学术论文百科

数学思维与文化论文选题方向是什么

发布时间:2024-07-08 12:04:17

数学思维与文化论文选题方向是什么

如果想在这个方向发展,最好还是选择数学,基础必须打好,否则将来很难受,很难做更深层次的东西。其他相关学科都是从数学基础学科派生出来的,没有大的区别,基础学科学好了,其他派生学科你只要少下功夫就会成效显著。

论文题目的确定好是一篇好的论文首先至关重要的第一步。论文的题目应简明扼要地反映论文工作的主要内容,切忌笼统。论文题目不仅应告诉读者这本论文研究了什么问题,更要告诉读者这个研究得出的结论。更多关于论文相关信息,可以去通关论文网上面看看。希望能帮到你~

还有基础数学方向的。

数学思维与文化论文选题方向

浅谈数学文化中的和合思想和合是我国传统文化的一个重要概念。“和”是平和、和谐、祥和、协调的意思。“合”是合作、对称、结合、统一的意思。和合思想认为,整个物质世界是一个和谐的整体,宇宙、自然、社会、精神各元素都处在一个和谐的优化结构中。而数学文化系统就是一个完美的和谐优化结构。数学文化中的数学发展史、数学哲学思想、数学方法、数学美育等重要内容蕴含着丰富的和合思想。其具体体现是整体系统性、平衡稳定性、有序对称性。一、整体系统性数学公理系统的相容性数学的公理化系统具有相容性、独立性和完备性。在这三项基本要求中,最主要的是相容性。相容性就是不矛盾性或和谐性,是指各公理不能互相抵触,它们推导的真命题也不能互相矛盾,公理系统的相容性是数学系统和谐的基础,也是基本要求。除了数学各分支自身要形成相容的公理系统之外,数学还要求各分支之间互相协调,不能互相抵触。有的系统之间,还形成密切的同构关系,在不同的数学系统之间,相容性是一致的。例如欧氏几何与非欧几何(罗式几何、黎曼几何)中平行公理是互否的命题,可在欧氏几何中构造非欧几何的模型,所以可以这样说只要欧氏几何无矛盾,那么非欧几何也是无矛盾的。数学运算系统的完整性数学的运算法则、运算公式、运算结论都是完整的、准确的。特别是数学的运算语言,它把文字语言、符号语言、图像语言完全融合到一个统一体中,互相印证、互相诠释、互相转化,达到了天衣无缝的完美。当扩充数系时,要建立新的理论和运算拓广原有运算和关系时,要尽量保持原有的运算、关系的一致性,如有不一致,必须作一规定,使新系统与原有系统和谐。数学推理系统的严密性在我们日常的数学活动中,常常用到反证法,在这种方法中,往往不仅要用到系统的公理和定理,而且要用到其他分支的知识。在整个推理过程中要和谐。例如古希腊三大著名问题之一化圆为方,即作一个与给定圆面积相等的正方形。要证明用圆规和直尺不能作出等面积的正方形就需要用到数“=”的超越性。在数学上的等式、解析式中出现“=”是和谐的体现。二、平衡稳定性“和合思想”认为天地自然万物处于平衡、和谐、有序的状态。各个事物、要素互依、互涵、互补,处于全面的、立体的相互作用的过程之中。而数学的平衡稳定性很好地体现了和合思想。数学发展的平衡稳定数学科学与其它学科相比,一个重要的特点就是历史的累积性、发展的平衡稳定性。也就是说重大的数学理论总是在继承和发展原有理论的基础上建立起来的,他们不仅不会推翻原有的理论,而且总是包容原有的理论。比如天文学的“地心说”被“日心说”所代替,物理学中关于光的“粒子说”被“波动说”代替,化学中的“燃素说”被“氧化说”代替等等,而数学从来没有发生过这样的情况。这正如一位数学史家H?汉科尔所说:“在大多数学科里,一代人的建筑为下一代人所拆毁,一个人的创造被另一个人所破坏,唯独数学,每一代人都在古老的大厦上添加一层楼”。数学的这一平衡稳定性,正是数学学科能不断焕发出无限活力和强大生命力根源。数学学习过程的平衡稳定人们对知识的学习过程都含有一定的认知结构。而学生学习数学知识的过程不外乎“同化—顺应—平衡”这样一个相对稳定的过程。同化就是把新的知识纳入已有的认知结构,使原有的知识体系不断得到充实丰富。顺应就是新的知识不能纳入原有的认知结构,就要对原有认知结构进行改造和提高,从而建立新的认知结构。平衡就是同化和顺应后,都有一个巩固阶段,在这一阶段对知识的理解和内化是平衡稳定的。人们对数学知识的学习正式在“同化—顺应—平衡”这样一个循环往复的过程中发展的。数学方法的平衡稳定数学方法是认识数学客体过程中某种有规律的程序和手段,使理论用于实践的中介,各种方法都和谐地存在在数学这个共同体中。比如常用的数学思维方法:观察、分析、综合、抽象、猜想、类比、归纳、演绎;还有常用的数学解题方法:比较方法、结构方法、模型方法、构造方法、化归方法、映射反演法、几何变换法、公理化方法等。这些方法,无论是在初等数学中,还是在高等数学中;无论是在几何学中,还是在代数学中,都在广泛的运用,始终处于平衡稳定状态中,不会因时间、空间、以及学科的变化发生变异。几何变换思想和方法,就是用运动和变化的观点去研究几何对象及其相互关系,探讨图形运动过程中不变的关系、不变量和变化关系、变化量,从中找出规律。在解题过程中,对图形有关部分进行变换,化不规则为规则,化一般为特殊,化不利条件为有利条件。三、有序对称性“凡物必有合”,“合”就是对称、结合、统一。整个世界不仅和谐合理,而且阴阳和合的对称。数学的有序对称美在初等数学中研究的对称性,可以描述的是一个图形、一个式子各个部分的关系,也可以描述两个图形、式子的关系。图形、式子的变换显示着数学中的对称美。图形对称可称为狭义对称,例如中心对称图形、轴对称图形、旋转对称图形是图形位置的一种对称。显示一种对称的美。在许多概念中和方法、命题、公式、法则中也存在对称性,也可称为一种对称。在数学中,许多概念都是一正一反,相辅相成,成对出现的。例如数学运算中加与减、乘与除、乘方与开方、微分与积分等,都可认为是一阴一阳的对称;减一个负数可变成加一个正数,除可以变成乘的运算,所以说它们之间又是统一有序的。在二元运算中通过交换律、结合律、分配律来反映其对称性。数学解题过程的有序结构从文化的角度审视数学解题过程它是数学策略、数学逻辑、数学方法、数学知识、数学技能与程式化的有机结合,是一个有序结构的统一体。比如解方程过程的基本步骤是:去分母、去括号、移项合并、两边同除以未知数的系数。这是一个和谐的有序结构。破坏了这个有序结构,就会发生解题障碍。从思维过程看,它是“观察———联想———转化”这样一个有序过程。观察是联想的基础,在观察中认识所给题目的特征;联想是转化的桥梁,在联想中寻找解题途径;转化是解题的手段,在转化中确定解题方案,从而最终解决问题。数学无论是从整体和局部,形式和内容,还是结果和过程都体现着和合思想的精神和内涵。我们用“和合思想”重新认识数学,发挥数学文化在教学中的教育功能,就能有效地培养学生科学素养和文化素养。参考文献:[1]齐民友数学文化[M]长沙:湖南教育出版社,[2]张维忠数学文化与数学课程[M]上海:上海教育出版社,[3]郑毓信数学文化学[M]成都:四川教育出版社,[4]李文林数学史教程[M]高教出版社

