论文投稿百科

关于炼铁的论文题目

发布时间:2024-07-05 06:01:54

关于炼铁的论文题目

题名】:武钢炼铁厂高炉炉前除尘技术冶金环境保护论文(WuGangLianTieChangGaoLuLuQianChuChenJiShuYeJinHuanJingBaoHuLunWen) 【关键词】:炼铁厂 高炉 炉前除尘 【keywords】:LianTieChang GaoLu LuQianChuChen 【作者】:张明辉 【来源】: 知识词典 【期刊名称】:冶金环境保护(YeJinHuanJingBaoHu) 【国际标准刊号】: 【国内统一刊号】: 【作者单位】:武汉钢铁公司炼铁厂(WuHanGangTieGongSiLianTieChang) 【分类号】:TF547 【页码】:-39-41 【出版年】: 武钢炼铁厂的炉前除尘经历了从布袋除尘到静电除尘的转变。1991年投产的5号高炉炉前静电除尘系统使武钢炼铁厂的炉前除尘技术达到了一个新高度,通过几年的摸索和经验积累,现我厂已完全掌握了这项技术,并通过不断地技术改进,使它在我厂获得了空前的发展和应用。希望采纳

我有一篇硕士的论文,要不要 要的话给我留言

楼主要详细的 和高炉炼铁有关的毕业论文范文 3500字左右~

关于炼铁方面论文的参考文献

高炉卸料小车远程定位控制多采用刻度标尺精确定位系统、或APON无线定位测距仪,对其进行精确位置检测和自动控制。通过该技术的使用,可以时刻掌握各个料仓的实际料量,了解卸料小车的实时位置,实现自动定点或多点均匀卸料。

锌对炼铁炉料冶金性能的影响论文

摘要 :采用醋酸锌水溶液浸泡加锌的方法制备不同含锌量的烧结矿和焦炭试样,并对烧结矿试样进行低温还原粉化率及还原性指标的测试,对焦炭试样进行CO2反应性及反应后强度的测试。结果表明,随着含锌量的增加,烧结矿的RDI+3.15和RDI+6.3减小而RDI-0.5明显增大,间接还原速率和RI降低,焦炭的CRI增高而CSR降低,烧结矿中锌含量的增加使其低温还原粉化性和还原性变差,同时焦炭中锌含量的增加使其热性能变差;与喷洒ZnSO4水溶液加锌方法相比,采用醋酸锌水溶液浸泡加锌方法能更准确地确定ZnO对焦炭热性能的影响程度。

关键词 :钢铁材料论文

高炉中的锌主要来源于炼铁原料,包括铁矿石、焦炭和循环回收物[1-3]。同时,锌在高炉内部还会不断地进行循环富集,使得高炉内炉料的锌含量远远超过从炉顶加入时炉料的锌含量[4-5]。为此,研究者们针对锌在高炉内的分布、高锌负荷下的适宜高炉操作制度、锌对高炉耐火材料及冶炼过程的影响机理等问题开展了大量研究[6-9]。既有研究中,向铁矿石和焦炭中加锌的方法有多种。尹慧超等[10]采用熏蒸法向铁矿石表面引入锌,研究了锌对铁矿石低温还原粉化性的影响。康泽朋等[11]采用向试样表面喷洒ZnSO4溶液的方法研究了锌对铁矿石低温还原粉化性和焦炭反应性、反应后强度的影响,但是一方面ZnSO4在650℃左右才开始分解,在铁矿石低温还原粉化率的测试温度(500℃)下ZnSO4不会分解生成ZnO,所以喷洒ZnSO4不适合用于锌对铁矿石低温还原粉化性影响的研究;另一方面,在720℃下ZnSO4即可剧烈分解,因而在1100℃下进行焦炭热性能试验时,它所分解生成的SO3对焦炭反应有催化作用[12],这显然会妨碍对锌含量与焦炭热性能之间的内在关系作出正确的判断。此外,有关锌对铁矿石还原性的影响也尚未见有文献报道。为此,为了较好地模拟高炉块状带内炉料吸附ZnO粉末的现象,本文采用了醋酸锌水溶液浸泡的方法向试样中添加ZnO,研究ZnO含量对包括铁矿石还原性在内的高炉炉料各种冶金性能的影响。

1试验

1.1试样制备

试验所用的烧结矿和焦炭均取自武汉钢铁(集团)公司五号高炉生产现场。烧结矿的化学成分如表1所示。焦炭的工业分析结果如表2所示。2H2O)为分析纯。二水合醋酸锌可溶于水,在200℃以下即可脱去结晶水,生成的无水醋酸锌在242℃下熔融,在370℃下完全分解为ZnO。本文根据醋酸锌的这些特性,设计了醋酸锌水溶液浸泡烧结矿和焦炭加锌的方法,具体如下:首先根据需要配制一定质量百分比浓度的醋酸锌水溶液,将试样放在其中浸泡并煮沸一段时间,取出进行滤水、干燥和称重,求得向试样中添加的二水合醋酸锌的质量,在后续的炼铁炉料冶金性能的试验过程中,加入的二水合醋酸锌将脱除结晶水并分解变成固体ZnO。ZnO占未浸泡试样的质量百分比即为试样的ZnO增量。通过调节醋酸锌水溶液的浓度和煮沸时间可以比较准确地控制试样的加锌质量。分别取粒度为10~12.5mm的烧结矿每份500g和粒度为21~25mm的焦炭每份200g进行浸泡加锌,加锌方案如表3所示。

1.2测试方法

铁矿石低温还原粉化性能的测定根据GB13242—92规定的方法进行。测定时模拟高炉上部条件:温度500℃,反应时间60min,气体成分为:N2、CO、CO2的体积分数分别为60%、20%、20%,气体流量15L/min,转鼓总转数300r、转速30r/min。烧结矿的还原性依据GB13241—91规定的检测方法进行检测,实验条件为:温度900℃,反应时间180min,气体成分为:N2、CO的体积分数分别为70%、30%,气体流量15L/min。焦炭反应性和反应后强度按照GB/T4000—2008规定的方法测定,实验条件为:温度1100℃,反应时间120min,纯CO2气体,气体流量5L/min,转鼓总转数600r、转速20r/min。

