (POB)纤维和 M5 纤维等高性能纤维的重要特性以及它们的应用状况。 【关键词】高性能纤维;先进复合材料;分子结构;重要特性;应用 [中图分类号]TS102,528 [文献标识码]A [文章编号]1002-3348(2005)01-0054-04 高性能纤维 (High-Performance Fibers)是从 20 世纪 60 年代开始研发并推广的纤维材 料, 它的出现使传统纺织工业产生了巨大变革。 所谓高性能纤维是指有高的拉伸强度和压缩 3 强度、耐磨擦、高的耐破坏力、低比重(g/m )等优良物性的纤维材料,它是近年来纤维高分 子材料领域中发展迅速的一类特种纤维。 高性能纤维可用于防弹服、 蹦床布等特种织物的加 工及纤维复合材料中的加固材料,其发展涉及许多不同的领域。本文分析和比较了碳纤维、 超高强聚乙烯纤维、芳香族聚酰胺纤维、聚对苯撑苯并双恶唑(PBO)纤维、M5 纤维等高性能 纤维的特性以及它们的应用状况。 1 高性能纤维 1·1 高性能纤维分类 无机纤维:碳纤维、硼纤维、陶瓷纤维等。 有机纤维:超高强聚乙烯纤维(HPPE)、芳香族聚酰胺纤维、聚对苯撑苯并双恶唑(PBO) 纤维、M5 纤维等。 1·2 碳纤维 碳纤维的生产始于 20 世纪 60 年代末 70 年代初, 由有机纤维如腈纶(PAN)纤维、 粘胶纤 维或沥青纤维经预氧化、 炭化和石墨化加工而成。 碳纤维的石墨六方晶体结构决定了其强度 大、模量高等优良性能,如日本东丽公司生产的 T-400 碳纤维,拉伸强度可达 2GPa,断 裂伸长率为 5%。碳纤维不燃烧,化学性能稳定,不受酸、盐等溶媒侵蚀。 1·3 超高强聚乙烯纤维 高强高模聚乙烯在 20 世纪 70 年代出现, 具有超高分子量, 高取向度, 且分子间距很近, 3 使纤维具备高强高模的特征, 其密度具有 97g/cm , 是唯--能浮在水面上的高强高模纤维。 除此之外,其他机械性能亦比较突出,如良好的韧性和耐疲劳性能,耐高速冲击性等。 1·4 芳香族聚酰胺纤维 20 世纪 70 年代,人们开始从事液晶态纺丝技术的研究,用于纺制高性能纤维,与普通 纺丝的分子结构截然不同,液晶态纺丝时形成的分子链只有刚棒状高取向的有序结构。 图 1 液态高聚物分子的构型示意图 (a)为典型普通大分子,为无规则线团;(b)为刚性大分子, 在没有良好侧向作用和导向情况下的状态;(c)为无规的棒状 液晶;(d)为向列型液晶 芳香族聚酰胺是最为人所熟知的,通过液晶纺丝纺制的高性能纤维,如 Kevlar(聚对苯 二甲酰对苯二胺纤维)、 Twaron(聚对苯二甲酰间苯二胺纤维)、 Technora(聚对苯二甲酰对苯 二胺纤维)等,如图 3 所示,为芳香族聚酰胺高结晶和高取向分子结构。这类纤维性能比较 均衡,具有高强伸性能, 高韧性、耐腐蚀、耐冲击、较好的热稳定性,不导电,除了强酸和强碱外,具有较强的抗化 学性能。 图 3 芳香族聚酰胺晶体结构图 聚对苯撑苯并双恶唑(PBO)纤维 1998 年国际产业纤维展览会上,日本东洋纺展出了商品名为 Zylon 的 PBO 纤维,其化 学名为聚对苯撑苯并双恶唑,化学结构为: 1·5 PBO 纤维采用液晶纺丝法纺丝,由苯环和苯杂环组成的刚棒状分子结构以及分子链的高 取向度, 决定了它的优良性能。 PBO 初纺普通丝(AS 丝-标准型)就具有 5N/tex 以上的强度 和 84N/tex 以上弹性模量, 经热处理后可得到强度不变、 模量达 4N/tex 的高模量丝 (HM 丝-高模量型)。