学术论文百科

通信的发展史论文3000字内容解读

发布时间:2024-07-06 15:07:22

通信的发展史论文3000字内容解读

世界移动通信发展史 移动通信可以说从无线电通信发明之日就产生了。1897年,M·G·马可尼所完成的无线通信试验就是在固定站与一艘拖船之间进行的,距离为18海里。 现代移动通信技术的发展始于本世纪20年代,大致经历了五个发展阶段。 第一阶段从本世纪20年代至40年代,为早期发展阶段。在这期间,首先在短波几个频段上开发出专用移动通信系统,其代表是美国底特律市警察使用的车载无线电系统。该系统工作频率为2MHz,到40年代提高到30~40MHz,可以认为这个阶段是现代移动通信的起步阶段,特点是专用系统开发,工作频率较低。 第二阶段从40年代中期至60年代初期。在此期间内,公用移动通信业务开始问世。1946年,根据美国联邦通信委员会(FCC)的计划,贝尔系统在圣路易斯城建立了世界上第一个公用汽车电话网,称为“城市系统”。当时使用三个频道,间隔为120kHz,通信方式为单工,随后,西德(1950年)、法国(1956年)、英国(1959年)等国相继研制了公用移动电话系统。美国贝尔实验室完成了人工交换系统的接续问题。这一阶段的特点是从专用移动网向公用移动网过渡,接续方式为人工,网的容量较小。 第三阶段从60年代中期至70年代中期。在此期间,美国推出了改进型移动电话系统(IMTS),使用150MHz和450MHz频段,采用大区制、中小容量,实现了无线频道自动选择并能够自动接续到公用电话网。德国也推出了具有相同技术水平的B网。可以说,这一阶段是移动通信系统改进与完善的阶段,其特点是采用大区制、中小容量,使用450MHz频段,实现了自动选频与自动接续。 第四阶段从70年代中期至80年代中期。这是移动通信蓬勃发展时期。1978年底,美国贝尔试验室研制成功先进移动电话系统(AMPS),建成了蜂窝状移动通信网,大大提高了系统容量。1983年,首次在芝加哥投入商用。同年12月,在华盛顿也开始启用。之后,服务区域在美国逐渐扩大。到1985年3月已扩展到47个地区,约10万移动用户。其它工业化国家也相继开发出蜂窝式公用移动通信网。日本于1979年推出800MHz汽车电话系统(HAMTS),在东京、神户等地投入商用。西德于1984年完成C网,频段为450MHz。英国在1985年开发出全地址通信系统(TACS),首先在伦敦投入使用,以后覆盖了全国,频段为900MHz。法国开发出450系统。加拿大推出450MHz移动电话系统MTS。瑞典等北欧四国于1980年开发出NMT-450移动通信网,并投入使用,频段为450MHz。 这一阶段的特点是蜂窝状移动通信网成为实用系统,并在世界各地迅速发展。移动通信大发展的原因,除了用户要求迅猛增加这一主要推动力之外,还有几方面技术进展所提供的条件。首先,微电子技术在这一时期得到长足发展,这使得通信设备的小型化、微型化有了可能性,各种轻便电台被不断地推出。其次,提出并形成了移动通信新体制。随着用户数量增加,大区制所能提供的容量很快饱和,这就必须探索新体制。在这方面最重要的突破是贝尔试验室在70年代提出的蜂窝网的概念。蜂窝网,即所谓小区制,由于实现了频率再用,大大提高了系统容量。可以说,蜂窝概念真正解决了公用移动通信系统要求容量大与频率资源有限的矛盾。第三方面进展是随着大规模集成电路的发展而出现的微处理器技术日趋成熟以及计算机技术的迅猛发展,从而为大型通信网的管理与控制提供了技术手段。 第五阶段从80年代中期开始。这是数字移动通信系统发展和成熟时期。 以AMPS和TACS为代表的第一代蜂窝移动通信网是模拟系统。模拟蜂窝网虽然取得了很大成功,但也暴露了一些问题。例如,频谱利用率低,移动设备复杂,费用较贵,业务种类受限制以及通话易被窃听等,最主要的问题是其容量已不能满足日益增长的移动用户需求。解决这些问题的方法是开发新一代数字蜂窝移动通信系统。数字无线传输的频谱利用率高,可大大提高系统容量。另外,数字网能提供语音、数据多种业务服务,并与ISDN等兼容。实际上,早在70年代末期,当模拟蜂窝系统还处于开发阶段时,一些发达国家就接手数字蜂窝移动通信系统的研究。到80年代中期,欧洲首先推出了泛欧数字移动通信网(GSM)的体系。随后,美国和日本也制定了各自的数字移动通信体制。泛欧网GSM已于1991年7月开始投入商用,预计1995年将覆盖欧洲主要城市、机场和公路。可以说,在未来十多年内数字蜂窝移动通信将处于一个大发展时期,及有可能成为陆地公用移动通信的主要系统。 与其它现代技术的发展一样,移动通信技术的发展也呈现加快趋势,目前,当数字蜂窝网刚刚进入实用阶段,正方兴未艾之时,关于未来移动通信的讨论已如火如荼地展开。各种方案纷纷出台,其中最热门的是所谓个人移动通信网。关于这种系统的概念和结构,各家解释并未一致。但有一点是肯定的,即未来移动通信系统将提供全球性优质服务,真正实现在任何时间、任何地点、向任何人提供通信服务这一移动通信的最高目标。傅立叶变换最早是在19世纪由法国的数学家JB Fourier提出,他认为任何信号(例如声音,影像等)均可被分解为频率、振幅。由于傅立叶变换的性质,可以把图象或者信号在频域中进行处 理,从而达到简化处理过程、增强处理效 对电信发展贡献可想而知

从战国时期开始我国就建立了较为简单的通讯系统,各国都建有烽火台,传递紧急信息如敌军入侵则点燃烽火台通知首都,调集援兵后来各国发展出驿站传递信件,这在秦朝、汉朝逐步完善,渐渐建立起完善的驿站管理系统但这都是为官方服务的,民间百姓要投递信件大概始于唐朝然后这延续了千百年,直到现代通讯的诞生

人类通讯发展史口语时代,古代击鼓文字书写时代,西周,邮驿文字书写时代 公元前100年鸿雁传书也就是很多人说的飞鸽传书。文字书写时代,公元前7世纪 灯塔文字书写时代,1777年 旗语印刷时代。   近代电子通讯,1792年法国人雪普兄弟发明了光信号传送器。1837年美国人莫尔斯在华盛顿和巴尔的摩试拍有线电报获得成功。1857年,横跨大西洋海底电报电缆完成。1875年美国人贝尔发明电话;1877年美国人爱迪生发明留声机。1887年德国人赫兹用实验验证了电磁波;1889年意大利人马可尼在英法两国间试拍无线电成功;1895年,俄国人波波夫和意大利人马可尼同时成功研制了无线电接收机。 1895年,法国的卢米埃兄弟,在巴黎首映第一部电影。印刷时代 1901年跨大西洋电缆铺设成功;印刷时代 1912年,泰坦尼克号沉船事件中,无线电救了700多条人命。印刷时代 1915年巴黎与华盛顿长距离无线电通信成功;印刷时代 1920年代,收音机问世印刷时代 1920年代,英国人贝尔德成功进行了电视画面的传送,被誉为电视发明人。印刷时代 1926年英国人贝阿特在英国皇家研究所完成电视图像研制;印刷时代 1946年第一台电子计算机"ENIAC"在美国宾夕法尼亚大学摩尔电子工程学院问世;印刷时代 1947年美国人休克莱发明晶体管;印刷时代 1953年IBM公司开发出"IBM 650"系列计算机;印刷时代 1955年,美国为了大战的需要,发行了第一部军用电子计算机。印刷时代 1956年美国安佩克斯公司发明录像机;印刷时代 1957年IBM公司开发出第一代高级语言"Fortran";印刷时代 1958年是激动人心的一年。这一年里美国人达沃斯发现了激光原理。印刷时代 1960年美国制成第一代小型机PDP I;印刷时代 1962年,美国发射第一颗人造卫星,开启电视卫星传送的时代。印刷时代 1962年美国通信卫星与欧洲通信获得成功;   网络传播时代 1969年,美军建立阿帕网(ARPANET),目的是预防遭受攻击时,通信中断。网络传播时代1969年美国提出全球通信网蓝图;网络传播时代 1970年Intel公司制成超小型集成芯片;网络传播时代 1975年美国人比尔·盖茨开发出"Basic"语言;网络传播时代 1977年Apple公司制成PC机"Apple II";网络传播时代 1978年美国提出建设高速通信网络规划;网络传播时代 1979年传奇的美国Xero公司研究小组在鲍勃·泰勒的领导下研究出Internet的前身网络传播时代 1981年美国Microsoft公司开发出"MS-DOS"。同年IBM发布IBM-PC;网络传播时代 1983年,美国国防部将阿帕网分为军网和民网,渐渐扩大为今天的互联网。网络传播时代 1984年出现CD-ROM,通讯进入海量时代。苹果公司推出购物电脑;网络传播时代 1988年随着通讯事业发展,virtus剧增;网络传播时代 1991年美国Motorola公司和IBM、Apple公司合作推出Power-PC芯片网络传播时代 1993年,美国宣布兴建信息高速通路计划,整合电脑、电话、电视媒体。网络传播时代 1993年美国Intel公司开发出非Risc高性能CPU;网络传播时代 1994年美国Florida州建成信息高速公路;网络传播时代 1995年微软开发"Windows95",把网络功能集成在PC机上   通讯是报刊宣传的基本题材之一,具有内容真实详细具体、形式自由灵活、表达方式多样、语言生动形象等特点。通讯的类型有:人物通讯、事件通讯、工作通讯、概貌通讯、新闻故事、文艺通讯、主题通讯、旅游通讯;最常见的是:人物通讯和事件通讯。它是应用写作研究的重要文体之一。   通讯是以叙述、描写为主要表达方式,具体形象地报道具有新闻特性的典型人物、事件和经验的文体。它的表现形式较多,如一般通讯、特写、速写,还有访问记、侧记、记谈、札记、散记、巡礼、见闻等等,大体皆可以归入通讯一类。