2结果与分析

2.1加锌对烧结矿低温还原粉化性能的影响

加锌前后烧结矿试样的低温还原粉化指数RDI+3.15、还原强度指数RDI+6.3和磨损指数RDI-0.5如图1所示。从图1中可以看出,随着烧结矿中ZnO含量的增加,RDI+3.15和RDI+6.3均呈减小趋势,而磨损指数RDI-0.5呈上升趋势,表明随着ZnO含量的.增加,烧结矿的低温还原粉化性能变差。ZnO与Fe2O3合成为铁酸锌的反应开始温度为500℃,且随着温度的升高反应速度加快[13]。低温还原粉化率测试试验的温度刚好为500℃,因此推测所加入氧化锌中的一部分能够与烧结矿中的赤铁矿反应生成铁酸锌,而且因为温度较低,生成的铁酸锌难以被CO还原分解而保持稳定。铁酸锌属于尖晶石型矿物,等轴晶系,密度为5.20g/cm3,而赤铁矿属于六方晶系,密度为4.9~5.3g/cm3,二者在晶形和密度方面差异明显,意味着新生成的铁酸锌会从大块赤铁矿上剥离下来形成粉末,并可能使赤铁矿的强度降低。这可能是导致烧结矿低温还原粉化性能变差特别是磨损指数RDI-0.5急剧增大的内在原因。

2.2加锌对烧结矿还原性的影响

对加锌烧结矿进行还原性实验,得到试样的失重量(包含烧结矿失重量与氧化锌失重量)随还原时间的变化曲线如图2所示。分析图2中的失重曲线可知,当还原时间在60min之内时,不同ZnO含量烧结矿的失重速率均较大,且失重量的值相差不大,其原因是,在还原的初始阶段,主要是由于矿石表面的ZnO和铁的氧化物被CO还原而造成的失重,ZnO对烧结矿的还原过程没有明显的抑制作用;反应时间为60~120min时,反应在矿石颗粒的内部进行,ZnO含量高的矿石因为开口气孔被ZnO粉末堵塞的机会较多,减少了CO与铁氧化物的接触机会,而且铁酸锌的生成数量也较多,所以随着ZnO含量的增加,试样的失重速率逐渐减小;反应时间为120~180min时,4种ZnO含量烧结矿的还原速率均趋近于零,表明此阶段的还原反应基本上已经结束。对还原性试验后的烧结矿样品进行SEM和EDS分析可知其中残留的Zn元素极少,因此可以假定试验结束时试样中没有ZnO残留,则由180min时的失重量计算可得烧结矿各试样的还原度RI如表4所示。从表4中可知,随着烧结矿中锌含量的增加,烧结矿的还原性变差,且ZnO增量对RI值的影响基本上是线性的,增幅为-7.13%(RI)/1%(w(ZnO))。烧结矿间接还原受阻意味着高炉焦比可能升高。ZnO对烧结矿还原反应有阻碍作用的原因可能有两点:一是黏附在烧结矿颗粒表面和开口气孔壁上的ZnO粉末妨碍了氧化铁与CO的接触;二是ZnO与Fe2O3反应会生成铁酸锌,而铁酸锌的还原分解要求较高的动力学条件,结果妨碍了铁矿石的还原[13]。

2.3加锌对焦炭热态性能的影响

不同加锌量焦炭试样的反应性(CRI)和反应后强度(CSR)的测试结果如表5所示。从表5中可以看出,随着ZnO增量的增加,焦炭的CRI值呈增大的趋势,而CSR值则有着相应降低的趋势,表明ZnO对焦炭热性能有负面的影响。影响焦炭反应性的因素主要分为两大类:一是焦炭的微观结构,其中焦炭的石墨化程度和炼焦煤煤种产生的影响最大;二是外在因素的影响,主要包括焦炭的气孔率、气孔结构和内在矿物质的影响。焦炭气孔率越大,气孔分布越均匀,焦炭的反应性就越高;矿物质中的碱金属对焦炭的气化反应影响最大,其次为碱土金属和过渡元素[14],而ⅡB族元素(锌、镉、汞)因在形成稳定配位化合物的能力上与传统的过渡元素相似,故常常也将其归入过渡元素范围。本研究中,由于在焦炭中加入了ZnO,而ZnO在焦炭反应性实验条件下很容易被碳还原为锌蒸气,使焦炭气孔率增加,在一定程度上起到促进气化反应的作用,从而使CRI值增大。另一方面,与碱土金属类似,金属锌和ZnO之间的转化符合电子迁移理论和氧迁移理论的条件[15],故锌对气化反应也起到一定的催化作用。增大气孔率和催化气化反应这两方面的作用,使得ZnO的添加提高了焦炭的CRI,而CSR则由于焦炭气孔率增大和气化反应增强而减小。文献[11]报道,焦炭中的w(ZnO)由0.06%增加到3.09%时,CRI从20.77%增至25.53%,升高了近5个百分点;CSR约从70%降至60%,下降了约10个百分点。而本研究中,ZnO增量由0增至3.45%时,CRI从25.44%增大到28.89%,增加了3.45个百分点,CSR从61.62%降至57.42%,下降了4.2个百分点。两相比较发现,在焦炭中ZnO增量基本相同的情况下,本文测定的ZnO对CRI的影响幅度只有文献[11]中的70%左右,对CSR的影响幅度只有文献[11]中的40%左右。这可能是由于锌的添加方法不同引起的,文献[11]中采用的是喷洒ZnSO4水溶液的方法,ZnSO4在1100℃下分解生成SO3,而SO3对焦炭气化反应也有明显的催化作用,结果显得ZnO对焦炭热性能的影响程度较大。

3结论

(1)随着烧结矿中ZnO含量的增加,烧结矿低温还原粉化指数RDI+3.15减小,还原强度指数RDI+6.3减小,磨损指数RDI-0.5明显增大。烧结矿中锌含量的增加使烧结矿的低温还原粉化性变差。低温还原粉化性能变差的原因可能是因为加入ZnO使烧结矿在低温还原反应中生成的铁酸锌和赤铁矿在晶形和密度方面有较大差异造成的。

(2)烧结矿中锌含量的增加使烧结矿的还原性变差,烧结矿的还原度RI降低幅度与ZnO增量基本上呈线性关系。还原性变差的原因一方面是因为烧结矿的开口气孔被ZnO阻塞,另一方面可能是因为生成的铁酸锌难以被CO还原分解,阻碍了Fe3+的还原。

(3)随着焦炭中ZnO含量的升高,烧结矿CRI随之升高,CSR则随之降低。焦炭中锌含量的增加使焦炭的热性能变差。焦炭热性能变差的原因,一方面是因为ZnO本身与C反应使焦炭的气孔率增大,另一方面是因为Zn元素对焦炭气化反应有催化作用。

(4)与喷洒ZnSO4水溶液加锌方法相比,采用醋酸锌水溶液浸泡加锌方法能更准确地确定ZnO对焦炭热性能的影响程度。

参考文献

[1]郑华伟,夏进朝,李博.武钢5号高炉锌负荷分析及控制[J].炼铁,2014,33(2):17-20.