PBO 作为一种新型高性能纤维,具有高强度、高模量、耐热性、阻燃性 4 大特点,其强度与模量相当于 Kevlar (凯夫拉)的 2 倍,限氧指数(L01)为 68,热分解温 度高达 650℃,在有机纤维中为最高,被认为是目前具有最高耐热性能的有机材料之一。 表 1 PBO 纤维的性能 性能 PBO 一 AS PBO—HM 密度(g/cm3) 54 56 抗拉强度(GPa) 8 8 拉伸模量(GPa) 180 280 断裂延伸率(%) 5 5 热分解温度(℃) 650 650 L01(%) 68 68 表 2 PBO 纤维与其他纤维的主要性能比较 性能 PBO-HM Kevlar-49 宇航级碳纤维 密度(g/cm ) 纤维直径(?m) 抗拉强度(Gpa) 拉伸模量(CPa) 断裂延伸率(%) 3 56 24 8 280 5 45 12 2 115 0 80 6 58 230 5 热分解温度(℃) 650 550 一 1·6 M5 纤维 PBO 纤维推出的几年后,阿克卓·诺贝尔(Akzo Nobel)公司开发了一种新型液晶芳族杂 环聚合物:聚[2,5-二烃基-1,4-苯撑吡啶并二咪唑],简称 "M5"或 PlPD,化学结构为: M5 纤维的结构与 PBO 分子相似——刚棒结构。 M5 分子链的方向上存在大量的-OH 和-NH 在 基团,容易形成强的氢键。如图 4 所示,与芳香族聚酰胺晶体结构不同,M5 在分子内与分 子间都有氢键存在,形成了氢键结合网络。 图 4 为 M5 纤维沿分子链轴方向的晶体结构,虚线为氢键。 图 4 M5 晶体结构 比较图 3 与图 4 可以清楚地看出,M5 大分子所形成的双向氢键结合的网络,类似一个 蜂窝。这种结构加固了分子链间的横向作用,使 M5 纤维具有良好的压缩与剪切特性,压缩 和扭曲性能为目前所有聚合物纤维之最。 2 高性能纤维特性分析比较 碳纤维石墨层面上碳-碳共价交键的存在,使作用于碳纤维上的应力,从一个石墨层转 移到相邻层面, 这些共价交键保证了碳纤维具有高的拉伸模量和压缩强度。 但这些共价键为 纯弹性键,一旦被打破,不可复原,即不显示任何屈服行为。所以碳纤维受力时,应力-应 变曲线是线性关系,纤维断裂是突然发生的。 有机纤维的性能取决于分子结构、分子链内键及分子链间结合键。如前所述,超高强聚 乙烯纤维、PBO 纤维都具有优良的性能,但由于超高强聚乙烯纤维大分子链间的结合键为弱 的范德华键,使其纤维易产生蠕变,压缩强力较低,另外超高强聚乙烯纤维耐热性和表面粘 合性有限,因而不适合用作加固纤维。而 PBO 纤维也因大分子链间没有形成氢键结合、作用 力较弱,使得其压缩和扭曲性能较低,加之纤维表面惰性强,与树脂的结合能力较差,在复 合材料成型过程中,有明显的界面层,从而影响也限制了 PBO 的应用。 芳香族聚酰胺纤维高结晶度、高取向度的分子结构,使其具有高强伸性能,也是由于大 分子链间弱的作用力 (范德华键),造成大分子链间剪切模量及压缩强度低。芳香族聚酰胺 纤维由氢键结合成的薄片状结构在受压缩载荷作用时易塑性变形, 薄片相对容易断开, 在严 重过载时会出现原纤化,最终导致压缩失效。 