学术论文百科

砌体结构现状与前景毕业论文怎么写

发布时间:2024-07-13 19:12:29

砌体结构现状与前景毕业论文

我们以美国权威参考书《美国2000年年鉴》为依据,用其中的数据与我国现状对比,便可大致看出我国与发达国家的差距。 农业。美国在1820年时,每个劳动力可供给1人;目前大约是60人。而我国目前每个农业劳动力能提供的产品,不足供给4人。也就是说,在这一指标上,中国比美国大约相差160年。 知识程度。美国在1840年时,有22%是文盲和半文盲。1982年,中国文盲和半文盲占23%。大约差150年。 钢产量。美国在1887年时,人均是57公斤。1986年,中国钢产量达5000万吨,人均约占50公斤。相差100年。 铁路。美国在1830年修筑第一条铁路,33年后,就达到34万公里,我国1986年的铁路总长是25万公里。在这一点上,差120年。 发电量。1917年时,美国是每人420度,我国在1985年达到了每人393度,相差七十年。 公路。1985年,我国公路的全部总长和美国1927年的铺设路面的公路总长相差不多,都是90余万公里,差距约六十年。

砌体结构在我国应用历史砌体结构的历史悠久,天然石是最原始的建筑材料之一。古代大量具有纪念性。砌体结构是最古老的一种建筑结构。我国的砌体结构有着悠久的历史和辉煌的纪录。在历史上有举世闻名的万里长城,它是两千多年前用“秦砖汉瓦”建造的世界上最伟大的砌体工程之一;建于北魏时期的河南登封嵩岳寺塔为高40米的砖砌密檐式塔;建于隋大业年问的河北赵县安济桥,净跨37米,全长82米,宽约9米,拱高2米,为世界上最早的空腹式石拱桥,该桥已被美国土木工程学会选为世界第12个土木工程里程碑;还有如今仍然起灌溉作用的秦代李冰父子修建的都江堰水利工程;所有这些都是值得我们自豪和继承的。 中国古代范例: 万里长城、赵州桥、大雁塔砌体结构量大面广解放以来我国砖的产量逐年增长,1996 年增至6200 亿块,为世界其他各国砖每年产量的总和。全国基建中采用砌体作墙体材料约占90 %左右。在办公、住宅等民用建筑中大量采用砖墙承重。此外我国还积累了在地震区建造砌体结构房屋的宝贵经验。我国绝大多数大中城市在6 度或6 度以上地震设防区。地震烈度≤6 度的砌体结构经受了地震的考验。经过设计和构造上的改进和处理,还在7 度区和8 度区建造了大量的砌体结构房屋。新材料、新技术、新结构的研究与应用60 年代以来,我国黏土空心砖(多孔砖) 的生产和应用有较大的发展,根据节能进一步要求,近年来我国消化吸收国外先进技术,在主要力学和热工性能的指标接近或达到国际同类产品的水平。近10 余年来,采用砼、轻骨料砼或加气砼,以及利用河沙、各种工业废料、粉煤灰、煤干石等制无热料水泥煤渣砼砌块或蒸压灰砂砖、粉煤灰硅酸盐砖、砌块等在我国有较大的发展。从90 年代初期,在总结国内外配筋砼砌块试验研究经验的基础上,我国在配筋砌块结构的配套材料、配套应用技术的研究上获得了突破,中高层配筋砌块建筑具有明显的社会经济效益。作为粘土砖的主要替代材料和某些功能强于粘土砖的砌块的发展前景是非常好的。我国配筋砌体应用研究起步较晚,70 年代以来,尤其是1975 年海城- 营口地震和1976 年唐山大地震之后,对设置构造柱和圈梁的约束砌体进行了一系列的试验研究,其成果引入我国抗震设计规范。砌体结构理论研究与计算方法1956 年批准在我国推广应用前苏联砌体结构设计标准。60~80 年代末,在全国范围内对砖石结构进行了比较大规模的试验研究和调查,总结出一套符合我国实际、比较先进的砖石结构理论、计算方法和经验。如1973 年颁布的国家标准《砖石结构设计规范》GBJ 3 - 73 ,是我国第一部砖石结构设计规范。1988 年颁布的《砌体结构设计规范》GBJ 3 - 88 ,使我国砌体结构设计理论和方法趋于完善。2002年1 月10 日发布的最新《砌体结构设计规范》GB50003 - 2001 ,更加完善了砌体结构设计的理论和实际依据。最新《砌体结构设计规范》GB50003-2011,自2012年8月1日起实施。 砌体结构的建筑物用砖、石建造。如用加工的巨大石块建成的金字塔一直保存到现代。其中在尼罗河三角洲的吉萨建造的三座大金字塔(公元前2723~前2563年),是精确的正方锥体,其中最大的胡夫金字塔,塔高6米,底边长60米,约用230万块重5吨的石块建成。 又如公元70~82年建造的罗马大斗兽场(科洛西姆圆形竞技场)平面为椭圆形,长轴189米,短轴4米,高5米,分四层,可以容纳5~8万观众,也用块石砌成。中世纪在欧洲用加工的天然石和砖砌筑的拱、券、穹窿和圆顶等结构型式得到很大发展。如公元532~537年在君士坦丁堡建造的圣索菲亚教堂,东西长77米,南北长7米,正中是直径6米,高15米的穹顶,墙和穹顶都是砖砌。12~15世纪西欧以法国为中心的哥特式建筑集中了十字拱、骨架券、二圆心尖拱、尖券等结构形式。中国封建时期采用砖木建造的寺院、庙宇、宫殿和宝塔等,体现了中国古代砌体结构的成就。其中砖塔是一种高层建筑,如河南登封嵩岳寺塔(见彩图)为砖砌单筒体结构;西安大雁塔(图1)也为砖砌单筒体结构,高60多米,1200多年来,历经数次地震,仍巍然屹立。河北定县料敌塔高约84米,为砖砌双筒体结构。著名的长城,其中一部分用烧制砖砌筑。在桥梁建筑方面,中国隋朝李春建造的赵州桥是中国最古和当时跨径最大的单孔空腹式石拱桥(见彩图)。又如北宋时期建造的福建漳州虎渡桥,石梁最大跨径达23米,梁宽9米、厚约7米,重达200吨,三根石梁并列为桥面,是中国古代最重的简支石梁桥。1949年中华人民共和国成立后,砌体结构得到很大的发展和广泛应用,住宅建筑、多层民用建筑大量采用砖墙承重(图2)。中小型单层工业建筑和多层轻工业建筑也常采用砖墙承重。中国传统的空斗砖墙,经过改进已经用作2~4层建筑的承重墙。20世纪50年代末开始,采用振动砖墙板建造五层住宅,承重墙厚度仅为12厘米。在地震区,采取在承重砖墙转角和内外纵横墙交接处设置钢筋混凝土抗震柱也称构造柱,及在空心砖或空心砌块孔内配置纵向钢筋和浇灌混凝土等措施,提高砌体结构的抗震性能(见墙板结构)。传统的石拱桥的跨度已大大增加而厚度相对减薄。用于公路的变截面空腹式石拱桥的跨度已达100多米。此外,还采用石砌拱坝和渡槽。如在福建省建造的横跨云霄、东山两县的大型引水工程中的陈岱渡槽,全长4400多米,高20米。在新结构方面,研究和建造了各种型式的砖薄壳。在新材料方面,研制了粉煤灰和煤矸石烧结砖,蒸汽养护粉煤灰砖和煤渣砖,以及灰砂砖等;采用和改进硅酸盐砌块及各种承重和非承重空心砖。在新技术方面,采用各种配筋砌体,包括预应力空心砖楼板。砖砌的特种结构如烟囱等也较广泛应用。 70年代以来,在试验研究的基础上,对砌体结构的设计方法做了某些改进。如砌体结构房屋的静力计算,根据房屋的空间刚度,分别按刚性、刚弹性和弹性三种方案进行(见砌体结构房屋的静力分析),使墙体在竖向和水平荷载共同作用下的内力计算更加接近实际情况。无筋砌体受压构件的强度计算,改变了将构件区分为大、小偏心受压的计算方法(见砖墙和砖柱),使计算更为简便。发展和趋向 采用高强度砖石和砂浆,用较薄的承重墙建造较高的建筑物是现代砌体结构的主要特点。如瑞士在16层高的公寓建筑中以15厘米厚的砖墙承重;并采用抗压强度达40兆帕的特种BS砖建成18层高的公寓;采用抗压强度达60兆帕、孔洞率为28%的多孔砖建成19层和24层高的塔式住宅建筑,砖墙仅厚38厘米。英国用卡尔柯龙(Calculon)多孔砖,抗压强度达35、49和70兆帕建成 11~19层高的公寓。美国用两片9厘米厚的单砖墙中间夹7厘米厚的配筋灌浆层建成21层高的公寓;用灌浆配筋混凝土砌块墙建成18层高的旅馆。预制砖墙板提高了施工机械化的程度,施工速度快,质量也易保证。预制粘士砖墙板的形式随各国气候和地理条件以及建筑传统不同而异,大多数用夹心式构造,少数用空心砖;有些用带孔砖在孔内配筋灌浆;有些在内侧用轻混凝土兼作保温材料。墙板的大小和房间墙面的大小相同。预制砖墙板多用于低层居住建筑,也用于高层公寓做承重墙或非承重墙。砌体结构发展的主要趋向是要求砖及砌块材料具有轻质高强的性能,砂浆具有高强度,特别是高粘结强度,尤其是采用高强度空心砖或空心砌块砌体时。在墙体内适当配置纵向钢筋,对克服砌体结构的缺点,减小构件截面尺寸,减轻自重和加快建造速度,具有重要意义。相应地研究设计理论,改进构件强度计算方法,提高施工机械化程度等,也是进一步发展砌体结构的重要课题。

