学术论文百科

分子生物学论文1500字数要求多少

发布时间:2024-07-05 15:57:46

分子生物学论文1500字数要求多少

去期刊网找,这类文章多,自己懒得去找的话,可以去淘宝的《翰林书店》店铺看看,店主应该能帮到你下载论文

分子生物学技术在国内防制虫媒传染病领域的应用分子生物学在医院感染控制中的应用和评价觉得合适与我索取全文

CD44分子生物学特性及肿瘤关系的研究进展1 粘附分子CD44的研究进展 CD44是分布极为广泛的细胞表面跨膜糖蛋白,在淋巴细胞,成纤维细胞表面均能检测到它的表达[1,2]。CD44蛋白属于未分类的粘附分子,其正常功能是作为受体识别透明质酸(HA)和胶原蛋白Ⅰ、Ⅳ等,主要参与细胞-细胞,细胞-基质之间的特异性粘连过程。 1 CD44基因的定位与结构 人类CD44基因位于11号染色体短臂上,有20个高度保守的外显子,完整基因组在染色体DNA上大约跨越50kb。CD44基因的外显子按表达方式分为两种类型:一种是组成型外显子,另一种是V区变异型外显子。组成型外显子有10个,其中转录片段存在于所有CD44转录子中。仅含组成型外显子的CD44转录子,称为标准型CD44(CD44S),它编码361个氨基酸(Aa)。V区外显子也有10个,在基因组上位于第5和第6个组成型外显子之间,在染色体DNA中专25kb。含有V区外显子的CD44转录子统称为CD44拼接变异体(CD44V)。V区外显子的拼接方式非常特殊,它们既能以连续方式拼接,也能以跳跃方式拼接,参与拼接的V区外显子多少不一,从而使转录片段长短不一。目前通过PCR技术在许多细胞系中已发现10多种CD44V。早期发现血细胞的CD44分子(CD44H)为标准型。最先获得克隆的拼接变异体是含有CD44V8-10的CD44V,它主要存在于上皮细胞又称为上皮细胞型CD44V(CD44E)。目前对CD44的研究较多,如V3、V5、V6。 2 CD44分子的结构特征 从已知的cDNA序列推测,CD44S由341个Aa组成,N-末端起台于21位Aa,前面20个Aa为信号肽,紧接着是胞质外区域的248个Aa,第249个Aa至269位的21个是疏水性的,为跨膜区,其后是胞质内C-末端尾部有72个Aa。另外还有一种CD44S的短尾形式,其胞质内C-末端尾部仅3个Aa。这种Aa序列具有Ⅰ类膜蛋白的特征。Lokeshwar等[3]用实验观察CD44S分子的合成过程,发现CD44分子首先被合成43KD的蛋白前体,接着在内质网内进行N-糖基化,形成58KD的N-糖基化前体,其后在高尔基复合体内进行O-糖基化和其它翻译后修饰,形成最终的85-95KD分子。 1 CD44S胞质外结构域特征:CD44S分子信号肽的N-末端的130Aa内编码了5个Asn-x-Ser/Thr序列和6个半胱氨酸残基,前者是5个N-糖苷键连接位点,其中3个被利用。6个半胱酸形成3个二硫键,形成球形结构域,这一球形结构域的重要特征是与动物连接蛋白有较高的同源性。有两个区域与透明质酸结合,分别是21-45Aa,135-195Aa。 CD44S的胞外近膜区存在一个56Aa的结构域(161Arg-216Asp),含有19个ser和Thr残基,常以2~4个成簇,这些是已知的O-糖基化位点特征,表明CD44有7个潜在的O-糖基化位点,其中4~5个位点被利用。此外这一区域含有4个Ser-Gly二肽,是潜在的硫酸软骨素连接位点。并且已得到证实,CD44分子加上硫酸软骨素后,与其结合细胞外基质的能力有关,包括Ⅰ型胶原、层粘边蛋白、纤粘连蛋白。 CD44分子细胞膜外区域有多个潜在的N-糖苷键连接位点,可连换多个碳水化合物,不仅与分子成熟过程中的翻译后修饰有关,也与细胞的功能状态有关。糖基化赋予CD44分子异质性,而其异质性与不同的O-糖基化程度有关,这种现象是CD44分子所特有的。这种新的糖基化调节方式在CD44S结合不同的细胞外基质成分的能力方面超着重要作用。深入研究这一分子的糖基化调节机制及生物功能方面的联系是十分有意义的。 2 CD44S胞质内结构特征:CD44S分子第249-269跨膜区的Aa序列中存在一个半胱氨酸残基,代表着一个潜在的脂酰化位点,这一位点可与软脂酸连接导致CD44分子脂酰化。在CD44S的胞质内区域尾部存在一结构域可与锚蛋白(ankyntn)结合。胞质内尾部序列有5个保守的丝氨酸残基,可作为蛋白激酶C(PKC)的底物被磷化[4]。上述脂酰化过程均可增强CD44S分子与锚蛋白的结合能力。比较CD44S和其他G蛋白的序列发现存在4个 同源性高的区域,实验证实CD44还是一种GTP结合蛋白,可结合GDP底物并且有GTP酶活性,显著增强CD44与锚蛋白的相互作用[5]。在CD44合成过程的各种中间产物,发现均有锚蛋白结合位点和结合活性,提示糖基化对锚蛋白结合位点的形成无关,并且结合锚蛋白对于CD44分子的输送和信号传导功能起重要作用。 3 CD44V的特征:目前发现10个V外显子编码的氨基酸中有约30%的丝、苏氯酸残基,具有广泛潜在O-糖基化位点,如:V6具有潜在的O-糖基化位点。V3外显子序列分析中发现Ser-Gly-Ser-Gly片段,它可结合硫酸肝素,结合硫酸肝素后的CD44V能与碱性成纤维细胞生长因子(b-FGF)结合肝素的表皮生长(HBEGF)因子结合,此结果提示这种CD44参与了传递细胞因子的过程。 3 CD44蛋白的主要功能 CD44基因编码合成的CD44蛋白具有一系列功能,包括:①作为导向性受体,调节淋巴细胞在血液和淋巴液间的运行,即淋巴细胞归巢或再循环[6]。②在淋巴细胞自溶、离体淋巴细胞的活化中发挥作用。③促进成纤维细胞和淋巴细胞与胞外基质成分如透明质酸、硫酸软骨素、纤维素、糖原等的粘附。④参与信号传递蛋白可影响蛋白在细胞间的位置,刺激其分泌特异的生长因子具不同的传导作用。⑤结合并中和透明质酸,该作用类似于清除间质组织。⑥调节药物的吸收及细胞对药物的敏感性。 究竟是何种CD44蛋白参与了何种调节,至今不清楚,选择性剪切过程中的多样性CD44蛋白与细胞结合的多样性也表明其中有重要的协间或调节功能[7]。有研究认为,跨膜的CD44糖蛋白,其膜外成分的变异与细胞粘附及导向作用有关[8]。,而胞内分子的尾部则与活化T淋巴细胞的潜在作用有关,而且胞内分子长度可调节蛋白激酶A/C位置,影响细胞的信号传递[9]。 2 CD44分子在肿瘤细胞中的表达 1989年Stamenkevie等使用不同的单抗分离和克隆了一个编码CD44标准型的cDNA,该基因不仅由淋巴样细胞表达,也可由不同的癌细胞系包括实体瘤典型标本中表达。在裸鼠研究某些人的转移癌时发现,CD44基因表达在转移中起作用。在大鼠胰腺癌细胞中非转移性细胞株只表达标准CD44(CD44S),而转移性细胞株表达CD44V,而且将CD44V变异体cDNA转染到非转移性的细胞株可引起转移[10]。Hofmann[11]用 notherm印迹法研究了20多个体外培养的人癌细胞系,也发现许多肿瘤组织能表达CD44V,但在不同细胞中V区外显子的转录拼接模式不尽相同。第一份临床肿瘤标本(结肠癌)的检测结果是1992年由英国年津大学病理实验室的研究人员首先报道的,以后人们应用免疫组化及RNA-cDNA-PCR印迹杂交在肺癌、结肠癌、食道癌、乳腺癌、膀胱癌、肝癌、宫颈癌、肾癌和非何杰金淋巴瘤等中发现有CD44V表达。认为CD44V5、CD44V6的表达与肿瘤进展程度、转移及预后密切相关[12]。对于各种癌的实验研究已经进入肿瘤的发生、生长、转移增殖潜能及预后复发各环节与CD44分子表达的相关性,并提出实验数据和假说加以论证。 1 CD44分子与肿瘤的发生、生长、发展 癌的发生发展与癌基因(c-erb2、c-myc, ras)和抑癌基因(P53,nm23)等异常表达有关。有研究表明CD44异常表达可早于ras、P53等基因的异常,所以CD44的变异可能与ras部基因激活有关,是癌形成的一个因素[13]。Muider[14]对结肠癌肿瘤P53突变和CD44蛋白的研究,在结肠肿瘤各期中观察到有统计显著性的P53、CD44V6表达增强的趋势,P53和CD44V6表达间有显著相关性。P53被认为监视基因突变的“分子警察”,失活的P53可引起失控的肿瘤生长,因此P53突变引起失去最后控制时,V6‘表型获得明显的生长优势’。郭亚军等[15]用抗CD44的单抗以阻断其与透明质酸的结合,从而抑制CD44阳性的肿瘤细胞在体内的生长。他推测肿瘤细胞的生长可能是CD44阳性的细胞能与细胞外基质(ECM)中的透明质酸结合,从而获得附着性,并更易从ECM中获得生长因子。FasanoM等[16]报道成人非肿瘤患者肺泡Ⅰ型上皮不表达CD44V6。Ⅱ型上皮细胞和基 底细胞有CD44V6低量表达,Ⅱ型细胞与基底细胞属于干细胞,估计CD44V6对于肺生长有重要意义。所以认为CD44V6对于幼稚细胞生长和对于肿瘤细胞生长的机理可能相似。Lu等[17]发现在宫颈腺癌,无论是原位癌还是浸润癌均有CD44S弥漫表达,且浸润癌比原位癌明显高表达CD44S,几乎所有的原位癌与浸润癌CD44V9均增加,仅有较少的浸润癌表达CD44V4与CD44V6,而原位癌几乎不表达。说明宫颈上皮的癌变与CD44S和几种CD44V表达的量变和质变有关。 2 分子表达与肿瘤的转移、侵润 Matsumura等[18]用PCR技术检测了转移性结肠癌、非转移性结肠癌、正常结肠粘膜的CD44基因表达活性,发现转移性结肠癌细胞CD44变异拼接外显子表达明显增强。Pales等[19]用单克隆抗体检测以CD44表达情况发现,在人类结肠癌标本中,CD44V在浸润和转移的肿瘤中呈阳性表达,并认为CD44V的表达可作为结肠肿瘤浸润的标志。Herrtich[20]研究发现在一些分化不良的息肉中检测以V6外显子在肿瘤浸润中有增强的高频率表达,推测表达CD44V6的肿瘤细胞能够有利于癌细胞浸润和转移的条件。 Granberg等[21]发现在支气管类癌瘤患者,表达CD44S可减低远距离转移,CD44V77-8阳性肿瘤降低远距离转移风险,CD44V9阳性可降低远距离转移及死亡,而CD44V4、CD44V5、CD44V10与临床结果无关,证明支气管类癌瘤具有潜在恶性,CD44S、V7-8、V9阳性可能引起较好的临床结果,可以考虑作为预后评估的指标。 关于CD44V与肿瘤转移相关性的假说如下:激活的淋巴细胞和转移的癌细胞具有许多共性,即都有很强的侵出行为,均有可逆的粘附接触过程进行细胞迁移,在引流淋巴结中两类细胞皆能大量积聚和快速增殖,最后它们都能释放到循环系统,并通过外渗作用进入周围组织,这些相似性很可能基于CD44V6在二者中的共同作用,提示CD44V6在淋巴细胞活化中的作用机理与CD44V6在肿瘤转移中作用机理是相同的。即CD44V6高表达的癌细胞可能获得淋巴细胞“伪装”,逃避人体免疫系统的识别和杀伤,更易进入淋巴结,形成转移[10]。 有结论认为CD44V6变异体可能通过促进癌细胞与血管内皮细胞和细胞外基质的粘附,促进肿瘤细胞向基质侵袭,从而影响肿瘤细胞的迁移和运动能力。也有结论认为CD44V6可能通过影响癌细胞的骨架构像和分布,从而影响癌细胞的运动能力,而影响癌转移。 3 CD44分子对治疗肿瘤的展望 因为CD44V6对于肿瘤的发生、发展都有一定的相关性,推测CD44V6与肿瘤的分型、分化、分期有一定关系,如果这种关系得以明确,我们就可以通过癌组织CD44V6的表达程度来判断癌的类型,所处时期来进行适当治疗。 有研究认为CD44V6的表达要先于抑癌基因的表达,如果能够检测出CD44异常表达,则对于癌的早期诊断有密切关系。已有研究表明,CD44V6可用于诊断。如1997年吴忠等报道,应用RT-PCR技术检测CD44V6在30例尿液标本脱落细胞检测到CD44V6的表达,而在膀胱炎患者和正常志愿者未检测到CD44V6的表达。 肿瘤的转移是癌症患者的主要死亡原因,Seiter等[10]用抗CD44变异型蛋白的抗体与CD44变异型产物相结合,显示鼠癌细胞的转移潜能被终止,这也为大肠癌的治疗提供了又一个可能途径。 手术切除的肿瘤标本中如有CD44V6蛋白阳性,常会伴术后肿瘤再发或远处转移。CD44V6可作为一种有效的癌预后的标志物,用以指导治疗方案的制定。 CD44基因及其选择性剪切在癌的预测、早期诊断、病情进展、转移潜能与预后的估计等方面具有很大的潜在价值。随着分子生物学不断的发展,癌基因研究的不断深入,相信该基因对癌的预测、诊断、治疗、预后的价值会得到更加全面的认识。