分子链间结合键以 M5 比较理想, M5 大分子间和大分子内的 N-H-O 和 O-H-N 的双向氢 在 键结构,是其具有高抗压性能的原因所在,热处理后的 M5 纤维,拉伸模量可达 360GPa,拉 伸强度超过 4GPa,剪切模量和抗压强度可达 7GPa 和 7GPa。此外 M5 而大分子链上含有羟 基,使它与树脂基体的粘结性能优良,采用 M5 纤维加工复合材料产品时,无需添加任何特 殊的粘合促进剂,且具有优良的耐冲击和耐破坏性。有资料显示,以 M5 为加固纤维的复合 材料,在压缩过载的情况下,测试样品仍能继续承受显著的(压缩)载荷,与之相比,碳纤复 合材料会粉碎,而芳香族聚酰胺复合材料则会被挤成纤丝状薄片(原纤化)。如图 5、图 6 分 别为一个碳纤维和一个 MS 纤维复合材料的失效测试条,显示了脆性与韧性失效之间的明显 差异。此外,M5 纤维的刚棒结构又决定了它有高的耐热性和高的热稳定性,空气中热分解 温度达到了 530℃,超过了芳香族聚酰胺纤维,与 PBO 接近,极限氧指数(LOI)为 59,在 阻燃性方面也优于芳纶。 图 5 碳纤维复合材料测试条的失败 图 6 M5 纤维料测试条的失败 表 1 为几种高性能纤维力学及物理特性。 表 1 高性能纤维的力学和物理特性 特性 高 强 度 超高强聚 高 模 量 芳 香 族 高 模 量 高模量 M5 纤 碳纤维 乙烯纤维 聚酰胺纤维 PBO 纤维 维(实验值) 抗拉强度(GPa) 伸长率(%) 拉伸模量(GPa) 压缩强度(GPa) 压缩应变(%) 密度(克/cm ) 标准回潮率(%) 限氧指数(LOI) 3 58 5 230 10 90 80 0 一 43 0 0 一 一 97 一 一 2 0 115 58 50 45 5 29 8 5 280 40 15 56 6 68 0 5 330 70 50 70 0 59 空气中热老化起 800 150 450 550 530 始温度(℃) 从表 1 看,M5 纤维的各种性能指标都接近或超过其它高性能纤维,为综合性能优良的 高性能纤维。 3 应用与前景 目前超高强聚乙烯纤维的应用主要是加工防弹用特种织物、防弹板、渔业用绳网、极低 温绝缘材料、混凝土补强加固用试验片材、光缆补强材料、降落伞绳带、汽车保险杠等。芳 香族聚酰胺纤维常见的品种 Kevlar、Twaron、Technora 纤维等,主要应用有作为复合材料 的增强体、渔业工业等用绳网、防弹服、防弹板、头盔、混凝土补强材料等。碳纤维的优良 特性使其广泛用于航空、航天、军工、体育休闲等结构材料,应用于宇宙机械、电波望远镜 和各种成型品,还有直升飞机的叶片、飞机刹车片和绝热材料、密封填料和滤材、电磁波屏 蔽材料、防静电材料、医学材料等。PBO 纤维从问世以来就受到人们的关注,其应用主要有 防冲击方面的加固补强材料、复合材料中的加固材料,用于防护的防弹服、防弹头盔、消防 服、高性能及耐高温传动带、轮胎帘子线、光纤电缆承载部分、架桥用缆绳、耐热垫材等。 与各种高性能纤维相比,M5 纤维的综合性能更优越,这使得它的应用领域更广泛。尤 其是 M5 纤维的抗冲击力和耐破坏性,使它在制造经济、高效的结构材料方面有广阔的应用 前景,如应用于航空航天等高科技领域,在高性能纤维增强复合材料中 M5 也具有很强的竞 争力。当前 M5 纤维的研究比较活跃,随着研究的深人,其性能和应用将得到不断的提高和 拓展。 高性能纤维的不断创新是高性能产业用纺织品及复合材料用纤维领域的重要进步, 随着 世界高新技术、纤维合成与纺丝工艺的发展,以及军事、航空航天、海洋开发、产业应用的 迫切需要,高性能纤维的开发与应用前景将更为广阔。