这是我的论文题目 大哥 我辛苦写的 要的话就MM我

砌体结构现状与前景毕业论文怎么写

这是我的论文题目 大哥 我辛苦写的 要的话就MM我

标题定好的话我能够帮你写开题。。。在论文作业安置后,每个人都应遵从选题的根本原则,在较短的时刻内把选题的方向断定下来。从论文题意图性质来看,根本上能够分为两大类:一类是社会主义现代化建设实习中提出的理论和实际疑问;另一类是专业学科自身开展中存在的根本范畴和根本理论疑问。

到网上下下吧。这是我的论文题目 大哥 我辛苦写的 要的话就MM我

砌体结构的现状与前景论文

我可以提供资料: 砌体结构  masonry structure   以砌体为主制作的结构称为砌体结构。它包括砖结构、石结构和其它材料的砌块结构。分为无筋砌体结构和配筋砌体结构。砌体结构在我国应用很广泛,这是因为它可以就地取材,具有很好的耐久性及较好的化学稳定性和大气稳定性,有较好的保温隔热性能。较钢筋混凝土结构节约水泥和钢材,砌筑时不需模板及特殊的技术设备,可节约木材。砌体结构的缺点是自重大、体积大,砌筑工作繁重。由于砖、石、砌块和砂浆间粘结力较弱,因此无筋砌体的抗拉、抗弯及抗剪强度都很低。由于其组成的基本材料和连接方式,决定了它的脆性性质,从而使其遭受地震时破坏较重,抗震性能很差,因此对多层砌体结构抗震设计需要采用构造柱、圈梁及其它拉结等构造措施以提高其延性和抗倒塌能力。此外,砖砌体所用粘土砖用量很大,占用农田土地过多,因此把实心砖改成空心砖,特别发展高孔洞率、高强度、大块的空心砖以节约材料,以及利用工业废料,如粉煤灰、煤渣或者混凝土制成空心砖块代替红砖等都是今后砌体结构的方向。