论文题目的确定好是一篇好的论文首先至关重要的第一步。论文的题目应简明扼要地反映论文工作的主要内容,切忌笼统。论文题目不仅应告诉读者这本论文研究了什么问题,更要告诉读者这个研究得出的结论。更多关于论文相关信息,可以去通关论文网上面看看。希望能帮到你~

数学的文化价值 一、数学是哲学思考的重要基础   数学在科学、文化中的地位,也使得它成为哲学思考的重要基础。历史上哲学领域内许多重要论争,常常牵涉到有关对数学的一些根本问题的认识。我们思考这些问题,有助于正确认识数学,正确理解哲学中有关的争论。   (一)数学——-根源于实践   数学的外在表现,或多或少人的智力活动相联系。因此在数学和实践的关系上,历来有人主张数学是“人的精神的自由创造”,否定数学来源于实践其实,数学的一切发展都不同程度地归结为实际的需要。从我国殷代的甲骨文中,就可以看到那时我们的祖先已经会使用十进制计数方法他们为适应农业的需要,将“十干”和“十二支”配成六十甲子,用以记年、月、日,几千年的历史说明这种日历的计算方法是有效的。同样,由于商业和债务的计算,古代的巴比伦人己经有了乘法表、倒数表,并积累了许多属于初等代数范畴的资料。在埃及,由于尼罗河泛滥后重新测量土地的需要,积累了大量计算面积的几何知识。后来随着社会生产的发展,特别是为适应农业耕种与航海需要而产生的天文测量,逐渐形成了初等数学,包括当今我们在中学里学习到的大部分数学知识。再后来由于蒸汽机等机械的发明而引起的工业革命,需要对运动特别是变速运动作更精细的研究,以及大量力学问题出现,促使微积分在长期的酝酿后应运而生。20世纪以来近代科学技术的飞速发展,使数学进入一个空前繁荣时期。在这个时期数学出现了许多新的分支:计算数学,信息论,控制论,分形几何等等。总之,实践的需要是数学发展的最根本的推动力。   数学的抽象性往往被人所误解。有些人认为数学的公理、公设、定理仅仅是数学家头脑思维的产物。数学家靠一张纸、一支笔工作,和实际没有什么联系。   其实,即使就最早以公理化体系面世的欧的几里德几何而言,实际事物的几何直观和实践中人们发展的现象,尽管不合乎数学家公理化体系的各式,却仍然包含着数学理论的核心。当数学家把建立几何的公理体系当作自己的目标时,他伯头脑中也一定联系到几何作图和直观现象。一个人,即使是很有天赋的数学家,能在数学的研究中获得具有科学价值的成果,除了他接受严格的数学思维训练以外,他在数学理论研究的过程中,必定会在问题的提出、方法的选择、结论的提示等诸多方面自觉或不自觉地受到实践的指引。可以这么说,脱离了实践,数学就会成为无源之水,无本之木。   其实,即使就最早以公理化体系面世的欧几里德几何而言,实际事物的几何直观和实践中人们发现的现象,尽管不合乎数学家公理化体系的程式,却仍然包含着数学理论的核心。当数学家把建立几何的公理体系当作自己的目标时,他的头脑中也一定联系到几何作图和直观现象。一个人,即使是很有天赋的数学家,能在数学的研究中获得具有科学价值的成果,除了他接受过严格的数学思维训练以外,他在数学理论研究的过程中,必定会在问题的提出、方法的选择、结论的提示等诸多方面自觉或不自觉地受到实践的指引。可以这么说,脱离了实践,数学就会变成无源之水,无本之木。   但是,数学理性思维的特点,使它不会满足于仅研究现实的数量关系和空间形式,它还努力探索一切可能的数量关系和空间形式。在古希腊时期,数学家就超越了在现实有限尺度精度内度量线段的方法,觉察到了无公度量线段的存在,即无理数的存在。这其实是数学中最困难的概念之一—连续性、无限性的问题。直到两千年以后,同样的问题导致极限理论的深入研究,大大地推动了数学的发展。试想今天如果还没有实数的概念,我们将面临怎样的处境。这时人们无法度量正方形对角线的长度,也不会解一元二次方程:至于极限理论与微积分学更不可能建立即使人们可以像牛顿那样应用微积分,但是在判断结论的真实性时会感到无所适从。在这种状况下,科学技术还能走多远呢?又如在欧几里德几何产生时,人们就对其中一个公设的独立性产生怀疑。到19世纪上半叶,数学家改变这个公设,得到了另一种可能的几何一一非欧几里德几何。这种几何的创立者表现了极大的勇气,因为这种几何得出的结论从“常理”来说是非常“荒唐”的。例如“三角形的面积不会超过某一个正数”。现实世界似乎没有这种几何的容身之地。但是过了近一百年,在物理学家爱因斯坦发现的相对论中,非欧几里德几何却是最合适的几何。再如,20世纪30年代哥德尔得到了数学结论不可判别性的结果,其中的某些概念非常抽象,近几十年却在算法语言的分析中找到了应用。实际上,许多数学在一些领域或一些问题中的应用,一旦实践推动了数学,数学本身就会不可避免地获得了一种动力,使之有可能超出直接应用的界限。而数学的这种发展,最终也会回到实践中去。   总之,我们应该大力提倡研究和当前实际应用有直接联系的数学课题,特别是现实经济建设中的数学问题。但是我们也应该在纯粹科学和应用科学之间建立有机的联系,建立抽象的共性和丰富多彩的个性之间的平衡,以此来推动整个科学协调地发展。   (二)数学—充满了辩证法由于数学严密性的特点,很少有人怀疑数学结论的正确性。相反,数学的结论往往成为真理的一种典范。例如人们常常用“像一加一等于二那么确定”来表示结论不容置疑。在我们的中小学的教学中,数学更是只准模仿、演练、背诵。数学真的是万古不变的绝对真理吗?   事实上,数学结论的真理性是相对的即使像1+1=2这样简单的公式,也有它不成立的地方。例如在布尔代数中,1+1=0!而布尔代数在电子线路中有广泛的应用。欧几里德几何在我们的日常生活中总是正确的,但在研究天体某些问题或速度很快的粒子运动时非欧几何却是适宜的。数学其实是非常多样化的,它的研究范围也随着新问题的出现而不断扩大。如同一切科学一样,数学家们如果死守着前辈的思想、方法、结论不放,数学科学就不会进步。把数学的严密性和公理化体系看作一种“教条”是错误的,更不能像封建时代的文人对待孔夫子说的话:“真理”已经包含在圣人说过的话里,后人只能对其作诠释。数学发展的历史可以证明,正是数学家特别是年轻数学家的创新精神,敢于向守旧的思想挑战,数学的面貌才得以不断地更新,数学才成长为今天这样一门蓬勃发展、富有朝气的学科。   数学的公理化体系从来也不是不容怀疑、不容变化的“绝对真理”欧几里德的几何体系是最早出现的数学公理化体系,但从一开始就有人怀疑其中的第五公设不是独立的,即该公设可以从公理体系的其他部分推出。两千多年来人们一直在寻找答案,终于在19世纪由此发现了非欧几何。虽然人们长时期受到欧几里德几何的束缚,但是最终人们还是接受了不同的几何公理体系。如果历史上某些数学家多一点敢于向旧体系挑战的革新精神,非欧几何也许还可能早几百年出现 数学公理化体系反映了内部逻辑严密性的要求。在一个学科领域内,当有关的知识积累到一定程度后,理论就会要求把一堆看来散乱的结果以某种体系的形式表现出来。这就需要对己有的事实再认识、再审视、再思索,创造新概念、新方法,尽可能地使理论能包括最一般、最新发现的规律。这实在是一个艰苦的理论创新过程。数学公理化也一样,它表示数学理论已经发展到了一个成熟的阶段,但并不是认识一劳永逸的终结。现有的认识可能被今后更深刻的认识所代替,现有的公理也可能被今后更一般化、包含更多事实的公理体系所代替。数学就在不断地更新过程中得到发展。   有种看法以为,应用数学就是把熟诵的数学结论套到实际问题上去,以为中小学的教学就是教给学生这些万古不变的教条。其实数学的应用极充满挑战性,一方面不但需要深切地认识实际问题本身,另一方面要求掌握相关数学知识的真谛,更重要的是要求能创造性地把两者结合起来。   就数学的内容来说,数学充满了辩证法。在初等数学发展时期,占统治地位的是形而上学。在该时期的数学家或其他科学家看来,世界由僵硬的、不变的东西组成。与此相适应,那时数学研究的对象是常量,即不变的量。笛卡尔的变数是数学中的转折点,他把初等数学中完全不同的两个领域一一几何和代数结合起来,建立了解析几何这个框架具备了表现运动和变化的特性,辩证法因此进入了数学。在此后不久产生的微积分抛弃了把初等数学的结论作为永恒真理的观点,常常做出相反的判断,提出一些在初等数学的代表人物看来完全不可理解的命题。数学走到了这样一个领域,在那里即使很简单的关系,都采取了完全辩证的形式,迫使数学家们不自觉又不自愿地转变为辩证数学家。在数学研究的对象中,充满了矛盾的对立面:曲线和直线,无限和有限,微分和积分,偶然和必然,无穷大和无穷小,多项式和无穷级数,正因为如此,马克思主义经典作家在有关辩证法的论述中经常提到数学。我们学一点数学,一定会对体会辩证法有所帮助。