新型高性能纤维M5的研究与应用摘要:本文介绍了一种新型液晶芳族杂环聚合物,聚(2,5-二羟基-1,4-苯撑吡啶并二咪唑){poly[2,6-diimidazo(4,5-b:4',5'-e)pyridinylene-1,4(2,5-dihydroxy)phenylen],PIPD}纤维(简称M5)简述了M5纤维的制作方法,M5纤维特殊的分子结构特征,并通过与其它高性能纤维的比较,阐述了M5纤维优良的性能,特别是其良好的压缩与剪切特性除此之外,M5纤维的高极性还使其更容易与各种树脂基体粘接,这使M5纤维的综合机械性能比目前其它高性能纤维都好文中还展望了M5纤维的应用前景前言近年来,随着对有机高性能纤维的不断深入研究,在刚性高性能纤维领域已经取得了很大的进展但大多数高性能纤维,因分子间结合力的薄弱而导致某些力学性能上的不足,如PBO纤维大分子链间较弱的结合力,使其压缩和扭曲性能较差纤维材料的压缩性能,主要取决于纤维大分子之间的相互作用程度[1,2]通常纤维扭转模量可作维表征大分子之间相互作用程度的一个量度因此,如何增强大分子链之间的相互作用,已成为进一步强化刚性聚合物纤维力学性能的一个重要问题作为Akzo-Nobel实验室的研究成果,一种新型的高性能纤维,即著称的M5已经被研究出来聚合物是聚(2,5-二羟基-1,4-苯撑吡啶并二咪唑){poly[2,6-diimidazo(4,5-b:4',5'-e)pyridinylene-1,4(2,5-dihydroxy)phenylen],PIPD}纤维(简称M5)[3]由于M5纤维沿纤维径向即大分子之间存在特殊的氢键网络结构,所以M5纤维不仅具有类似PBO纤维的优异抗张性能,而且还显示出优于PBO纤维的抗压缩性能1高性能纤维M1 单体的选择及M5的合成[4]在M5聚合物的制备过程中,其关键步骤是单体2,3,5,6-四氨基吡啶(2,3,5,6-tertraaminopyridine,TAP))的合成TAP可由2,6-二氨基吡啶(2,6diaminopyridine,DAP)经硝化还原后制成,反应方程式如下所示:在M5的合成过程中,TAP需经盐酸化处理并以盐酸盐形式参与聚合反应若TAP直接以磷酸盐的形式参与反应,不但可以避免盐酸腐蚀作用,还可以加快聚合反应速度,但却易发生氧化作用另一单体2,5-二羟基对苯二甲酸(2,5-Dihydroxyterephthalicacid,DHTA)的合成也是制备M5聚合物的重要环节,可由2,5-二羟基对苯二甲酸二甲酯(2,5-dihydroxy-1,4-dimethylterephthalate,DDTA)水解后制得,反应方程式如下所示:M5纤维的聚合过程与聚对苯撑苯并二恶唑(poly(p-phenylenebenzobisoxazole),PBO)相似,可将TAP和DHTA两种单体按一定的等当比同时加入到聚合介质多聚磷酸(polyphosphoric acid,PPA)中,脱除HCI后逐渐升温至180℃,反应24h,得到M5聚合物,反应方程式如下所示:2 M5的分子结构特征及聚合物的聚集态结构1 