绿色高性能混凝土建筑材料可持续发展的设想 多年来,关于混凝土材料的研究和对其发展方向的制定,过于偏重于使其达到某种或综合的优良性能这一基本原则上,而对其耐久性重视程度不够。90 年代初高性能混凝土概念提出后,促使人们加强了对混凝土材料的施工性和耐久性的研究,而绿色高性能混凝土则是将单纯的材料性能的获得与建筑材料的可持续发展综合考虑时的必然方向。1 绿色高性能混凝土 高性能混凝土应该具有下列某些或多项优良性能: (1) 优良的施工性:能在正常施工条件下保证混凝土结构的密实性和均匀性,并尽量降低振动噪音和振实能耗; (2) 强度高:尽量减少肥梁胖柱,并要考虑到建筑的美学效果和结构挠度以及功能等方面的要求; (3)耐久性优良:如抗冻性、抗渗性、抗冲击性、抗水砂冲刷性等; (4) 具有某些特殊功能:如超早强、低脆性、高耐磨性、吸声、自呼吸性等。尽管在开发应用高性能混凝土的过程中,一般都要使用高性能外加剂和性能优良的掺合料,在一定程度上可以起到节约水泥从而节约资源和能源、保护环境的作用,但高性能混凝土的提出者及研究开发者都很少从环境保护、节约资源和能源的高度来认识这一问题,过分强调在任何工程中都使用高强混凝土,无凝是对宝贵而有限的地球资源和能源的浪费。 最早提出绿色高性能混凝土概念的是中国工程院院士吴中伟教授。简要地说,符合以下条件的高性能混凝土才真正能称得上是绿色高性能混凝土: (1) 所使用的水泥必须为绿色水泥,砂石料的开采应以十分有序且不过分破坏环境为前提; (2) 最大限量地节约水泥用量,从而减少水泥生产中的“副产品”———CO2 、SO2 和NOx 等气体,以保护环境; (3) 更多地掺加经加工处理的工农业废渣,如磨细矿渣、优质粉煤灰、硅灰和稻壳灰等作为活性掺合料,以节约水泥保护环境,并改善混凝土耐久性; (4) 大量应用以工业废液,尤其是黑色纸浆废液为原料改性制造的减水剂,以及在此基础上研制的其它复合外加剂,帮助其它工业消化处理难以处治的液体排放物; (5) 集中搅拌混凝土,消除现场搅拌混凝土所产生的废料、粉尘和废水,并加强对废料、废水的循环使用; (6) 发挥高性能混凝土的优势,通过提高强度,减小结构截面积或结构体积,减少混凝土用量,从而节约水泥和砂、石的用量;通过改善施工性能来减小浇筑密实能耗,降低噪音;通过大幅度提高混凝土耐久性,延长结构物的使用寿命,进一步节约维修和重建费用,减少对自然资源无节制的使用; (7) 对大量拆除废弃的混凝土进行循环利用,发展再生混凝土。2 绿色高性能混凝土的原材料 尽管绿色高性能混凝土是一种相对节能的建筑材料,但随着世界水泥年产量和混凝土浇筑量的不断增加,它对资源、能源和环境所产生的影响是非常惊人的。据估算,生产1t 水泥熟料所排放的CO2 约为1t ,同时还要排放SO2 、NOx 等有害气体,CO2 的大量排放直接导致“温室效应”,而SO2 、NOx 等气体的排放则会引起“酸雨”现象,由于收尘设施不佳,水泥生产还排放出大量粉尘,水泥厂一直被看作环境污染源;水泥工业也是耗煤、耗电大户,水泥的大量生产和应用还将导致地球矿产资源的匮乏和生态平衡的破坏。因此,混凝土能否长期作为最主要的建筑材料,不仅要求其具备在耐久性、施工性和强度等方面的高性能,而且最关键之处在于其绿色“含量”是否高。水泥虽然只占混凝土所有原材料质量的10 %~20 % ,但水泥工业生产中所消耗的能量是最多的,几乎占混凝土能耗的50 %~60 %;混凝土从原材料生产加工到浇筑成型的整个过程中,水泥工业是排放粉尘和有害气体的最大的污染源。 因而,发展绿色高性能混凝土的首要条件是生产和使用节能型、环境污染少的绿色水泥。“绿色”型水泥生产是将资源利用率和二次能源回收率均提高到最高水平,并能够循环利用其它工业的废渣和废料;技术装备上更强化了环境保护的技术和措施;产品除了全面实行质量管理体系外,还真正实行全面环境保护的保证体系;粉尘、废渣和废气等的排放几乎接近于零,真正做到不但自身实现零污染,无公害,又因循环利用其它工业的废料、废渣,而帮助其它工业进行三废消化,最大限度地改善环境。3 开发研制和应用绿色高性能混凝土尚需进行的工作 绿色高性能混凝土从原材料到具体工程应用涉及到的部门和环节很多。实现水泥生产“绿色化”一个环节是不够的,必须同时开展如下工作: 第一、要加强混凝土科研开发、标准制定、工程设计和施工人员等的环保节能意识,加大“绿色”概念的宣传力度,引起混凝土工程领域各环节的高度重视。 第二、工程设计人员应更新传统的混凝土设计方法,敢于在重大工程中掺用活性混合材料和加大掺量;施工人员要提高质量意识,严格施工,加大活性混合材掺量对混凝土各项性能所产生的益处已众所周知,但未被工程界充分重视。比如,对粉煤灰的应用问题,尽管科研工作者早就着手大掺量粉煤灰混凝土的研究,但目前即使在商品混凝土中粉煤灰的实际掺量一般也只有15 %左右,很少超过20 %。有人曾研究过粉煤灰替代率为35 %~50 %的低强度等级混凝土(14MPa)的性能,认为可大量用于道路的路基,大掺量粉煤灰混凝土,尤其适合于大体积混凝土工程和海工混凝土工程。再如针对混凝土材料的耐久性,人们并没有象所期望的那样加大活性混合材的用量,控制某些种类防冻剂和早强剂的掺量,或者重视低碱水泥的使用,以致范围广泛的混凝土工程碱集料破坏现象仍很严重。 第三,研究对工业废渣行之有效的加工方法、加工设备,以期充分利用其活性;在工业废渣利用方面,还要坚持贯彻优质优用的原则,即超细磨矿渣和优质粉煤灰主要用于配制高强度混凝土,而配制中低强度等级混凝土一般仍应采用普通细度矿渣或低等级粉煤灰。 第四,开发适合于掺活性混合材混凝土的高性能外加剂,以解决掺混合材对混凝土性能产生的某些负面效应,同时还可避免过分提倡混合材超细磨所引起的能耗问题。通过掺用合适的高效减水剂和引气剂,可配制出各种性能相当优异的混凝土。对于大掺量普通细度活性混合材的混凝土,通过掺加有效的激发剂,有望改善其早期强度,但应严格限制激发剂中C1 和SO2的含量,或禁止使用这类激发剂,以免引起钢筋锈蚀或碱集料反应。 第五,研究一种或多种活性混合材和外加剂与水泥矿物成分的超叠加效应,以便针对具体材料提出最佳设计方案。 第六,对纸浆黑色废液进行加工处理,开发以纸浆废液为主要原材料的各种外加剂,并扩大其使用范围,长期以来,黑色纸浆废液一直是导致我国长江、黄河流域以及其它河道水质严重污染的“元凶”。我国大约有9000 多家造纸厂,每年产生的黑色废液大约有30 亿~90 亿t ,绝大多数厂家都把未经处理的废液直接排放到江河中,造成的污染十分惊人———竟占我国所有化工污染的1/ 4 ! 尽管国家已对部分厂家实行了关停并转,但处理纸浆废液的任务仍刻不容缓。利用纸浆废液来制取混凝土减水剂不仅可以节省工业萘的消耗,降低成本,最重要的是可帮助造纸厂处理并循环利用废液,减少其对环境、工农业生产以及人身健康造成的巨大危害。 第七,研究和制定绿色高性能混凝土的质量控制方法、验收标准等,绿色高性能混凝土都要求掺加活性混合材,然而,除硅灰和稻壳灰等外,活性混合材对混凝土强度的贡献主要在后期。如果仍沿用普通混凝土质量控制方法和验收标准,即以28 d 抗压强度来衡量混凝土的质量,则不符合实际情况,势必要造成强度和材料的浪费,也影响绿色高性能混凝土生产者的积极性,使绿色高性能混凝土难以推广,这与混凝土“绿色化”的真正目的是背道而驰的。另外,绿色高性能混凝土要求混凝土具有较为优良的耐久性,但对混凝土质量评定的传统和现行的标准只考虑强度,而对耐久性指标一般不予考虑,希望新标准中增加耐久性指标。 第八,应针对当前城市改造过程中大量拆除旧结构物混凝土,研究出一整套破碎、分级技术,开发再生混凝土,用于浇筑强度要求相对较低的地坪、中低等级混凝土路面、路基等工程。