把你的邮箱告诉我,我给你发过去

分子生物学论文1500字数要求多少字

-123-id-9912-page-htm 可以不

不足之处是操作复杂,成本较高。以上分子生物学方法对结核杆菌/html/yaoxue/20080316/html

传学论文(这是我当年选修课的论文,得分不高,只有84,看看将就着用吧)  论文概要:介绍遗传,变异,生物物种多样性的概念及它们之间的关系,还有人类对生物资源的创造和利用状况。并且,在论述中强调了对这些生物资源的利用要合理适当,要保护自然界生物多样性。  首先,让我们来看看遗传,变异及生物多样性的概念及其所包含的一些内容:  1.遗传:是指生物亲代与子代之间、子代个体之间相似的现象,一般是指亲代的性状又在下一代表现的现象。但在遗传学上,是指遗传物质从上代传给后代的现象。  2.变异:生物有机体的属性之一,它表现为亲代与子代之间的差别。变异有两类,即可遗传的变异与不遗传的变异。现代遗传学表明,不遗传的变异与进化无关,与进化有关的是可遗传的变异,后一变异是由于遗传物质的改变所致,其方式有突变与重组。  突变可分为基因突变与染色体畸变。基因突变是指染色体某一位点上发生的改变,又称点突变。发生在生殖细胞中的基因突变所产生的子代将出现遗传性改变。发生在体细胞的基因突变,只在体细胞上发生效应,而在有性生殖的有机体中不会造成遗传后果。染色体畸变包括染色体数目的变化和染色体结构的改变,前者的后果是形成多倍体,后者有缺失、重复、倒立和易位等方式。突变在自然状态下可以产生,也可以人为地实现。前者称为自发突变,后者称为诱发突变。但是自发突变通常频率很低,诱发突变是指用诱变剂(X射线,γ射线、中子流及其他高能射线,5-嗅尿嘧啶、2-氨基嘌呤、亚硝酸等化学物质,以及超高温、超低温等)所产生的人工突变。  3.生物多样性:指一定范围内多种多样活的有机体(动物、植物、微生物) 有规律地结合所构成稳定的生态综合体。 这种多样性包括动物、植物、微生物的物种多样性,物种的遗传与变异的多样性及生态系统的多样性。其中,物种的多样性是生物多样性的关键,它既体现了生物之间及环境之间的复杂关系,又体现了生物资源的丰富性。  另外,遗传(基因)多样性是指生物体内决定性状的遗传因子及其组合的多样性。物种多样性是生物多样性在物种上的表现形式,可分为区域物种多样性和群落物种(生态)多样性。生态系统多样性是指生物圈内生境、生物群落和生态过程的多样性。(1)  知道了遗传,变异及自然界生物物种多样性的概念,下面让我们来看看它们之间的关系:  首先来看遗传与变异的关系:遗传与变异是矛盾的但又对立统一的关系。由于遗传而确保了生物的稳定性和世代延续性,是相对“不变”的;而变异是绝对的“变”,它使生物原有的特性发生改变,从而产生出新的生物性状或类型,为生物的进化与发展提供动力。没有变异,遗传只能是简单的重复,生物就无法进化。因此,在维持物种的稳定性上,遗传与变异是对立的。然而,没有遗传,变异就不能积累,新的变异就失去了意义,生物同样也不能进化。所以,在进化方面,遗传和变异又是统一的。  理清了遗传与变异的关系,现在再来看遗传和变异与自然界生物物种多样性的关系:  遗传与变异是自然界生物多样性的基础,是遗传和变异为生物的发展、进化提供了原材料。具体来说,遗传是生物稳定性的基础,变异是生物多样性的前提,两者是对立统一的关系。在遗传和变异的共同作用下,自然界生物存在着多样性,同时各种生物又具有其自身的特点,能够与其它生物种类加以区分。总之,没有变异,自然界就不会多姿多彩,就不会有自然界的多样性;没有遗传,自然界就会处于无序状态,也不会有自然界的多样性。 (2)  现在,我们已经知道了遗传和变异与自然界生物物种多样性的关系,那么生物多样性有什么价值,人类又是怎样利用的呢?让我们来看看下面的资料:  一.1993年,联合国环境署组织专家编写的《生物多样性国情研究指南》中,将生物多样性价值划分为5种类型:  1.具显著实物形式的直接价值;  2.无显著实物形式的直接价值;  3.间接价值;  4.选择价值;  5.消极价值。(3)  二.表一:  中国生物多样性国情研究报告的价值分类系统  主要价值类型 直接使用价值 间接价值 选择价值或潜在价值 存在价值或内在价值  产品及加工品直接使用价值 服务价值  对人们提供效益的典型用途 林业,农业,畜牧业,渔业,医药业,工业,餐饮业,消费性利用价值 旅游观光价值,科学文化价值,畜力使役价值 有机物生产,维持大气平衡,物质平衡,水土保持,净化环境 潜在使用价值,潜在保留价值 确保自己或别人将来能利用某种资源或某种效益  从资料中可以看出:生物多样性是全人类共有的宝贵财富。生物多样性为人类的生存与发展提供了丰富的食物、药物、燃料等生活必需品以及大量的工业原料。生物多样性维护了自然界的生态平衡,并为人类的生存提供了良好的环境条件。生物多样性是生态系统不可缺少的组成部分,人们依靠生态系统净化空气、水,并充腴土壤。此外,科学实验证明,生态系统中物种越丰富,它的创造力就越大。自然界的所有生物都是互相依存,互相制约的。每一种物种的绝迹,都预示着很多物种即将面临死亡。  生物多样性还具有重要的科学研究价值。每一个物种都具有独特的作用,例如利用野生稻与农田里的水稻杂交,培育出的水稻新品种可以大面积提高稻谷的产量。在一些人类没有研究过的植物中,可能含有对抗人类疾病的成分。这些野生动植物如果绝迹,是人类的重大损失。另外,生物物种资源是国民经济持续发展的基础,是人类生存和社会可持续发展的战略性资源,也是农业发展的基石。每个生物物种都包含丰富的优良基因,基因资源的挖掘可以给国家带来财富,给人类带来文明。一个基因甚至可以影响一个国家的经济,乃至一个民族的兴衰。矮秆基因的发现导致了全世界粮食生产的“绿色革命”;水稻雄性不育基因的利用,创造了中国杂交稻的奇迹;优质羊毛基因的育种应用直接繁荣了澳大利亚的畜牧业生产。过去数十年来,全世界植物新品种不断推新,粮食亩产快速提高,正是得益于生物物种及其遗传多样性的贡献。生物物种资源的拥有和开发利用程度已成为衡量一个国家综合国力和可持续发展能力的重要指标之一 。(4)  因此,我们可以毫不夸张的说:生物多样性是人类赖以生存和社会可持续发展的物质基础,对于人类的生活起着极其重要的作用!  因为生物多样性如此重要,而生物多样性保护不仅能对当代产生最大的持续利益,而且还能造福子孙后代。因此,开展生物多样性的研究,保护和可持续利用成为各国政府及社会各界有识之士共同关注的主要问题。下面就让我们来谈谈这个问题:  保护生物多样性的措施主要有三条:(1)建立自然保护区。建立自然公园和自然保护区已成为世界各国保护自然生态和野生动植物免于灭绝并得以繁衍的主要手段。我国的神农架、卧龙等自然保护区,对金丝猴、熊猫等珍稀、濒危物种的保护和繁殖起到了重要的作用。(2)建立珍稀动物养殖场。由于栖息繁殖条件遭到破坏,有些野生动物的自然种群,将来势必会灭绝。为此,从现在起就必须着手建立某些珍稀动物的养殖场,进行保护和繁殖,或划定区域实行天然放养。如泰国对鲜鱼的养殖。(3)建立全球性的基因库。如为了保护作物的栽培种及其它可能会灭绝的野生亲缘种,建立全球性的基因库网。现在大多数基因库贮藏着谷类、薯类和豆类等主要农作物的种子。(5)  在保护生物多样性的基础上,人类可以通过一些方法(比如说诱变,基因合成,转基因等)创造出更多人类生活所需的物种,从而满足人类各种各样的需求。另外还有一些方法可产生新物种,如利用激素处理,植物的组织培养技术,但它们要么无法产生新的品种,要么把产生的变异遗传下去,这样在一定程度上影响了效率。  19世纪初,孟德尔的遗传定律被重新提出;  20年代,美国人将杂交原理运用到玉米育种上,取得了显著效果;  40年代,育种的手段中又增加了杂交转导,转化的技术;  50年代,美国人发现了DNA分子的双螺旋结构模型,分子生物学开始发展;  70年代,中国将杂交原理应用于水稻增产,获得了巨大的成功;  现在,只要我们作好当下的生物资源的保护工作,当我们展望未来时,我们有理由相信:到那时,生物资源的研究和利用将带给人类更多的财富!