[2]肖钊聚,高占锋.有害元素Zn对安源高炉生产的影响及对策[J].炼铁,2013,32(5):50-52.

[3]梁南山.涟钢高炉有害元素的分布与控制[J].中国冶金,2014,24(6):27-35.

[4]王西鑫.锌在高炉生产中的危害分析及其防治[J].西安冶金建筑学院学报,1993,25(1):91-96.

[5]李肇毅.宝钢高炉的锌危害及其抑制[J].宝钢技术,2002(6):18-20,24.

[6]李博,章铭明.武钢5号高炉低品位矿冶炼实践[J].武钢技术,2014,52(6):1-3.

[7]YangXuefeng,ChuMansheng,ShenFengman,etal.Mechanismofzincdamagingtoblastfurnacetuyererefractory[J].ActaMetallurgicaSinica:EnglishLetters,2009,22(6):454-460.

[8]黄小晓.原燃料中有害元素对高炉冶炼影响的研究[D].昆明:昆明理工大学,2013:17-21.

[9]EsezoborDE,BalogunSA.Zincaccumulationdur-ingrecyclingofironoxidewastesintheblastfur-nace[J].IronmakingandSteelmaking,2006,33(5):419-425.

[10]尹慧超,张建良.烧结矿和球团矿吸附锌的规律及冶金性能变化的研究[J].钢铁,2010,45(2):15-18.

[11]康泽朋,李建朝,司俊朝,等.有害微量元素对邯钢高炉炉料冶金性能的影响[J].钢铁研究,2014,42(3):10-12,15.

[12]崔平,杨敏,彭静,等.焦炭反应性的多元素矿物催化研究[J].钢铁,2006,41(3):16-19.

[13]徐采栋,林蓉,汪大成.锌冶金物理化学[M].上海:上海科学技术出版社,1979:55-158.

[14]吴小兵,张建良,孔德文,等.高反应性焦炭在日本的研究与进展[C]//中国金属学会.2012年全国炼铁生产技术会议暨炼铁学术年会文集(上),2012:438-440.

[15]傅永宁.高炉焦炭[M].北京:冶金工业出版社,1995:56.