数学思维与数学文化论文选题方向

浅谈数学文化中的和合思想和合是我国传统文化的一个重要概念。“和”是平和、和谐、祥和、协调的意思。“合”是合作、对称、结合、统一的意思。和合思想认为,整个物质世界是一个和谐的整体,宇宙、自然、社会、精神各元素都处在一个和谐的优化结构中。而数学文化系统就是一个完美的和谐优化结构。数学文化中的数学发展史、数学哲学思想、数学方法、数学美育等重要内容蕴含着丰富的和合思想。其具体体现是整体系统性、平衡稳定性、有序对称性。一、整体系统性数学公理系统的相容性数学的公理化系统具有相容性、独立性和完备性。在这三项基本要求中,最主要的是相容性。相容性就是不矛盾性或和谐性,是指各公理不能互相抵触,它们推导的真命题也不能互相矛盾,公理系统的相容性是数学系统和谐的基础,也是基本要求。除了数学各分支自身要形成相容的公理系统之外,数学还要求各分支之间互相协调,不能互相抵触。有的系统之间,还形成密切的同构关系,在不同的数学系统之间,相容性是一致的。例如欧氏几何与非欧几何(罗式几何、黎曼几何)中平行公理是互否的命题,可在欧氏几何中构造非欧几何的模型,所以可以这样说只要欧氏几何无矛盾,那么非欧几何也是无矛盾的。数学运算系统的完整性数学的运算法则、运算公式、运算结论都是完整的、准确的。特别是数学的运算语言,它把文字语言、符号语言、图像语言完全融合到一个统一体中,互相印证、互相诠释、互相转化,达到了天衣无缝的完美。当扩充数系时,要建立新的理论和运算拓广原有运算和关系时,要尽量保持原有的运算、关系的一致性,如有不一致,必须作一规定,使新系统与原有系统和谐。数学推理系统的严密性在我们日常的数学活动中,常常用到反证法,在这种方法中,往往不仅要用到系统的公理和定理,而且要用到其他分支的知识。在整个推理过程中要和谐。例如古希腊三大著名问题之一化圆为方,即作一个与给定圆面积相等的正方形。要证明用圆规和直尺不能作出等面积的正方形就需要用到数“=”的超越性。在数学上的等式、解析式中出现“=”是和谐的体现。二、平衡稳定性“和合思想”认为天地自然万物处于平衡、和谐、有序的状态。各个事物、要素互依、互涵、互补,处于全面的、立体的相互作用的过程之中。而数学的平衡稳定性很好地体现了和合思想。数学发展的平衡稳定数学科学与其它学科相比,一个重要的特点就是历史的累积性、发展的平衡稳定性。也就是说重大的数学理论总是在继承和发展原有理论的基础上建立起来的,他们不仅不会推翻原有的理论,而且总是包容原有的理论。比如天文学的“地心说”被“日心说”所代替,物理学中关于光的“粒子说”被“波动说”代替,化学中的“燃素说”被“氧化说”代替等等,而数学从来没有发生过这样的情况。这正如一位数学史家H?汉科尔所说:“在大多数学科里,一代人的建筑为下一代人所拆毁,一个人的创造被另一个人所破坏,唯独数学,每一代人都在古老的大厦上添加一层楼”。数学的这一平衡稳定性,正是数学学科能不断焕发出无限活力和强大生命力根源。数学学习过程的平衡稳定人们对知识的学习过程都含有一定的认知结构。而学生学习数学知识的过程不外乎“同化—顺应—平衡”这样一个相对稳定的过程。同化就是把新的知识纳入已有的认知结构,使原有的知识体系不断得到充实丰富。顺应就是新的知识不能纳入原有的认知结构,就要对原有认知结构进行改造和提高,从而建立新的认知结构。平衡就是同化和顺应后,都有一个巩固阶段,在这一阶段对知识的理解和内化是平衡稳定的。人们对数学知识的学习正式在“同化—顺应—平衡”这样一个循环往复的过程中发展的。数学方法的平衡稳定数学方法是认识数学客体过程中某种有规律的程序和手段,使理论用于实践的中介,各种方法都和谐地存在在数学这个共同体中。比如常用的数学思维方法:观察、分析、综合、抽象、猜想、类比、归纳、演绎;还有常用的数学解题方法:比较方法、结构方法、模型方法、构造方法、化归方法、映射反演法、几何变换法、公理化方法等。这些方法,无论是在初等数学中,还是在高等数学中;无论是在几何学中,还是在代数学中,都在广泛的运用,始终处于平衡稳定状态中,不会因时间、空间、以及学科的变化发生变异。几何变换思想和方法,就是用运动和变化的观点去研究几何对象及其相互关系,探讨图形运动过程中不变的关系、不变量和变化关系、变化量,从中找出规律。在解题过程中,对图形有关部分进行变换,化不规则为规则,化一般为特殊,化不利条件为有利条件。三、有序对称性“凡物必有合”,“合”就是对称、结合、统一。整个世界不仅和谐合理,而且阴阳和合的对称。数学的有序对称美在初等数学中研究的对称性,可以描述的是一个图形、一个式子各个部分的关系,也可以描述两个图形、式子的关系。图形、式子的变换显示着数学中的对称美。图形对称可称为狭义对称,例如中心对称图形、轴对称图形、旋转对称图形是图形位置的一种对称。显示一种对称的美。在许多概念中和方法、命题、公式、法则中也存在对称性,也可称为一种对称。在数学中,许多概念都是一正一反,相辅相成,成对出现的。例如数学运算中加与减、乘与除、乘方与开方、微分与积分等,都可认为是一阴一阳的对称;减一个负数可变成加一个正数,除可以变成乘的运算,所以说它们之间又是统一有序的。在二元运算中通过交换律、结合律、分配律来反映其对称性。数学解题过程的有序结构从文化的角度审视数学解题过程它是数学策略、数学逻辑、数学方法、数学知识、数学技能与程式化的有机结合,是一个有序结构的统一体。比如解方程过程的基本步骤是:去分母、去括号、移项合并、两边同除以未知数的系数。这是一个和谐的有序结构。破坏了这个有序结构,就会发生解题障碍。从思维过程看,它是“观察———联想———转化”这样一个有序过程。观察是联想的基础,在观察中认识所给题目的特征;联想是转化的桥梁,在联想中寻找解题途径;转化是解题的手段,在转化中确定解题方案,从而最终解决问题。数学无论是从整体和局部,形式和内容,还是结果和过程都体现着和合思想的精神和内涵。我们用“和合思想”重新认识数学,发挥数学文化在教学中的教育功能,就能有效地培养学生科学素养和文化素养。参考文献:[1]齐民友数学文化[M]长沙:湖南教育出版社,[2]张维忠数学文化与数学课程[M]上海:上海教育出版社,[3]郑毓信数学文化学[M]成都:四川教育出版社,[4]李文林数学史教程[M]高教出版社