毕业设计(论文)OFDM通信系统创思通信毕业设计论文参考doc

通信的发展史论文3000字内容解析

世界移动通信发展史 移动通信可以说从无线电通信发明之日就产生了。1897年,M·G·马可尼所完成的无线通信试验就是在固定站与一艘拖船之间进行的,距离为18海里。 现代移动通信技术的发展始于本世纪20年代,大致经历了五个发展阶段。 第一阶段从本世纪20年代至40年代,为早期发展阶段。在这期间,首先在短波几个频段上开发出专用移动通信系统,其代表是美国底特律市警察使用的车载无线电系统。该系统工作频率为2MHz,到40年代提高到30~40MHz,可以认为这个阶段是现代移动通信的起步阶段,特点是专用系统开发,工作频率较低。 第二阶段从40年代中期至60年代初期。在此期间内,公用移动通信业务开始问世。1946年,根据美国联邦通信委员会(FCC)的计划,贝尔系统在圣路易斯城建立了世界上第一个公用汽车电话网,称为“城市系统”。当时使用三个频道,间隔为120kHz,通信方式为单工,随后,西德(1950年)、法国(1956年)、英国(1959年)等国相继研制了公用移动电话系统。美国贝尔实验室完成了人工交换系统的接续问题。这一阶段的特点是从专用移动网向公用移动网过渡,接续方式为人工,网的容量较小。 第三阶段从60年代中期至70年代中期。在此期间,美国推出了改进型移动电话系统(IMTS),使用150MHz和450MHz频段,采用大区制、中小容量,实现了无线频道自动选择并能够自动接续到公用电话网。德国也推出了具有相同技术水平的B网。可以说,这一阶段是移动通信系统改进与完善的阶段,其特点是采用大区制、中小容量,使用450MHz频段,实现了自动选频与自动接续。 第四阶段从70年代中期至80年代中期。这是移动通信蓬勃发展时期。1978年底,美国贝尔试验室研制成功先进移动电话系统(AMPS),建成了蜂窝状移动通信网,大大提高了系统容量。1983年,首次在芝加哥投入商用。同年12月,在华盛顿也开始启用。之后,服务区域在美国逐渐扩大。到1985年3月已扩展到47个地区,约10万移动用户。其它工业化国家也相继开发出蜂窝式公用移动通信网。日本于1979年推出800MHz汽车电话系统(HAMTS),在东京、神户等地投入商用。西德于1984年完成C网,频段为450MHz。英国在1985年开发出全地址通信系统(TACS),首先在伦敦投入使用,以后覆盖了全国,频段为900MHz。法国开发出450系统。加拿大推出450MHz移动电话系统MTS。瑞典等北欧四国于1980年开发出NMT-450移动通信网,并投入使用,频段为450MHz。 这一阶段的特点是蜂窝状移动通信网成为实用系统,并在世界各地迅速发展。移动通信大发展的原因,除了用户要求迅猛增加这一主要推动力之外,还有几方面技术进展所提供的条件。首先,微电子技术在这一时期得到长足发展,这使得通信设备的小型化、微型化有了可能性,各种轻便电台被不断地推出。其次,提出并形成了移动通信新体制。随着用户数量增加,大区制所能提供的容量很快饱和,这就必须探索新体制。在这方面最重要的突破是贝尔试验室在70年代提出的蜂窝网的概念。蜂窝网,即所谓小区制,由于实现了频率再用,大大提高了系统容量。可以说,蜂窝概念真正解决了公用移动通信系统要求容量大与频率资源有限的矛盾。第三方面进展是随着大规模集成电路的发展而出现的微处理器技术日趋成熟以及计算机技术的迅猛发展,从而为大型通信网的管理与控制提供了技术手段。 第五阶段从80年代中期开始。这是数字移动通信系统发展和成熟时期。 以AMPS和TACS为代表的第一代蜂窝移动通信网是模拟系统。模拟蜂窝网虽然取得了很大成功,但也暴露了一些问题。例如,频谱利用率低,移动设备复杂,费用较贵,业务种类受限制以及通话易被窃听等,最主要的问题是其容量已不能满足日益增长的移动用户需求。解决这些问题的方法是开发新一代数字蜂窝移动通信系统。数字无线传输的频谱利用率高,可大大提高系统容量。另外,数字网能提供语音、数据多种业务服务,并与ISDN等兼容。实际上,早在70年代末期,当模拟蜂窝系统还处于开发阶段时,一些发达国家就接手数字蜂窝移动通信系统的研究。到80年代中期,欧洲首先推出了泛欧数字移动通信网(GSM)的体系。随后,美国和日本也制定了各自的数字移动通信体制。泛欧网GSM已于1991年7月开始投入商用,预计1995年将覆盖欧洲主要城市、机场和公路。可以说,在未来十多年内数字蜂窝移动通信将处于一个大发展时期,及有可能成为陆地公用移动通信的主要系统。 与其它现代技术的发展一样,移动通信技术的发展也呈现加快趋势,目前,当数字蜂窝网刚刚进入实用阶段,正方兴未艾之时,关于未来移动通信的讨论已如火如荼地展开。各种方案纷纷出台,其中最热门的是所谓个人移动通信网。关于这种系统的概念和结构,各家解释并未一致。但有一点是肯定的,即未来移动通信系统将提供全球性优质服务,真正实现在任何时间、任何地点、向任何人提供通信服务这一移动通信的最高目标。傅立叶变换最早是在19世纪由法国的数学家JB Fourier提出,他认为任何信号(例如声音,影像等)均可被分解为频率、振幅。由于傅立叶变换的性质,可以把图象或者信号在频域中进行处 理,从而达到简化处理过程、增强处理效 对电信发展贡献可想而知

从战国时期开始我国就建立了较为简单的通讯系统,各国都建有烽火台,传递紧急信息如敌军入侵则点燃烽火台通知首都,调集援兵后来各国发展出驿站传递信件,这在秦朝、汉朝逐步完善,渐渐建立起完善的驿站管理系统但这都是为官方服务的,民间百姓要投递信件大概始于唐朝然后这延续了千百年,直到现代通讯的诞生

人类通讯发展史口语时代,古代击鼓文字书写时代,西周,邮驿文字书写时代 公元前100年鸿雁传书也就是很多人说的飞鸽传书。文字书写时代,公元前7世纪 灯塔文字书写时代,1777年 旗语印刷时代。   近代电子通讯,1792年法国人雪普兄弟发明了光信号传送器。1837年美国人莫尔斯在华盛顿和巴尔的摩试拍有线电报获得成功。1857年,横跨大西洋海底电报电缆完成。1875年美国人贝尔发明电话;1877年美国人爱迪生发明留声机。1887年德国人赫兹用实验验证了电磁波;1889年意大利人马可尼在英法两国间试拍无线电成功;1895年,俄国人波波夫和意大利人马可尼同时成功研制了无线电接收机。 1895年,法国的卢米埃兄弟,在巴黎首映第一部电影。印刷时代 1901年跨大西洋电缆铺设成功;印刷时代 1912年,泰坦尼克号沉船事件中,无线电救了700多条人命。印刷时代 1915年巴黎与华盛顿长距离无线电通信成功;印刷时代 1920年代,收音机问世印刷时代 1920年代,英国人贝尔德成功进行了电视画面的传送,被誉为电视发明人。印刷时代 1926年英国人贝阿特在英国皇家研究所完成电视图像研制;印刷时代 1946年第一台电子计算机"ENIAC"在美国宾夕法尼亚大学摩尔电子工程学院问世;印刷时代 1947年美国人休克莱发明晶体管;印刷时代 1953年IBM公司开发出"IBM 650"系列计算机;印刷时代 1955年,美国为了大战的需要,发行了第一部军用电子计算机。印刷时代 1956年美国安佩克斯公司发明录像机;印刷时代 1957年IBM公司开发出第一代高级语言"Fortran";印刷时代 1958年是激动人心的一年。这一年里美国人达沃斯发现了激光原理。印刷时代 1960年美国制成第一代小型机PDP I;印刷时代 1962年,美国发射第一颗人造卫星,开启电视卫星传送的时代。印刷时代 1962年美国通信卫星与欧洲通信获得成功;   网络传播时代 1969年,美军建立阿帕网(ARPANET),目的是预防遭受攻击时,通信中断。网络传播时代1969年美国提出全球通信网蓝图;网络传播时代 1970年Intel公司制成超小型集成芯片;网络传播时代 1975年美国人比尔·盖茨开发出"Basic"语言;网络传播时代 1977年Apple公司制成PC机"Apple II";网络传播时代 1978年美国提出建设高速通信网络规划;网络传播时代 1979年传奇的美国Xero公司研究小组在鲍勃·泰勒的领导下研究出Internet的前身网络传播时代 1981年美国Microsoft公司开发出"MS-DOS"。同年IBM发布IBM-PC;网络传播时代 1983年,美国国防部将阿帕网分为军网和民网,渐渐扩大为今天的互联网。网络传播时代 1984年出现CD-ROM,通讯进入海量时代。苹果公司推出购物电脑;网络传播时代 1988年随着通讯事业发展,virtus剧增;网络传播时代 1991年美国Motorola公司和IBM、Apple公司合作推出Power-PC芯片网络传播时代 1993年,美国宣布兴建信息高速通路计划,整合电脑、电话、电视媒体。网络传播时代 1993年美国Intel公司开发出非Risc高性能CPU;网络传播时代 1994年美国Florida州建成信息高速公路;网络传播时代 1995年微软开发"Windows95",把网络功能集成在PC机上   通讯是报刊宣传的基本题材之一,具有内容真实详细具体、形式自由灵活、表达方式多样、语言生动形象等特点。通讯的类型有:人物通讯、事件通讯、工作通讯、概貌通讯、新闻故事、文艺通讯、主题通讯、旅游通讯;最常见的是:人物通讯和事件通讯。它是应用写作研究的重要文体之一。   通讯是以叙述、描写为主要表达方式,具体形象地报道具有新闻特性的典型人物、事件和经验的文体。它的表现形式较多,如一般通讯、特写、速写,还有访问记、侧记、记谈、札记、散记、巡礼、见闻等等,大体皆可以归入通讯一类。