高炉自动化系统技术方案(转载)一、系统设计指导思想炼铁生产过程是在高炉内进行的一系列复杂的还原反应的过程,炉料(矿石、燃料和熔剂)从炉顶装入,从鼓风机来的冷风经热风炉加热后,形成高温热风从高炉风口鼓入,随着焦炭燃烧产生的热煤气流自下而往上运动,而炉料则由上而往下运动互相接触进行热交换,逐步还原,最后在炉子的下部还原成生铁,同时形成炉渣。积聚在炉缸的铁水和炉渣,分别由出铁口和出渣口放出。高炉自动化过程主要包含高炉本体控制、给料和配料控制、热风炉控制,以及除尘系统控制等。高炉自动化的目的,主要是保证高炉操作的四个主要问题:正确配料并以一定的顺序及时装入炉内;控制炉料均匀下降;调节炉料分布及保持其与热煤气流的良好接触;保持高炉整体有合适的热状态。高炉自动化系统主要包括仪表检测及控制系统、电气控制系统和过程及管理用计算机。仪表控制系统和电气控制系统通常由DCS或PLC完成。高炉生产必须要求计算机控制系统能够很好地保证生产过程的连续性和实时监控性,而且要求数据量最多,所有设备的自动化程度要高。计算机系统要求数据采集周期短,刷新速率快,特别对通讯网络而言,数据传输速率、网络稳定性和正确性尤为重要。对检测仪表而言,也即对温度、压力、差压、流量、料位、重量的检测,要求数据的采集精确度≤,采集速率≤。高炉的自动化控制方案,首先应着眼于系统的可靠性、实用性和先进性,并在此基础上提高系统的性价比。1.可靠性高炉在钢铁厂生产中处于十分重要的位置,它不仅要及时稳定的给炼钢工序提供合格的铁水,还同时为轧钢加热炉提供煤气。高炉生产的短时间中断都会给整个生产流程带来不可估量的损失。因此,必须把系统的可靠性也即安全性放在高炉控制系统设计的第一位。在设备控制方面,要满足炼铁设备及工艺的特定要求,完善必要的软硬件连锁,实现最可靠的开停车顺序控制,以及可靠的处理突发性事件的应急处理方案,确保整个高炉生产系统的安全性。为保证这些设备安全可靠运行,除了系统硬件之外,还必须在软件编程上增加多种保护功能,以进一步提高系统的安全性和可靠性。2.实用性为适应中型规模钢铁厂在生产管理的技术基本点面上要求循序渐进、逐步提高的多数情况,对高炉生产的过程控制,设有手动和自动两种操作状态,两种操作状态之间,可实现无扰动切换。由工业微型计算机和PLC系统、计算机网络、控制软件组成在线计算机应用系统,下位机通过各检测仪表,采集高炉上料、配料运行数据、炉体温度、风温、风压,除尘系统等工艺参数。在手动操作模式下,上述工艺参数经过上位机计算机处理,使之成为清晰而精确的“软件仪表”,将过去人工来不及分析的、各种缺乏相关性的信息都能充分地利用起来,揭示出它们之间的内在联系,从而对判断高炉生产过程和指导操作起到了更多的作用。在自动操作模式下,我们在常规PID调节的基础之上,增加了非线性变参数调节,自适应调节和智能控制等环节。经过计算机综合分析和建立数学模型,作为人工操作或自动调节的依据,并充分利用计算机储存信息量大的优点,为高炉的操作提供更准确、更合理的控制策略。3.先进性采用智能控制技术,以改变控制策略去适应对象的复杂性和不确定性。具有更好的适应性、容错性、鲁棒性、自组织功能,具有自学习能力、更强的实时性和人机协同功能。不仅依靠单纯的数学模型,而是能够根据知识和经验的积累,进行在线推理,做出非线性和多因素的判断,从而优选出能随动实时变化的最佳控制策略。通过记录、分析高炉的历史生产数据,采用“优选图法”,指导操作人员,使之确定的每一步动作更加精确和科学。在这种状况较之传统人工操作模式下,高炉各操作参数的离散程度将明显缩小,向着最佳区间,甚至最佳点靠拢的趋势将非常明显。在系统更进一步优化后,可实现多种“趋势分析”,计算机能够做出趋势预报,及时为操作者提供更多的手段,相当于真正做到了类似于传统操作模式下,工艺管理上经常会提出“早调、勤调、少调”的要求。高炉生产过程在应用本系统后将更加趋向稳定。二、控制系统实施方案1.系统硬件本系统PLC硬件全部选用施耐德公司的Modicon TSX Quantum 140系列产品,网络连接使用Modbus TCP/IP Ethernet,数据传输速率高达100MBPS,采用信息行业事实标准TCP/IP,应用层使用Modbus协议,几乎不会发生数据传输冲突,交换式以太网技术的使用更避免了冲突发生的可能。网络配置包括PLC端和PC机端两个部分。系统中的每套PLC系统通过插在主底板上的140NOE77100 TCP/IP Ethernet模块连接在100M快速以太网上,位置比较集中的可以采用双绞线连接。上位监控机采用双绞线连接快速以太网。每台上位监控机内各插入1块3C905C 100M以太网卡。通过Quantum 140NOE77100模块可以定义I/O数据表,使用Internet Explorer查看以太网状态信息和现场I/O数据,也可通过其它的内嵌功能,基于Web的BOOTP服务器配置,SNMP协议支持等,使网络建立、调试、管理都变得简单。3.组态软件软件系统设计包括PLC组态及参数配置、系统监控程序设计、网络通信配置、操作员站及工程师站人机界面设计四个部分。PLC组态及参数配置、下位机监控系统的编程均在Concept XL 环境下完成,它易于使用,功能丰富,具有5种符合IEC1131-3标准的编程模式。特别是软件仿真测试功能最受用户欢迎,大大缩短了在线调试时间。高炉及热风炉根据控制流程不同,可以采用LD、FBD两种编程方式。程序功能包括系统初始化、参数量程变换、参数监视及异常处理、各种连锁及控制。本系统涉及工艺参数较多,有压力、温度、差压、流量、质量、料位、阀位、液位等等。高炉本体及热风炉控制工艺复杂,设计和配备必要的调节回路。灵活的Concept编程软件为实现各种控制工艺提供了丰富的功能,可以根据生产实际编写出各种需求的功能。上位监控工作站由8台Advantech工业控制计算机完成整个系统的过程数据采集、运行状态监视、系统设备控制,生产报表的生成和打印、数据备份等工作。上位机监控软件中人机界面的设计采用GE Fanuc iFIX 软件,可实现实时、历史趋势,数据报表,数据采集,报警记录,动态显示等丰富功能。工业现场数据采集实时性好,可以完成监控画面设计、过程数据库建立以及监控软件各功能块的编制等项的功能。其着重点是确保系统可靠,以及如何方便于操作。4.系统总图高炉自动化控制系统硬件和网络配置总图详见图1。图中:整个PLC系统包括5个CPU主机站、6个PLC I/O站和Profibus-DP现场总线。CRT1~CRT4为炉顶及卷扬操作站、高炉本体操作站、上料操作站、热风炉操作站,CRT5为工程师站,CRT6为布袋除尘操作站、CRT7为出铁场、原料场除尘系统操作站。其中网络连接:24端口以太网交换机设置在高炉主控室内,2台8端口以太网交换机分别设置在布袋除尘和矿槽控制室内。高炉主控室至布袋除尘、高炉主控室至矿槽控制室之间,通过光纤连接。采用带光缆接口的交换机,或使用光电转换器,用光纤连接以太网。 5.