论文题目的确定好是一篇好的论文首先至关重要的第一步。论文的题目应简明扼要地反映论文工作的主要内容,切忌笼统。论文题目不仅应告诉读者这本论文研究了什么问题,更要告诉读者这个研究得出的结论。更多关于论文相关信息,可以去通关论文网上面看看。希望能帮到你~

数学的文化价值 一、数学是哲学思考的重要基础   数学在科学、文化中的地位,也使得它成为哲学思考的重要基础。历史上哲学领域内许多重要论争,常常牵涉到有关对数学的一些根本问题的认识。我们思考这些问题,有助于正确认识数学,正确理解哲学中有关的争论。   (一)数学——-根源于实践   数学的外在表现,或多或少人的智力活动相联系。因此在数学和实践的关系上,历来有人主张数学是“人的精神的自由创造”,否定数学来源于实践其实,数学的一切发展都不同程度地归结为实际的需要。从我国殷代的甲骨文中,就可以看到那时我们的祖先已经会使用十进制计数方法他们为适应农业的需要,将“十干”和“十二支”配成六十甲子,用以记年、月、日,几千年的历史说明这种日历的计算方法是有效的。同样,由于商业和债务的计算,古代的巴比伦人己经有了乘法表、倒数表,并积累了许多属于初等代数范畴的资料。在埃及,由于尼罗河泛滥后重新测量土地的需要,积累了大量计算面积的几何知识。后来随着社会生产的发展,特别是为适应农业耕种与航海需要而产生的天文测量,逐渐形成了初等数学,包括当今我们在中学里学习到的大部分数学知识。再后来由于蒸汽机等机械的发明而引起的工业革命,需要对运动特别是变速运动作更精细的研究,以及大量力学问题出现,促使微积分在长期的酝酿后应运而生。20世纪以来近代科学技术的飞速发展,使数学进入一个空前繁荣时期。在这个时期数学出现了许多新的分支:计算数学,信息论,控制论,分形几何等等。总之,实践的需要是数学发展的最根本的推动力。   数学的抽象性往往被人所误解。有些人认为数学的公理、公设、定理仅仅是数学家头脑思维的产物。数学家靠一张纸、一支笔工作,和实际没有什么联系。   其实,即使就最早以公理化体系面世的欧的几里德几何而言,实际事物的几何直观和实践中人们发展的现象,尽管不合乎数学家公理化体系的各式,却仍然包含着数学理论的核心。当数学家把建立几何的公理体系当作自己的目标时,他伯头脑中也一定联系到几何作图和直观现象。一个人,即使是很有天赋的数学家,能在数学的研究中获得具有科学价值的成果,除了他接受严格的数学思维训练以外,他在数学理论研究的过程中,必定会在问题的提出、方法的选择、结论的提示等诸多方面自觉或不自觉地受到实践的指引。可以这么说,脱离了实践,数学就会成为无源之水,无本之木。   其实,即使就最早以公理化体系面世的欧几里德几何而言,实际事物的几何直观和实践中人们发现的现象,尽管不合乎数学家公理化体系的程式,却仍然包含着数学理论的核心。当数学家把建立几何的公理体系当作自己的目标时,他的头脑中也一定联系到几何作图和直观现象。一个人,即使是很有天赋的数学家,能在数学的研究中获得具有科学价值的成果,除了他接受过严格的数学思维训练以外,他在数学理论研究的过程中,必定会在问题的提出、方法的选择、结论的提示等诸多方面自觉或不自觉地受到实践的指引。可以这么说,脱离了实践,数学就会变成无源之水,无本之木。   但是,数学理性思维的特点,使它不会满足于仅研究现实的数量关系和空间形式,它还努力探索一切可能的数量关系和空间形式。在古希腊时期,数学家就超越了在现实有限尺度精度内度量线段的方法,觉察到了无公度量线段的存在,即无理数的存在。这其实是数学中最困难的概念之一—连续性、无限性的问题。直到两千年以后,同样的问题导致极限理论的深入研究,大大地推动了数学的发展。试想今天如果还没有实数的概念,我们将面临怎样的处境。这时人们无法度量正方形对角线的长度,也不会解一元二次方程:至于极限理论与微积分学更不可能建立即使人们可以像牛顿那样应用微积分,但是在判断结论的真实性时会感到无所适从。在这种状况下,科学技术还能走多远呢?又如在欧几里德几何产生时,人们就对其中一个公设的独立性产生怀疑。到19世纪上半叶,数学家改变这个公设,得到了另一种可能的几何一一非欧几里德几何。这种几何的创立者表现了极大的勇气,因为这种几何得出的结论从“常理”来说是非常“荒唐”的。例如“三角形的面积不会超过某一个正数”。现实世界似乎没有这种几何的容身之地。但是过了近一百年,在物理学家爱因斯坦发现的相对论中,非欧几里德几何却是最合适的几何。再如,20世纪30年代哥德尔得到了数学结论不可判别性的结果,其中的某些概念非常抽象,近几十年却在算法语言的分析中找到了应用。实际上,许多数学在一些领域或一些问题中的应用,一旦实践推动了数学,数学本身就会不可避免地获得了一种动力,使之有可能超出直接应用的界限。而数学的这种发展,最终也会回到实践中去。   总之,我们应该大力提倡研究和当前实际应用有直接联系的数学课题,特别是现实经济建设中的数学问题。但是我们也应该在纯粹科学和应用科学之间建立有机的联系,建立抽象的共性和丰富多彩的个性之间的平衡,以此来推动整个科学协调地发展。   (二)数学—充满了辩证法由于数学严密性的特点,很少有人怀疑数学结论的正确性。相反,数学的结论往往成为真理的一种典范。例如人们常常用“像一加一等于二那么确定”来表示结论不容置疑。在我们的中小学的教学中,数学更是只准模仿、演练、背诵。数学真的是万古不变的绝对真理吗?   事实上,数学结论的真理性是相对的即使像1+1=2这样简单的公式,也有它不成立的地方。例如在布尔代数中,1+1=0!而布尔代数在电子线路中有广泛的应用。欧几里德几何在我们的日常生活中总是正确的,但在研究天体某些问题或速度很快的粒子运动时非欧几何却是适宜的。数学其实是非常多样化的,它的研究范围也随着新问题的出现而不断扩大。如同一切科学一样,数学家们如果死守着前辈的思想、方法、结论不放,数学科学就不会进步。把数学的严密性和公理化体系看作一种“教条”是错误的,更不能像封建时代的文人对待孔夫子说的话:“真理”已经包含在圣人说过的话里,后人只能对其作诠释。数学发展的历史可以证明,正是数学家特别是年轻数学家的创新精神,敢于向守旧的思想挑战,数学的面貌才得以不断地更新,数学才成长为今天这样一门蓬勃发展、富有朝气的学科。   数学的公理化体系从来也不是不容怀疑、不容变化的“绝对真理”欧几里德的几何体系是最早出现的数学公理化体系,但从一开始就有人怀疑其中的第五公设不是独立的,即该公设可以从公理体系的其他部分推出。两千多年来人们一直在寻找答案,终于在19世纪由此发现了非欧几何。虽然人们长时期受到欧几里德几何的束缚,但是最终人们还是接受了不同的几何公理体系。如果历史上某些数学家多一点敢于向旧体系挑战的革新精神,非欧几何也许还可能早几百年出现 数学公理化体系反映了内部逻辑严密性的要求。在一个学科领域内,当有关的知识积累到一定程度后,理论就会要求把一堆看来散乱的结果以某种体系的形式表现出来。这就需要对己有的事实再认识、再审视、再思索,创造新概念、新方法,尽可能地使理论能包括最一般、最新发现的规律。这实在是一个艰苦的理论创新过程。数学公理化也一样,它表示数学理论已经发展到了一个成熟的阶段,但并不是认识一劳永逸的终结。现有的认识可能被今后更深刻的认识所代替,现有的公理也可能被今后更一般化、包含更多事实的公理体系所代替。数学就在不断地更新过程中得到发展。   有种看法以为,应用数学就是把熟诵的数学结论套到实际问题上去,以为中小学的教学就是教给学生这些万古不变的教条。其实数学的应用极充满挑战性,一方面不但需要深切地认识实际问题本身,另一方面要求掌握相关数学知识的真谛,更重要的是要求能创造性地把两者结合起来。   就数学的内容来说,数学充满了辩证法。在初等数学发展时期,占统治地位的是形而上学。在该时期的数学家或其他科学家看来,世界由僵硬的、不变的东西组成。与此相适应,那时数学研究的对象是常量,即不变的量。笛卡尔的变数是数学中的转折点,他把初等数学中完全不同的两个领域一一几何和代数结合起来,建立了解析几何这个框架具备了表现运动和变化的特性,辩证法因此进入了数学。在此后不久产生的微积分抛弃了把初等数学的结论作为永恒真理的观点,常常做出相反的判断,提出一些在初等数学的代表人物看来完全不可理解的命题。数学走到了这样一个领域,在那里即使很简单的关系,都采取了完全辩证的形式,迫使数学家们不自觉又不自愿地转变为辩证数学家。在数学研究的对象中,充满了矛盾的对立面:曲线和直线,无限和有限,微分和积分,偶然和必然,无穷大和无穷小,多项式和无穷级数,正因为如此,马克思主义经典作家在有关辩证法的论述中经常提到数学。我们学一点数学,一定会对体会辩证法有所帮助。