世界移动通信发展史 移动通信可以说从无线电通信发明之日就产生了。1897年,M·G·马可尼所完成的无线通信试验就是在固定站与一艘拖船之间进行的,距离为18海里。 现代移动通信技术的发展始于本世纪20年代,大致经历了五个发展阶段。 第一阶段从本世纪20年代至40年代,为早期发展阶段。在这期间,首先在短波几个频段上开发出专用移动通信系统,其代表是美国底特律市警察使用的车载无线电系统。该系统工作频率为2MHz,到40年代提高到30~40MHz,可以认为这个阶段是现代移动通信的起步阶段,特点是专用系统开发,工作频率较低。 第二阶段从40年代中期至60年代初期。在此期间内,公用移动通信业务开始问世。1946年,根据美国联邦通信委员会(FCC)的计划,贝尔系统在圣路易斯城建立了世界上第一个公用汽车电话网,称为“城市系统”。当时使用三个频道,间隔为120kHz,通信方式为单工,随后,西德(1950年)、法国(1956年)、英国(1959年)等国相继研制了公用移动电话系统。美国贝尔实验室完成了人工交换系统的接续问题。这一阶段的特点是从专用移动网向公用移动网过渡,接续方式为人工,网的容量较小。 第三阶段从60年代中期至70年代中期。在此期间,美国推出了改进型移动电话系统(IMTS),使用150MHz和450MHz频段,采用大区制、中小容量,实现了无线频道自动选择并能够自动接续到公用电话网。德国也推出了具有相同技术水平的B网。可以说,这一阶段是移动通信系统改进与完善的阶段,其特点是采用大区制、中小容量,使用450MHz频段,实现了自动选频与自动接续。 第四阶段从70年代中期至80年代中期。这是移动通信蓬勃发展时期。1978年底,美国贝尔试验室研制成功先进移动电话系统(AMPS),建成了蜂窝状移动通信网,大大提高了系统容量。1983年,首次在芝加哥投入商用。同年12月,在华盛顿也开始启用。之后,服务区域在美国逐渐扩大。到1985年3月已扩展到47个地区,约10万移动用户。其它工业化国家也相继开发出蜂窝式公用移动通信网。日本于1979年推出800MHz汽车电话系统(HAMTS),在东京、神户等地投入商用。西德于1984年完成C网,频段为450MHz。英国在1985年开发出全地址通信系统(TACS),首先在伦敦投入使用,以后覆盖了全国,频段为900MHz。法国开发出450系统。加拿大推出450MHz移动电话系统MTS。瑞典等北欧四国于1980年开发出NMT-450移动通信网,并投入使用,频段为450MHz。 这一阶段的特点是蜂窝状移动通信网成为实用系统,并在世界各地迅速发展。移动通信大发展的原因,除了用户要求迅猛增加这一主要推动力之外,还有几方面技术进展所提供的条件。首先,微电子技术在这一时期得到长足发展,这使得通信设备的小型化、微型化有了可能性,各种轻便电台被不断地推出。其次,提出并形成了移动通信新体制。随着用户数量增加,大区制所能提供的容量很快饱和,这就必须探索新体制。在这方面最重要的突破是贝尔试验室在70年代提出的蜂窝网的概念。蜂窝网,即所谓小区制,由于实现了频率再用,大大提高了系统容量。可以说,蜂窝概念真正解决了公用移动通信系统要求容量大与频率资源有限的矛盾。第三方面进展是随着大规模集成电路的发展而出现的微处理器技术日趋成熟以及计算机技术的迅猛发展,从而为大型通信网的管理与控制提供了技术手段。 第五阶段从80年代中期开始。这是数字移动通信系统发展和成熟时期。 以AMPS和TACS为代表的第一代蜂窝移动通信网是模拟系统。模拟蜂窝网虽然取得了很大成功,但也暴露了一些问题。例如,频谱利用率低,移动设备复杂,费用较贵,业务种类受限制以及通话易被窃听等,最主要的问题是其容量已不能满足日益增长的移动用户需求。解决这些问题的方法是开发新一代数字蜂窝移动通信系统。数字无线传输的频谱利用率高,可大大提高系统容量。另外,数字网能提供语音、数据多种业务服务,并与ISDN等兼容。实际上,早在70年代末期,当模拟蜂窝系统还处于开发阶段时,一些发达国家就接手数字蜂窝移动通信系统的研究。到80年代中期,欧洲首先推出了泛欧数字移动通信网(GSM)的体系。随后,美国和日本也制定了各自的数字移动通信体制。泛欧网GSM已于1991年7月开始投入商用,预计1995年将覆盖欧洲主要城市、机场和公路。可以说,在未来十多年内数字蜂窝移动通信将处于一个大发展时期,及有可能成为陆地公用移动通信的主要系统。 与其它现代技术的发展一样,移动通信技术的发展也呈现加快趋势,目前,当数字蜂窝网刚刚进入实用阶段,正方兴未艾之时,关于未来移动通信的讨论已如火如荼地展开。各种方案纷纷出台,其中最热门的是所谓个人移动通信网。关于这种系统的概念和结构,各家解释并未一致。但有一点是肯定的,即未来移动通信系统将提供全球性优质服务,真正实现在任何时间、任何地点、向任何人提供通信服务这一移动通信的最高目标。傅立叶变换最早是在19世纪由法国的数学家JB Fourier提出,他认为任何信号(例如声音,影像等)均可被分解为频率、振幅。由于傅立叶变换的性质,可以把图象或者信号在频域中进行处 理,从而达到简化处理过程、增强处理效 对电信发展贡献可想而知