分子生物学技术在国内防制虫媒传染病领域的应用分子生物学在医院感染控制中的应用和评价觉得合适与我索取全文

分子生物学课程论文1500字数要求多少字

分子生物学(molecular biology) 在分子水平上研究生命现象的科学。研究生物大分子(核酸、蛋白质)的结 构、功能和生物合成等方面来阐明各种生命现象的本质。研究内容包括各种生命过程如光合作用、发育的分子机制、神经活动的机理、癌的发生等。 从分子水平研究生物大分子的结构与功能从而阐明生命现象本质的科学。自20世纪50年代以来,分子生物学是生物学的前沿与生长点,其主要研究领域包括蛋白质体系、蛋白质-核酸体系 (中心是分子遗传学)和蛋白质-脂质体系(即生物膜)。 生物大分子,特别是蛋白质和核酸结构功能的研究,是分子生物学的基础。现代化学和物理学理论、技术和方法的应用推动了生物大分子结构功能的研究,从而出现了近30年来分子生物学的蓬勃发展。分子生物学和生物化学及生物物理学关系十分密切,它们之间的主要区别在于:①生物化学和生物物理学是用化学的和物理学的方法研究在分子水平,细胞水平,整体水平乃至群体水平等不同层次上的生物学问题。而分子生物学则着重在分子(包括多分子体系)水平上研究生命活动的普遍规律;②在分子水平上,分子生物学着重研究的是大分子,主要是蛋白质,核酸,脂质体系以及部分多糖及其复合体系。而一些小分子物质在生物体内的转化则属生物化学的范围;③分子生物学研究的主要目的是在分子水平上阐明整个生物界所共同具有的基本特征,即生命现象的本质;而研究某一特定生物体或某一种生物体内的某一特定器官的物理、化学现象或变化,则属于生物物理学或生物化学的范畴。 发展简史 结构分析和遗传物质的研究在分子生物学的发展中作出了重要的贡献。结构分析的中心内容是通过阐明生物分子的三维结构来解释细胞的生理功能。1912年英国 WH布喇格和WL布喇格建立了X射线晶体学,成功地测定了一些相当复杂的分子以及蛋白质的结构。以后布喇格的学生WT阿斯特伯里和JD贝尔纳又分别对毛发、肌肉等纤维蛋白以及胃蛋白酶、烟草花叶病毒等进行了初步的结构分析。他们的工作为后来生物大分子结晶学的形成和发展奠定了基础。50年代是分子生物学作为一门独立的分支学科脱颖而出并迅速发展的年代。首先是在蛋白质结构分析方面,1951年LC波林等提出了 α-螺旋结构,描述了蛋白质分子中肽链的一种构象。1955年F桑格完成了胰岛素的氨基酸序列的测定。接着 JC肯德鲁和MF佩鲁茨在X射线分析中应用重原子同晶置换技术和计算机技术分别于1957和1959年阐明了鲸肌红蛋白和马血红蛋白的立体结构。1965年中国科学家合成了有生物活性的胰岛素,首先实现了蛋白质的人工合成。 另一方面,M德尔布吕克小组从1938年起选择噬菌体为对象开始探索基因之谜。噬菌体感染寄主后半小时内就复制出几百个同样的子代噬菌体颗粒,因此是研究生物体自我复制的理想材料。1940年GW比德尔和EL塔特姆提出了“一个基因,一个酶”的假设,即基因的功能在于决定酶的结构,且一个基因仅决定一个酶的结构。但在当时基因的本质并不清楚。1944年OT埃弗里等研究细菌中的转化现象,证明了DNA是遗传物质。1953年JD沃森和FHC克里克提出了DNA的双螺旋结构,开创了分子生物学的新纪元。在此基础上提出的中心法则,描述了遗传信息从基因到蛋白质结构的流动。遗传密码的阐明则揭示了生物体内遗传信息的贮存方式。1961年F雅各布和J莫诺提出了操纵子的概念,解释了原核基因表达的调控。到20世纪60年代中期,关于DNA自我复制和转录生成RNA的一般性质已基本清楚,基因的奥秘也随之而开始解开了。 仅仅30年左右的时间,分子生物学经历了从大胆的科学假说,到经过大量的实验研究,从而建立了本学科的理论基础。进入70年代,由于重组DNA研究的突破,基因工程已经在实际应用中开花结果,根据人的意愿改造蛋白质结构的蛋白质工程也已经成为现实。 基本内容 蛋白质体系 蛋白质的结构单位是α-氨基酸。常见的氨基酸共20种。它们以不同的顺序排列可以为生命世界提供天文数字的各种各样的蛋白质。 蛋白质分子结构的组织形式可分为 4个主要的层次。一级结构,也叫化学结构,是分子中氨基酸的排列顺序。首尾相连的氨基酸通过氨基与羧基的缩合形成链状结构,称为肽链。肽链主链原子的局部空间排列为二级结构。二级结构在空间的各种盘绕和卷曲为三级结构。有些蛋白质分子是由相同的或不同的亚单位组装成的,亚单位间的相互关系叫四级结构。 蛋白质的特殊性质和生理功能与其分子的特定结构有着密切的关系,这是形形色色的蛋白质所以能表现出丰富多彩的生命活动的分子基础。研究蛋白质的结构与功能的关系是分子生物学研究的一个重要内容。 随着结构分析技术的发展,现在已有几千个蛋白质的化学结构和几百个蛋白质的立体结构得到了阐明。70年代末以来,采用测定互补DNA顺序反推蛋白质化学结构的方法,不仅提高了分析效率,而且使一些氨基酸序列分析条件不易得到满足的蛋白质化学结构分析得以实现。 发现和鉴定具有新功能的蛋白质,仍是蛋白质研究的内容。例如与基因调控和高级神经活动有关的蛋白质的研究现在很受重视。 蛋白质-核酸体系 生物体的遗传特征主要由核酸决定。绝大多数生物的基因都由 DNA构成。简单的病毒,如λ噬菌体的基因组是由 46000个核苷酸按一定顺序组成的一条双股DNA(由于是双股DNA,通常以碱基对计算其长度)。细菌,如大肠杆菌的基因组,含4×106碱基对。人体细胞染色体上所含DNA为3×109碱基对。 遗传信息要在子代的生命活动中表现出来,需要通过复制、转录和转译。复制是以亲代 DNA为模板合成子代 DNA分子。转录是根据DNA的核苷酸序列决定一类RNA分子中的核苷酸序列;后者又进一步决定蛋白质分子中氨基酸的序列,就是转译。因为这一类RNA起着信息传递作用,故称信使核糖核酸(mRNA)。由于构成RNA的核苷酸是4种,而蛋白质中却有20种氨基酸,它们的对应关系是由mRNA分子中以一定顺序相连的 3个核苷酸来决定一种氨基酸,这就是三联体遗传密码。 基因在表达其性状的过程中贯串着核酸与核酸、核酸与蛋白质的相互作用。DNA复制时,双股螺旋在解旋酶的作用下被拆开,然后DNA聚合酶以亲代DNA链为模板,复制出子代 DNA链。转录是在 RNA聚合酶的催化下完成的。转译的场所核糖核蛋白体是核酸和蛋白质的复合体,根据mRNA的编码,在酶的催化下,把氨基酸连接成完整的肽链。基因表达的调节控制也是通过生物大分子的相互作用而实现的。如大肠杆菌乳糖操纵子上的操纵基因通过与阻遏蛋白的相互作用控制基因的开关。真核细胞染色质所含的非组蛋白在转录的调控中具有特殊作用。正常情况下,真核细胞中仅2~15%基因被表达。这种选择性的转录与转译是细胞分化的基础。 蛋白质-脂质体系 生物体内普遍存在的膜结构,统称为生物膜。它包括细胞外周膜和细胞内具有各种特定功能的细胞器膜。从化学组成看,生物膜是由脂质和蛋白质通过非共价键构成的体系。很多膜还含少量糖类,以糖蛋白或糖脂形式存在。 1972年提出的流动镶嵌模型概括了生物膜的基本特征:其基本骨架是脂双层结构。膜蛋白分为表在蛋白质和嵌入蛋白质。膜脂和膜蛋白均处于不停的运动状态。 生物膜在结构与功能上都具有两侧不对称性。以物质传送为例,某些物质能以很高速度通过膜,另一些则不能。象海带能从海水中把碘浓缩 3万倍。生物膜的选择性通透使细胞内pH和离子组成相对稳定,保持了产生神经、肌肉兴奋所必需的离子梯度,保证了细胞浓缩营养物和排除废物的功能。 生物体的能量转换主要在膜上进行。生物体取得能量的方式,或是像植物那样利用太阳能在叶绿体膜上进行光合磷酸化反应;或是像动物那样利用食物在线粒体膜上进行氧化磷酸化反应。这二者能量来源虽不同,但基本过程非常相似,最后都合成腺苷三磷酸。对于这两种能量转换的机制,P米切尔提出的化学渗透学说得到了越来越多的证据。生物体利用食物氧化所释放能量的效率可达70%左右,而从煤或石油的燃烧获取能量的效率通常为20~40%,所以生物力能学的研究很受重视。对生物膜能量转换的深入了解和模拟将会对人类更有效地利用能量作出贡献。 生物膜的另一重要功能是细胞间或细胞膜内外的信息传递。在细胞表面,广泛地存在着一类称为受体的蛋白质。激素和药物的作用都需通过与受体分子的特异性结合而实现。癌变细胞表面受体物质的分布有明显变化。细胞膜的表面性质还对细胞分裂繁殖有重要的调节作用。 对细胞表面性质的研究带动了糖类的研究。糖蛋白、蛋白聚糖和糖脂等生物大分子结构与功能的研究越来越受到重视。从发展趋势看,寡糖与蛋白质或脂质形成的体系将成为分子生物学研究的一个新的重要的领域。 理论意义和应用 分子生物学的成就说明:生命活动的根本规律在形形色色的生物体中都是统一的。例如,不论在何种生物体中,都由同样的氨基酸和核苷酸分别组成其蛋白质和核酸。遗传物质,除某些病毒外,都是DNA,并且在所有的细胞中都以同样的生化机制进行复制。分子遗传学的中心法则和遗传密码,除个别例外,在绝大多数情况下也都是通用的。 物理学的成就证明,一切物质的原子都由为数不多的基本粒子根据相同的规律所组成,说明了物质世界结构上的高度一致,揭示了物质世界的本质,从而带动了整个物理学科的发展。分子生物学则在分子水平上揭示了生命世界的基本结构和生命活动的根本规律的高度一致,揭示了生命现象的本质。和过去基本粒子的研究带动物理学的发展一样,分子生物学的概念和观点也已经渗入到基础和应用生物学的每一个分支领域,带动了整个生物学的发展,使之提高到一个崭新的水平。 过去生物进化的研究,主要依靠对不同种属间形态和解剖方面的比较来决定亲缘关系。随着蛋白质和核酸结构测定方法的进展,比较不同种属的蛋白质或核酸的化学结构,即可根据差异的程度,来断定它们的亲缘关系。由此得出的系统进化树,与用经典方法得到的是基本符合的。采用分子生物学的方法研究分类与进化有特别的优越性。首先,构成生物体的基本生物大分子的结构反映了生命活动中更为本质的方面。其次,根据结构上的差异程度可以对亲缘关系给出一个定量的,因而也是更准确的概念。第三,对于形态结构非常简单的微生物的进化,则只有用这种方法才能得到可靠结果。 高等动物的高级神经活动是极其复杂的生命现象,过去多是在细胞乃至整体水平上研究,近年来深入到分子水平研究的结果充分说明高级神经活动也同样是以生物大分子的活动为基础的。例如,在高等动物学习与记忆的过程中,大脑中RNA和蛋白质的组成发生明显的变化,并且一些影响生物体合成蛋白质的药物也显著地影响学习与记忆的能力。又如,“生物钟”是一种熟知的生物现象。用鸡进行的实验发现,有一种重要的神经传递介质(5-羟色胺)和一种激素(褪黑激素)以及控制它们变化的一种酶,在鸡脑中的含量呈24小时的周期性变化。正是这种变化构成了鸡的“生物钟”的物质基础。 在应用方面,生物膜能量转换原理的阐明,将有助于解决全球性的能源问题。了解酶的催化原理就能更有针对性地进行酶的人工模拟,设计出化学工业上广泛使用的新催化剂,从而给化学工业带来一场革命。 分子生物学在生物工程技术中也起了巨大的作用,1973年重组DNA技术的成功,为基因工程的发展铺平了道路。80年代以来,已经采用基因工程技术,把高等动物的一些基因引入单细胞生物,用发酵方法生产干扰素、多种多肽激素和疫苗等。基因工程的进一步发展将为定向培育动、植物和微生物良种以及有效地控制和治疗一些人类遗传性疾病提供根本性的解决途径。 从基因调控的角度研究细胞癌变也已经取得不少进展。分子生物学将为人类最终征服癌症做出重要的贡献。[编辑本段]分子生物学的应用 1,亲子鉴定 近几年来,人类基因组研究的进展日新月异,而分子生物学技术也不断完善,随着基因组研究向各学科的不断渗透,这些学科的进展达到了前所未有的高度。在法医学上,STR位点和单核苷酸(SNP)位点检测分别是第二代、第三代DNA分析技术的核心,是继RFLPs(限制性片段长度多态性)VNTRs(可变数量串联重复序列多态性)研究而发展起来的检测技术。作为最前沿的刑事生物技术,DNA分析为法医物证检验提供了科学、可靠和快捷的手段,使物证鉴定从个体排除过渡到了可以作同一认定的水平,DNA检验能直接认定犯罪、为凶杀案、强奸杀人案、碎尸案、强奸致孕案等重大疑难案件的侦破提供准确可靠的依据。随着DNA技术的发展和应用,DNA标志系统的检测将成为破案的重要手段和途径。此方法作为亲子鉴定已经是非常成熟的,也是国际上公认的最好的一种方法。