数学思维与文化论文选题方向怎么写

初中数学论文|呈现本质,提高初中数学课堂效果 [摘要] 数学的教学,最终要教师本人落实到课堂中去,要做到切实提高课堂教学效果,就要求我们教师“凡是你教的

简单考虑,从以下几个方面写可能比较好:数学的思维(严密性、深邃性、直觉性……也可以参考三种哲学流派)数学的形式(体系的完备性、定理和公式的美学性)数学对人格塑造(对人的思维模式的塑造、性格特征的塑造、著名数学家的特点等)

数学的文化价值 一、数学是哲学思考的重要基础   数学在科学、文化中的地位,也使得它成为哲学思考的重要基础。历史上哲学领域内许多重要论争,常常牵涉到有关对数学的一些根本问题的认识。我们思考这些问题,有助于正确认识数学,正确理解哲学中有关的争论。   (一)数学——-根源于实践   数学的外在表现,或多或少人的智力活动相联系。因此在数学和实践的关系上,历来有人主张数学是“人的精神的自由创造”,否定数学来源于实践其实,数学的一切发展都不同程度地归结为实际的需要。从我国殷代的甲骨文中,就可以看到那时我们的祖先已经会使用十进制计数方法他们为适应农业的需要,将“十干”和“十二支”配成六十甲子,用以记年、月、日,几千年的历史说明这种日历的计算方法是有效的。同样,由于商业和债务的计算,古代的巴比伦人己经有了乘法表、倒数表,并积累了许多属于初等代数范畴的资料。在埃及,由于尼罗河泛滥后重新测量土地的需要,积累了大量计算面积的几何知识。后来随着社会生产的发展,特别是为适应农业耕种与航海需要而产生的天文测量,逐渐形成了初等数学,包括当今我们在中学里学习到的大部分数学知识。再后来由于蒸汽机等机械的发明而引起的工业革命,需要对运动特别是变速运动作更精细的研究,以及大量力学问题出现,促使微积分在长期的酝酿后应运而生。20世纪以来近代科学技术的飞速发展,使数学进入一个空前繁荣时期。在这个时期数学出现了许多新的分支:计算数学,信息论,控制论,分形几何等等。总之,实践的需要是数学发展的最根本的推动力。   数学的抽象性往往被人所误解。有些人认为数学的公理、公设、定理仅仅是数学家头脑思维的产物。数学家靠一张纸、一支笔工作,和实际没有什么联系。   其实,即使就最早以公理化体系面世的欧的几里德几何而言,实际事物的几何直观和实践中人们发展的现象,尽管不合乎数学家公理化体系的各式,却仍然包含着数学理论的核心。当数学家把建立几何的公理体系当作自己的目标时,他伯头脑中也一定联系到几何作图和直观现象。一个人,即使是很有天赋的数学家,能在数学的研究中获得具有科学价值的成果,除了他接受严格的数学思维训练以外,他在数学理论研究的过程中,必定会在问题的提出、方法的选择、结论的提示等诸多方面自觉或不自觉地受到实践的指引。可以这么说,脱离了实践,数学就会成为无源之水,无本之木。   其实,即使就最早以公理化体系面世的欧几里德几何而言,实际事物的几何直观和实践中人们发现的现象,尽管不合乎数学家公理化体系的程式,却仍然包含着数学理论的核心。当数学家把建立几何的公理体系当作自己的目标时,他的头脑中也一定联系到几何作图和直观现象。一个人,即使是很有天赋的数学家,能在数学的研究中获得具有科学价值的成果,除了他接受过严格的数学思维训练以外,他在数学理论研究的过程中,必定会在问题的提出、方法的选择、结论的提示等诸多方面自觉或不自觉地受到实践的指引。可以这么说,脱离了实践,数学就会变成无源之水,无本之木。   但是,数学理性思维的特点,使它不会满足于仅研究现实的数量关系和空间形式,它还努力探索一切可能的数量关系和空间形式。在古希腊时期,数学家就超越了在现实有限尺度精度内度量线段的方法,觉察到了无公度量线段的存在,即无理数的存在。这其实是数学中最困难的概念之一—连续性、无限性的问题。直到两千年以后,同样的问题导致极限理论的深入研究,大大地推动了数学的发展。试想今天如果还没有实数的概念,我们将面临怎样的处境。这时人们无法度量正方形对角线的长度,也不会解一元二次方程:至于极限理论与微积分学更不可能建立即使人们可以像牛顿那样应用微积分,但是在判断结论的真实性时会感到无所适从。在这种状况下,科学技术还能走多远呢?又如在欧几里德几何产生时,人们就对其中一个公设的独立性产生怀疑。到19世纪上半叶,数学家改变这个公设,得到了另一种可能的几何一一非欧几里德几何。这种几何的创立者表现了极大的勇气,因为这种几何得出的结论从“常理”来说是非常“荒唐”的。例如“三角形的面积不会超过某一个正数”。现实世界似乎没有这种几何的容身之地。但是过了近一百年,在物理学家爱因斯坦发现的相对论中,非欧几里德几何却是最合适的几何。再如,20世纪30年代哥德尔得到了数学结论不可判别性的结果,其中的某些概念非常抽象,近几十年却在算法语言的分析中找到了应用。实际上,许多数学在一些领域或一些问题中的应用,一旦实践推动了数学,数学本身就会不可避免地获得了一种动力,使之有可能超出直接应用的界限。而数学的这种发展,最终也会回到实践中去。   总之,我们应该大力提倡研究和当前实际应用有直接联系的数学课题,特别是现实经济建设中的数学问题。但是我们也应该在纯粹科学和应用科学之间建立有机的联系,建立抽象的共性和丰富多彩的个性之间的平衡,以此来推动整个科学协调地发展。   (二)数学—充满了辩证法由于数学严密性的特点,很少有人怀疑数学结论的正确性。相反,数学的结论往往成为真理的一种典范。例如人们常常用“像一加一等于二那么确定”来表示结论不容置疑。在我们的中小学的教学中,数学更是只准模仿、演练、背诵。数学真的是万古不变的绝对真理吗?   事实上,数学结论的真理性是相对的即使像1+1=2这样简单的公式,也有它不成立的地方。例如在布尔代数中,1+1=0!而布尔代数在电子线路中有广泛的应用。欧几里德几何在我们的日常生活中总是正确的,但在研究天体某些问题或速度很快的粒子运动时非欧几何却是适宜的。数学其实是非常多样化的,它的研究范围也随着新问题的出现而不断扩大。如同一切科学一样,数学家们如果死守着前辈的思想、方法、结论不放,数学科学就不会进步。把数学的严密性和公理化体系看作一种“教条”是错误的,更不能像封建时代的文人对待孔夫子说的话:“真理”已经包含在圣人说过的话里,后人只能对其作诠释。数学发展的历史可以证明,正是数学家特别是年轻数学家的创新精神,敢于向守旧的思想挑战,数学的面貌才得以不断地更新,数学才成长为今天这样一门蓬勃发展、富有朝气的学科。   数学的公理化体系从来也不是不容怀疑、不容变化的“绝对真理”欧几里德的几何体系是最早出现的数学公理化体系,但从一开始就有人怀疑其中的第五公设不是独立的,即该公设可以从公理体系的其他部分推出。两千多年来人们一直在寻找答案,终于在19世纪由此发现了非欧几何。虽然人们长时期受到欧几里德几何的束缚,但是最终人们还是接受了不同的几何公理体系。如果历史上某些数学家多一点敢于向旧体系挑战的革新精神,非欧几何也许还可能早几百年出现 数学公理化体系反映了内部逻辑严密性的要求。在一个学科领域内,当有关的知识积累到一定程度后,理论就会要求把一堆看来散乱的结果以某种体系的形式表现出来。这就需要对己有的事实再认识、再审视、再思索,创造新概念、新方法,尽可能地使理论能包括最一般、最新发现的规律。这实在是一个艰苦的理论创新过程。数学公理化也一样,它表示数学理论已经发展到了一个成熟的阶段,但并不是认识一劳永逸的终结。现有的认识可能被今后更深刻的认识所代替,现有的公理也可能被今后更一般化、包含更多事实的公理体系所代替。数学就在不断地更新过程中得到发展。   有种看法以为,应用数学就是把熟诵的数学结论套到实际问题上去,以为中小学的教学就是教给学生这些万古不变的教条。其实数学的应用极充满挑战性,一方面不但需要深切地认识实际问题本身,另一方面要求掌握相关数学知识的真谛,更重要的是要求能创造性地把两者结合起来。   就数学的内容来说,数学充满了辩证法。在初等数学发展时期,占统治地位的是形而上学。在该时期的数学家或其他科学家看来,世界由僵硬的、不变的东西组成。与此相适应,那时数学研究的对象是常量,即不变的量。笛卡尔的变数是数学中的转折点,他把初等数学中完全不同的两个领域一一几何和代数结合起来,建立了解析几何这个框架具备了表现运动和变化的特性,辩证法因此进入了数学。在此后不久产生的微积分抛弃了把初等数学的结论作为永恒真理的观点,常常做出相反的判断,提出一些在初等数学的代表人物看来完全不可理解的命题。数学走到了这样一个领域,在那里即使很简单的关系,都采取了完全辩证的形式,迫使数学家们不自觉又不自愿地转变为辩证数学家。在数学研究的对象中,充满了矛盾的对立面:曲线和直线,无限和有限,微分和积分,偶然和必然,无穷大和无穷小,多项式和无穷级数,正因为如此,马克思主义经典作家在有关辩证法的论述中经常提到数学。我们学一点数学,一定会对体会辩证法有所帮助。