通信的发展史论文3000字内容

从1G到5G,通信技术的发展史,5G是什么

无线通信息技术的发展及在数字化社区中的应用  1、无线通信技术的发展过程  回顾通信发展的历史,我们发现了一个非常有趣有过程:1832年莫尔斯发明了电报,它传送的信息是由众所周知的点划码组成的,即人类最早的通信是采用数字方式进行的。以后贝尔又发明了电话,并由此造就一个电信产业。一个多世纪以来,以电话服务为主的电信业走了一条成功之路,取得了极大的发展。然而随着人类社会的发展,电信业务也从早期的电报、电话发展到今天多种业务并存的局面,通信的规模也发生了翻天覆地的变化。随着科学技术的发展,现代通信又进入了数字时代。20世纪90年代信息革命的浪潮,建设信息高速公路的号角声,信息和知识爆炸式的增长,特别是因特网商用化后的迅猛发展,使传统的电信业受到巨大的震动和冲击。带给我们的启示是,问题的核心在于“信息”。在信息和知识已成为社会和经济发展的战略资源和基本要素的时代中,人们更加需要随时随地获取信息,原来点对点的固定电话通信方式已远不能满足需求了。人类需要宽带的无线通信技术,来满足多媒体化、普及化、多样化、全球化和个性化的信息交流。无线通信是指采用电磁波进行信息传递的通信方式。早在1897年,马可尼使用800KHZ中波信号进行了从英国至北美纽芬兰的世界上第一次横跨大西洋的线无电报通信试验,开创了人类无线通信的新纪元。在无线通信初期,受技术条件的限制,人们大量使用长波及中波进行通信。20世纪20年代初人们发现的短波通信,直到20世纪60年代卫星通信兴起前,它一直是远程国际通信的重要手段,并且目前对应急通信和军用通信依然有一定实用价值。  20世纪40年代到50年代产生了传输频带较宽、性能较稳定的微波通信,成为长距离大容量地面干线无线传输的重要手段。模拟调频传输容量高达2700路,亦可同时传输高质量彩色电视信号;尔号逐步进入中容量至大容量数字微波传输。80年代中期以来,随着频率选择性色散衰落对数字微波传输中断影响的发现及一系列自适应衰落对抗技术与高状态调制与检测技术的发展,使数字微波传输产生了一个革命性变化。特别应该指出的是20世纪80年代到90年代发展起来的一整套高速多状态自适应编码调制解调技术与信息号处理及信号检测技术,对现今卫星通信、移动通信、全数字HDTV传输、通用高速有线/无线接入,乃至高质量磁性记录等诸多领域的信号设计与信号处理及应用,发挥了重要作用。随着国民经济和社会发展的信息化,人们要通信息化开创新的工作方式、管理方式、商贸方式、金融方式、思想交流方式、文化教育方式、医疗保健方式以及消费与生活方式。无线通信也从固定方式发展为移动方式,移动通信发展至今大约经历了五个阶段;  第一阶段为20年代初至50年代初,主要用于舰船及军有,采用短波频及电子管技术,至该阶段末期才出现150MHZ VHF单工汽车公用移动电话系统MTS  第二阶段为50年代到60年代,此时频段扩展至UHF450MHZ,器件技术已向半导体过渡,大都为移动环境中的专用系统,并解决了移动电话与公用电话网的接续问题。  第三阶段为70年代初至80年代初频段扩展至800MHZ,美国Bell研究所提出了蜂窝系统概念并于70年代末进行了AMPS试验。  第四阶段为80年代初至90年代中,为第二代数字移动通信兴起与大发展阶段,并逐步向个人通信业务方向迈进;此时出现了D-AMPS、TACS、ETACS、GSM/DCS、cdmaOne、PDC、PHS、DECT、PACS、PCS等各类系统与业务运行,频段扩展至900MHZ~9GHZ,而且除公众蜂窝电话通信系统外,无线寻呼系统、无绳电话系统、集群系统、无中心多信道选址移动通信系统等各类移动通信手段适应用户市场需求同时兴起并各显神通。  第五阶段为90年代中至今,随着数据通信与多媒体业务需求的发展,适应移动数据、移动计算及移动多媒体运作需要的第三代移动通信开始兴起,其全球标准化及相应融合工作与样机研制和现场试验工作在快速推进,包括从第二代至第三代移动通信的平滑过渡问题在内。对于第三代移动TMT-2000纷纷参与标准的制定,经多次融合努力在1999年10月25日至11月5日芬兰赫尔辛基召开的ITU-R TG8/1第18次会议上5类RTT技术标准共6种方案成为最终结果。中国的TD-SCDMA方案也已成为其中之一。应该指出,UTRAWCDMA DS及TIA cdma2000MC的相应起步样机已经诞生,包括以GSM、csmaOne后向兼容为基础的第二代半过渡设备(G)EDGE、cdma IS-95B HDR(4Mbit/s峰值速率,64QAM调制)及cdma2000-1X等亦已推出。  此外,为接续Internet移动游览应用的无线应用协议(WAP)与无线连接技术蓝牙(Blue tooth)已经产生。从网络的角度来看,接入网可分成有线接入网和无线接入网、光缆同轴混合接入网、铜线电缆、对绞线、电话(一般为铜线)接入网等等;无线接入技术是近些年迅速发展起来的新技术领域,它从概念上产生了一个重大的飞跃,即不需要缆线类物理传输媒质而采用无线传播手段来代替部分接入网甚至入网的全部,从而达到降低成本、提高灵活性和扩展传输距离的目的。无线接入网品种繁多,如移动卫生系统,蜂窝移动通信系统,集群通信系统,一点到多点微波通信系统,微波蜂窝的无线本地接入系统(PHS、PAS、PACS、DECT)等。短距离之内的接入技术主要有蓝牙(Blue tooth)、红外线、DECT、IEEE11和共享无线接入协议(SWAP)/HomeRF等系统。继广域网(WAN、Wind、Area Network或城域网,MAN,Metropolitan Area Network)、局域网(LAN,Local Area Network)之后,最近人们又提出了“无线个域网”(WPAN、Wireless Personal Area Network)。这一新概念将小范围应用提升至网络理论的高度。在短短的时间,WPAN成为一个受人瞩目的新热点,WPAN的研究组成立不到1上,就演变为IEEE的专门工作组IEEE5(即WPAN Working Group,于1999年3月成立),可见其受重视的程度。  比较而言,Blue tooth系统更具有代表性,它正根据WPAN的概念向前发展。事实上,Blue tooth和WPAN的概念相辅相成,Blue tooth已经是WPAN的一个雏形。从它最初由Ericsson,IBM,Inter,Nokia和Toshiba公司作为原始发起组织而推出,1年多时间已吸引了近2000个国际上有影响的公司参与。1999年底,美国的4家公司3COM,Lucent,Microsoft和Motorola,与上述5公司一样作为Blue tooth的发起组织,使它在与SWAP、IEEE11等类似应用标准的竞争中脱颖而出,发展前景更加明朗。为了推动Blue tooth的发展,Blue tooth的标准是非专利的,Blue tooth已成为目前通信领域的一个新热点,预计不远的将来就可成为小范围无线多媒体通信的国际标准。总之,无线通信技术前景一片光明。  2、我国无线通信技术的发展  当前,中国是世界各国通信技术运营商和设备制造商关注的焦点,大家都希望在中国的市场上占有自己的发展空间和市场份额。移动通信在中国发展十分迅速,中国移动通信的走向一直为世人所瞩目。1987年11月,我国广东正式开通了第一个TACS制式模拟蜂窝移动通信系统,实现了移动电话用户“零”的突破。1994年底,广东又首先开通了GSM数字蜂窝移动通信系统,至1995年,全国已15个省、市也相继开通了GSM移动通信网。迄今为止,全国各省、自治区、直辖市面上都建设了GSM网,实现了国内和国际的全自动温游。目前我国正在积极准备在21世纪初期开展第三代移动通信的商用试验。  从1987年至今,我国移动电话用户数的增长很快,尤其是GSM网更是以人们始料不及的速度在迅猛发展。这主要是因为GSM系统在技术和经济方面均比TACS系统有较大的优势,更重要的是我国在GSM运营领域引入了竞争机制,促进了GSM网的发展。我国的移动通信用户已超过了8000万,位居世界第二。  近10年来,我国在移动通信领域的科研、设备生产等方面也取得了可喜的进步。国产移动通信设备—交换系统、基站和手机等都已经投入生产,并陆续投放市场,第三代移动通信系统的开发和研究也正与世界同步。可见,中国无线通信在运营业与制造业上已取得了第一阶段的成功。  3、今后无线通信技术的趋势  21世纪的电信技术正进主一个关键的转折时期、未来十年将是技术发展最为活跃的时期。信息化社会的到来以及IP技术的兴起,正深刻的改变着电信网络的面貌以及未来技术发展的走向。未来无线通信技术发展的主要趋势是宽带化、分组化、综合经、个人化、主要特点体现为以上几个方面:  (1)宽带化是通信信息技术发展的重要方向之一。随着光纤传输技术以及高通透量网络节点的进一步发展,有线网络的宽带化正在世界范围内全面展开,而无线通信技术也正在朝着无线接入宽带化的方向演进,无线传输速率将从第二代系统的6Kbit/s向第三代移动通信系统的最高速率2Mbit/s发展。  (2)核心网络综合化,接入网络多样化。未来信息网络的结构模式将向核心网/接入网转变,网络的分组化和宽带化,使在同一核心网络上综合传送多种业务信息成为可能,网络的综合化以及管制的逐步开放和市场竞争的需要,将进一步推动传统的电信网络与新兴的计算机网络的融合。接入网是通信信息网络中最具开发潜力的部分,未来网络可通过固定接入、移动蜂窝接入、无线本地环路入等不同的接入设备,接入核心网实现用户所需的各种业务。在技术上实现固定和移动通信等不同业务的相互融合,尤其是无线应用协议(WAP)的问世,将极大地推动无线数据业务的开展,进一步促进移动业务与IP业务的融合。  (3)信息个人化是下世纪初信息业进一步发展的主要方向之一。而移动IP正是实现未来信息个人化的重要技术手段,在手机上实现各种IP应用以及移动IP技术正逐步成为人们关注的焦点之一。移动智能网技术与IP技术的组合将进一步推动全球个人通信的趋势。  (4)移动通信网络结构正在经历一场深刻的变革,随着网络中数据业务量主导地位的形成,现有电路交换网络向IP网络过渡的趋势已不可阻挡,IP技术将成为未来网络的核心关键技术,IP协议将成为电信网的主导通信协议。随着移动通信通用分组无线业务(GPRS)的引入,用户将在端到端分组传输模式下发送和接收数据,打破传统的数据接入接式。以IP为基础组网,开始了移动骨干网IP应用的实践。  4、无线通信技术在数字社区中的应用  无线通信技术的发展为实现数字化社区提供了有力的保证,数字化社区提供了有力的保证。数字化社区的特点是信息的交流非常的广泛和方便,无论是实验室、办公室还是家庭,计算机及其外设的应用越来越普及,社区中的设备也都有电脑控制。如果它们之间的通信仍然采用有线方式的话,这将给使用带来很大的不便。Blue tooth技术为我们建立一个全无线的工作环境和生活环境,Blue tooth标准已制定了和计算机以及与Internet、PSTN、ISDN(Integrated Services Digital Network)、LAN、WAN、xDSL(xDigital subscriber loop)等网络的接口协议,其目标是用单一的Blue tooth标准来建立起和众多国际标准的连接。目前它用1Mb/s的速率已完全可以胜认这些工作,将来根据IEEE15的发展计划,可以将速率提高到20Mb/s以上。我们可以使用无线电缆来连接办公室和家庭中的电子设备,甚至包括键盘、鼠标等也采用无线传输。我们拥有一个无线公务包,以便携计算机和掌上计算机为代表,采用无线方式和其他设备或网络相连接,使我们拥有一个可流动的办公室。  Internet和移动通信的迅速发展,使人们对电脑以外的各种数据源和网络服务的需求日益增长。数字照相机、数字摄像机等设备装上Blue tooth系统,既可免去使用电缆的不便,又不可不受内存溢出的困扰,随时随地可将所摄图片或影像通过同样装上Blue tooth系统的手机或其他设备传回指定的计算机中。PDA(Personal Digital Assistant)装上Blue tooth系统后,采用无线方式收、发E-mail甚至浏览网页将更为方便。Blue tooth的硬件电路可以做到微型化,在Headset上应用非常合适。装上Blue tooth系统的Headset可以使它和手机进行无线连接,也可以使人在小范围内自由走动地打电话、收听音乐,在较大的范围内召开电话会议。微型化、低功耗和低成本的特性给Blue tooth在人们日常生活中的应用开拓了近乎无限的空间。例如,Blue tooth构成的无线电电子锁比其它非接触式电子锁或IC锁具有更高的安全性和适用性,各种无线电遥控器(特别是汽车防盗和遥控)比红外线遥控器的功能更强大,在餐馆酒楼用膳时菜单的双向无线传输或招呼服务员提供指定的服务(如添茶、加饮料等)将更为方便等。利用蓝牙做出来的传感器可以随时监视家庭中的冰箱存量的变化,从而随时反映出用户所需要的物品,如果再连接到Internet上的话,可以实现网上购物。  未来的信息家电将以Internet和家庭网络为基础、以无线连接实现双向传输,是具有一定智能的3C(Computer、Communication和Consumer)相融合的信息产品。以蓝牙技术设计的数字手机、家庭及办公室电话、小型PBX等电话系统,实现了真正意义上的个人通信。蓝牙提供了低成本、低功耗的无线接入式,顺应了现代通信技术和应用的发展潮流,在信息家电和移动通信等方面具有巨大的发展潜力。蓝牙技术自提出以来,在短短的2年内已风靡全球。根据市场调查和预测,1999年蓝牙技术的产品全球销量几乎为零,2000年猛增到3670万美元,2001年将在到26亿美元,2006年可达到到99亿美元;2002年,全球使用蓝牙技术的计算机外围设备将达到5亿台,使用蓝牙技术笔记本电脑将达到2500万部;2003年全球90%以上的笔记本电脑将使用蓝牙技术,2006年全球将推出7亿台使用蓝牙技术的信息家电。  回顾无线通信的发展历程,个人通信的移动性与无缝隙覆盖多媒体综合业务需求将愈来愈突出。频谱延伸至毫米波、亚毫米波的电磁“无线光纤”乃至激光与粒子通信范畴的无线通信将有愈来愈广阔的活动舞台及光明的发展前景。市场是发展的驱动力。尽管我国的移动通信和互联网发展十分迅速,但我国目前的移动电话和网络用户普及率还很低,面对我国12亿人口,我国在网络规模和容量方面有很大的发展空间。同时,竞争局面的形成,促使运营企业积极拓展新业务、新应用,向用户提供丰富的选择,以满足用户多方面、多层次的需求。因此,在移动通信和互联网上的应用开发也有很大的发展潜力。我们要积极促进无线领域的科技进步、技术创新,为实现科教兴国战略,增强中华民族的综合国力,为全球信息化及经济全球化环境下的国际社会与全人类的发展而积极贡献力量。