-123-id-9912-page-htm 可以不

先百度百科生物学,了解生物学,然后找生物学找相关资料与参考文献,如果实在不会,找全职的别人代写,我以前就是因为时间紧,又要实习,又要搞论文,就找了购物网站上的论文服务,因为有消保和评价体系,还算不错,希望我的回答能帮助到你。

不足之处是操作复杂,成本较高。以上分子生物学方法对结核杆菌/html/yaoxue/20080316/html

分子生物学论文1500字数多少

传学论文(这是我当年选修课的论文,得分不高,只有84,看看将就着用吧)  论文概要:介绍遗传,变异,生物物种多样性的概念及它们之间的关系,还有人类对生物资源的创造和利用状况。并且,在论述中强调了对这些生物资源的利用要合理适当,要保护自然界生物多样性。  首先,让我们来看看遗传,变异及生物多样性的概念及其所包含的一些内容:  1.遗传:是指生物亲代与子代之间、子代个体之间相似的现象,一般是指亲代的性状又在下一代表现的现象。但在遗传学上,是指遗传物质从上代传给后代的现象。  2.变异:生物有机体的属性之一,它表现为亲代与子代之间的差别。变异有两类,即可遗传的变异与不遗传的变异。现代遗传学表明,不遗传的变异与进化无关,与进化有关的是可遗传的变异,后一变异是由于遗传物质的改变所致,其方式有突变与重组。  突变可分为基因突变与染色体畸变。基因突变是指染色体某一位点上发生的改变,又称点突变。发生在生殖细胞中的基因突变所产生的子代将出现遗传性改变。发生在体细胞的基因突变,只在体细胞上发生效应,而在有性生殖的有机体中不会造成遗传后果。染色体畸变包括染色体数目的变化和染色体结构的改变,前者的后果是形成多倍体,后者有缺失、重复、倒立和易位等方式。突变在自然状态下可以产生,也可以人为地实现。前者称为自发突变,后者称为诱发突变。但是自发突变通常频率很低,诱发突变是指用诱变剂(X射线,γ射线、中子流及其他高能射线,5-嗅尿嘧啶、2-氨基嘌呤、亚硝酸等化学物质,以及超高温、超低温等)所产生的人工突变。  3.生物多样性:指一定范围内多种多样活的有机体(动物、植物、微生物) 有规律地结合所构成稳定的生态综合体。 这种多样性包括动物、植物、微生物的物种多样性,物种的遗传与变异的多样性及生态系统的多样性。其中,物种的多样性是生物多样性的关键,它既体现了生物之间及环境之间的复杂关系,又体现了生物资源的丰富性。  另外,遗传(基因)多样性是指生物体内决定性状的遗传因子及其组合的多样性。物种多样性是生物多样性在物种上的表现形式,可分为区域物种多样性和群落物种(生态)多样性。生态系统多样性是指生物圈内生境、生物群落和生态过程的多样性。(1)  知道了遗传,变异及自然界生物物种多样性的概念,下面让我们来看看它们之间的关系:  首先来看遗传与变异的关系:遗传与变异是矛盾的但又对立统一的关系。由于遗传而确保了生物的稳定性和世代延续性,是相对“不变”的;而变异是绝对的“变”,它使生物原有的特性发生改变,从而产生出新的生物性状或类型,为生物的进化与发展提供动力。没有变异,遗传只能是简单的重复,生物就无法进化。因此,在维持物种的稳定性上,遗传与变异是对立的。然而,没有遗传,变异就不能积累,新的变异就失去了意义,生物同样也不能进化。所以,在进化方面,遗传和变异又是统一的。  理清了遗传与变异的关系,现在再来看遗传和变异与自然界生物物种多样性的关系:  遗传与变异是自然界生物多样性的基础,是遗传和变异为生物的发展、进化提供了原材料。具体来说,遗传是生物稳定性的基础,变异是生物多样性的前提,两者是对立统一的关系。在遗传和变异的共同作用下,自然界生物存在着多样性,同时各种生物又具有其自身的特点,能够与其它生物种类加以区分。总之,没有变异,自然界就不会多姿多彩,就不会有自然界的多样性;没有遗传,自然界就会处于无序状态,也不会有自然界的多样性。 (2)  现在,我们已经知道了遗传和变异与自然界生物物种多样性的关系,那么生物多样性有什么价值,人类又是怎样利用的呢?让我们来看看下面的资料:  一.1993年,联合国环境署组织专家编写的《生物多样性国情研究指南》中,将生物多样性价值划分为5种类型:  1.具显著实物形式的直接价值;  2.无显著实物形式的直接价值;  3.间接价值;  4.选择价值;  5.消极价值。(3)  二.表一:  中国生物多样性国情研究报告的价值分类系统  主要价值类型 直接使用价值 间接价值 选择价值或潜在价值 存在价值或内在价值  产品及加工品直接使用价值 服务价值  对人们提供效益的典型用途 林业,农业,畜牧业,渔业,医药业,工业,餐饮业,消费性利用价值 旅游观光价值,科学文化价值,畜力使役价值 有机物生产,维持大气平衡,物质平衡,水土保持,净化环境 潜在使用价值,潜在保留价值 确保自己或别人将来能利用某种资源或某种效益  从资料中可以看出:生物多样性是全人类共有的宝贵财富。生物多样性为人类的生存与发展提供了丰富的食物、药物、燃料等生活必需品以及大量的工业原料。生物多样性维护了自然界的生态平衡,并为人类的生存提供了良好的环境条件。生物多样性是生态系统不可缺少的组成部分,人们依靠生态系统净化空气、水,并充腴土壤。此外,科学实验证明,生态系统中物种越丰富,它的创造力就越大。自然界的所有生物都是互相依存,互相制约的。每一种物种的绝迹,都预示着很多物种即将面临死亡。  生物多样性还具有重要的科学研究价值。每一个物种都具有独特的作用,例如利用野生稻与农田里的水稻杂交,培育出的水稻新品种可以大面积提高稻谷的产量。在一些人类没有研究过的植物中,可能含有对抗人类疾病的成分。这些野生动植物如果绝迹,是人类的重大损失。另外,生物物种资源是国民经济持续发展的基础,是人类生存和社会可持续发展的战略性资源,也是农业发展的基石。每个生物物种都包含丰富的优良基因,基因资源的挖掘可以给国家带来财富,给人类带来文明。一个基因甚至可以影响一个国家的经济,乃至一个民族的兴衰。矮秆基因的发现导致了全世界粮食生产的“绿色革命”;水稻雄性不育基因的利用,创造了中国杂交稻的奇迹;优质羊毛基因的育种应用直接繁荣了澳大利亚的畜牧业生产。过去数十年来,全世界植物新品种不断推新,粮食亩产快速提高,正是得益于生物物种及其遗传多样性的贡献。生物物种资源的拥有和开发利用程度已成为衡量一个国家综合国力和可持续发展能力的重要指标之一 。(4)  因此,我们可以毫不夸张的说:生物多样性是人类赖以生存和社会可持续发展的物质基础,对于人类的生活起着极其重要的作用!  因为生物多样性如此重要,而生物多样性保护不仅能对当代产生最大的持续利益,而且还能造福子孙后代。因此,开展生物多样性的研究,保护和可持续利用成为各国政府及社会各界有识之士共同关注的主要问题。下面就让我们来谈谈这个问题:  保护生物多样性的措施主要有三条:(1)建立自然保护区。建立自然公园和自然保护区已成为世界各国保护自然生态和野生动植物免于灭绝并得以繁衍的主要手段。我国的神农架、卧龙等自然保护区,对金丝猴、熊猫等珍稀、濒危物种的保护和繁殖起到了重要的作用。(2)建立珍稀动物养殖场。由于栖息繁殖条件遭到破坏,有些野生动物的自然种群,将来势必会灭绝。为此,从现在起就必须着手建立某些珍稀动物的养殖场,进行保护和繁殖,或划定区域实行天然放养。如泰国对鲜鱼的养殖。(3)建立全球性的基因库。如为了保护作物的栽培种及其它可能会灭绝的野生亲缘种,建立全球性的基因库网。现在大多数基因库贮藏着谷类、薯类和豆类等主要农作物的种子。(5)  在保护生物多样性的基础上,人类可以通过一些方法(比如说诱变,基因合成,转基因等)创造出更多人类生活所需的物种,从而满足人类各种各样的需求。另外还有一些方法可产生新物种,如利用激素处理,植物的组织培养技术,但它们要么无法产生新的品种,要么把产生的变异遗传下去,这样在一定程度上影响了效率。  19世纪初,孟德尔的遗传定律被重新提出;  20年代,美国人将杂交原理运用到玉米育种上,取得了显著效果;  40年代,育种的手段中又增加了杂交转导,转化的技术;  50年代,美国人发现了DNA分子的双螺旋结构模型,分子生物学开始发展;  70年代,中国将杂交原理应用于水稻增产,获得了巨大的成功;  现在,只要我们作好当下的生物资源的保护工作,当我们展望未来时,我们有理由相信:到那时,生物资源的研究和利用将带给人类更多的财富!