M5的分子结构特征M5纤维在分子链的方向上存在着大量的-OH和-NH基团,容易在分子间和分子内形成强烈的氢键因此,其压缩和扭曲性能为目前所有聚合物纤维之最M5纤维的刚棒状分子结构特点决定了M5纤维具有较高的耐热性由于M5大分子链上含有羟基,M5纤维的高极性使其能更容易与各种树脂基体粘接图1热处理后PIPD-HT单斜晶胞的双向氢键网络晶体结构示意图[5]图2热处理后PIPD单斜晶胞沿C轴的分子结构示意图[5]图1和图2都显示了热处理后PIPD纤维的微观二维结构,即在大分子间和大分子内分别形成了N-H-O和O-H-N的氢键结构,这种双向氢键的网络结构正是M5纤维具有高抗压缩性能的原因在图1 热处理后PIPD-HT单斜晶胞的双向氢键网络晶体结构示意图图2 热处理后PIPD单斜晶胞沿C轴的分子结构示意图2 M5的聚集态结构图3 PIPD-AS沿C轴方向的分子结构示意图如图3所示,为含有21%左右水分子的PIPD-AS纤维的结晶结构由于PIPD-AS纤维中存在着大量的水,因而使得PIPD-AS纤维有很大的质量热容,而且具有良好的耐燃性能表2和表3所列出的实验结果也证实了这一结论[16,19]如图4所示,为不同热处理温度的PIPD-AS纤维WAXD图[16]从图4可以看出,PIPD-AS纤维在热处理过程中晶体中的水分被脱出,变成无水聚合物晶体,从而在垂直于纤维方向的平面内形成二维氢键网状结构有实验表明,经过热处理后PIPD纤维的结晶度和取向度都有很大的提高图4 不同热处理温度的PIPD-AS纤维WAXD图Klop EA等[22]通过PIPD晶体结构的X射线衍射实验研究发现,因PIPD试样的处理温度不同,在PIPD的分子内部可出现不同形式的结晶结构—单斜结晶晶胞和三斜结晶晶胞(如图5和图6所示)单斜和三斜的晶胞参数分别为:单斜结晶: a=49 ,b=48 ,c=01 ,=90°,=107°,=90°三斜结晶:a=68 ,b=48 ,c=02 ,=84,=110°,=107°Takahashi等[20,21]采用中子方法测得的PIPD-HT晶胞参数为:a=33 ,b=462 ,c=16 ,=84°,=4°,空间结构为P21/,单斜晶胞区别于三斜晶胞的不同之处在于,三斜晶胞的氢键网络结构仅仅是靠沿对角线平面的大分子连接的,而单斜晶胞可在垂直于纤维方向的平面内形成了二维氢键网络结构,显然这种二维氢键网络结构,使得M5具有其它高性能纤维所无法比拟的高剪切强度,剪切模量和压缩强度图5 PIPD单斜晶胞在ab面和ac面上的投影 图6 PIPD三斜晶胞在ab面上的投影3 M5纤维的纺丝工艺[9,16]1 M5纤维的成形M5纤维的纺丝是将质量分数为18~20%左右的PIPD/PPA纺丝浆液(聚合物的MW为0×104~5×105)进行干喷湿纺,空气层的高度为5-15cm,纺丝温度为180℃,以水或多聚磷酸水溶液为凝固剂,可制成PIPD的初生纤维其中,实验用喷丝孔直径范围为65-200 m,喷头拉伸比取决于喷丝空的直径,可达70倍,所得纤维直径为8-14 所得M5的初生纤维需在热水中进行水洗,以除去附着在纤维表面的溶剂PPA,并进行干燥图7 M5纤维的热处理示意图2 M5纤维的热处理为了进一步提高初生纤维取向度和模量,对初生纤维在一定的预张力下进行热处理,如图7所示在这一过程中,M5纤维取向度将伴随着由其分子结构的改变引起的剪切模量的增加而增大对M5初生纤维进行热处理能够改善纤维的微观结构,从而提高纤维的综合性能M5初生纤维再进一步用热水洗涤除去残留的多聚磷酸水溶液(PPA)和干燥后,在氮气环境下于400℃以上进行大约20s的定张力热处理,最终可得到高强度,高模量的M5纤维在此需要特别指出的是,如果热处理温度过低或处理时间过短,则PIPD-AS和PIPD-HT的转变是可逆的因此,热处理温度与热处理时间对M5纤维的模量影响很大4 