给 肯定是没有的 不过可以代劳的 如果你只是代劳的话 也就几百吧 如果是带写带发 950高定

中国货币发展史论文3000字内容解读

中国是世界上最早使用货币的国家之一,使用货币的历史长达五千年之久。中国古代货币在形成和发展的过程中,先后经历了五次极为重大的演变:自然货币向人工货币的演变、由杂乱形状向统一形状的演变、由地方铸币向中央铸币的演变、由文书重量向通宝、元宝的演变 、金属货币向纸币“交子”的演变。中国从春秋时期进入金属铸币阶段到战国时期已确立布币,刀货,蚁鼻钱,环钱四大货币体系。以后又经历了秦、唐、汉、魏晋南北朝,直到1948年12月1日,中国人民银行成立并发行第一套人民币。重大演变圆形方孔1、自然货币向人工货币的演变。贝是中国最早的货币,商朝以贝作为货币。在中国的汉字中,凡与价值有关的字,大都从“贝”。随着商品交换的发展,货币需求量越来越大,海贝已无法满足人们的需求,商朝人们开始用铜仿制海贝。铜币的出现,是中国古代货币史上由自然货币向人工货币的一次重大演变。随着人工铸币的大量使用,海贝这种自然货币便慢慢退出了中国的货币舞台。2、由杂乱形状向统一形状的演变。从商朝铜币出现后到战国时期,中国的货币形状很多。战国时期不仅各国自铸货币,而且在一个诸侯国内的各个地区也都自铸货币。以赵国的铲币、齐国的刀币、秦国的圆形方孔钱、楚国的蚁鼻钱较著名。秦统一中国后,秦始皇于公元前二一○年颁布了中国最早的货币法“以秦币同天下之币”,规定在全国范围内通行秦国圆形方孔的半两钱。货币的统一,结束了中国古代货币形状各异、重量悬殊的杂乱状态,是中国古代货币史上由杂乱形状向规范形状的一次重大演变。秦半两钱确定下来的这种圆形方孔的形制,一直沿续到民国初期。3、由地方铸币向中央铸币的演变。汉初,听任郡国自由铸钱,据《汉书·食货志》记载,文帝时“除盗铸钱令,使民放铸”,于是“盗铸如云而起”。这既造成了货币的混乱,又使富商大贾操纵铸币权,富比天子。公元前113年,汉武帝收回了郡国铸币权,由中央统一铸造五铢钱,五铢钱成为当时唯一合法货币。从此确定了由中央政府对钱币铸造、发行的统一管理,这是中国古代货币史上由地方铸币向中央铸币的一次重大演变。4、由文书重量向通宝、元宝的演变。秦汉以来所铸的钱币,通常在钱文中都明确标明钱的重量,如“半两”、“五铢”等等(二十四铢为一两)。唐高祖武德四年(621年),李渊决心改革币制,废轻重不一的历代古钱,取“开辟新纪元”之意,统一铸造“开元通宝”钱。“开元通宝”一反秦汉旧制,钱文不书重量,是我国古代货币由文书重量向通宝、元宝的演变。“开元通宝”钱是我国最早的通宝钱。此后铜钱不再用钱文标重量,都以通宝、元宝相称,它一直沿用到辛亥革命后的“民国通宝”。5、金属货币向纸币“交子”的演变。北宋时,随着交换的发达,货币流通额增加,北宋太宗时,年铸币八十万贯,以后逐渐增加。由于铸钱的铜料紧缺,政府为弥补铜钱的不足,在一些地区大量地铸造铁钱。据《宋史》记载,当时四川所铸铁钱一贯就重达二十五斤八两。“交子”的出现,是古代货币史上由金属货币向纸币的一次重要演变。货币体系从春秋时期进入金属铸币阶段到战国时期已确立布币,刀币,蚁鼻钱,环钱四大货币体系。1、赵、韩、魏三国和周王室等地,主要流行布币。春秋时期的布币主要是空首布即有装柄的空心銎。而战国时期的布币主要是平首布,即相对“空首布”而言,已无装柄中空的銎,而形似铲状铜片,布币形制大致分平肩,耸肩,圆肩和方足,尖足,圆足等类别,最一般由平肩平底布或平肩方足向耸肩尖足布,圆肩圆足布演化,地区后扩展到楚国和燕国等地。2、齐国和北方的燕国主要使用刀币。刀币分“燕明刀”和“齐刀化”二大类型。刀币形状取象于山戎、北狄等北方游牧民族渔猎用的刀类工具。由于齐刀面有“化”字文而称“刀化”。3、秦国独用环币,其形制取象于纺轮或玉壁演化而来。环币分圆形圆孔和方孔两种。战国时期即较早铸行的是圆形圆孔,后秦惠文王,秦始皇铸圆形方孔“半两”钱。圆形环钱是方孔钱的原始状态。4、楚国铸币铜贝称蚁鼻钱,由贝币演化而来。铜贝钱文“”形似鬼脸,为“贝化”二字组合。蚁鼻喻小,意即小钱。楚国有文铜贝铸币俗称“鬼脸钱”、“蚁鼻钱”。楚国除蚁鼻钱外,还有黄金称量货币,是战国时期唯一以黄金为流通货币的国家。秦汉货币秦统一六国后,秦始皇统一文字,度量衡同时,也统一了货币。规定以“黄金”为上币,以镒(20 两)为单位,以圆形方孔铜钱为下币,以半两为单位。钱文“半两”与实重相符,这种方孔圆钱从此成为中国货币的主要形式一直沿用二千多年。秦朝方孔圆钱是世界上最早由政府法定的货币。战国币钱文“半两”为大篆,秦朝币钱文“半两”为小篆。宋朝还出现皇帝御书钱。汉币汉武帝公元前118年下令废除汉初郡国制币权,改由中央统一铸币。设“上林三官”即钟官、辨铜、均输,组成中央铸币机构负责铸造五铢钱,也称上林钱和三官钱。五铢钱质量高,改变了货币混乱现象。从汉武帝起历西汉,新莽,东汉,魏、晋、南北朝到隋唐共七百多年。五铢长期为历朝法定货币。因五铁钱轻重合宜,中国以“五铢”为主要形制的方孔圆钱还影响日本、安南、朝鲜等国。新莽币制西汉晚期,王莽建新朝,托古改制,滥发货币。如:“大泉五十”是王莽上台后为解决经济危机而铸行的一种大钱。一枚“大泉五十”重量只及西汉五铢钱重量的二个半,却要当五十个五铢钱用。意味着每发行一枚大钱就要从百姓手中夺走四十七个半五铢钱财富,引起人民不满,于是民间仍用五铢钱交易。王莽以重刑酷法规定:凡敢私藏五铢钱者将作为犯人充军戊边。此外还有一种大钱名“刀平五千”即一枚大钱当五千个五铢钱。为防盗铸私钱,除颁行刑法重治外,另创造了一种新币形,即把古代刀币和圆钱结合,创造出世界上第一枚双色金属钱币。为防假私铸而使“大泉五十”、“刀平五千”等官行币“做工精绝”。六朝五铢魏晋南北朝时期,为了省铜,五铢钱越做越小,有“鹅眼”、“鸡目”之称,更有剪凿边圈,称剪边五铢,一枚钱改二枚,面额却大,百当千用。钱币界把这一时期五铢钱统称为“六朝五铢”。隋唐货币隋代隋文帝铸造“开皇五铢”结束了汉末以来三百多年钱制庞杂局面,这也是最后一个使用五铢钱的朝代。隋炀帝暴政,有人辩认隋“五铢钱”五铢的 “五”即“X”字左边加竖|为“|X”,放倒后似为“凶”字。于是有人说是隋的凶兆,预示其灭亡为时不远了。故隋朝“五铢钱”较好辨认。其实这种写法北魏也曾有过,这不过是老百姓借此诅咒隋暴政而已。唐文钱唐高祖武德年间铸行“开元通宝”钱,结束了秦汉以来以重量铢两定名的钱币体系,而开创了唐宋以后以“文”为单位的年号,宝文体系铜铸币,“通宝”即流通的宝货。