生命科学哲学(Philosophy Of Biological Science)是本世纪六七十年代兴起的一股科学哲学思潮,虽然它的兴起主要是以本世纪50年代以后生命科学的蓬勃发展为基础,但从事生命科学哲学研究的哲学家们并不局限于把他们的哲学看作是一门部门哲学,而是更进一步,把他们的哲学看作是科学哲学的新范式:一种与传统的根植于物理科学之上的科学哲学相对的新的科学哲学。因此,当代人们提到生命科学哲学就有两层含义。狭义地讲,生命科学哲学是关于生物学的哲学,主要研究生命的本质、生物学的理论结构、概念框架、一般方法等问题。换句话说,生命科学哲学就是关于生命的本体论、认识论和方法论的哲学学科。在此意义上,“生命科学哲学”即是“生物学哲学”,它是科学哲学的一个子学科。广义地讲,生命科学哲学是科学哲学的新思潮。传统的科学哲学究其根本,都是以物理科学(包括物理学和化学等学科)为根据的,所以新哲学家们把这种哲学称之为物理科学哲学(Philosophy Of Physical Science)。新哲学则主要是以生命科学为基础而又兼顾物理科学。所以为了突出新哲学与传统哲学的不同,一些哲学家把这种新哲学称之为生命科学哲学。 1 生命科学哲学兴起的背景自然科学是哲学的基础,任何一种哲学的产生都与当时的科学背景密切相关。近代科学是从1543年开始的,虽然这一年出版的两本伟大著作中的一本——维萨里的《人体的构造》是生物学的一个分支,可是其后的一百多年,生物学并没有突飞猛进的发展,而运动学和力学却首先得以快速发展。1687年,牛顿的《自然哲学的数学原理》出版,使经典力学这座宏伟大厦最终落成。此后,物理科学的其它学科也都先后发展起来并逐步成熟。与此相对,生物学在牛顿时代尚处于孕育时期,用恩格斯的话说就是“还处于搜集材料的阶段”,牛顿的物理革命在当时并没有引起生物学的革命性变革。生物学思想的重大革新是在19世纪和20世纪才开始产生的。因此,当科学哲学在17世纪和18世纪开始发展起来的时候,或者说,当培根、笛卡尔、莱布尼兹和康德论述科学和科学方法时,完全是以物理科学为基础的。在这种情况下,物理科学的思想和方法自然成了评判一切科学的标准,大多数哲学家理所当然地把物理科学看作是科学的标准范式,认为一旦理解了物理科学,就能理解其它任何科学。尽管早在19世纪中叶,达尔文就曾说过生物学的成就将会使哲学出现新繁盛,可是19世纪的科学哲学仍然完全根植于物理科学之中,不论是第一代实证主义(孔德)还是第二代实证主义(马赫),他们关于科学的本质,科学的理论结构和概念框架、科学方法等等的论述,完全是以经典物理学为依据的。进入20世纪,实证主义发展到了它的第三代——逻辑实证主义。正如提出这种理论的核心人物所说,逻辑实证主义主要依据的自然科学理论是数理逻辑和20世纪初诞生的相对论和量子力学。面对这种情况, 著名的生物学家和哲学家恩斯特·迈尔(ErnstMayr)不无遗憾地说:“自从伽利略、笛卡尔、牛顿以来直到20世纪中叶,科学哲学一直由逻辑学、数学和物理学所左右达数百年之久”( 〔2〕.piv)。然而,本世纪中叶以后,由于传统科学哲学的自身危机以及分子生物学革命和综合进化论的革新,使哲学家们开始转向对生物学的哲学概括,以便从生物学中找出科学的新范式,于是,有关生物学的哲学思考成为西方科学哲学讨论的一个最热点的领域之一。在这种讨论中,生物学哲学作为一门学科逐步成熟。我们先从传统科学哲学的危机谈起,传统科学哲学有三个主要的教条:一是分析命题和综合命题的区分,认为自然科学的命题是综合命题;第二是还原论,“即认为每一个有意义的陈述都等值于某种以指称直接经验的名词为基础的逻辑构造”;第三是演绎的解释理论,认为科学解释就是推理,一个需要解释的对象,只要它能从一些规律性陈述和一些前提条件中推导出来,它就得到了解释。其中第二点是逻辑实证主义的中心命题,这个命题换个说法就是认为,在科学中,观察(或经验)和理论是可以完全分开的,科学的本质就以经验为基础建立科学理论,科学理论的正确与否就是看它能否得到证实。奎因在《经验论的两个教条》中已对这种经验与理论的二分法以及第二个教条进行了批评。不过,决定性的批判则来自波普尔。波普尔认为,从逻辑的角度看,完全证实是不可能的,然而反过来,证伪却是可能的。由此,波普尔提出了证伪主义的科学纲领:科学的标志不在于它的可证实性,而在于它的可证伪性。由于波普尔的工作,科学哲学开始发生一个重大的转变:从研究科学理论的静态结构转向研究科学理论的历时结构。于是库恩的范式论、拉卡托斯的研究纲领方法论、费耶阿本德的无政府主义方法论等科学哲学理论相继出现,使传统的科学哲学出现严重的危机。我们再从生物学本身的发展看。自从1953年沃森(JDWatson)和克里克(FHCCrick)认定DNA的双螺旋结构以来,生物学便跨进了飞速发展的新时代。短短十多年的时间,遗传密码就得以破译,基因的作用机理也弄清楚,遗传工程亦开始实施。同时,由于新知识的渗透和综合,生物学的一些古老的学科,如进化论、胚胎学、分类学等也面貌一新。一时间,世界范围内出现了一股研究生物学的热潮,生物学成为继相对论和量子力学革命以来发展最快,成就最多的学科。生物学的这些革命性发展自然引起越来越多的哲学家对它的关注。他们或者利用生物学的成就重新评价以往科学哲学的适当性,或者从生物学中总结出独特的认识论、方法论和本体论问题。传统科学哲学的危机以及生物学的持续发展因此使生命科学哲学成为当代科学哲学研究中的最激动人心的领域。各种论文和论著大量涌现。1985年,在一些哲学家和生物学家的努力下,一本专门讨论生命科学哲学的杂志——《生物学与哲学》也在西方创刊。作为一股新的科学哲学思潮的生命科学哲学就是在70年代兴起的,在80年代和90年代,这门学科逐步成熟并不断发展。 2 自主论和分支论:当代生命科学哲学的两大派别近来西方出版的几乎所有生物学哲学的著作都以生物学在科学体系中占有什么位置,或者说生物学与物理科学相比有什么不同这个问题作为开篇。按照罗森伯格的说法,生物学和物理科学的关系问题是“生物学哲学的中心问题”。在此,我们可以换个说法,把这一问题看作是生物学哲学的基本问题,因为,第一,这一问题是任何一个生物学哲学家必须首先提出并要作出回答的问题。“生物学与其它自然科学是否不同和怎样不同是生物学哲学… …所面对的最突出、最明显、经常被提出、争议最多的问题”(〔3〕 P13)。第二,对这一问题的不同回答方式及结果,决定着生物学哲学讨论的几乎所有其它问题的回答方式及结果。生物学家和哲学家提出的有关生物学的逻辑的、认识论、本体论和方法论的较具体问题几乎都是围绕这一问题展开的,比如还原论与突现论的争论,关于社会生物学科学性争论,心身关系的争论等等都是如此。第三,对于生物学家和生物学哲学家来说,对这一问题的不同回答反映了他们对生物学应当前进的方向的不同看法。生物学的研究应当采取什么样的方法?未来生物学的重点在什么地方?对生物学和物理学关系问题的不同回答,直接关系到对这些问题的看法。关于生物学的地位或者说生物学与物理科学关系的争论一直在两对立的派别之间进行,这两个派别,一个可称之为分支论,一个可称之为自主论。分支论认为,生物学在原理和方法上与物理科学并没有什么不同,而且未来的研究到了一定的时候会将整个生物学还原为物理科学。与之相对,自主论则认为生物学理所当然地是一门自主的科学,因为它研究的对象、它的概念结构和方法论与物理科学根本不同。联系到前面提到的生命科学哲学兴起的背景,我们就可以看出,分支论和自主论实际上是对传统科学哲学危机和生物学迅速发展的两种不同的反映。从科学哲学的转折来看,本世纪五十年代后,由于波普尔的批判,科学哲学从逻辑实证主义走向与之相对的历史主义。然而,并不是所有的哲学家都在这种转折中追随波普尔、库恩等人放弃了实证主义,相反,有许多哲学家仍然坚持实证主义的基本原则,只是在细节上对实证主义作了不同程度的修改。 这些哲学家有人把他们称作后实证主义者(Postpositivist)。后实证主义的基本观点是:(1 )科学是通过建立越来越普遍的经实验验证并具有解释能力的经验概括发展的,这些经验概括进一步被组织到更普遍的理论中去以更加扩展和加深这些概括的解释的统一性和预言的精确性;(2 )科学解释就是要把被解释的对象归并到普遍的规律或定律之下,因此,任何科学都需要规律或定律或至少是可改进的概括;(3 )科学需要规律或定律还因为实践的预言和控制也是依据规律或定律做出的。没有规律或定律,不仅解释是不可能的,预言和控制就更不可能。(4)不同的学科有不同的发现、规律和理论,但所有这些发现、 规律和理论将最终组成一个连贯的理论阶梯,在这个理论阶梯中,可从最基本的物理学的理论和规律出发推演出所有其它学科的理论和规律,即所有的学科最终可统一于物理学。当然后实证主义的观点并不仅是我们所列的这些,但对我们的问题这已足够。很显然,后实证主义的这些观点只不过是对实证主义的进一步修正而已,它们的基础仍然是物理科学。在生物学的惊人发展面前,这样的关于科学本性的结论适合生物学吗?很显然,从生物学目前的状况看,它还不能立刻地,明显地满足后实证主义的描述。生物学目前还不象物理科学那样有许多简单、精确、相互联结并具有解释和预言能力的定律或规律;它的许多发现和描述语言与物理学和化学的发现和语言很少联系;它研究的模型系统的普遍性也是有限的。所有这些特征使它成为验证后实证主义科学哲学的很好的场所。这些不同是表面的、暂时的,还是本质的、永恒的呢?于是,在哲学家中间,生物学与物理学是否不同和怎样不同的问题,就变为生物学是否和怎样与后实证主义的哲学图景相符合的问题。回答相符合的哲学家,就竭力从生物学中寻找材料证明后实证主义哲学图景的普遍性,并竭力证明生物学与物理学的上述差别是暂时性的。回答不相符合的哲学家则相反,他们从生物学寻找材料反对后实证主义的哲学思想,并竭力表明,生物学与物理学差别是永远不会消失的。以上是分支论和自主论争论的哲学根源——后实证主义和反实证主义(antipositivism)。分支论和自主论的争论还有其科学自身发展的依据。本世纪中叶以后,生物学中最激动人心的事件就是分子生物学的革命。由于这一革命,生物学的许多现象都可根据DNA 分子的结构得到解释。