数学思维与文化论文选题方向有哪些

数学作为一种文化现象,早已是人们的常识。历史地看,古希腊和文艺复兴时期的文化名人,往往本身就是数学家。最著名的如柏拉图和达·芬奇。晚近以来,爱因斯坦、希尔伯特、罗素、冯·诺依曼等文化名人也都是20世纪数学文明的缔造者。数学文化的存在价值在即将公布的高中数学课程标准中,数学文化是一个单独的板块,给予了特别的重视。许多老师会问为什么要这样做?一个重要的原因是,20世纪初年的数学曾经存在着脱离社会文化的孤立主义倾向,并一直影响到今天的中国。数学的过度形式化,使人错误地感到数学只是少数天才脑子里想象出来的“自由创造物”,数学的发展无须社会的推动,其真理性无须实践的检验,当然,数学的进步也无须人类文化的哺育。于是,西方的数学界有“经验主义的复兴”。怀特(LAWhite)的数学文化论力图把数学回归到文化层面。克莱因(MKline)的《古今数学思想》、《西方文化中的数学》、《数学:确定性的丧失》相继问世,力图营造数学文化的人文色彩。国内最早注意数学文化的学者是北京大学的教授孙小礼,她和邓东皋等合编的《数学与文化》,汇集了一些数学名家的有关论述,也记录了从自然辩证法研究的角度对数学文化的思考。稍后出版的有齐民友的《数学与文化》,主要从非欧几何产生的历史阐述数学的文化价值,特别指出了数学思维的文化意义。郑毓信等出版的专著《数学文化学》,特点是用社会建构主义的哲学观,强调“数学共同体”产生的文化效应。以上的著作以及许多的论文,都力图把数学从单纯的逻辑演绎推理的圈子中解放出来,重点是分析数学文明史,充分揭示数学的文化内涵,肯定数学作为文化存在的价值。认识和实施数学文化教育进入21世纪之后,数学文化的研究更加深入。一个重要的标志是数学文化走进中小学课堂,渗入实际数学教学,努力使学生在学习数学过程中真正受到文化感染,产生文化共鸣,体会数学的文化品位,体察社会文化和数学文化之间的互动。那么,如何在中小学数学教学中进行数学文化教育呢?笔者认为应该从以下几个方面加以认识和实施。认识数学文化的民族性和世界性每个民族都有自己的文化,也就一定有属于这个文化的数学。古希腊的数学和中国传统数学都有辉煌的成就、优秀的传统。但是,它们之间有着明显的差异。古希腊和古代中国的不同政治文明孕育了不同的数学。古希腊是奴隶制国家。当时希腊的雅典城邦实行奴隶主的民主政治(广大奴隶不能享受这种民主)。男性奴隶主的全体大会选举执政官,对一些战争、财政大事实行民主表决。这种政治文明包含着某些合理的因素。奴隶主之间讲民主,往往需要用理由说服对方,使学术上的辩论风气浓厚。为了证明自己坚持的是真理,也就需要证明。先设一些人人皆同意的“公理”,规定一些名词的意义,然后把要陈述的命题,称为公理的逻辑推论。欧氏的《几何原本》正是在这样的背景下产生的。 中国在春秋战国时期也有百家争鸣的学术风气,但是没有实行古希腊统治者之间的民主政治,而是实行君王统治制度。春秋战国时期,也是知识分子自由表达见解的黄金年代。当时的思想家和数学家,主要目标是帮助君王统治臣民、管理国家。因此,中国的古代数学,多半以“管理数学”的形式出现,目的是为了丈量田亩、兴修水利、分配劳力、计算税收、运输粮食等国家管理的实用目标。理性探讨在这里退居其次。因此,从文化意义上看,中国数学可以说是“管理数学”和“木匠数学”,存在的形式则是官方的文书。古希腊的文化时尚,是追求精神上享受,以获得对大自然的理解为最高目标。因此,“对顶角相等”这样的命题,在《几何原本》里列入命题15,借助公理3(等量减等量,其差相等)给予证明。在中国的数学文化里,不可能给这样的直观命题留下位置。 同样,中国数学强调实用的管理数学,却在算法上得到了长足的发展。负数的运用、解方程的开根法,以及杨辉(贾宪)三角、祖冲之的圆周率计算、天元术那样的精致计算课题,也只能在中国诞生,而为古希腊文明所轻视。 我们应当充分重视中国传统数学中的实用与算法的传统,同时又必须吸收人类一切有益的数学文化创造,包括古希腊的文化传统。当进入21世纪的时候,我们作为地球村的村民,一定要溶入世界数学文化,将民族性和世界性有机地结合起来。揭示数学文化内涵,走出数学孤立主义的阴影数学的内涵十分丰富。但在中国数学教育界,常常有“数学=逻辑”的观念。据调查,学生们把数学看作“一堆绝对真理的总集”,或者是“一种符号的游戏”。“数学遵循记忆事实-运用算法-执行记忆得来的公式-算出答案”的模式[1],“数学=逻辑”的公式带来了许多负面影响。正如一位智者所说,一个充满活力的数学美女,只剩下一副X光照片上的骨架了!数学的内涵,包括用数学的观点观察现实,构造数学模型,学习数学的语言、图表、符号表示,进行数学交流。通过理性思维,培养严谨素质,追求创新精神,欣赏数学之美。