“开元通宝”开创十进位制,每枚重二铢四为一文钱,积十文钱重一两,即十钱一两“以钱代铢”。开元通宝在唐代铸行二百多年而使币制长期稳定。唐以“文”计数,以钱两为重量单位的宝文钱体系沿袭到清朝历时千年。乾元重宝安史之乱后,唐肃宗为对付财政困难、铸造大钱,称“乾元重宝”。这是最早称“重宝”的钱,一文重宝当开元钱十文,引起通货贬值,物价飞涨,盗铸严重,人心不安。至晚唐唐武宗废佛,取佛铜大量铸“会昌开元”钱,使延续了半个世纪的通货紧缩现象才有所缓和。“乾元”,“会昌”均为纪年。五代十国是军阀割据混战分裂时期,由于政权林立,货币五花八门,是一个货币混乱时期。币材除铜外还有锡、铁等。大额钱币当十当百,甚至当千当万流行。宋元货币两宋的铜铸币以采用年号为显著特点。据考证年号首创于汉武帝,而“年号钱”始于十六国时四川成都李寿的“汉兴钱”。最后一枚年号钱为袁世凯复辟帝制铸行的“洪宪元年,当十铜元”。此钱随袁世凯垮台,存在不到四个月。“年号钱”因铸有年号,标明铸造时间,使人在考证古币年代时可一目了然,这在钱币形式发展上是一个进步。历朝年号钱中宋、明、清三朝的钱币最容易收集。御书钱宋哲宗年间司马光和苏东坡用篆、行两种书法写过对文钱“元裕通宝”。使宋朝流行书币币对文钱。擅长书法的皇帝在钱文上书写的“御书钱”。宋朝年号御书钱流行。此钱文风到明朝有变。纸币北宋的纸币主要有交子,南宋有会子、关子。元代曾铸行过少量铜钱,但货币主要流通纸币。这在中国古代是较突出的。元代的纸币称为钞。原钞本不许挪用,纸钞发行量有严格限制。但元末政治腐败,政府只好靠滥发纸币来弥补,引起物价飞涨。明清货币明朝初朱元璋推行纸币政策,发行“大明宝钞”与铜钱并用。但大明宝钞不定发行限额,也没准备金,很快就导致通货膨胀,故明中叶嘉靖年后,宝钞已不能通行,民间主要用白银和铜钱。如明朝“班匠”以银代役、雇工工资,富豪积家产等都主要用银量了。银量被铸为一定标准的银锭从元朝开始,从元朝至元年间开始,银锭自名“元宝”,这是中国称银锭为“元宝”的开始。同时民间流行铜制钱,质材由青铜转黄铜,铸行以年号为号的通宝钱。清朝货币清代铜钱沿用明朝的制度,主要铸行小平钱。清代铜钱中以咸丰钱最为复杂,钱文有通宝、重宝和元宝之分,面值不同,钱局不同。清朝民间商务大数用银,小钱用钱,钱、银并行。清初一百年以银锭为主币,清朝后期银锭开始向银元转化。明朝中叶起,在对外贸易中外国商人用他们的银元购买中国丝、茶、瓷器等,使各种外国银元开始在中国流行。到清道光年间,从签不平等《南京条约》开始,赔款用的银元都是“洋钱”,当时中国本国还没银元。库存洋钱不足抵销数目剧增的对外赔款,于是迫使清末政府开始自己铸造银元。中国最早的机制洋式银元为光绪年间的“光绪元宝”,俗称“龙洋”,因银元背面一般铸有龙纹而得名。同时出现机制铜元,又称“铜板”。清代发行的纸币品种复杂,有官钞和私钞之分,官钞即由官府金融机构发行,私钞由民间金融机构发行,纸钞又可分铜钱票(可兑换方孔铜钱)、铜元票(可兑换铜元)、银两票(可兑换白银)、银元票(可兑换银元)四种。发行纸币开始有库银准备金、钞本来凭证。人民币中华人民共和国的法定货币是人民币,中国人民银行是国家管理人民币的主管机关,负责人民币的设计、印制和发行。人民币的单位为元,人民币的辅币单位为角、分。1元等于10角,1角等于10分。中华人民共和国自发行人民币以来,历时50多年,随着经济建设的发展以及人民生活的需要而逐步完善和提高,至今已发行五套人民币,形成纸币与金属币、普通纪念币与贵金属纪念币等多品种、多系列的货币体系。除1、2、5分三种硬币外,第一套、第二套和第三套人民币已经退出流通,流通的人民币,是中国人民银行自1987年以来发行的第四套人民币和1999年发行的第五套人民币,两套人民币同时流通。第一套1948年12月1日,中国人民银行成立并发行第一套人民币,共12种面额62种版别,其中1元券2种、5元券4种、10元券4种、20元券7种、50元券7种、100元券10种、200元券5种、500元券6种、1000元券6种、5000元券5种、10000元券4种、50000元券2种。第二套第二套人民币于1955年3月1日开始发行,同时收回第一套人民币。第二套人民币和第一套人民币折合比率为1:10000。第二套人民币共有1分、2分、5分、1角、2角、5角、1元、2元、3元、5元、10元11个面额,其中1元券有2种,5元券有2种,1分、2分和5分券别有纸币、硬币2种。为便于流通,自1957年12月1日起发行1分、2分、5分三种硬币,与纸分币等值流通。1961年3月25日和1962年4月20日分别发行了黑色1元券和棕色5元券,分别对票面图案、花纹进行了调整和更换。由于大面额钞票技术要求很高,在当时情况下3、5、10元由苏联代印。第三套第三套人民币于1962年4月20日发行,共有 1角、2角、5角、1元、2元、5元、10元7种面额、13种版别,其中1角券别有4种(包括1种硬币),2角、5角、1元有纸币、硬币2种。1966年和1967年,又先后两次对1角纸币进行改版,主要是增加满版水印,调整背面颜色。第四套为了适应经济发展的需要,进一步健全中国的货币制度,方便流通使用和交易核算,中国人民银行自1987年4月27日,发行第四套人民币。共有1角、2角和5角、1元、2元、5元、10元、50元、100元9种面额,其中1角、5角、1元有纸币、硬币2种。与第三套人民币相比,增加了50、100元大面额人民币。为适应反假人民币工作需要,1992年8月20日,又发行了改版后的1990年版50、100元券,增加了安全线。第五套1999年10月1日,中国人民银行陆续发行第五套人民币,共有1角、5角、1元、5元、10元、20元、50元、100元八种面额,其中1角、5角、1元有纸币、硬币2种。第五套人民币根据市场流通需要,增加了20元面额,取消了2元面额,使面额结构更加合理。纪念币普通纪念币是具有特定主题,限量发行的人民币。中国人民银行从1984年发行第一套普通纪念币至今,共发行了63套75枚(张)普通纪念币,总发行量约5亿枚(张)。面额有1角、1元、5元、10元、50元、100元不等,将中华人民共和国50多年的辉煌成就及重大历史事件浓缩于纪念币的方寸之间。

中国是世界上最早使用货币的国家之一,使用货币的历史长达五千年之久。中国古代货币在形成和发展的过程中,先后经历了六次重大的演变: 一、由自然货币向人工货币的演变 二、由杂乱形状向规范形状的演变 三、由地方铸币向中央铸币的演变 四、由文书重量向通宝、元宝的演变 五、由金属货币向纸币交子的演变 六、由手工铸币向机制纸币的演变