分子生物学的成功使许多生物学家以及哲学家坚信,生物学的所有现象最终都可以根据它们组成部分的物理化学规律完全得到说明,物理学和化学的方法完全适合生物学研究。DNA 双螺旋结构发现者之一克里克就断言:“生物学当代运动的最终目标事实上就是根据物理学和有机化学解释生物学。对于这一点有很多理由。因为化学和物理学的相关部分……量子力学与我们关于化学的经验知识一起,表明能为我们提供建立生物学的确定性基础,这与牛顿力学……为比如机械工程提供基础是同样的方式。”(〔4〕P10)物理学和化学之所以能为生物学提供一个“确定性基础,”在这些人看来,是因为生物体最终是由物理材料——运动中的分子和原子组成的。这些分子和原子在生物体中被聚集在不同的组织水平上,一些水平甚至能避开其它水平自主地活动,但是最终都是物理学和化学的产物。因而克里克说:“最终人们希望生物学的整体可根据比它低的水平进而正好从原子水平得到解释”。(〔4〕P12)既然生物有机体可以从其组成部分的物理特性和化学特性得到解释,所以这些生物学家和哲学家继续断言,整个生物学最终将变为物理学和化学的一个分支。这些生物学家和哲学家就是我们所说的分支论者,概括起来,他们认为:“生物学最好能成为物理科学的一个分支,一个能够通过运用物理科学方法,现在特别是物理学和有机化学的方法发展的独立分支”。(〔3〕P16)他们把分子生物学作为用物理学和化学研究生物学的最成功的范例,因此,对他们来说,生物学的其余部分都应象分子生物学一样,主动地与物理化学靠近。目前,生物学和物理科学之间仍然存在着很大差别,有许多生命现象还不能用物理学和化学解释,但他们认为,随着生物学和物理学的发展,最终都可以用物理学和化学来解释。然而,除了分子生物学之外,群体遗传学、综合进化论、生态学、行为学、分类学等生物学学科在本世纪也得到了革命性发展,“都显示空前繁荣,茁壮成长”。这些学科都有其本身的词汇,方法论和概念结构,与其它学科特别是物理科学很少联系或只有最少的接触。因此,面对分支论的挑战,从事这些学科研究的生物学家以及从这些学科搜集材料的哲学家就认为,尽管物理学和化学方法在生物学研究中曾取得过振奋人心的成绩,但是物理学和化学的方法并不能完全适合生物学的主题内容。他们认为“生物学真正重要的目标以及获得这些目标的适当方法,与其它科学的目标和方法是如此不同,以致于生物学的理论和实践必须与物理学和理论实践保持持续的隔离。”(〔3〕p16) 这些生物学家和哲学家就是自主论者。根据他们的观点,生物学追寻的是回答物理学不能回答的问题,因而生物学必须运用物理学提供不了的方法和手段,当然,生物学也可自由地借用物理学的理论和方法,但它不能仅仅简单地靠借用发展,它必须形成自己的方法。生物学运用物理学方法在某些方面能够取得成绩,但生物学若运用自己独立的方法则会取得更大更明显的成就。分支论与后实证主义的观点是一致的,但在自主论者看来,后实证主义从物理学中得出的科学图景对生物学来说是完全错误的。生物学当然是一门自主的学科,后实证主义那种建立在物理科学基础之上的科学统一观念会使生物学走向迷途,并阻碍生物学的快速发展。除了分子生物学以及宏观生物学自身研究特点、研究方法使一些人支持分支论、一些人支持自主论外,未来生物学研究的重点在哪一个方面,也是人们支持分支论或自主论的重要原因,或者说是动机。著名生物学家和哲学家恩斯特·迈尔曾说:“许多物理学家坚信全部生物学的见解都能归结为物理学的定律,这种情况使许多生物学家为了自卫而主张生物学的自主性,很自然,不只是物理学家,而且信奉本质论的哲学家也极力反对这种生物学的解放运动,但是这种解放运动在最近几十年不断增强了力量。物理科学的原则,理论和定律是不是能说明生物科学中的每件事呢?生物学至少部分的是不是自主的科学呢?对于这些问题的冷静讨论,由于物理科学和生物科学明显的对抗情绪,甚至是互相敌对的情绪,就成为非常困难的事情。许多人曾经想把各门科学分类排列,把数学(或者特别把几何学)规定为科学的皇后。在为争取各项荣誉如诺贝尔奖金、政府及大学的预算、职位以及在非科学家中的普遍声望的竞争中,这种对立变得非常表面化了”。(〔1〕pp37—38) 从迈尔的话里我们可以看出,生物学家支持或反对生物学自主性的一个重要原因是为自己从事的职业的重要性作辩护。 3 争论问题的展开围绕“生物学和物理学是否不同和怎样不同这个基本问题,自主论和分支论展开了一系列的争论。从争论问题的普遍性程度看,主要有以下几个不同层次的问题:首先,最普遍的一个问题是生物学和物理学研究的目标或战略是否相同的问题。自主论认为,在生物学和物理学的基本研究战略中存在如下一个明显的差别:物理科学的解释框架是机械论的,而生物学的解释框架则是有目的的、目的论的或功能的。这里所说的机械论广义地说是指这样一种观点:一个系统的行为是通过它的组成部分的牛顿性质——位置和动量(或它们的其它替代量)决定的,一个机械(力学)系统的行为是该系统组成部分的位置和动量数值的数学函数。物理科学对其需要解释的现象都是通过扩展这些力学概念及建立这种数学函数解释的。生物学的解释框架则与此不同,主要是目的论的。这里所说的目的论是指通过寻求系统的目标、功能、需要来解释系统的行为。生物学在解释生物现象时不是通过寻求构成生命系统的力学行为来完成,而是通过发现整个系统以及它的组成部分服务的目标、功能或需要来解释。这就是说,生物学解释主要依靠的是对生物系统服务目标的正确辩别,而在物理科学中,没有目标、目的、功能、需要等概念的位置和空间。因此,生物学和物理科学研究的总体目标就不相同:一个通过把现象分解成它的组成部分的力学行为来解释,另一个则通过在一个给定的现象中辩别出一个功能网络来解释。在这种情况下,两个领域的基本研究战略就必然不同。分支论者也承认物理科学与生物科学在解释方式上存在这种差别,但与自主论者相反,他们认为这种差别是表面的,是可以排除的。争论的第二层次的问题是关于生物学和物理科学中理论的本性、数目和关系问题。物理科学的研究对象可区分出不同的层次,对不同层次对象的研究可形成不同的理论,发展出不同的学科分支。这些不同的学科分支和理论可能是独立研究、独立建立的,然而,在物理科学中已达到这样一种水平,不同层次的理论可以逻辑地、数学地整合在一起。力学、光学、热学、电磁学、量子力学、相对论以及化学键理论、化学动力学理论、平衡常数理论等,都如此紧紧地连结在一起,以致于我们可以把这些理论从更基本的到派生的加以分类,然后用基本的解释派生的,并且可以根据一个领域的理论新进展预测另一个领域理论发展的情况。相比之下,生物科学中的各种理论间的联系就没有这么紧密。进化论、遗传学、生态学、古生物学、胚胎学、发育学、生理学等等学科都有其自身的理论,但这些理论之间的联系,并不象物理科学那样可以形成演绎关系,可以数学地整合在一起。举例来说,进化论对生物学的地位,就象牛顿力学对物理学的地位一样重要,然而,它们的理论结构却大不一样。牛顿力学本身的定律可用数学公式表示,其定律之间可形成严密的推理关系,其理论体系可用公理化方法建立,而进化论的理论内容只能定性描述而不能数学化,尽管有人试图对进化论也作公理化处理。通过牛顿力学可以推演出物理科学其它领域的一系列理论,而通过自然选择理论却推不出比如分类学、古生物学、形态学、胚胎学、生态学、遗传学中的有关理论,尽管有人说自然选择理论统一了这些学科。面对生物科学与物理科学理论本性、数目和关系的这些差别,自主论认为,这反映了生物科学自身的独特特点,说明生物学是一门自主的科学,而分支论则认为这种差别是暂性的,这表明生物学在目前还不是一门特别完善的科学,随着生物学的发展,这种差别将最终消失。争论的第三层次的问题是关于生物学中是否存在规律以及规律的形式问题。一般说来,物理科学的理论是由一系列规律或定律经整合或演绎构成的。因此,传统科学哲学都把规律或定律看作是科学理论的象征,认为任何一门科学都应有自己独特的规律或定律。生命科学理论范式的形成,使一些人对此发生了怀疑。生物科学的理论是由规律或定律构成的吗?在当前的争论中,一些自主论者提出了否定意见,认为在生命科学中并不存在规律,他们认为规律或定律的观念是传统科学哲学的偏见,新哲学应摒弃这种偏见。生物学若没有规律,生物学如何存在和发展呢?这些人认为在生物科学的理论结构中概念起着中心地位,生物学的发展表现在概念含义的扩展和新概念的提出。不过,也有一些自主论者象分支论者一样承认生物学中存在规律,但他们同时又认为,这种规律是独特的,与物理科学的规律相比,不仅在内容上而且在形式上都是不同的。这些自主论者认为,物理科学的规律反映的是推挽式的(push—pull)因果机制一个在先的原因产生一个或多个结果,而生物学的规律描述的却是生物目标、目的或功能与为了得到它们的生物系统之间的关系。目标和它解释的行为之间的关系不是物理意义上的因果关系,因为在物理科学中,在后的目标不能解释产生它的事件,但在生物学中,先在事件是由目标解释的。因此,物理科学中的规律是因果性的,而生物科学中的规律则是功能性的或目的论的。反对这一点的分支论者长期以来一直试图分析自主论者所说的规律的意义,以便它们也能在非目的论的概括下被表达。分支论者认为,生命现象不过是物理现象的一个复杂的种类,所以对生物学现象的描述与对物理现象的描述就没有什么种类上或本质上的区别。对他们来说,目的论描述或者是物理规律的方便省略,或者是通向另外的用物理规律对生命现象作更精确的描述的中转站。争论的第四个层次的问题是关于一些只在生物学中出现而不在物理科学中出现的概念和语词的含义的争论。比如关于生物学和物理学研究战略差别的重大争论 目的论和因果关系的争论必然要涉及到一些概念,象“适合”、“适应”、“竞争”、“掠夺”、“拟态”等。在分子生物学中,人们毫无顾忌地使用象“识别”、“密码”、“错误”等概念。这些概念都是目的论的概念,在物理学中是不存在的。它们能被转译成没有目的论的概念吗?它们在生物学中的存在是否说明生物学有严重错误的内容?这些都是值得深入思考的问题。总之,围绕生物学哲学的基本问题,哲学家们在从整体研究纲领、目标直到个体概念四个不同层面的具体问题展开自己的讨论,这些问题即互相区别又互相联系,使生物学哲学从总体上既表现出内容上的多样性,又表现出统一性。