砌体结构在我国应用历史砌体结构的历史悠久,天然石是最原始的建筑材料之一。古代大量具有纪念性。砌体结构是最古老的一种建筑结构。我国的砌体结构有着悠久的历史和辉煌的纪录。在历史上有举世闻名的万里长城,它是两千多年前用“秦砖汉瓦”建造的世界上最伟大的砌体工程之一;建于北魏时期的河南登封嵩岳寺塔为高40米的砖砌密檐式塔;建于隋大业年问的河北赵县安济桥,净跨37米,全长82米,宽约9米,拱高2米,为世界上最早的空腹式石拱桥,该桥已被美国土木工程学会选为世界第12个土木工程里程碑;还有如今仍然起灌溉作用的秦代李冰父子修建的都江堰水利工程;所有这些都是值得我们自豪和继承的。 中国古代范例: 万里长城、赵州桥、大雁塔砌体结构量大面广解放以来我国砖的产量逐年增长,1996 年增至6200 亿块,为世界其他各国砖每年产量的总和。全国基建中采用砌体作墙体材料约占90 %左右。在办公、住宅等民用建筑中大量采用砖墙承重。此外我国还积累了在地震区建造砌体结构房屋的宝贵经验。我国绝大多数大中城市在6 度或6 度以上地震设防区。地震烈度≤6 度的砌体结构经受了地震的考验。经过设计和构造上的改进和处理,还在7 度区和8 度区建造了大量的砌体结构房屋。新材料、新技术、新结构的研究与应用60 年代以来,我国黏土空心砖(多孔砖) 的生产和应用有较大的发展,根据节能进一步要求,近年来我国消化吸收国外先进技术,在主要力学和热工性能的指标接近或达到国际同类产品的水平。近10 余年来,采用砼、轻骨料砼或加气砼,以及利用河沙、各种工业废料、粉煤灰、煤干石等制无热料水泥煤渣砼砌块或蒸压灰砂砖、粉煤灰硅酸盐砖、砌块等在我国有较大的发展。从90 年代初期,在总结国内外配筋砼砌块试验研究经验的基础上,我国在配筋砌块结构的配套材料、配套应用技术的研究上获得了突破,中高层配筋砌块建筑具有明显的社会经济效益。作为粘土砖的主要替代材料和某些功能强于粘土砖的砌块的发展前景是非常好的。我国配筋砌体应用研究起步较晚,70 年代以来,尤其是1975 年海城- 营口地震和1976 年唐山大地震之后,对设置构造柱和圈梁的约束砌体进行了一系列的试验研究,其成果引入我国抗震设计规范。砌体结构理论研究与计算方法1956 年批准在我国推广应用前苏联砌体结构设计标准。60~80 年代末,在全国范围内对砖石结构进行了比较大规模的试验研究和调查,总结出一套符合我国实际、比较先进的砖石结构理论、计算方法和经验。如1973 年颁布的国家标准《砖石结构设计规范》GBJ 3 - 73 ,是我国第一部砖石结构设计规范。1988 年颁布的《砌体结构设计规范》GBJ 3 - 88 ,使我国砌体结构设计理论和方法趋于完善。2002年1 月10 日发布的最新《砌体结构设计规范》GB50003 - 2001 ,更加完善了砌体结构设计的理论和实际依据。最新《砌体结构设计规范》GB50003-2011,自2012年8月1日起实施。 砌体结构的建筑物用砖、石建造。如用加工的巨大石块建成的金字塔一直保存到现代。其中在尼罗河三角洲的吉萨建造的三座大金字塔(公元前2723~前2563年),是精确的正方锥体,其中最大的胡夫金字塔,塔高6米,底边长60米,约用230万块重5吨的石块建成。 又如公元70~82年建造的罗马大斗兽场(科洛西姆圆形竞技场)平面为椭圆形,长轴189米,短轴4米,高5米,分四层,可以容纳5~8万观众,也用块石砌成。中世纪在欧洲用加工的天然石和砖砌筑的拱、券、穹窿和圆顶等结构型式得到很大发展。如公元532~537年在君士坦丁堡建造的圣索菲亚教堂,东西长77米,南北长7米,正中是直径6米,高15米的穹顶,墙和穹顶都是砖砌。12~15世纪西欧以法国为中心的哥特式建筑集中了十字拱、骨架券、二圆心尖拱、尖券等结构形式。中国封建时期采用砖木建造的寺院、庙宇、宫殿和宝塔等,体现了中国古代砌体结构的成就。其中砖塔是一种高层建筑,如河南登封嵩岳寺塔(见彩图)为砖砌单筒体结构;西安大雁塔(图1)也为砖砌单筒体结构,高60多米,1200多年来,历经数次地震,仍巍然屹立。河北定县料敌塔高约84米,为砖砌双筒体结构。著名的长城,其中一部分用烧制砖砌筑。在桥梁建筑方面,中国隋朝李春建造的赵州桥是中国最古和当时跨径最大的单孔空腹式石拱桥(见彩图)。又如北宋时期建造的福建漳州虎渡桥,石梁最大跨径达23米,梁宽9米、厚约7米,重达200吨,三根石梁并列为桥面,是中国古代最重的简支石梁桥。1949年中华人民共和国成立后,砌体结构得到很大的发展和广泛应用,住宅建筑、多层民用建筑大量采用砖墙承重(图2)。中小型单层工业建筑和多层轻工业建筑也常采用砖墙承重。中国传统的空斗砖墙,经过改进已经用作2~4层建筑的承重墙。20世纪50年代末开始,采用振动砖墙板建造五层住宅,承重墙厚度仅为12厘米。在地震区,采取在承重砖墙转角和内外纵横墙交接处设置钢筋混凝土抗震柱也称构造柱,及在空心砖或空心砌块孔内配置纵向钢筋和浇灌混凝土等措施,提高砌体结构的抗震性能(见墙板结构)。传统的石拱桥的跨度已大大增加而厚度相对减薄。用于公路的变截面空腹式石拱桥的跨度已达100多米。此外,还采用石砌拱坝和渡槽。如在福建省建造的横跨云霄、东山两县的大型引水工程中的陈岱渡槽,全长4400多米,高20米。在新结构方面,研究和建造了各种型式的砖薄壳。在新材料方面,研制了粉煤灰和煤矸石烧结砖,蒸汽养护粉煤灰砖和煤渣砖,以及灰砂砖等;采用和改进硅酸盐砌块及各种承重和非承重空心砖。在新技术方面,采用各种配筋砌体,包括预应力空心砖楼板。砖砌的特种结构如烟囱等也较广泛应用。 70年代以来,在试验研究的基础上,对砌体结构的设计方法做了某些改进。如砌体结构房屋的静力计算,根据房屋的空间刚度,分别按刚性、刚弹性和弹性三种方案进行(见砌体结构房屋的静力分析),使墙体在竖向和水平荷载共同作用下的内力计算更加接近实际情况。无筋砌体受压构件的强度计算,改变了将构件区分为大、小偏心受压的计算方法(见砖墙和砖柱),使计算更为简便。发展和趋向 采用高强度砖石和砂浆,用较薄的承重墙建造较高的建筑物是现代砌体结构的主要特点。如瑞士在16层高的公寓建筑中以15厘米厚的砖墙承重;并采用抗压强度达40兆帕的特种BS砖建成18层高的公寓;采用抗压强度达60兆帕、孔洞率为28%的多孔砖建成19层和24层高的塔式住宅建筑,砖墙仅厚38厘米。英国用卡尔柯龙(Calculon)多孔砖,抗压强度达35、49和70兆帕建成 11~19层高的公寓。美国用两片9厘米厚的单砖墙中间夹7厘米厚的配筋灌浆层建成21层高的公寓;用灌浆配筋混凝土砌块墙建成18层高的旅馆。预制砖墙板提高了施工机械化的程度,施工速度快,质量也易保证。预制粘士砖墙板的形式随各国气候和地理条件以及建筑传统不同而异,大多数用夹心式构造,少数用空心砖;有些用带孔砖在孔内配筋灌浆;有些在内侧用轻混凝土兼作保温材料。墙板的大小和房间墙面的大小相同。预制砖墙板多用于低层居住建筑,也用于高层公寓做承重墙或非承重墙。砌体结构发展的主要趋向是要求砖及砌块材料具有轻质高强的性能,砂浆具有高强度,特别是高粘结强度,尤其是采用高强度空心砖或空心砌块砌体时。在墙体内适当配置纵向钢筋,对克服砌体结构的缺点,减小构件截面尺寸,减轻自重和加快建造速度,具有重要意义。相应地研究设计理论,改进构件强度计算方法,提高施工机械化程度等,也是进一步发展砌体结构的重要课题。