半个多世纪以前,著名数学家柯朗(RCourant)在名著《数学是什么》的序言中这样写道:“今天,数学教育的传统地位陷入严重的危机。数学教学有时竟变成一种空洞的解题训练。数学研究已出现一种过分专门化和过于强调抽象的趋势,而忽视了数学的应用以及与其他领域的联系。教师学生和一般受过教育的人都要求有一个建设性的改造,其目的是要真正理解数学是一个有机整体,是科学思考与行动的基础。” 2002年8月20日,丘成桐接受《东方时空》的采访时说:“我把《史记》当作歌剧来欣赏”,“由于我重视历史,而历史是宏观的,所以我在看数学问题时常常采取宏观的观点,和别人的看法不一样。” 这是一位数学大家的数学文化阐述。 《文汇报》2002年8月21日摘要刊出钱伟长的文章《哥丁根学派的追求》,其中提到:“这使我明白了:数学本身很美,然而不要被它迷了路。应用数学的任务是解决实际问题,不是去完善许多数学方法,我们是以解决实际问题为己任的。从这一观点上讲,我们应该是解决实际问题的优秀‘屠夫’,而不是制刀的‘刀匠’,更不是那种一辈子欣赏自己的刀多么锋利而不去解决实际问题的刀匠。”这是一个力学家的数学文化观。和所有文化现象一样,数学文化直接支配着人们的行动。孤立主义的数学文化,一方面拒人于千里之外,使人望数学而生畏;另一方面,又孤芳自赏,自言自语,令人把数学家当成“怪人”。学校里的数学,原本是青少年喜爱的学科,却成为过滤的“筛子”、打人的“棒子”。优秀的数学文化,会是美丽动人的数学王后、得心应手的仆人、聪明伶俐的宠物。伴随着先进的数学文化,数学教学会变得生气勃勃、有血有肉、光彩照人。多侧面地开展数学文化研究谈到数学文化,往往会联想到数学史。确实,宏观地观察数学,从历史上考察数学的进步,确实是揭示数学文化层面的重要途径。但是,除了这种宏观的历史考察之外,还应该有微观的一面,即从具体的数学概念、数学方法、数学思想中揭示数学的文化底蕴。以下将阐述一些新视角,力求多侧面地展现数学文化。 数学和文学。数学和文学的思考方法往往是相通的。举例来说,中学课程里有“对称”,文学中则有“对仗”。对称是一种变换,变过去了却有些性质保持不变。轴对称,即是依对称轴对折,图形的形状和大小都保持不变。那么对仗是什么?无非是上联变成下联,但是字词句的某些特性不变。王维诗云:“明月松间照,清泉石上流”。这里,明月对清泉,都是自然景物,没有变。形容词“明”对“清”,名词“月”对“泉”,词性不变。其余各词均如此。变化中的不变性质,在文化中、文学中、数学中,都广泛存在着。数学中的“对偶理论”,拓扑学的变与不变,都是这种思想的体现。文学意境也有和数学观念相通的地方。徐利治先生早就指出:“孤帆远影碧空尽”,正是极限概念的意境。欧氏几何和中国古代的时空观。初唐诗人陈子昂有句云:“前不见古人,后不见来者,念天地之悠悠,独怆然而涕下。”这是时间和三维欧几里得空间的文学描述。在陈子昂看来,时间是两头无限的,以他自己为原点,恰可比喻为一条直线。天是平面,地是平面,人类生活在这悠远而空旷的时空里,不禁感慨万千。数学正是把这种人生感受精确化、形式化。诗人的想象可以补充我们的数学理解。 数学与语言。语言是文化的载体和外壳。数学的一种文化表现形式,就是把数学溶入语言之中。“不管三七二十一”涉及乘法口诀,“三下二除五就把它解决了”则是算盘口诀。再如“万无一失”,在中国语言里比喻“有绝对把握”,但是,这句成语可以联系“小概率事件”进行思考。“十万有一失”在航天器的零件中也是不允许的。此外,“指数爆炸”“直线上升”等等已经进入日常语言。它们的含义可与事物的复杂性相联系(计算复杂性问题),正是所需要研究的。“事业坐标”“人生轨迹”也已经是人们耳熟能详的词语。 数学的宏观和微观认识。宏观和微观是从物理学借用过来的,后来变成一种常识性的名词。以函数为例,初中和高中的函数概念有变量说和对应说之分,其实是宏观描述和微观刻画的区别。初中的变量说,实际上是宏观观察,主要考察它的变化趋势和性态。高中的对应则是微观的分析。在分段函数的端点处,函数值在这一段,还是下一段,差一点都不行。政治上有全局和局部,物理上有牛顿力学与量子力学,电影中有全景和细部,国画中有泼墨山水画和工笔花鸟画,其道理都是一样的。是否要从这样的观点考察函数呢? 数学和美学。“1/2+1/3=2/5 ?”是不是和谐美?二次方程的求根公式美不美?这涉及到美学观。三角函数课堂上应该提到音乐,立体几何课总得说说绘画,如何把立体的图形画在平面上。欣赏艾舍尔(MCEscher)的画、计算机画出的分形图,也是数学美的表现。总之,数学文化离不开数学史,但是不能仅限于数学史。当数学文化的魅力真正渗入教材、到达课堂、溶入教学时,数学就会更加平易近人,数学教学就会通过文化层面让学生进一步理解数学、喜欢数学、热爱数学。