主要功能描述本系统将是一个集顺序控制、过程控制、数据采集、工况监视、数据管理为一体的计算机控制管理系统。主要功能如下: • 对电动机、阀门等以及成套机电设备的开关量控制,包括分组连锁起动、分组连锁关机、组内自动连锁控制、组内单步连锁控制、系统单步调试。 • 过程控制数据的采集和处理(包括开关量和模拟量)。 • 完善的报警功能。开关量和模拟量报警的显示、确认、记录和打印。报警发生的开始时间、确认时间和恢复时间均能自动记录。 • 动态显示工艺流程图画面,各画面之间可以自由切换。 • 历史曲线图、实时曲线图、电气仪表图和棒形图显示和打印。图1 高炉自动化控制系统硬件和网络配置图 • 定时打印或即时打印生产班报表、生产日报表、生产月报表。定时打印的时间间隔可修改,即交接班时间可通过操作设定。 • 面向目标的操作方式,友善的人机操作界面。对某台设备的操作,只需把光标移到相应的目标(如电机、阀门)的图形位置上就可完成操作。如目标能被选中,则允许操作,否则操作无效。 • 系统时间、模拟量报警上下限的设置和修正。 • 较强的系统自诊断功能,包括PLC模块出错显示,在线查看开关量和模拟量条件表。 • 操作记录、开关量报警列表、模拟量报警列表的自动记录和显示打印。• 为加强系统的可靠性,对系统的某些重要操作设置密码,以防无关人员随意进入操作。 6.PLC控制功能⑴ 炉顶系统• 炉顶布料程序控制和炉顶设备顺序控制; • 料流调节阀开度控制; • 溜槽倾动和旋转控制; • 料线测量和探尺控制; • 炉顶均排压控制; • 炉顶温度监测和压力控制。 ⑵ 槽下系统 • 焦炭、矿石的备料系统; • 原料的称量补偿和水分控制; • 高炉装料程序控制。 ⑶ 高炉本体 • 炉体各点的温度、压力、流量检测; • 炉喉温度和煤气成分数据处理; • 热风温度调节; • 炉体冷却水压力、流量测量; • 风口平台出铁场蒸气、压缩空气、O2的流量及压力测量; • 炉体参数监控和报警; • 炉体系统数据处理。 ⑷ 热风炉系统• 热风炉燃烧调节阀遥控操作;• 煤气总管压力自动调节;• 热风炉拱顶温度记录; • 热风炉出口温度记录; • 热风炉燃烧室温度记录; • 热风炉废气温度记录; • 热风炉总管压力记录; • 冷风总管压力、流量记录; • 冷风总管温度指示; • 净煤气总管温度、压力指示; • 净煤气总管流量、温度指示; • 助燃空气总管压力、温度指示; • 助燃空气,总管流量记录; • 冷却水压力指示; • 冷却水流量指示、累计; • 冷风均压信号; • 废气排压信号; • 生产联络信号。 ⑸ 布袋除尘系统 • 荒煤气总管温度指示、记录、报警、连锁; • 荒煤气总管压力指示; • 荒煤气总管压差指示、应答、连锁; • 净煤气温度指示; • 净煤气流量指示、累计; • 净煤气含尘量检测、报警。 ⑹ 其它系统 • 除尘系统的煤气温度、压力测量; • 冲渣水压力、流量采集。三、系统启动和运行 接通系统总电源后,先开启PLC系统和网络系统电源,待进入正常运行状态后,再打开操作站彩色显示器和工控机电源,系统引导后直接进入主菜单。主菜单有四个选项: 运行操作——进入系统概貌图,根据系统概貌图中的功能按钮,进入各项相应操作。 历史曲线——显示并打印已记录在硬盘中的模拟量数据。 报表打印——查看及打印生产班报表、生产日报表、生产月报表。 系统维护——进入与系统设置和维护有关的各项操作。 1. 系统画面为了使画面整齐、美观,各系统监控画面分别由一幅系统主工艺画面和若干幅分画面组成,系统主工艺上只显示重要的目标和数据。如要了解更详细的情况可切换到分画面上,就能看到进入PLC系统的所有测点目标和数据的动态实时显示,全部使用汉字提示。按主菜单运行操作按钮后进入系统主工艺画面。 在主画面的底部有一个按钮式的子菜单,将包括:炉顶及卷扬、高炉本体、热风炉、布袋除尘、和转运站、系统组操作、报警列表、实时数据显示、参数一览表按钮。按前面几个按钮,可以进行画面之间的切换。后面四个按钮,用于选择其它功能操作。在各监控画面上,用不同的图形表示电机和阀门等设备;在组操作中,用汉字设备名称指示框表示之。以不同的颜色来表示电机是否备妥、正常运行,报警和报警已被确认。从运行的目标是否带有边框可以区分出,该设备是在集中方式下或是在现场机旁启动的。2. 运行操作系统正常运行时以组操作为主。按下组操作按钮,就能弹出一个标注设备名称的流程框图构成的组操作画面,根据开车顺序分别起动各组电机。在组操作区中有组开、组关、暂停、退出四个按钮供操作选择。各按钮前的指示灯绿色表示正在执行该操作,将光标直接对准组内电机,也可进行组内单步连锁操作。 图2 高炉立面设计示例图3 高炉炉顶上料示例在进入系统单步调试状态后,除了在组操作画面上操作外,也能直接在各个子画面上,面向目标进行单步调试操作,如选中时目标为黄色,进行开机操作;如目标为绿色,则进行关机操作。对高炉生产中的几个关键过程,在相关的画面中设计简洁而醒目的动态显示。如在高炉上料环节中,我们充分利用安装在减速机输出轴的绝对位置编码器信号,在分画面中动态显示料车位置。在高炉布料过程中,我们将根据布料和探尺相关设备的返回信号,动态模拟显示高炉料层的实时位置。同时通过Modbus总线将变频器和PLC连接起来,实时监控变频器的运行状态。如此直观的画面,再配合以工艺参数的监测和报警状态显示,操作人员就能够对高炉的主要实时运行工况一目了然,对提高系统安全性和可靠性提供了扎实的保证,并且在便于工人的操作方面也都是十分有益的。3.过程控制从实用的角度出发,本系统的模拟量输出主要用于阀门的调节和阀位控制。并按工艺要求设置必要的单回路PID自动调节回路,必须是到目前为止公认比较成熟和可靠的。高炉各系统生产过程检测与控制项目如下: ⑴ 矿槽料位每个矿槽上装一台料位计。矿槽料位信号作为上料控制用。在矿槽三楼控制室设有监视仪表盘,同时矿槽料位信号也递至高炉主控楼计算机。⑵ 槽下称量槽下每个称量斗设一台电子秤,其信号送至高炉主控楼计算机,对称量结果进行补偿。⑶ 高炉本体、无料钟炉顶及粗煤气系统高炉本体检测项目主要有:炉基、炉底、炉身、炉喉、炉顶温度、风渣口小套出水温度和冷、热风温度;炉底、炉喉钢砖冷却水流量、压力,炉体冷却工业水流量、压力,风渣口小套高压水流量、压力,冲渣水流量、压力,压缩空气、氮气、蒸汽流量、压力;高炉全压差及炉静压、炉身透气性测量。炉顶料罐内压力、温度检测。料罐料空信号料位计测量;高炉料线测量,炉顶气密箱温度、气密箱冷却水温度、流量测量。粗煤气系统有除尘器上部煤气压力、温度测量;除尘器下部锥体温度测量。炉顶煤气压力自动调节;热风温度自动调节;炉顶氮封用氮气压力自动调节等。⑷ 热风炉热风炉系统拱顶温度、煤气温度和含氧量,热风炉煤气量、助燃空气量,热风炉冷风阀前后差压及烟道阀前后差压,其均压信号可送电气联锁;冷风总管压力、温度、流量;煤气总管温度、压力、流量。空气预热器前后烟气温度,压力及空气温度。前置预热器前后烟气温度、压力,煤气温度、压力,空气温度、压力。冷却水温度、压力、流量和出水温度。