古代货币:古代货币的起源中国是世界上最早使用货币的国家之一,中国使用货币的历史非常悠久,传说在四五千年以前甚至更早货币就兴起了。古代货币的发展:最早的货币我国最早的货币是起源于商朝的贝币。随着商品交换的扩大,贝币的流通数量日益庞大。由于天然贝来源有限,不敷应用,于是便出现了仿制贝。最初的仿制贝是石贝、骨贝、陶贝,以后便发展到用铜来制造,这就是铜贝。统一货币:公元前221年,秦始皇统一中国,接着实行了一系列巩固封建中央集权的措施,统一货币就是其中之一。秦始皇统一货币的意义:1、货币的统一是巩固中央集权政治,促进封建国家统一的重要措施。2、货币的统一有利于各地物资交流和贸易的发展,促进经济的繁荣。3、秦始皇对货币的规定是中国货币史上第一个货币立法,半两钱对以后历代钱币的形式有深远影响。4、半两钱以重量为名称,又是中国量名钱的开端。钱币改革:公元621年(武德四年),唐高祖对钱币进行了一次重大改革,废除五铢钱,铸通宝钱。通宝钱仿五铢钱,每枚重2铢4 纍,直径8分,10枚重1两,千文重6斤4两,成色以铜为主,掺以锡和白镴,钱面铸“开元通宝”4字,钱文用隶书。纸币的产生和发展纸币产生和发展的原因,纸币产生和发展的原因主要是经济方面的:第一,宋代商业发达,要求有大量轻便的货币,铜铁钱都因区域限制而不敷应用,且笨重不便,极大地阻碍了地区间商品交易的发展。第二,造纸业和印刷业的发达,为纸币的产生提供了物质基础和技术保障。第三,宋王朝为防北方辽、夏、金人的威胁和侵略,被迫养重兵以为备,军费开支庞大,财政非常困难,依靠发行纸币以称补开支,也促进纸币的进一步发展。货币兑换:兑换是金、银、钱之间的兑换。唐朝的币制是钱帛本位制,金主要充作保值手段,白银已开始作为货币流通。因此,金、银、钱就有相互兑换的需要,兑换业务便由此产生。钱庄的兴起:明代,由于金、银、钱、纸币兑换的需要,于是便出现了许多专门从事钱币兑换的人,以此为业,开起钱铺来,这就是最早的钱庄。票号的产生:票号是清代重要的信用机构,初始以汇兑为主,又为山西人首创,所以又有票庄、山西票庄、山西票号等称谓。拓展资料我国货币发展史上的六次演变一、由自然货币向人工货币的演变二、由杂乱形状向规范形状的演变三、由地方铸币向中央铸币的演变四、由文书重量向通宝、元宝的演变五、由金属货币向纸币交子的演变六、由手工铸币向机制纸币的演变参考资料:中国货币史-百度百科

中国货币的发展史--金属币

通信的发展史论文3000字内容怎么写

世界移动通信发展史 移动通信可以说从无线电通信发明之日就产生了。1897年,M·G·马可尼所完成的无线通信试验就是在固定站与一艘拖船之间进行的,距离为18海里。 现代移动通信技术的发展始于本世纪20年代,大致经历了五个发展阶段。 第一阶段从本世纪20年代至40年代,为早期发展阶段。在这期间,首先在短波几个频段上开发出专用移动通信系统,其代表是美国底特律市警察使用的车载无线电系统。该系统工作频率为2MHz,到40年代提高到30~40MHz,可以认为这个阶段是现代移动通信的起步阶段,特点是专用系统开发,工作频率较低。 第二阶段从40年代中期至60年代初期。在此期间内,公用移动通信业务开始问世。1946年,根据美国联邦通信委员会(FCC)的计划,贝尔系统在圣路易斯城建立了世界上第一个公用汽车电话网,称为“城市系统”。当时使用三个频道,间隔为120kHz,通信方式为单工,随后,西德(1950年)、法国(1956年)、英国(1959年)等国相继研制了公用移动电话系统。美国贝尔实验室完成了人工交换系统的接续问题。这一阶段的特点是从专用移动网向公用移动网过渡,接续方式为人工,网的容量较小。 第三阶段从60年代中期至70年代中期。在此期间,美国推出了改进型移动电话系统(IMTS),使用150MHz和450MHz频段,采用大区制、中小容量,实现了无线频道自动选择并能够自动接续到公用电话网。德国也推出了具有相同技术水平的B网。可以说,这一阶段是移动通信系统改进与完善的阶段,其特点是采用大区制、中小容量,使用450MHz频段,实现了自动选频与自动接续。 第四阶段从70年代中期至80年代中期。这是移动通信蓬勃发展时期。1978年底,美国贝尔试验室研制成功先进移动电话系统(AMPS),建成了蜂窝状移动通信网,大大提高了系统容量。1983年,首次在芝加哥投入商用。同年12月,在华盛顿也开始启用。之后,服务区域在美国逐渐扩大。到1985年3月已扩展到47个地区,约10万移动用户。其它工业化国家也相继开发出蜂窝式公用移动通信网。日本于1979年推出800MHz汽车电话系统(HAMTS),在东京、神户等地投入商用。西德于1984年完成C网,频段为450MHz。英国在1985年开发出全地址通信系统(TACS),首先在伦敦投入使用,以后覆盖了全国,频段为900MHz。法国开发出450系统。加拿大推出450MHz移动电话系统MTS。瑞典等北欧四国于1980年开发出NMT-450移动通信网,并投入使用,频段为450MHz。 这一阶段的特点是蜂窝状移动通信网成为实用系统,并在世界各地迅速发展。移动通信大发展的原因,除了用户要求迅猛增加这一主要推动力之外,还有几方面技术进展所提供的条件。首先,微电子技术在这一时期得到长足发展,这使得通信设备的小型化、微型化有了可能性,各种轻便电台被不断地推出。其次,提出并形成了移动通信新体制。随着用户数量增加,大区制所能提供的容量很快饱和,这就必须探索新体制。在这方面最重要的突破是贝尔试验室在70年代提出的蜂窝网的概念。蜂窝网,即所谓小区制,由于实现了频率再用,大大提高了系统容量。可以说,蜂窝概念真正解决了公用移动通信系统要求容量大与频率资源有限的矛盾。第三方面进展是随着大规模集成电路的发展而出现的微处理器技术日趋成熟以及计算机技术的迅猛发展,从而为大型通信网的管理与控制提供了技术手段。 第五阶段从80年代中期开始。这是数字移动通信系统发展和成熟时期。 以AMPS和TACS为代表的第一代蜂窝移动通信网是模拟系统。模拟蜂窝网虽然取得了很大成功,但也暴露了一些问题。例如,频谱利用率低,移动设备复杂,费用较贵,业务种类受限制以及通话易被窃听等,最主要的问题是其容量已不能满足日益增长的移动用户需求。解决这些问题的方法是开发新一代数字蜂窝移动通信系统。数字无线传输的频谱利用率高,可大大提高系统容量。另外,数字网能提供语音、数据多种业务服务,并与ISDN等兼容。实际上,早在70年代末期,当模拟蜂窝系统还处于开发阶段时,一些发达国家就接手数字蜂窝移动通信系统的研究。到80年代中期,欧洲首先推出了泛欧数字移动通信网(GSM)的体系。随后,美国和日本也制定了各自的数字移动通信体制。泛欧网GSM已于1991年7月开始投入商用,预计1995年将覆盖欧洲主要城市、机场和公路。可以说,在未来十多年内数字蜂窝移动通信将处于一个大发展时期,及有可能成为陆地公用移动通信的主要系统。 与其它现代技术的发展一样,移动通信技术的发展也呈现加快趋势,目前,当数字蜂窝网刚刚进入实用阶段,正方兴未艾之时,关于未来移动通信的讨论已如火如荼地展开。各种方案纷纷出台,其中最热门的是所谓个人移动通信网。关于这种系统的概念和结构,各家解释并未一致。但有一点是肯定的,即未来移动通信系统将提供全球性优质服务,真正实现在任何时间、任何地点、向任何人提供通信服务这一移动通信的最高目标。傅立叶变换最早是在19世纪由法国的数学家JB Fourier提出,他认为任何信号(例如声音,影像等)均可被分解为频率、振幅。由于傅立叶变换的性质,可以把图象或者信号在频域中进行处 理,从而达到简化处理过程、增强处理效 对电信发展贡献可想而知