砌体结构现状与前景毕业论文题目

绿色高性能混凝土建筑材料可持续发展的设想 多年来,关于混凝土材料的研究和对其发展方向的制定,过于偏重于使其达到某种或综合的优良性能这一基本原则上,而对其耐久性重视程度不够。90 年代初高性能混凝土概念提出后,促使人们加强了对混凝土材料的施工性和耐久性的研究,而绿色高性能混凝土则是将单纯的材料性能的获得与建筑材料的可持续发展综合考虑时的必然方向。1 绿色高性能混凝土 高性能混凝土应该具有下列某些或多项优良性能: (1) 优良的施工性:能在正常施工条件下保证混凝土结构的密实性和均匀性,并尽量降低振动噪音和振实能耗; (2) 强度高:尽量减少肥梁胖柱,并要考虑到建筑的美学效果和结构挠度以及功能等方面的要求; (3)耐久性优良:如抗冻性、抗渗性、抗冲击性、抗水砂冲刷性等; (4) 具有某些特殊功能:如超早强、低脆性、高耐磨性、吸声、自呼吸性等。尽管在开发应用高性能混凝土的过程中,一般都要使用高性能外加剂和性能优良的掺合料,在一定程度上可以起到节约水泥从而节约资源和能源、保护环境的作用,但高性能混凝土的提出者及研究开发者都很少从环境保护、节约资源和能源的高度来认识这一问题,过分强调在任何工程中都使用高强混凝土,无凝是对宝贵而有限的地球资源和能源的浪费。 最早提出绿色高性能混凝土概念的是中国工程院院士吴中伟教授。简要地说,符合以下条件的高性能混凝土才真正能称得上是绿色高性能混凝土: (1) 所使用的水泥必须为绿色水泥,砂石料的开采应以十分有序且不过分破坏环境为前提; (2) 最大限量地节约水泥用量,从而减少水泥生产中的“副产品”———CO2 、SO2 和NOx 等气体,以保护环境; (3) 更多地掺加经加工处理的工农业废渣,如磨细矿渣、优质粉煤灰、硅灰和稻壳灰等作为活性掺合料,以节约水泥保护环境,并改善混凝土耐久性; (4) 大量应用以工业废液,尤其是黑色纸浆废液为原料改性制造的减水剂,以及在此基础上研制的其它复合外加剂,帮助其它工业消化处理难以处治的液体排放物; (5) 集中搅拌混凝土,消除现场搅拌混凝土所产生的废料、粉尘和废水,并加强对废料、废水的循环使用; (6) 发挥高性能混凝土的优势,通过提高强度,减小结构截面积或结构体积,减少混凝土用量,从而节约水泥和砂、石的用量;通过改善施工性能来减小浇筑密实能耗,降低噪音;通过大幅度提高混凝土耐久性,延长结构物的使用寿命,进一步节约维修和重建费用,减少对自然资源无节制的使用; (7) 对大量拆除废弃的混凝土进行循环利用,发展再生混凝土。2 绿色高性能混凝土的原材料 尽管绿色高性能混凝土是一种相对节能的建筑材料,但随着世界水泥年产量和混凝土浇筑量的不断增加,它对资源、能源和环境所产生的影响是非常惊人的。据估算,生产1t 水泥熟料所排放的CO2 约为1t ,同时还要排放SO2 、NOx 等有害气体,CO2 的大量排放直接导致“温室效应”,而SO2 、NOx 等气体的排放则会引起“酸雨”现象,由于收尘设施不佳,水泥生产还排放出大量粉尘,水泥厂一直被看作环境污染源;水泥工业也是耗煤、耗电大户,水泥的大量生产和应用还将导致地球矿产资源的匮乏和生态平衡的破坏。因此,混凝土能否长期作为最主要的建筑材料,不仅要求其具备在耐久性、施工性和强度等方面的高性能,而且最关键之处在于其绿色“含量”是否高。水泥虽然只占混凝土所有原材料质量的10 %~20 % ,但水泥工业生产中所消耗的能量是最多的,几乎占混凝土能耗的50 %~60 %;混凝土从原材料生产加工到浇筑成型的整个过程中,水泥工业是排放粉尘和有害气体的最大的污染源。 因而,发展绿色高性能混凝土的首要条件是生产和使用节能型、环境污染少的绿色水泥。“绿色”型水泥生产是将资源利用率和二次能源回收率均提高到最高水平,并能够循环利用其它工业的废渣和废料;技术装备上更强化了环境保护的技术和措施;产品除了全面实行质量管理体系外,还真正实行全面环境保护的保证体系;粉尘、废渣和废气等的排放几乎接近于零,真正做到不但自身实现零污染,无公害,又因循环利用其它工业的废料、废渣,而帮助其它工业进行三废消化,最大限度地改善环境。3 开发研制和应用绿色高性能混凝土尚需进行的工作 绿色高性能混凝土从原材料到具体工程应用涉及到的部门和环节很多。实现水泥生产“绿色化”一个环节是不够的,必须同时开展如下工作: 第一、要加强混凝土科研开发、标准制定、工程设计和施工人员等的环保节能意识,加大“绿色”概念的宣传力度,引起混凝土工程领域各环节的高度重视。 第二、工程设计人员应更新传统的混凝土设计方法,敢于在重大工程中掺用活性混合材料和加大掺量;施工人员要提高质量意识,严格施工,加大活性混合材掺量对混凝土各项性能所产生的益处已众所周知,但未被工程界充分重视。比如,对粉煤灰的应用问题,尽管科研工作者早就着手大掺量粉煤灰混凝土的研究,但目前即使在商品混凝土中粉煤灰的实际掺量一般也只有15 %左右,很少超过20 %。有人曾研究过粉煤灰替代率为35 %~50 %的低强度等级混凝土(14MPa)的性能,认为可大量用于道路的路基,大掺量粉煤灰混凝土,尤其适合于大体积混凝土工程和海工混凝土工程。再如针对混凝土材料的耐久性,人们并没有象所期望的那样加大活性混合材的用量,控制某些种类防冻剂和早强剂的掺量,或者重视低碱水泥的使用,以致范围广泛的混凝土工程碱集料破坏现象仍很严重。 第三,研究对工业废渣行之有效的加工方法、加工设备,以期充分利用其活性;在工业废渣利用方面,还要坚持贯彻优质优用的原则,即超细磨矿渣和优质粉煤灰主要用于配制高强度混凝土,而配制中低强度等级混凝土一般仍应采用普通细度矿渣或低等级粉煤灰。 第四,开发适合于掺活性混合材混凝土的高性能外加剂,以解决掺混合材对混凝土性能产生的某些负面效应,同时还可避免过分提倡混合材超细磨所引起的能耗问题。通过掺用合适的高效减水剂和引气剂,可配制出各种性能相当优异的混凝土。对于大掺量普通细度活性混合材的混凝土,通过掺加有效的激发剂,有望改善其早期强度,但应严格限制激发剂中C1 和SO2的含量,或禁止使用这类激发剂,以免引起钢筋锈蚀或碱集料反应。 第五,研究一种或多种活性混合材和外加剂与水泥矿物成分的超叠加效应,以便针对具体材料提出最佳设计方案。 第六,对纸浆黑色废液进行加工处理,开发以纸浆废液为主要原材料的各种外加剂,并扩大其使用范围,长期以来,黑色纸浆废液一直是导致我国长江、黄河流域以及其它河道水质严重污染的“元凶”。我国大约有9000 多家造纸厂,每年产生的黑色废液大约有30 亿~90 亿t ,绝大多数厂家都把未经处理的废液直接排放到江河中,造成的污染十分惊人———竟占我国所有化工污染的1/ 4 ! 尽管国家已对部分厂家实行了关停并转,但处理纸浆废液的任务仍刻不容缓。利用纸浆废液来制取混凝土减水剂不仅可以节省工业萘的消耗,降低成本,最重要的是可帮助造纸厂处理并循环利用废液,减少其对环境、工农业生产以及人身健康造成的巨大危害。 第七,研究和制定绿色高性能混凝土的质量控制方法、验收标准等,绿色高性能混凝土都要求掺加活性混合材,然而,除硅灰和稻壳灰等外,活性混合材对混凝土强度的贡献主要在后期。如果仍沿用普通混凝土质量控制方法和验收标准,即以28 d 抗压强度来衡量混凝土的质量,则不符合实际情况,势必要造成强度和材料的浪费,也影响绿色高性能混凝土生产者的积极性,使绿色高性能混凝土难以推广,这与混凝土“绿色化”的真正目的是背道而驰的。另外,绿色高性能混凝土要求混凝土具有较为优良的耐久性,但对混凝土质量评定的传统和现行的标准只考虑强度,而对耐久性指标一般不予考虑,希望新标准中增加耐久性指标。 第八,应针对当前城市改造过程中大量拆除旧结构物混凝土,研究出一整套破碎、分级技术,开发再生混凝土,用于浇筑强度要求相对较低的地坪、中低等级混凝土路面、路基等工程。