燃烧过程可根据拱顶温度控制煤气调节阀,助燃空气与煤气采用配比调节。助燃空气总管压力自动调节等。⑸ 布袋除尘系统布袋除尘系统每个箱体的出口支管,装有煤气流量测量:布袋除尘器下部锥体及中间灰斗设有料位检测。除尘器人口总管设有煤气压力、温度测量;净煤气总管设有煤气压力、温度、流量和含尘量测量。⑹ 矿槽除尘和出铁场除尘矿槽和出铁场除尘器前温度检测。除尘器进出口差压测量。灰斗高低料位连锁及报警。除尘风机运行参数和报警等。以高炉布料为例:高炉冶炼过程是连续的,炉内有压力且产生大量煤气,整个过程是和大气隔绝的。在隔绝的状况下如何源源不断地把炉料加到炉内,对保证高炉正常冶炼至关重要。目前普遍使用的无料钟炉顶如图4所示。该成套设备为串罐式,用于高炉炉顶受料与给料及布料,布料工艺性能好,可实现多环或任意点布料。通常都采用料流调节阀加布料溜槽的控制方式,来确保矿石、焦炭在炉内的精确布料。工作过程简述如下:⑴ 受料斗空,挡料阀关,上密封阀关。上料; ⑵ 料罐空,料流调节阀关,滚筒停,下密封阀关。打开放散阀,料罐压力降至大气压; ⑶ 打开上密封阀,打开挡料阀,由受料斗向料罐放料,放空后关闭挡料阀、关闭上密封阀;⑷ 关闭放散阀,打开一次均压阀,料罐充压,关一次均压,开二次均压至料罐压力与高炉压力相等或略高,关二次均压,开下密封阀。 ⑸ 料线到达设定值,开始布料过程: a. 提料尺,溜槽运动到设定位置,开料流调节阀到设定的γ角并启动给料滚筒,向高炉布料。 图4 下料阀调节工作示意 b. 料罐空,停滚筒,关闭料流调节阀,关闭下密封阀,放探尺。本次布料结束。再承接第⑵步,如此周而复始。利用料流调节阀和布料溜槽控制布料原理如图5和图6所示:图5 下料阀调节工作示意 图6 布料溜槽工作示意图高炉炉料经过矿槽配料工艺后,先进入到炉顶上料斗和下料斗,在高炉接到布料指令后,其下料斗的料流调节阀首先要按工艺要求开启到给定的开度(即γ角),炉料按一定的流量经布料滚筒后流到布料溜槽上,布料溜槽也按工艺要求升到一定的倾动角度(即α角),同时,布料溜槽还在水平面方向上进行着匀速旋转(即β角)。这样炉料就可以均匀的布到高炉的料面上了。图7 下料斗调节阀开度控制流程图从上述基本控制原理可以看出,只要控制好α、β、γ三个角度,就能把炉料按任意的形式布到炉内。高炉布料方式一般有环形布料、扇形布料、螺旋形布料和定点布料等几种,最多使用的还是环形布料,即一批料以不同的倾动角度布到炉内,形成以高炉中心为圆心的数个圆环,使炉料均匀的布在炉内。如果在冶炼过程中出现炉内料面不均匀的情况,则可以利用扇形布料或定点布料来弥补。或者炉长根据炉况需要,为改善透气性、保护炉壁使其温度不致过热等等原因,也需要采用扇形或定点布料的方法来改善炉内炉料的分布状态。 在布料控制过程中下料斗调节阀开度(即γ角的控制)是至关重要的,只有精确控制好γ角,才能有效地控制好下料流量,进而更准确的控制好每批料布料的厚度、环数及布料的起点和终点。由炉顶料流调节阀的实际开度返回值(采用自整角机或光电编码器检测转换成实际角度),并接收炉顶控制系统发出的γ角开度大小和动作指令。经分析处理后转换成4~20mA的电信号控制直流驱动装置。为了使系统既有较快速响应特性,又能达到较理想的准确度,采用PID调节和逻辑控制相结合的方法。其程序流程如图7所示。PLC控制系统首先检测γ角的给定值和实际返回值,并计算出它们的差值δ, 当δ值大于某个角度(比如2度)时,给定直流驱动装置以较大的步长,使系统快速反应;当δ值小于某个角度、即γ角接近给定值时,系统自动进入PID调节控制状态,即随着δ值的减小,控制系统给定的调节幅度也按比例减小,直至为零。PID调节的各项参数(比例、微分、积分系数,延时时间,偏移量等)必须反复调试才能达到最好效果,确保较高的控制精度。高炉冷风阀自动调节和炉顶压力自动调节,可根据用户的需求酌情采用。 4. 开关量报警电机在运行过程中备妥消失,或在启动以后没有及时得到运行应答信号,或在运行过程中有过电流,或出现综合故障时,系统就会发出报警。一旦检查到开关量报警,屏幕上相应的目标变成红色闪动且有声响。如报警目标不在当前画面上,系统画面切换按钮上会显示红色闪动边框,提示到该画面中去寻找报警目标。对其进行操作即可确认此报警,确认后红色不闪,声响消失,目标的红色一直要保持到报警状态完全解除后才能消失。 在开关量报警列表中,计算机自动记录报警的目标名称,报警产生时间、确认时间、解除时间等,分别以不同的颜色来表示。 5. 模拟量报警在系统主工艺画面和各个分图中可以动态实时显示模拟量数值。此值在正常时以绿色显示;超出设定上下限,且系统正处于正常运行状态,就会出现模拟量报警,此时数值成红色闪动和发出声响,并在屏幕顶端出现报警窗口,提示模拟量名称、报警的发生时间、越限值和确认按钮。经确认后报警窗口消失。模拟量报警列表与开关量报警列表相同。 6. 实时趋势实时数据显示包括实时曲线、棒形图、电气仪表图三个子功能按钮。按下某功能按钮,可分别进入不同的图形显示。实时曲线窗口画面分四个小显示窗口,能同时显示四条实时曲线。按下设置按钮后屏幕上弹出一个选择窗口,列出可供选择的各个模拟量。7. 历史曲线 在系统主菜单中按历史曲线按钮,可进入历史曲线和趋势查询和打印功能。屏幕上可以单幅显示也可以用四个历史曲线窗口,分别显示四幅不同的历史曲线。在选择显示或打印之前,历史曲线的日期、起始时间、时间间隔都能进行设定,并能实现曲线的左右移动。8. 报表打印在系统菜单选择报表打印,就可进入报表打印功能。屏幕先显示当前时刻的生产班报表,右下角有报表选择按钮。报表打印设有定时打印和即时打印两种方式。在选择打印功能后打印机自动通电。 9. 系统维护 选择主菜单中的系统维护,即弹出系统维护功能子菜单,对能改变系统运行状况的维护功能,必须从键盘输入密码才能进入。各选项如下: 系统单步调试:用于设置系统成单步调试状态。 系统操作记录:记录上位机的权限转换、状态变化及运行操作。可详细记录当班人员的每一步操作,包括组操作、开停机,对报警的响应和调用的其它功能。可翻动查阅500个记录,500个以前的操作均记录在硬盘上,最多可记录一个星期或更长的时间。 系统打印设置:用于设置系统的生产班报表、生产日报表、生产月报表的定时打印和即时打印。设置按钮前有一指示灯,表示当前打印状态。系统健康图:用于显示下位机各模块的运行状况。当下位机某一模块发生运行故障时,该图中所对应的模块就闪红报警,直到故障排除为止。图8 PLC系统健康图开关量和模拟量控制条件表:分页显示系统开关量和模拟量控制条件表。表中详细列出设备名称、PLC接点位号、以及机柜内来去的端子号,仪表位号和量程,以及系统配电图等。维修人员无须再去查阅图纸,就能掌握现场信号的来龙去脉,一目了然,十分方便。模拟量控制条件表中的报警上下限参数,还可通过键盘修改。班工作时间设置:可通过键盘或跟踪球设置早、中、晚三班的起始时间,各个班按八小时间隔自动分配。系统时间校正:可通过键盘或跟踪球校正系统时钟的时、分、秒。系统密码设置:用于设置系统的各级密码。