我呢,代做,没问题的。

不足之处是操作复杂,成本较高。以上分子生物学方法对结核杆菌/html/yaoxue/20080316/html

分子生物学课程论文1500字数要求多少字正常

CD44分子生物学特性及肿瘤关系的研究进展1 粘附分子CD44的研究进展 CD44是分布极为广泛的细胞表面跨膜糖蛋白,在淋巴细胞,成纤维细胞表面均能检测到它的表达[1,2]。CD44蛋白属于未分类的粘附分子,其正常功能是作为受体识别透明质酸(HA)和胶原蛋白Ⅰ、Ⅳ等,主要参与细胞-细胞,细胞-基质之间的特异性粘连过程。 1 CD44基因的定位与结构 人类CD44基因位于11号染色体短臂上,有20个高度保守的外显子,完整基因组在染色体DNA上大约跨越50kb。CD44基因的外显子按表达方式分为两种类型:一种是组成型外显子,另一种是V区变异型外显子。组成型外显子有10个,其中转录片段存在于所有CD44转录子中。仅含组成型外显子的CD44转录子,称为标准型CD44(CD44S),它编码361个氨基酸(Aa)。V区外显子也有10个,在基因组上位于第5和第6个组成型外显子之间,在染色体DNA中专25kb。含有V区外显子的CD44转录子统称为CD44拼接变异体(CD44V)。V区外显子的拼接方式非常特殊,它们既能以连续方式拼接,也能以跳跃方式拼接,参与拼接的V区外显子多少不一,从而使转录片段长短不一。目前通过PCR技术在许多细胞系中已发现10多种CD44V。早期发现血细胞的CD44分子(CD44H)为标准型。最先获得克隆的拼接变异体是含有CD44V8-10的CD44V,它主要存在于上皮细胞又称为上皮细胞型CD44V(CD44E)。目前对CD44的研究较多,如V3、V5、V6。 2 CD44分子的结构特征 从已知的cDNA序列推测,CD44S由341个Aa组成,N-末端起台于21位Aa,前面20个Aa为信号肽,紧接着是胞质外区域的248个Aa,第249个Aa至269位的21个是疏水性的,为跨膜区,其后是胞质内C-末端尾部有72个Aa。另外还有一种CD44S的短尾形式,其胞质内C-末端尾部仅3个Aa。这种Aa序列具有Ⅰ类膜蛋白的特征。Lokeshwar等[3]用实验观察CD44S分子的合成过程,发现CD44分子首先被合成43KD的蛋白前体,接着在内质网内进行N-糖基化,形成58KD的N-糖基化前体,其后在高尔基复合体内进行O-糖基化和其它翻译后修饰,形成最终的85-95KD分子。 1 CD44S胞质外结构域特征:CD44S分子信号肽的N-末端的130Aa内编码了5个Asn-x-Ser/Thr序列和6个半胱氨酸残基,前者是5个N-糖苷键连接位点,其中3个被利用。6个半胱酸形成3个二硫键,形成球形结构域,这一球形结构域的重要特征是与动物连接蛋白有较高的同源性。有两个区域与透明质酸结合,分别是21-45Aa,135-195Aa。 CD44S的胞外近膜区存在一个56Aa的结构域(161Arg-216Asp),含有19个ser和Thr残基,常以2~4个成簇,这些是已知的O-糖基化位点特征,表明CD44有7个潜在的O-糖基化位点,其中4~5个位点被利用。此外这一区域含有4个Ser-Gly二肽,是潜在的硫酸软骨素连接位点。并且已得到证实,CD44分子加上硫酸软骨素后,与其结合细胞外基质的能力有关,包括Ⅰ型胶原、层粘边蛋白、纤粘连蛋白。 CD44分子细胞膜外区域有多个潜在的N-糖苷键连接位点,可连换多个碳水化合物,不仅与分子成熟过程中的翻译后修饰有关,也与细胞的功能状态有关。糖基化赋予CD44分子异质性,而其异质性与不同的O-糖基化程度有关,这种现象是CD44分子所特有的。这种新的糖基化调节方式在CD44S结合不同的细胞外基质成分的能力方面超着重要作用。深入研究这一分子的糖基化调节机制及生物功能方面的联系是十分有意义的。 2 CD44S胞质内结构特征:CD44S分子第249-269跨膜区的Aa序列中存在一个半胱氨酸残基,代表着一个潜在的脂酰化位点,这一位点可与软脂酸连接导致CD44分子脂酰化。在CD44S的胞质内区域尾部存在一结构域可与锚蛋白(ankyntn)结合。胞质内尾部序列有5个保守的丝氨酸残基,可作为蛋白激酶C(PKC)的底物被磷化[4]。上述脂酰化过程均可增强CD44S分子与锚蛋白的结合能力。比较CD44S和其他G蛋白的序列发现存在4个 同源性高的区域,实验证实CD44还是一种GTP结合蛋白,可结合GDP底物并且有GTP酶活性,显著增强CD44与锚蛋白的相互作用[5]。在CD44合成过程的各种中间产物,发现均有锚蛋白结合位点和结合活性,提示糖基化对锚蛋白结合位点的形成无关,并且结合锚蛋白对于CD44分子的输送和信号传导功能起重要作用。 3 CD44V的特征:目前发现10个V外显子编码的氨基酸中有约30%的丝、苏氯酸残基,具有广泛潜在O-糖基化位点,如:V6具有潜在的O-糖基化位点。V3外显子序列分析中发现Ser-Gly-Ser-Gly片段,它可结合硫酸肝素,结合硫酸肝素后的CD44V能与碱性成纤维细胞生长因子(b-FGF)结合肝素的表皮生长(HBEGF)因子结合,此结果提示这种CD44参与了传递细胞因子的过程。 3 CD44蛋白的主要功能 CD44基因编码合成的CD44蛋白具有一系列功能,包括:①作为导向性受体,调节淋巴细胞在血液和淋巴液间的运行,即淋巴细胞归巢或再循环[6]。②在淋巴细胞自溶、离体淋巴细胞的活化中发挥作用。③促进成纤维细胞和淋巴细胞与胞外基质成分如透明质酸、硫酸软骨素、纤维素、糖原等的粘附。④参与信号传递蛋白可影响蛋白在细胞间的位置,刺激其分泌特异的生长因子具不同的传导作用。⑤结合并中和透明质酸,该作用类似于清除间质组织。⑥调节药物的吸收及细胞对药物的敏感性。 究竟是何种CD44蛋白参与了何种调节,至今不清楚,选择性剪切过程中的多样性CD44蛋白与细胞结合的多样性也表明其中有重要的协间或调节功能[7]。有研究认为,跨膜的CD44糖蛋白,其膜外成分的变异与细胞粘附及导向作用有关[8]。,而胞内分子的尾部则与活化T淋巴细胞的潜在作用有关,而且胞内分子长度可调节蛋白激酶A/C位置,影响细胞的信号传递[9]。 2 CD44分子在肿瘤细胞中的表达 1989年Stamenkevie等使用不同的单抗分离和克隆了一个编码CD44标准型的cDNA,该基因不仅由淋巴样细胞表达,也可由不同的癌细胞系包括实体瘤典型标本中表达。在裸鼠研究某些人的转移癌时发现,CD44基因表达在转移中起作用。在大鼠胰腺癌细胞中非转移性细胞株只表达标准CD44(CD44S),而转移性细胞株表达CD44V,而且将CD44V变异体cDNA转染到非转移性的细胞株可引起转移[10]。Hofmann[11]用 notherm印迹法研究了20多个体外培养的人癌细胞系,也发现许多肿瘤组织能表达CD44V,但在不同细胞中V区外显子的转录拼接模式不尽相同。第一份临床肿瘤标本(结肠癌)的检测结果是1992年由英国年津大学病理实验室的研究人员首先报道的,以后人们应用免疫组化及RNA-cDNA-PCR印迹杂交在肺癌、结肠癌、食道癌、乳腺癌、膀胱癌、肝癌、宫颈癌、肾癌和非何杰金淋巴瘤等中发现有CD44V表达。认为CD44V5、CD44V6的表达与肿瘤进展程度、转移及预后密切相关[12]。对于各种癌的实验研究已经进入肿瘤的发生、生长、转移增殖潜能及预后复发各环节与CD44分子表达的相关性,并提出实验数据和假说加以论证。 1 CD44分子与肿瘤的发生、生长、发展 癌的发生发展与癌基因(c-erb2、c-myc, ras)和抑癌基因(P53,nm23)等异常表达有关。有研究表明CD44异常表达可早于ras、P53等基因的异常,所以CD44的变异可能与ras部基因激活有关,是癌形成的一个因素[13]。Muider[14]对结肠癌肿瘤P53突变和CD44蛋白的研究,在结肠肿瘤各期中观察到有统计显著性的P53、CD44V6表达增强的趋势,P53和CD44V6表达间有显著相关性。P53被认为监视基因突变的“分子警察”,失活的P53可引起失控的肿瘤生长,因此P53突变引起失去最后控制时,V6‘表型获得明显的生长优势’。郭亚军等[15]用抗CD44的单抗以阻断其与透明质酸的结合,从而抑制CD44阳性的肿瘤细胞在体内的生长。他推测肿瘤细胞的生长可能是CD44阳性的细胞能与细胞外基质(ECM)中的透明质酸结合,从而获得附着性,并更易从ECM中获得生长因子。FasanoM等[16]报道成人非肿瘤患者肺泡Ⅰ型上皮不表达CD44V6。Ⅱ型上皮细胞和基 底细胞有CD44V6低量表达,Ⅱ型细胞与基底细胞属于干细胞,估计CD44V6对于肺生长有重要意义。所以认为CD44V6对于幼稚细胞生长和对于肿瘤细胞生长的机理可能相似。Lu等[17]发现在宫颈腺癌,无论是原位癌还是浸润癌均有CD44S弥漫表达,且浸润癌比原位癌明显高表达CD44S,几乎所有的原位癌与浸润癌CD44V9均增加,仅有较少的浸润癌表达CD44V4与CD44V6,而原位癌几乎不表达。说明宫颈上皮的癌变与CD44S和几种CD44V表达的量变和质变有关。 2 分子表达与肿瘤的转移、侵润 Matsumura等[18]用PCR技术检测了转移性结肠癌、非转移性结肠癌、正常结肠粘膜的CD44基因表达活性,发现转移性结肠癌细胞CD44变异拼接外显子表达明显增强。Pales等[19]用单克隆抗体检测以CD44表达情况发现,在人类结肠癌标本中,CD44V在浸润和转移的肿瘤中呈阳性表达,并认为CD44V的表达可作为结肠肿瘤浸润的标志。Herrtich[20]研究发现在一些分化不良的息肉中检测以V6外显子在肿瘤浸润中有增强的高频率表达,推测表达CD44V6的肿瘤细胞能够有利于癌细胞浸润和转移的条件。 Granberg等[21]发现在支气管类癌瘤患者,表达CD44S可减低远距离转移,CD44V77-8阳性肿瘤降低远距离转移风险,CD44V9阳性可降低远距离转移及死亡,而CD44V4、CD44V5、CD44V10与临床结果无关,证明支气管类癌瘤具有潜在恶性,CD44S、V7-8、V9阳性可能引起较好的临床结果,可以考虑作为预后评估的指标。 关于CD44V与肿瘤转移相关性的假说如下:激活的淋巴细胞和转移的癌细胞具有许多共性,即都有很强的侵出行为,均有可逆的粘附接触过程进行细胞迁移,在引流淋巴结中两类细胞皆能大量积聚和快速增殖,最后它们都能释放到循环系统,并通过外渗作用进入周围组织,这些相似性很可能基于CD44V6在二者中的共同作用,提示CD44V6在淋巴细胞活化中的作用机理与CD44V6在肿瘤转移中作用机理是相同的。即CD44V6高表达的癌细胞可能获得淋巴细胞“伪装”,逃避人体免疫系统的识别和杀伤,更易进入淋巴结,形成转移[10]。 有结论认为CD44V6变异体可能通过促进癌细胞与血管内皮细胞和细胞外基质的粘附,促进肿瘤细胞向基质侵袭,从而影响肿瘤细胞的迁移和运动能力。也有结论认为CD44V6可能通过影响癌细胞的骨架构像和分布,从而影响癌细胞的运动能力,而影响癌转移。 3 CD44分子对治疗肿瘤的展望 因为CD44V6对于肿瘤的发生、发展都有一定的相关性,推测CD44V6与肿瘤的分型、分化、分期有一定关系,如果这种关系得以明确,我们就可以通过癌组织CD44V6的表达程度来判断癌的类型,所处时期来进行适当治疗。 有研究认为CD44V6的表达要先于抑癌基因的表达,如果能够检测出CD44异常表达,则对于癌的早期诊断有密切关系。已有研究表明,CD44V6可用于诊断。如1997年吴忠等报道,应用RT-PCR技术检测CD44V6在30例尿液标本脱落细胞检测到CD44V6的表达,而在膀胱炎患者和正常志愿者未检测到CD44V6的表达。 肿瘤的转移是癌症患者的主要死亡原因,Seiter等[10]用抗CD44变异型蛋白的抗体与CD44变异型产物相结合,显示鼠癌细胞的转移潜能被终止,这也为大肠癌的治疗提供了又一个可能途径。 手术切除的肿瘤标本中如有CD44V6蛋白阳性,常会伴术后肿瘤再发或远处转移。CD44V6可作为一种有效的癌预后的标志物,用以指导治疗方案的制定。 CD44基因及其选择性剪切在癌的预测、早期诊断、病情进展、转移潜能与预后的估计等方面具有很大的潜在价值。随着分子生物学不断的发展,癌基因研究的不断深入,相信该基因对癌的预测、诊断、治疗、预后的价值会得到更加全面的认识。