直接百度搜一个,然后再改下

生态设计在高层建筑的设计分析摘要:近二三十年来,伴随着城市建设的加速,高层建筑迅速在大中型城市迅速普及。高层建筑能够提高土地利用率,改善城市环境,有利于城市的建设与发展。然而其自身建设对于资源的消耗对社会和环境造成了一定的压力,这就需要建筑师以建筑的生态性为设计的出发点,在高层建筑的设计与整体规划中注入生态设计理念,为城市居民提供更加舒适的居住与办公场所。基于此,本文从生态建筑的角度对高层建筑生态设计理念进行了分析,并探讨了生态设计在高层建筑设计中的应用。关键词:生态设计;高层建筑;理念;思路,空间1 生态建筑概述1生态建筑概念生态建筑的标志是健康、绿色与可持续性。其设计是通过当代建筑学、人工环境学以及生态学多方面学科的综合利用,将建筑打造成一个生态系统,让物质与能源在此生态系统中有效而有秩序地进行循环和转换,达到为城市居民提供低耗、无废、无污、生态平衡的建筑环境的目的。2生态建筑设计的要点生态建筑是当今建筑世界的。。。需要请加我。可以加我。

我可以提供资料: 砌体结构  masonry structure   以砌体为主制作的结构称为砌体结构。它包括砖结构、石结构和其它材料的砌块结构。分为无筋砌体结构和配筋砌体结构。砌体结构在我国应用很广泛,这是因为它可以就地取材,具有很好的耐久性及较好的化学稳定性和大气稳定性,有较好的保温隔热性能。较钢筋混凝土结构节约水泥和钢材,砌筑时不需模板及特殊的技术设备,可节约木材。砌体结构的缺点是自重大、体积大,砌筑工作繁重。由于砖、石、砌块和砂浆间粘结力较弱,因此无筋砌体的抗拉、抗弯及抗剪强度都很低。由于其组成的基本材料和连接方式,决定了它的脆性性质,从而使其遭受地震时破坏较重,抗震性能很差,因此对多层砌体结构抗震设计需要采用构造柱、圈梁及其它拉结等构造措施以提高其延性和抗倒塌能力。此外,砖砌体所用粘土砖用量很大,占用农田土地过多,因此把实心砖改成空心砖,特别发展高孔洞率、高强度、大块的空心砖以节约材料,以及利用工业废料,如粉煤灰、煤渣或者混凝土制成空心砖块代替红砖等都是今后砌体结构的方向。