求炼铁毕业论文题目

关键词:针对性 学习兴趣 师生情感 因素培养 一、讲课要重视针对性,激发英语学习热情 针对性是培养学生学习动机的关键,学习动机是推动学习的内因,如果学生对某一学科厌学,就无法期望其在这一学科上取得优良的成绩。老师要从当今英语的广泛应用以及英语在今后学习上的重要地位等方面向学生进一步讲明英语学习的重要性,引导学生把英语学习变成其内在需要。英语教师要认真备课,既备教材又备学生,上课不能随意性太强。讲课不能面面俱到满堂灌。有些教师从上课讲到下课,结果教师讲累了,学生听瞌睡了,学生也不知哪是重点,哪是难点,不会的还是没听懂,学习效率非常低。因此,教师讲课一定要精,要有针对性。要强调学生学习的难点和易错点,并且把难点、易错点放在学生注意力集中的前十分钟讲,这样讲课效果会更好。 激发学生学习英语的热情同样重要,使学生对每学期英语教学的内容,难点,重点分布做到心中有数,使学生克服为难情绪,增强学习自信心。老师用饱满的激情、流利的英语、精当的教学安排、娴熟的驾御课堂能力征服学生。良好的开端是成功的一半,要取得学生中考成功的关键在于每一节课,要关注平时的每一节课,努力上好每一节课,上成高效率,高收获的精品课。每一个单元开始的时候,要根据这个单元的特点准备一个有趣的或有吸引力的导入。或是一个有趣的故事、或是一段优美的歌词或小诗、或是一段精彩的演讲、或是对这一单元的介绍、或是一曲优美的歌曲、或是同学们的精彩的讨论。这样就很容易激发学生学习热情,学生有了学习热情,教学就事半功倍。 二、运用灵活的教学方法,培养学生学习兴趣 关注学生需要老师有百般的耐心,细心和爱心。学生学习不出成绩给他们时间和机会,不能轻易的批评和放弃。英语学习困难的学生往往心理脆弱,很容易受到伤害,老师应该保护他们的自信心,平等的对待他们,尤其他们的人格尊严不可侵犯。对落后学生多鼓励和多帮助,少批评和少责备,运用灵活的教学方法,细心观察,发现他们的闪光点,培养他的自信心,培养学生学习兴趣。爱因斯坦说过:兴趣是最好的老师,它将直接影响学习效果。单一的教学方法是乏味的,即使是一个好的方法,经常使用也就失去了他的魅力,所以,教法多变才能提高兴趣,进而提高学习效率。比如复习一单元的单词,可以采用编故事的方法,看谁编得生动有趣且用上的词最多;复习课文内容时,采用学生一问一答竞赛形式;复习知识点时,让一个学生讲,其他学生来补充等等,比教师在上面一遍遍讲,学生在下面听背效果好得多。 兴趣是学习的先导。孔子曰:“知之不如好知之,好知之不如乐知之。”对学习缺乏内在动力的学生,通过培养其学习兴趣,提高学生的学习动力,在教学中多采取有利措施。变换教学形式,活跃课堂气氛。根据教材的内容特点,灵活多样的变换教学形式,如编课堂剧,进行值日生报告,分组活动等。使学生在轻松愉快的环境中学会英语。利用环境因素营造英语氛围。在教室里布置一些名人名言,办英语板报,组织学生举办英语晚会、演讲比赛等。这样可以吸引学生主动参与,起到增加学习兴趣的效果。树立学生良好的自我形象,扫除学生学习英语的心理障碍。课堂上要使学生人人都有回答问题的机会,这样不仅能培养学生的语言习惯,还能使每个学生时时处于积极的备问状态,全神贯注提高学习效率。课堂提问应根据难易程度来选择能力相当的学生回答,回答正确的及时给予肯定和表扬,使学生形成优势心理。回答错误的或不完全的,启发并引导学生说出正确的答案或补充完整。这样能提高学生学英语的自觉性和主动性,消除了学生学英语的心理障碍,树立信心。 三、把归纳和总结渗透到教学中,培养师生情感 一个学生学习成绩的好坏,主要取决于他的学习方法。如果方法得当,就可以起到事半功倍的效果。最适合毕业班学生的方法是归纳和总结。因为学生一、二、三册内容已经学过一遍,所以毕业班复习时,不管是教师讲课中还是学生的学习中,都要注意归纳和总结,使知识联系起来,成为知识链提高学习效率。练习和测试是初三英语教学中必不可少的一个环节。注重平时的练习的选择和阶段性考试试题的选用。在上好每一节课的同时给学生选择一些恰当的练习。好的恰当的练习可以巩固所学的语言知识和培养学生语言运用能力。对于每一单元上完以后我布置一些读、写、听的作业,语法词汇较集中的段落我要求学生背诵,这样帮助学生掌握语言知识,培养语感。每个单元中的阅读部分,较长一般只要求学生熟读。两个单元上完以后进行阶段性测试,恰当的测试既可以培养学生语言知识迁移的能力又可以诊断学生这一阶段的学习得失。同是也可以帮助老师进行教学反思和调整教学策略。 情感产生于人们的实践活动中,它对人的行为有很大影响。老师在教学中要做到热爱学生,真诚关心每一位学生,主动与学生建立良好的合作关系,使学生能置身于一种真诚、民主、愉快的课堂氛围中,积极主动地配合老师,大胆地参与教学活动,克服困难,增强学好英语的信心。 四、强化学生的学习记忆,重视智力因素培养 在传授知识时,以新带旧,增加已学知识的重现率。并注意及时组织学生复习已经学过的知 识,要求学生注意复习形式的多样化,做到“眼到、口到、心到、手到”。这样,不但提高了复习效率,巩固了已学知识,还使学生养成了良好的记忆品质,提高了记忆力。通过英语教学的实践表明,智力因素对教学任务的完成固然重要,但学生的认识和行为都不仅限于智力活动,学生的非智力因素也参与并且影响着学习活动的进展速度和效率,如果学生学习动机端正,目标明确,就会激发学生的学习兴趣,主动地去掌握新知识和新技能。随着学习活动的进行和成功,兴趣又得到加强,储备了新的能量,并培育了较为稳定的情绪,坚强的意志和性格。提高课堂教学效率,培养优秀学生,就必须既重视智力因素的培养,又要重视非智力因素的开发。俗话说的好:不打无准备之仗。要想取得中考最后的胜利,教师心中必须有个全盘的计划。复习时运用三轮复习方法。第一轮,打基础。紧扣教材,细讲精练,使学生牢固掌握基础知识;第二轮是专项训练。进一步巩固基础知识,突出重点。如单项选择专练,补全对话专练等;第三轮,是综合训练,也就是中考模拟训练。主要目的是适应中考要求,提高应试技巧。 总之,初中毕业班的英语复习要充分发挥教师的主导作用和学生的主体作用,多引导、肯定和鼓励学生,而不是代替学生学习,引导学生积极参与课堂活动,适当多出些较简单的试题,这样不仅提高学生兴趣和自信心,也提高了学习效率和考试成绩。