M5纤维的性能1 力学性能图8 PIPD-AS和PIPD-HT纤维的应力-应变曲线图如图8所示,热处理后的PIPD纤维同PIPD的初生纤维相比较,二者的力学性能截然不同,PIPD-AS纤维存在屈服,而PIPD-HT纤维不存在这种现象Lammwers M[18]等研究发现,经过200℃热处理的初生纤维压缩强度由原来的7Gpa提高到7Gpa,而经过400℃热处理的初生纤维压缩强度由原来的7Gpa提高到1G显然对于PIPD的初生纤维来讲,并非热处理温度越高越好通过用偏光显微镜观察发现:在400℃热处理的纤维中存在裂纹,这可能是导致压缩强度下降的原因,因此,热处理温度不宜太高表1[9-14]给出了几种高性能纤维的力学性能和其它性能的对比数据,其中的力学性能包括拉伸强度,断裂伸长,模量以及抗压缩强度等与其它3种纤维相比,M5的抗断裂强度稍低于PBO,远远高于芳纶(PPTA)和碳纤维,其断后延伸率为4%;与其它高性能纤维相比,M5纤维的模量是最高的,达到了350GPa;M5的压缩强度低于碳纤维,但却远远高于Twaron-HM纤维和PBO纤维,这归因于M5的二维分子结构[17]表1 M5纤维与其它高性能纤维的比较纤维拉伸强独/Gpa断裂伸长/%初始模量/ Gpa压缩强度/ Gpa压缩应变/ %密度/(-3)回潮率/%Twaron-HM5C-HS0PBO6M0纤维空气中的热稳定性/℃LOI/%电导性抗冲击性抗破坏性编制性能耐紫外性Twaron-HM45029-++++-C-HS800N/A++------++PBO55068-++N/A+/---M5530>50-+++++++M5纤维特殊的分子结构,使其除具有高强和高模外,还具有良好的压缩与剪切特性,剪切模量和压缩强度分别可达7GPa和6GPa,优于PBO纤维和芳香族聚酰胺纤维,在目前所有聚合物纤维中最高图9 M5纤维的轴向压缩SEM图一般来讲,当高性能纤维受到来自外界的轴向压缩力时,其纤维内部的分子链取向会因轴向压缩力的存在而发生改变,即沿着纤维轴向出现变形带结构而对M5纤维来讲只有当这种轴向压缩力很大时才会出现这种结构[11]如图9所示,当M5纤维受到外界的轴向压缩力时,压缩变形后的M5纤维中也会出现一条变形带结构,但与其它高性能纤维(如PBO)相比较,M5纤维的变形程度要小很多2 阻燃性能表2 PIPD-AS和PIPD-HT纤维耐燃性能的重要参数[5]试样PHRR①(kWm-2)TTI②(s)SEA③FPI④(sm2kW-1)残留量(%)PIPD-AS76061PIPD-HT89062PBO-HM17072T09811N08724PVC05515注:①热量释放最大速率(PHRR);②引燃时间(TTI);③比消光面积(SEA);④耐燃性能指数(FPI)表2所列数据是热量计热流为75kW/m2时测得的,也就是在试样表面温度为890℃左右时测得的值纤维试样放在一块1cm2的线网上试样原始重量在3g-5g之间从表2可以看出,PIPD-AS纤维热量释放最大速率(PHRR)为7kWm-2,也就是说单位时间内PIPD-AS释放出最小的热量,与其它高聚物相比是一种较好的阻燃剂用材料PIPD-AS纤维的点燃时间最长为77s,远高于Nomex纤维SEA是用来衡量单位物质燃烧时产生的烟雾量,PIPD-AS纤维达到了224m3/kg,而Nomex纤维为38670m3/kg,二者相比PIPD-AS纤维的SEA值远低于Nomex纤维,说明PIPD-AS纤维燃烧时产生的烟雾量要远少于Nomex纤维同表2中的其它高聚物相比,PIPD-AS纤维的耐燃性能指数(FPI)最高为76sm2kW-从表2中各项耐燃性能参数可以看出PIPD纤维在耐燃性方面,要好于其它高性能纤维,即PIPD纤维在耐燃性方面将具有较好多应用前景M5纤维的刚棒状分子结构决定了它具有较高的耐热性和热稳定性从表2中可以看出,PIPD-HT纤维具有与聚对苯亚基苯并双嗯哇(PBO)纤维相似的FPI值,但它在燃烧过程中更不容易产生烟M5在空气中的热分解温度为530℃,超过了芳香族聚酰胺纤维,与PBO纤维接近M5纤维的极限氧指数(LOI)值超过50,不熔融,不燃烧,具有良好的耐热性和稳定性[7]3 界面粘合性能与PBO,聚乙烯或芳香族聚酰胺纤维相比,由于M5大分子链上含有羟基,M5纤维的高极性使其能更容易与各种树脂基体粘接采用M5纤维加工复合材料产品时,无需添加任何特殊的粘合促进剂M5纤维在与各种环氧树脂,不饱和聚酯和乙烯基树脂复合成形过程中,不会出现界面层,且具有优良的耐冲击和耐破坏性[6,8]4 热力学性能图10 四种不同含水量M5纤维的DSC扫描图图10为MGNoRTHoLIT[19]等用SetaramC80D热量计测得的四种不同含水量M5纤维的DSC谱图研究发现将1g试样材料放在一个开放的测试槽内,以2℃/min的速度,在30℃-200℃范围内得到一张扫描图,如图5所示从DSC谱图可以看出,四种不同含水量M5纤维的吸热峰面积及位置与开放测试槽内水分的蒸发有关从表3可以看出,含有结晶水的M5初生纤维的热吸收值与不含结晶水的M5纤维的热吸收值之间存在着较大的差别,而PIPD初生纤维和PIPD HT试样的热吸收值之间几乎没有什么差别通过以上研究发现完全干燥的PIPD初生纤维的晶体结构与PIPD-HT试样结构类似表3 不同含水量的PIPD纤维的热吸收值试样热吸收值(J/g)PIPD初生纤维(含水量20%)637PIPD初生纤维(干燥)163PIPD HT(含水量7%)378PIPD HT(干燥)1855 应用及展望作为一种先进复合材料的增强材料,M5纤维具有许多其它有机高性能纤维不具备的特性,这使得M5纤维在许多尖端科研领域具有更加广阔的应用前景;M5纤维可用于航空航天等高科技领域;用于国防领域如制造防弹材料;用于制造运动器材如网球拍,赛艇等M5纤维特殊的分子结构决定了其具有许多高性能纤维所无法比拟的优良的力学性能和粘合性能,使它在高性能纤维增强复合材料领域中具有很强的竞争力与碳纤维相比,M5纤维不仅具有与其相似的力学性能,而且M5纤维还具有碳纤维所不具有的高电阻特性,这使得M5纤维可在碳纤维不太适用的领域发挥作用,如电子行业由于M5大分子链上含有羟基,M5纤维的高极性使其能更容易与各种树脂基体粘接正是由于M5纤维具有许多其他高性能纤维所无法比拟的性能和更加广阔的应用前景,这使得众多的科研工作者都积极地致力于M5纤维的研究相信在不久的将来,随着对M5纤维研究的进一步深入,作为新一代的有机高性能纤维—M5纤维必将得更加广泛的应用

相关百科
热门百科
首页
发表服务