砌体结构与其他结构的对比论文怎么写

优点:①容易就地取材;②具有良好的耐火性和较好的耐久性;③可以节省木材,在寒冷地区,冬季可用冻结法砌筑,不需特殊的保温措施;④能够隔热和保温,节能效果明显。所以既是较好的承重结构,也是较好的围护结构;⑤可以减轻结构自重,加快施工进度,进行工业化生产和施工。缺点:①构件的截面尺寸较大,材料用量多,自重大;②砌体的砌筑基本上是手工方式,施工的劳动量大;③因而抗震较差,抗弯能力弱;④粘土砖需用粘土制造,在某些地区过分为了使用粘土占用农田,影响农业生产。拓展资料砌体结构是用砖砌体、石砌体和砌块砌体建造的结。由于砌体的抗压强度较高而抗拉强度很低,因此,砌体结构构件主要承受轴心或小偏心压力,而很少受拉或受弯,一般民用和工业建筑的墙、柱和基础都可采用砌体结构。在采用钢筋混凝土框架和其他结构的建筑中,常用非承重砖墙做围护结构,如框架结构的填充墙。参考资料砌体结构——百度百科

-砌体结构裂缝产生的原因与加固处理措施  摘 要:本文结合笔者多年建筑工程技术管理工作实践,对建筑工程普遍存在 的砌体结构裂缝产生的原因进行了深入分析,并从其原因入手,对多种不同情况 下的建筑砌体结构裂缝的加固处理措施进行了详细阐述。 关键词:建筑工程;砌体结构;裂缝;加固处理措施 1 引言 砌体出现裂缝是非常普遍的质量事故之一。砌体轻微细小裂缝影响外观和 使用功能,严重的裂缝影响砌体的承载力,甚至引起倒塌。在很多情况下裂缝的 发生与发展往往是重大事故的先兆,对此必须认真分析,妥善处理。砌体中发生 裂缝的原因主要有:地基不均匀沉降,地基不均匀冻胀,温度变化引起的伸缩,建 筑材料使用不当及建筑构造处理不合理等,下面结合笔者参与的诸如芷江财富广 场商住楼、和平花园、文化局综合楼等多项建筑工程质量监督管理实践对建筑 工程砌体结构裂缝产生的原因与加固处理措施进行探讨。 2 建筑工程砌体结构裂缝产生的原因分析 建筑工程产生砌体结构裂缝的原因很多,归纳起来主要有以下几种: 1 地基不均匀沉降引起的裂缝 地基发生不均匀沉降后,沉降大的部分砌体与沉降小的部分砌体产生相对位 移,从而使砌体中产生附加的拉力或剪力,当这种附加内力超过砌体的强度时,砌 体中便产生裂缝。这种裂缝往往与地面成 45°左右夹角,上宽下窄斜缝朝向凹 陷处(沉降大)的部位。 预防地基不均匀沉降引起裂缝的主要措施有: 1)合理设置沉降缝。在房屋体型复杂,特别是高度相差大时,应设沉降缝,沉 降缝应从基础开始分开,且有足够的宽度,施工中保持缝内清洁,应防止碎砖、砂 浆等东西杂物落入缝内。 2)加强上部的刚度和整体性,提高墙体的抗剪能力,这样可适应甚至调整地 基的不均匀沉降。减少建筑物端部的门窗洞口,增大端部洞口到墙端的墙体宽度, 加强圈梁布置都可加强结构的整体性。 3)加强地基验槽工作,发现有不良地基应及时妥善处理,然后才可进行基础 施工。  4)不宜将建筑物位置在不同刚度的地基上,如同一区段建筑,一部分用天然 基础,一部分用桩基等,必须采用不同地基时,要妥善处理,进行必要的计算分 析。  2 地基冻胀引起的裂缝 地基土上层温度降到 0℃以下时,冻结层中形成冰部开始冰结,下部水由于 毛细管作用不断上升在冻结层中形成冰晶,体积膨胀,向上隆起的程度与冰结层 厚度及地下水位高低有关,一般隆起可达 6mm 至几十毫米,其折算冻胀力可达 2MPa×10MPa,而且往往是不均匀的,建筑物的自重往往难以抗拒,因而建筑的某 一局部就被顶了起来,和地基不均匀沉降类似,引起房屋开裂。 这类冻胀裂缝的寒冻地区的一、二层小型建筑物中很常见。若设计人员对 冻胀危害性认识不足,认为是小建筑,基础埋浅一点就可以了,或者施工人员素质 欠佳,遇到冻土很坚硬,难以开挖,就擅自抬高基础埋深,从而造成冻胀裂缝。 防止冻胀引起裂缝的主要措施有: 1)一定要将基础的埋置深度到冰冻线以下,不要因为是中小建筑或附属结构 而把基础置于冰冻线以上,有时,设计人员对室内隔墙基础因有采暖而未置于冰 冻线以下,应注意在施工时,或交付使用前即有冻胀的可能,应采取适当措施。 2)当基础不能做到冰冻线以下时,应采取换土(换成非冻胀土)等措施消除土 的冻胀。 3)用单独基础、基础梁承担墙体重量时,基础梁下面应留有一定孔隙防止上 面冻胀顶裂缝基础和砖墙。 3 温度差引起的裂缝 热胀冷缩是绝大多数物体的基本物理性能,砌体也不例外,由于温度变化不 均匀使砌体产生不均匀收缩,或者砌体的伸缩受到不均匀的约束,则会引起砌体 开裂。常见的是砌体长度过长,砌体伸缩在上层大而在基础处小而引起开裂,故 应按规范要求设置伸缩缝。  此外,由于混凝土屋盖,混凝土圈梁与砌体的温度膨胀系数不同在温度变化 时会使墙体产生裂缝。 防止温度变化引起裂缝的主要措施有: 1)按照国家颁布的有关规定,根据建筑物的实际情况(如是否采暖,所处地点 温度变化等)设置伸缩缝。 2)在施工中要保证伸缩缝的合理作法,使之能起作用。 3)屋面如为整浇混凝土,或虽为装配式屋面板但其上有整浇混凝土面层,则 要留好施工带,待一段时间再浇筑中间混凝土,这样可避免混凝土收缩及两种材 料因温度线胀系数不同而引起的协调变形,从而避免裂缝。 4)在屋面保温层施工时,从屋面结构施工完到做完保温层之间有一段时间隔, 这期间如遇高温季节则易因温度变化急剧而致裂,故屋面施工最好避开高温季 节。 5)遇有长的现浇屋面混凝土挑檐,可分段施工,预留伸缩缝,以避免混凝土伸 缩对墙体的不良影响。 4 建筑材料使用不当 不少砌体结构由于使用渣砖而产生裂缝,由于渣砖的原材料及生产工艺与普 通粘土砖不同,其线膨胀系数与粘土砖亦不同。通过对诸多开裂砌体的统计分析, 使用渣砖的砌体极易产生裂缝。 