人类进行通信的历史已很悠久。早在远古时期,人们就通过简单的语言、壁画等方式交换信息。千百年来,人们一直在用语言、图符、钟鼓、烟火、竹简、纸书等传递信息,古代人的烽火狼烟、飞鸽传信、驿马邮递就是这方面的例子。现在还有一些国家的个别原始部落,仍然保留着诸如击鼓鸣号这样古老的通信方式。在现代社会中,交通警的指挥手语、航海中的旗语等不过是古老通信方式进一步发展的结果。这些信息传递的基本方都是依靠人的视觉与听觉。 19世纪中叶以后,随着电报、电话的发有,电磁波的发现,人类通信领域产生了根本性的巨大变革,实现了利用金属导线来传递信息,甚至通过电磁波来进行无线通信,使神话中的“顺风耳”、“千里眼”变成了现实。从此,人类的信息传递可以脱离常规的视听觉方式,用电信号作为新的载体,同此带来了一系列铁技术革新,开始了人类通信的新时代。 1837年,美国人塞缪乐莫乐斯(Samuel Morse)成功地研制出世界上第一台电磁式电报机。他利用自己设计的电码,可将信息转换成一串或长或短的电脉冲传向目的地,再转换为原来的信息。1844年5月24日,莫乐斯在国会大厦联邦最高法院会议厅进行了“用莫尔斯电码”发出了人类历史上的第一份电报,从而实现了长途电报通信。 1864年,英国物理学家麦克斯韦(JMaxwel)建立了一套电磁理论,预言了电磁波的存在,说明了电磁波与光具有相同的性质,两者都是以光速传播的。 1875年,苏格兰青年亚历山大贝尔(AGBell)发明了世界上第一台电话机。并于1876年申请了发明专利。1878年在相距300公里的波士顿和纽约之间进行了首次长途电话实验,并获得了成功,后来就成立了著名的贝尔电话公司。 1888年,德国青年物理学家海因里斯赫兹(HRHertz)用电波环进行了一系列实验,发现了电磁波的存在,他用实验证明了麦克斯韦的电磁理论。这个实验轰动了整个科学界,成为近代科学技术史上的一个重要里程碑,导致了无线电的诞生和电子技术的发展。 电磁波的发现产生了巨大影响。不到6年的时间,俄国的波波夫、意大利的马可尼分别发明了无线电报,实现了信息的无线电传播,其他的无线电技术也如雨后春笋般涌现出来。1904年英国电气工程师弗莱明发明了二极管。1906年美国物理学家费森登成功地研究出无线电广播。1907年美国物理学家德福莱斯特发明了真空三极管,美国电气工程师阿姆斯特朗应用电子器件发明了超外差式接收装置。1920年美国无线电专家康拉德在匹兹堡建立了世界上第一家商业无线电广播电台,从此广播事业在世界各地蓬勃发展,收音机成为人们了解时事新闻的方便途径。1924年第一条短波通信线路在瑙恩和布宜诺斯艾利斯之间建立,1933年法国人克拉维尔建立了英法之间和第一第商用微波无线电线路,推动了无线电技术的进一步发展。 电磁波的发现也促使图像传播技术迅速发展起来。1922年16岁的美国中学生菲罗法恩斯沃斯设计出第一幅电视传真原理图,1929年申请了发明专利,被裁定为发明电视机的第一人。1928年美国西屋电器公司的兹沃尔金发明了光电显像管,并同工程师范瓦斯合作,实现了电子扫描方式的电视发送和传输。1935年美国纽约帝国大厦设立了一座电视台,次年就成功地把电视节目发送到70公里以外的地方。1938年兹沃尔金又制造出第一台符合实用要求的电视摄像机。经过人们的不断探索和改进,1945年在三基色工作原理的基础上美国无线电公司制成了世界上第一台全电子管彩色电视机。直到1946年,美国人罗斯威玛发明了高灵敏度摄像管,同年日本人八本教授解决了家用电视机接收天线问题,从此一些国家相继建立了超短波转播站,电视迅速普及开来。 图像传真也是一项重要的通信。自从1925年美国无线电公司研制出第一部实用的传真机以后,传真技术不断革新。1972年以前,该技术主要用于新闻、出版、气象和广播行业;1972年至1980年间,传真技术已完成从模拟向数字、从机械扫描向电子扫描、从低速向高速的转变,除代替电报和用于传送气象图、新闻稿、照片、卫星云图外,还在医疗、图书馆管理、情报咨询、金融数据、电子邮政等方面得到应用;1980年后,传真技术向综合处理终端设备过渡,除承担通信任务外,它还具备图像处理和数据处理的能力,成为综合性处理终端。静电复印机、磁性录音机、雷达、激光器等等都是信息技术史上的重要发明。 此外,作为信息超远控制的遥控、遥测和遥感技术也是非常重要的技术。遥控是利用通信线路对远处被控对象进行控制的一种技术,用于电气事业、输油管道、化学工业、军事和航天事业;遥测是将远处需要测量的物理量如电压、电流、气压、温度、流量等变换成电量,利用通信线路传送到观察点的一种测量技术,用于气象、军事和航空航天业;遥感是一门综合性的测量技术,在高空或远处利用传感器接收物体辐射的电磁波信息,经过加工处理或能够识别的图像或电子计算机用的记录磁带,提示被测物体一性质、形状和变化动态,主要用于气象、军事和航空航天事业。 随着电子技术的高速发展,军事、科研迫切需要解决的计算工具也大大改进。1946年美国宾夕法尼亚大学的埃克特和莫希里研制出世界上第一台电子计算机。电子元器件材料的革新进一步促使电子计算机朝小型化、高精度、高可靠性方向发展。20世纪40年代,科学家们发现了半导体材料,用它制成晶体管,替代了电子管。1948年美国贝尔实验室的肖克莱、巴丁和布拉坦发明了晶体三极管,于是晶体管收音机、晶体管电视、晶体管计算机很快代替了各式各样的真空电子管产品。1959年美国的基尔比和诺伊斯发明了集成电路,从此微电子技术诞生了。1967年大规模集成电路诞生了,一块米粒般大小的硅晶片上可以集成1千多个晶体管的线路。1977年美国、日本科学家制成超大规模集成电路,30平方毫米的硅晶片上集成了13万个晶体管。微电子技术极大地推动了电子计算机的更新换代,使电子计算机显示了前所未有的信息处理功能,成为现代高新科技的重要标志。 为了解决资源共享问题,单一计算机很快发展成计算机联网,实现了计算机之间的数据通信、数据共享。通信介质从普通导线、同轴电缆发展到双绞线、光纤导线、光缆;电子计算机的输入输出设备也飞速发展起来,扫描仪、绘图仪、音频视频设备等,使计算机如虎添翼,可以处理更多的复杂问题。20世纪80年代末多媒体技术的兴起,使计算机具备了综合处理文字、声音、图像、影视等各种形式信息的能力,日益成为信息处理最重要和必不可少的工具。 至此,我们可以初步认为:信息技术(Information Technology,简称IT)是以微电子和光电技术为基础,以计算机和通信技术为支撑,以信息处理技术为主题的技术系统的总称,是一门综合性的技术。电子计算机和通信技术的紧密结合,标志着数字化信息时代的到来 通信发展史 有线通信 美国莫尔斯(FBMorse):约5km的电报(点,划,空间→字母,数字); 美国贝尔(AGBell):取得电话机专利(电信号→语音); 美国普宾:通信电缆; 1972年 日本:公共通信网的数据通信,传真通信业务; 美国:发表贝尔数据网络,英国:图像信息服务实验; 现代 通信系统利用某些集中转接设施→复杂信息网络 →"交换功能"→实现任意两点之间信号的传输 无线通信 1864年 英国麦克斯韦:电磁波的存在设想; 1888年 德国赫兹(HHertz):证实电磁波的存在; 1895年 意大利马可尼:传距仅数百米的无线通信; 1901年 意大利马可尼:横渡大西洋的无线通信; 1938年 法国里本斯:PCM方式; 1940年 美国CBS:彩色电视实验广播; 1951年 美国CBS:彩色电视正式广播; 现代 无线通信遍及全球并通向宇宙, 如GPS其精度可达数十米之内 数学分析方法发展史 一,傅立叶分析 1822年 法国数学家傅立叶(JFourier):奠定傅立叶级数理论基础; 泊松(Poisson),高斯(Gauss):应用到电学中; 19世纪末 用于工程实际的电容器→处理各种频率的正弦信号; 20世纪 谐振电路,滤波器,正弦振荡器→扩展应用领域 二,拉普拉斯变换 19世纪末 英国工程师赫维赛德(OHeaviside):运算法(算子法)-先驱; 法国数学家拉普拉斯(PSLaplace):拉普拉斯变换方法; 20世纪70年代后 CAD求解电路分析方法 →替代拉氏变换 离散等其它系统的发展→ 三,Z变换 1730年 英国数学家棣莫弗(De Moivre):生成函数-类似; 19世纪 拉普拉斯: 贡献 20世纪 沙尔(HLSeal): 贡献; 20世纪50~60年代 抽样数据控制系统 →Z变换应用 数字计算机的研究与实践 四,状态方程分析 20世纪50年代 经典的线性系统理论(外特性); 20世纪60年代 现代的线性系统理论(内部特性), 卡尔曼(REKalman):状态空间方法

未来,现代科技产物—电脑,将逐渐被社会淘汰,成为落后的标志,人类将发明新的通信工具—“传呼通信器”,她将主导今后的世界通信潮流“传呼通信器”将依靠卫星传播数据,像手机一样可以随身携带她传播数据之快,能量之大,是前所未有的“传呼通信器”,有收邮件或发邮件的功能,速度非常快,网络、电视、电影资料都只需01秒就能收到或发出;它还有录音写文件的功能,你先选择什么话,例:广东话、普通话,然后你再把你说的内容说出来,它就把正确的字显示在屏幕上;它还有打印的功能,如果你要打印,就按开出打印,就会弹出一个打印器,你按打印,它就把你写得文档打印出来,如果你不用了,就按收回打印,它就把打印器缩起来了;它还可以随时上网,你只要说出你要的查找的内容,他就会把你查找的内容显示在屏幕上;它还有看电视的功能呢,只要你说出你要看的频道,它就会把要看的频道显示在屏幕上未来的通信真发达啊!‍

给 肯定是没有的 不过可以代劳的 如果你只是代劳的话 也就几百吧 如果是带写带发 950高定

相关百科
热门百科
首页
发表服务