分子生物学(molecular biology) 在分子水平上研究生命现象的科学。研究生物大分子(核酸、蛋白质)的结 构、功能和生物合成等方面来阐明各种生命现象的本质。研究内容包括各种生命过程如光合作用、发育的分子机制、神经活动的机理、癌的发生等。 从分子水平研究生物大分子的结构与功能从而阐明生命现象本质的科学。自20世纪50年代以来,分子生物学是生物学的前沿与生长点,其主要研究领域包括蛋白质体系、蛋白质-核酸体系 (中心是分子遗传学)和蛋白质-脂质体系(即生物膜)。 生物大分子,特别是蛋白质和核酸结构功能的研究,是分子生物学的基础。现代化学和物理学理论、技术和方法的应用推动了生物大分子结构功能的研究,从而出现了近30年来分子生物学的蓬勃发展。分子生物学和生物化学及生物物理学关系十分密切,它们之间的主要区别在于:①生物化学和生物物理学是用化学的和物理学的方法研究在分子水平,细胞水平,整体水平乃至群体水平等不同层次上的生物学问题。而分子生物学则着重在分子(包括多分子体系)水平上研究生命活动的普遍规律;②在分子水平上,分子生物学着重研究的是大分子,主要是蛋白质,核酸,脂质体系以及部分多糖及其复合体系。而一些小分子物质在生物体内的转化则属生物化学的范围;③分子生物学研究的主要目的是在分子水平上阐明整个生物界所共同具有的基本特征,即生命现象的本质;而研究某一特定生物体或某一种生物体内的某一特定器官的物理、化学现象或变化,则属于生物物理学或生物化学的范畴。 发展简史 结构分析和遗传物质的研究在分子生物学的发展中作出了重要的贡献。结构分析的中心内容是通过阐明生物分子的三维结构来解释细胞的生理功能。1912年英国 WH布喇格和WL布喇格建立了X射线晶体学,成功地测定了一些相当复杂的分子以及蛋白质的结构。以后布喇格的学生WT阿斯特伯里和JD贝尔纳又分别对毛发、肌肉等纤维蛋白以及胃蛋白酶、烟草花叶病毒等进行了初步的结构分析。他们的工作为后来生物大分子结晶学的形成和发展奠定了基础。50年代是分子生物学作为一门独立的分支学科脱颖而出并迅速发展的年代。首先是在蛋白质结构分析方面,1951年LC波林等提出了 α-螺旋结构,描述了蛋白质分子中肽链的一种构象。1955年F桑格完成了胰岛素的氨基酸序列的测定。接着 JC肯德鲁和MF佩鲁茨在X射线分析中应用重原子同晶置换技术和计算机技术分别于1957和1959年阐明了鲸肌红蛋白和马血红蛋白的立体结构。1965年中国科学家合成了有生物活性的胰岛素,首先实现了蛋白质的人工合成。 另一方面,M德尔布吕克小组从1938年起选择噬菌体为对象开始探索基因之谜。噬菌体感染寄主后半小时内就复制出几百个同样的子代噬菌体颗粒,因此是研究生物体自我复制的理想材料。1940年GW比德尔和EL塔特姆提出了“一个基因,一个酶”的假设,即基因的功能在于决定酶的结构,且一个基因仅决定一个酶的结构。但在当时基因的本质并不清楚。1944年OT埃弗里等研究细菌中的转化现象,证明了DNA是遗传物质。1953年JD沃森和FHC克里克提出了DNA的双螺旋结构,开创了分子生物学的新纪元。在此基础上提出的中心法则,描述了遗传信息从基因到蛋白质结构的流动。遗传密码的阐明则揭示了生物体内遗传信息的贮存方式。1961年F雅各布和J莫诺提出了操纵子的概念,解释了原核基因表达的调控。到20世纪60年代中期,关于DNA自我复制和转录生成RNA的一般性质已基本清楚,基因的奥秘也随之而开始解开了。 仅仅30年左右的时间,分子生物学经历了从大胆的科学假说,到经过大量的实验研究,从而建立了本学科的理论基础。进入70年代,由于重组DNA研究的突破,基因工程已经在实际应用中开花结果,根据人的意愿改造蛋白质结构的蛋白质工程也已经成为现实。 基本内容 蛋白质体系 蛋白质的结构单位是α-氨基酸。常见的氨基酸共20种。它们以不同的顺序排列可以为生命世界提供天文数字的各种各样的蛋白质。 蛋白质分子结构的组织形式可分为 4个主要的层次。一级结构,也叫化学结构,是分子中氨基酸的排列顺序。首尾相连的氨基酸通过氨基与羧基的缩合形成链状结构,称为肽链。肽链主链原子的局部空间排列为二级结构。二级结构在空间的各种盘绕和卷曲为三级结构。有些蛋白质分子是由相同的或不同的亚单位组装成的,亚单位间的相互关系叫四级结构。 蛋白质的特殊性质和生理功能与其分子的特定结构有着密切的关系,这是形形色色的蛋白质所以能表现出丰富多彩的生命活动的分子基础。研究蛋白质的结构与功能的关系是分子生物学研究的一个重要内容。 随着结构分析技术的发展,现在已有几千个蛋白质的化学结构和几百个蛋白质的立体结构得到了阐明。70年代末以来,采用测定互补DNA顺序反推蛋白质化学结构的方法,不仅提高了分析效率,而且使一些氨基酸序列分析条件不易得到满足的蛋白质化学结构分析得以实现。 发现和鉴定具有新功能的蛋白质,仍是蛋白质研究的内容。例如与基因调控和高级神经活动有关的蛋白质的研究现在很受重视。 蛋白质-核酸体系 生物体的遗传特征主要由核酸决定。绝大多数生物的基因都由 DNA构成。简单的病毒,如λ噬菌体的基因组是由 46000个核苷酸按一定顺序组成的一条双股DNA(由于是双股DNA,通常以碱基对计算其长度)。细菌,如大肠杆菌的基因组,含4×106碱基对。人体细胞染色体上所含DNA为3×109碱基对。 遗传信息要在子代的生命活动中表现出来,需要通过复制、转录和转译。复制是以亲代 DNA为模板合成子代 DNA分子。转录是根据DNA的核苷酸序列决定一类RNA分子中的核苷酸序列;后者又进一步决定蛋白质分子中氨基酸的序列,就是转译。因为这一类RNA起着信息传递作用,故称信使核糖核酸(mRNA)。由于构成RNA的核苷酸是4种,而蛋白质中却有20种氨基酸,它们的对应关系是由mRNA分子中以一定顺序相连的 3个核苷酸来决定一种氨基酸,这就是三联体遗传密码。 基因在表达其性状的过程中贯串着核酸与核酸、核酸与蛋白质的相互作用。DNA复制时,双股螺旋在解旋酶的作用下被拆开,然后DNA聚合酶以亲代DNA链为模板,复制出子代 DNA链。转录是在 RNA聚合酶的催化下完成的。转译的场所核糖核蛋白体是核酸和蛋白质的复合体,根据mRNA的编码,在酶的催化下,把氨基酸连接成完整的肽链。基因表达的调节控制也是通过生物大分子的相互作用而实现的。如大肠杆菌乳糖操纵子上的操纵基因通过与阻遏蛋白的相互作用控制基因的开关。真核细胞染色质所含的非组蛋白在转录的调控中具有特殊作用。正常情况下,真核细胞中仅2~15%基因被表达。这种选择性的转录与转译是细胞分化的基础。 蛋白质-脂质体系 生物体内普遍存在的膜结构,统称为生物膜。它包括细胞外周膜和细胞内具有各种特定功能的细胞器膜。从化学组成看,生物膜是由脂质和蛋白质通过非共价键构成的体系。很多膜还含少量糖类,以糖蛋白或糖脂形式存在。 1972年提出的流动镶嵌模型概括了生物膜的基本特征:其基本骨架是脂双层结构。膜蛋白分为表在蛋白质和嵌入蛋白质。膜脂和膜蛋白均处于不停的运动状态。 生物膜在结构与功能上都具有两侧不对称性。以物质传送为例,某些物质能以很高速度通过膜,另一些则不能。象海带能从海水中把碘浓缩 3万倍。生物膜的选择性通透使细胞内pH和离子组成相对稳定,保持了产生神经、肌肉兴奋所必需的离子梯度,保证了细胞浓缩营养物和排除废物的功能。 生物体的能量转换主要在膜上进行。生物体取得能量的方式,或是像植物那样利用太阳能在叶绿体膜上进行光合磷酸化反应;或是像动物那样利用食物在线粒体膜上进行氧化磷酸化反应。这二者能量来源虽不同,但基本过程非常相似,最后都合成腺苷三磷酸。对于这两种能量转换的机制,P米切尔提出的化学渗透学说得到了越来越多的证据。生物体利用食物氧化所释放能量的效率可达70%左右,而从煤或石油的燃烧获取能量的效率通常为20~40%,所以生物力能学的研究很受重视。对生物膜能量转换的深入了解和模拟将会对人类更有效地利用能量作出贡献。 生物膜的另一重要功能是细胞间或细胞膜内外的信息传递。在细胞表面,广泛地存在着一类称为受体的蛋白质。激素和药物的作用都需通过与受体分子的特异性结合而实现。癌变细胞表面受体物质的分布有明显变化。细胞膜的表面性质还对细胞分裂繁殖有重要的调节作用。 对细胞表面性质的研究带动了糖类的研究。糖蛋白、蛋白聚糖和糖脂等生物大分子结构与功能的研究越来越受到重视。从发展趋势看,寡糖与蛋白质或脂质形成的体系将成为分子生物学研究的一个新的重要的领域。 理论意义和应用 分子生物学的成就说明:生命活动的根本规律在形形色色的生物体中都是统一的。例如,不论在何种生物体中,都由同样的氨基酸和核苷酸分别组成其蛋白质和核酸。遗传物质,除某些病毒外,都是DNA,并且在所有的细胞中都以同样的生化机制进行复制。分子遗传学的中心法则和遗传密码,除个别例外,在绝大多数情况下也都是通用的。 物理学的成就证明,一切物质的原子都由为数不多的基本粒子根据相同的规律所组成,说明了物质世界结构上的高度一致,揭示了物质世界的本质,从而带动了整个物理学科的发展。分子生物学则在分子水平上揭示了生命世界的基本结构和生命活动的根本规律的高度一致,揭示了生命现象的本质。和过去基本粒子的研究带动物理学的发展一样,分子生物学的概念和观点也已经渗入到基础和应用生物学的每一个分支领域,带动了整个生物学的发展,使之提高到一个崭新的水平。 过去生物进化的研究,主要依靠对不同种属间形态和解剖方面的比较来决定亲缘关系。随着蛋白质和核酸结构测定方法的进展,比较不同种属的蛋白质或核酸的化学结构,即可根据差异的程度,来断定它们的亲缘关系。由此得出的系统进化树,与用经典方法得到的是基本符合的。采用分子生物学的方法研究分类与进化有特别的优越性。首先,构成生物体的基本生物大分子的结构反映了生命活动中更为本质的方面。其次,根据结构上的差异程度可以对亲缘关系给出一个定量的,因而也是更准确的概念。第三,对于形态结构非常简单的微生物的进化,则只有用这种方法才能得到可靠结果。 高等动物的高级神经活动是极其复杂的生命现象,过去多是在细胞乃至整体水平上研究,近年来深入到分子水平研究的结果充分说明高级神经活动也同样是以生物大分子的活动为基础的。例如,在高等动物学习与记忆的过程中,大脑中RNA和蛋白质的组成发生明显的变化,并且一些影响生物体合成蛋白质的药物也显著地影响学习与记忆的能力。又如,“生物钟”是一种熟知的生物现象。用鸡进行的实验发现,有一种重要的神经传递介质(5-羟色胺)和一种激素(褪黑激素)以及控制它们变化的一种酶,在鸡脑中的含量呈24小时的周期性变化。正是这种变化构成了鸡的“生物钟”的物质基础。 在应用方面,生物膜能量转换原理的阐明,将有助于解决全球性的能源问题。了解酶的催化原理就能更有针对性地进行酶的人工模拟,设计出化学工业上广泛使用的新催化剂,从而给化学工业带来一场革命。 分子生物学在生物工程技术中也起了巨大的作用,1973年重组DNA技术的成功,为基因工程的发展铺平了道路。80年代以来,已经采用基因工程技术,把高等动物的一些基因引入单细胞生物,用发酵方法生产干扰素、多种多肽激素和疫苗等。基因工程的进一步发展将为定向培育动、植物和微生物良种以及有效地控制和治疗一些人类遗传性疾病提供根本性的解决途径。 从基因调控的角度研究细胞癌变也已经取得不少进展。分子生物学将为人类最终征服癌症做出重要的贡献。[编辑本段]分子生物学的应用 1,亲子鉴定 近几年来,人类基因组研究的进展日新月异,而分子生物学技术也不断完善,随着基因组研究向各学科的不断渗透,这些学科的进展达到了前所未有的高度。在法医学上,STR位点和单核苷酸(SNP)位点检测分别是第二代、第三代DNA分析技术的核心,是继RFLPs(限制性片段长度多态性)VNTRs(可变数量串联重复序列多态性)研究而发展起来的检测技术。作为最前沿的刑事生物技术,DNA分析为法医物证检验提供了科学、可靠和快捷的手段,使物证鉴定从个体排除过渡到了可以作同一认定的水平,DNA检验能直接认定犯罪、为凶杀案、强奸杀人案、碎尸案、强奸致孕案等重大疑难案件的侦破提供准确可靠的依据。随着DNA技术的发展和应用,DNA标志系统的检测将成为破案的重要手段和途径。此方法作为亲子鉴定已经是非常成熟的,也是国际上公认的最好的一种方法。

-123-id-9912-page-htm 可以不

不足之处是操作复杂,成本较高。以上分子生物学方法对结核杆菌/html/yaoxue/20080316/html

相关百科
热门百科
首页
发表服务