不少砌体结构由于墙体布置不当,构造柱设置不合理,梁垫设计不合理等造 成砌体的开裂。 3 建筑工程砌体结构裂缝处理与加固措施 在砌体裂缝出现的原因分析清楚以后,则应按裂缝砌体的危害程度采用不同 的加固补救措施。本文侧重用例子来说明砌体,砖过梁等砌体构件的补强加固方 法。 1 裂缝较细,裂缝数量较少时 当裂缝较细,裂缝数量较少,但裂缝已基本稳定时,可采用灌浆加固方法。对 灌浆加固的强度,必要时可做试验。试验的方法是,用同样的材料做两个或四个 试验体柱。分为两组,一组用压力机先压浆,再灌浆。然后对两组砌体柱作破坏 试验,进行对比,如灌浆补强的砌体与原砌体强度基本相同,则认为补强合格。根 据以往的试验表明,灌浆加固后的砌体可以达到甚至超过原砌体的强度。 灌浆用的材料有纯水泥浆、水泥砂浆、水玻璃砂浆或水泥石灰浆,见表 1。 当砌体修补中,可用纯水泥浆,因纯水泥浆的可灌性较好,可顺利地贯通外露的孔  隙,对于宽度为 3mm 左右的裂缝可以灌实。若裂缝宽度为大于 5mm 时,可采用水 砂浆。裂缝细小时,可采用压力灌浆。下面给出一些灌浆材料配合比,可供参 考。表中稀浆一栏适用于 13mm~1mm 宽的裂缝;稠浆适用于 1mm~5mm 的裂缝; 砂浆适用于宽度大于 5mm 的裂缝。 以纯水泥浆补强为例,其施工顺序为: 步骤一,清理裂缝,使裂的通道贯通无堵塞 步骤二,用加有促凝剂的 1:2 水泥砂浆嵌缝,以避免灌浆时,浆体外溢; 步骤三,用电钻或手锤在裂缝偏上端制成灌浆洞孔,或灌浆嘴; 步骤四,用 1:10 的稀水泥浆冲洗裂缝一遍,并检查裂缝通道的流通情况,同 时将裂缝周边的砌体润湿; 步骤五,灌入 3:7 或 2:8 的纯水泥浆; 步骤六,将裂缝补强处局部养护,见图 1。 施工时用压力灌浆。其顺序与上述相仿,但须增加在嵌缝后,用 12MPa~ 0125MPa 的压缩孔气检查通道泄漏程度,如泄漏太大,应补漏封闭。 对于水平的通长裂缝,可沿裂缝钻孔,做成销键,以加强两边砌体的共同作 用。销键直径 25mm,间距 250mm~300mm,深度可以比墙厚小 20mm~25mm。做完 销键后再进行灌浆,灌浆方法同上,见图 2。 2 裂缝较宽但数量不多时 裂缝较宽但数量不多时,可在裂缝相交的灰缝中,用高标号砂浆和细钢筋填 缝,也可用块体嵌补法,即在裂缝两端及中部用钢筋混凝土楔子或扒锯加固。楔 子或扒锯可与墙体等厚,或为墙体厚度的 1/2 或 2/3,见图 3。 3 裂缝较多时 当裂缝较多时,可用局部钢筋网外抹水泥砂浆予以加固。钢筋网可用 Φ 6@100~300(双向)或 Φ 4@100~200。用混凝土楔子或膨胀螺栓固定于墙体上, 楔子或螺栓间距 500mm 左右,应梅花型布置。施工前墙体抹灰应刮干净,抹水泥 砂浆前应将砌体润湿,抹水泥砂浆后应养护至少 7d。 4 因受水平推力,不均匀沉降和温度变化引起裂缝时 墙体因受水平推力,不均匀沉降,温度变化引直伸缩等原因而发生外闪,墙体 产生较大的裂缝或命名外纵墙与内横墙拉结不良时,可用钢筋或型钢拉杆予以加 固。  如采用钢筋拉杆,宜通长拉结,并沿墙两边设置。较长的拉杆中间应加法兰 螺丝,以便拧紧栏杆,拉杆接长时应采用焊接。露在墙外的拉杆或垫板螺帽,可适 当作建筑处理。拉杆和垫板都要涂防锈漆。在拉结水平层处,可以增设外圈梁, 以增强加固效果。钢筋的直径可采用如下:当一开间加一道拉杆时为 2Φ 16(房 屋进深 5m~7m),2Φ 18(房屋进深 8m~10m), 2Φ 20(房屋进深 11m~14m),其相 应的垫板尺寸可按表 2 采用。 5 墙体开裂比较严重时 墙体开裂比较严重,为了增加房屋的整体刚性,则可以在房屋墙体一侧或两 侧增设钢筋混凝土圈梁。圈梁用的混凝土强度等级为 C15~C20,截面至少 120mm×180mm,配筋可采用 4Φ 10~4Φ 14,钢筋 Φ 6@200~250,每隔 5m~ 5m(应有牛腿或螺栓)锚固件等伸进墙内与墙拉结好,并承受圈梁自重。浇筑圈 梁时应将墙面凿毛、润水,以加强粘结。 6 砌体过梁裂缝 对砌体过梁的裂缝,可采取增设钢筋 2Φ 16,填补高强度砂浆(M10 以上),或 增加钢筋混凝土过梁的方法。 4 结语 综上所述,由于我国现在正推广各种新型节能墙体砌块材料,砌体结构开裂 的情况和问题愈来愈多,原因也愈来愈复杂,只有严格执行有关砌体规范,从生 产、设计,施工,监督等方面层层把关采取合理有效的控制措施,就能有效控制砌 块墙体开裂的质量通病,消除墙体结构质量安全隐患。 参考文献: [1] 混凝土小型空心砌块建筑技术规程JGJ/T12004[S]北京,中国建筑工 业出版社, [2] 砌体结构设计规范GBJ3-88[S] [3] 文竹住宅建筑构造破坏预防 100 例[M]哈尔滨,黑龙江科学技术出版 社,

砌体结构的主要优点是:①容易就地取材。砖主要用粘土烧制;石材的原料是天然石;砌块可以用工业废料——矿渣制作,来源方便,价格低廉。②砖、石或砌块砌体具有良好的耐火性和较好的耐久性。③砌体砌筑时不需要模板和特殊的施工设备。在寒冷地区,冬季可用冻结法砌筑,不需特殊的保温措施。④砖墙和砌块墙体能够隔热和保温,所以既是较好的承重结构,也是较好的围护结构。 砌体结构的缺点是:①与钢和混凝土相比,砌体的强度较低,因而构件的截面尺寸较大,材料用量多,自重大。②砌体的砌筑基本上是手工方式,施工劳动量大。③砌体的抗拉和抗剪强度都很低,因而抗震性能较差,在使用上受到一定限制;砖、石的抗压强度也不能充分发挥。④粘土砖需用粘土制造,在某些地区过多占用农田,影响农业生产。

相关百科
热门百科
首页
发表服务