论文题目的确定好是一篇好的论文首先至关重要的第一步。论文的题目应简明扼要地反映论文工作的主要内容,切忌笼统。论文题目不仅应告诉读者这本论文研究了什么问题,更要告诉读者这个研究得出的结论。更多关于论文相关信息,可以去通关论文网上面看看。希望能帮到你~

浅谈数学文化中的和合思想和合是我国传统文化的一个重要概念。“和”是平和、和谐、祥和、协调的意思。“合”是合作、对称、结合、统一的意思。和合思想认为,整个物质世界是一个和谐的整体,宇宙、自然、社会、精神各元素都处在一个和谐的优化结构中。而数学文化系统就是一个完美的和谐优化结构。数学文化中的数学发展史、数学哲学思想、数学方法、数学美育等重要内容蕴含着丰富的和合思想。其具体体现是整体系统性、平衡稳定性、有序对称性。一、整体系统性数学公理系统的相容性数学的公理化系统具有相容性、独立性和完备性。在这三项基本要求中,最主要的是相容性。相容性就是不矛盾性或和谐性,是指各公理不能互相抵触,它们推导的真命题也不能互相矛盾,公理系统的相容性是数学系统和谐的基础,也是基本要求。除了数学各分支自身要形成相容的公理系统之外,数学还要求各分支之间互相协调,不能互相抵触。有的系统之间,还形成密切的同构关系,在不同的数学系统之间,相容性是一致的。例如欧氏几何与非欧几何(罗式几何、黎曼几何)中平行公理是互否的命题,可在欧氏几何中构造非欧几何的模型,所以可以这样说只要欧氏几何无矛盾,那么非欧几何也是无矛盾的。数学运算系统的完整性数学的运算法则、运算公式、运算结论都是完整的、准确的。特别是数学的运算语言,它把文字语言、符号语言、图像语言完全融合到一个统一体中,互相印证、互相诠释、互相转化,达到了天衣无缝的完美。当扩充数系时,要建立新的理论和运算拓广原有运算和关系时,要尽量保持原有的运算、关系的一致性,如有不一致,必须作一规定,使新系统与原有系统和谐。数学推理系统的严密性在我们日常的数学活动中,常常用到反证法,在这种方法中,往往不仅要用到系统的公理和定理,而且要用到其他分支的知识。在整个推理过程中要和谐。例如古希腊三大著名问题之一化圆为方,即作一个与给定圆面积相等的正方形。要证明用圆规和直尺不能作出等面积的正方形就需要用到数“=”的超越性。在数学上的等式、解析式中出现“=”是和谐的体现。二、平衡稳定性“和合思想”认为天地自然万物处于平衡、和谐、有序的状态。各个事物、要素互依、互涵、互补,处于全面的、立体的相互作用的过程之中。而数学的平衡稳定性很好地体现了和合思想。数学发展的平衡稳定数学科学与其它学科相比,一个重要的特点就是历史的累积性、发展的平衡稳定性。也就是说重大的数学理论总是在继承和发展原有理论的基础上建立起来的,他们不仅不会推翻原有的理论,而且总是包容原有的理论。比如天文学的“地心说”被“日心说”所代替,物理学中关于光的“粒子说”被“波动说”代替,化学中的“燃素说”被“氧化说”代替等等,而数学从来没有发生过这样的情况。这正如一位数学史家H?汉科尔所说:“在大多数学科里,一代人的建筑为下一代人所拆毁,一个人的创造被另一个人所破坏,唯独数学,每一代人都在古老的大厦上添加一层楼”。数学的这一平衡稳定性,正是数学学科能不断焕发出无限活力和强大生命力根源。数学学习过程的平衡稳定人们对知识的学习过程都含有一定的认知结构。而学生学习数学知识的过程不外乎“同化—顺应—平衡”这样一个相对稳定的过程。同化就是把新的知识纳入已有的认知结构,使原有的知识体系不断得到充实丰富。顺应就是新的知识不能纳入原有的认知结构,就要对原有认知结构进行改造和提高,从而建立新的认知结构。平衡就是同化和顺应后,都有一个巩固阶段,在这一阶段对知识的理解和内化是平衡稳定的。人们对数学知识的学习正式在“同化—顺应—平衡”这样一个循环往复的过程中发展的。数学方法的平衡稳定数学方法是认识数学客体过程中某种有规律的程序和手段,使理论用于实践的中介,各种方法都和谐地存在在数学这个共同体中。比如常用的数学思维方法:观察、分析、综合、抽象、猜想、类比、归纳、演绎;还有常用的数学解题方法:比较方法、结构方法、模型方法、构造方法、化归方法、映射反演法、几何变换法、公理化方法等。这些方法,无论是在初等数学中,还是在高等数学中;无论是在几何学中,还是在代数学中,都在广泛的运用,始终处于平衡稳定状态中,不会因时间、空间、以及学科的变化发生变异。几何变换思想和方法,就是用运动和变化的观点去研究几何对象及其相互关系,探讨图形运动过程中不变的关系、不变量和变化关系、变化量,从中找出规律。在解题过程中,对图形有关部分进行变换,化不规则为规则,化一般为特殊,化不利条件为有利条件。三、有序对称性“凡物必有合”,“合”就是对称、结合、统一。整个世界不仅和谐合理,而且阴阳和合的对称。数学的有序对称美在初等数学中研究的对称性,可以描述的是一个图形、一个式子各个部分的关系,也可以描述两个图形、式子的关系。图形、式子的变换显示着数学中的对称美。图形对称可称为狭义对称,例如中心对称图形、轴对称图形、旋转对称图形是图形位置的一种对称。显示一种对称的美。在许多概念中和方法、命题、公式、法则中也存在对称性,也可称为一种对称。在数学中,许多概念都是一正一反,相辅相成,成对出现的。例如数学运算中加与减、乘与除、乘方与开方、微分与积分等,都可认为是一阴一阳的对称;减一个负数可变成加一个正数,除可以变成乘的运算,所以说它们之间又是统一有序的。在二元运算中通过交换律、结合律、分配律来反映其对称性。数学解题过程的有序结构从文化的角度审视数学解题过程它是数学策略、数学逻辑、数学方法、数学知识、数学技能与程式化的有机结合,是一个有序结构的统一体。比如解方程过程的基本步骤是:去分母、去括号、移项合并、两边同除以未知数的系数。这是一个和谐的有序结构。破坏了这个有序结构,就会发生解题障碍。从思维过程看,它是“观察———联想———转化”这样一个有序过程。观察是联想的基础,在观察中认识所给题目的特征;联想是转化的桥梁,在联想中寻找解题途径;转化是解题的手段,在转化中确定解题方案,从而最终解决问题。数学无论是从整体和局部,形式和内容,还是结果和过程都体现着和合思想的精神和内涵。我们用“和合思想”重新认识数学,发挥数学文化在教学中的教育功能,就能有效地培养学生科学素养和文化素养。参考文献:[1]齐民友数学文化[M]长沙:湖南教育出版社,[2]张维忠数学文化与数学课程[M]上海:上海教育出版社,[3]郑毓信数学文化学[M]成都:四川教育出版社,[4]李文林数学史教程[M]高教出版社

相关百科
热门百科
首页
发表服务