我有一篇硕士的论文,要不要 要的话给我留言

我同学有个炼铁的车间设计,不过不是技术类的论证,是工程设计(需要计算的)。包括数据计算,车间建制、CAD图面等 如果您要的话就把你的邮箱告诉我

铁路货运量预测是指在对铁路货运市场调查、分析基础上,运用科学的方法,估计未来货运量及其变化规律,为制定有关政策,编制运输、快递发展规划提供科学依据。常用的预测方法可分为定性预测方法和定量预测方法。定性预测方法主要以专家为索取信息的对象,组织相关专家,通过对过去和现在发生的问题进行综合分析,从中找出规律,对未来做出判断。该预测方法凭借专家的经验和判断能力,用系统的、逻辑的思维方法做出定量估计,从而预测未来。该方法简单易行、费时少,是应用较早的一种方法,至今在各类预测方法中仍占重要地位。但是,该方法也存在片面性,准确度不太高,职能作为货运量预测的一种辅助方法,定性预测方法主要有:个人判断法、专家会议法等。定量预测方法是用定量分析来研究运量的发展趋势,它以历史统计资料和有关信息为依据,运用各种数学方法来预测未来货运市场需求情况,常用的货运量定量预测方法有下面几种:1.时间序列分析法。根据历史资料组成的时间数列,从中榨出发展趋势的变动规律,由过去推测未来,凭借过去状态延续到未来的可能性,从而达到预测目的。2.回归分析法。是从经济现象之间的因果关系出发,应用回归方程来分析经济变化规律,进行预测。3.灰色模型预测法。神经网络模型。5.速度比例法。是按规模经济中运量的增长速度与工农业中产值的增长速度的比例关系来预测运量,比较适合于总量预测。

炼铁的毕业论文

先找一个毕业论文的范文格式,再找一个,你的论题,如果老师定了的话,那就不用想了,论题有了,就直接在网上拼凑呗,一次不过,再拼一次,简单修改修改,没啥的。

锌对炼铁炉料冶金性能的影响论文

摘要 :采用醋酸锌水溶液浸泡加锌的方法制备不同含锌量的烧结矿和焦炭试样,并对烧结矿试样进行低温还原粉化率及还原性指标的测试,对焦炭试样进行CO2反应性及反应后强度的测试。结果表明,随着含锌量的增加,烧结矿的RDI+3.15和RDI+6.3减小而RDI-0.5明显增大,间接还原速率和RI降低,焦炭的CRI增高而CSR降低,烧结矿中锌含量的增加使其低温还原粉化性和还原性变差,同时焦炭中锌含量的增加使其热性能变差;与喷洒ZnSO4水溶液加锌方法相比,采用醋酸锌水溶液浸泡加锌方法能更准确地确定ZnO对焦炭热性能的影响程度。

关键词 :钢铁材料论文

高炉中的锌主要来源于炼铁原料,包括铁矿石、焦炭和循环回收物[1-3]。同时,锌在高炉内部还会不断地进行循环富集,使得高炉内炉料的锌含量远远超过从炉顶加入时炉料的锌含量[4-5]。为此,研究者们针对锌在高炉内的分布、高锌负荷下的适宜高炉操作制度、锌对高炉耐火材料及冶炼过程的影响机理等问题开展了大量研究[6-9]。既有研究中,向铁矿石和焦炭中加锌的方法有多种。尹慧超等[10]采用熏蒸法向铁矿石表面引入锌,研究了锌对铁矿石低温还原粉化性的影响。康泽朋等[11]采用向试样表面喷洒ZnSO4溶液的方法研究了锌对铁矿石低温还原粉化性和焦炭反应性、反应后强度的影响,但是一方面ZnSO4在650℃左右才开始分解,在铁矿石低温还原粉化率的测试温度(500℃)下ZnSO4不会分解生成ZnO,所以喷洒ZnSO4不适合用于锌对铁矿石低温还原粉化性影响的研究;另一方面,在720℃下ZnSO4即可剧烈分解,因而在1100℃下进行焦炭热性能试验时,它所分解生成的SO3对焦炭反应有催化作用[12],这显然会妨碍对锌含量与焦炭热性能之间的内在关系作出正确的判断。此外,有关锌对铁矿石还原性的影响也尚未见有文献报道。为此,为了较好地模拟高炉块状带内炉料吸附ZnO粉末的现象,本文采用了醋酸锌水溶液浸泡的方法向试样中添加ZnO,研究ZnO含量对包括铁矿石还原性在内的高炉炉料各种冶金性能的影响。

1试验

1.1试样制备

试验所用的烧结矿和焦炭均取自武汉钢铁(集团)公司五号高炉生产现场。烧结矿的化学成分如表1所示。焦炭的工业分析结果如表2所示。2H2O)为分析纯。二水合醋酸锌可溶于水,在200℃以下即可脱去结晶水,生成的无水醋酸锌在242℃下熔融,在370℃下完全分解为ZnO。本文根据醋酸锌的这些特性,设计了醋酸锌水溶液浸泡烧结矿和焦炭加锌的方法,具体如下:首先根据需要配制一定质量百分比浓度的醋酸锌水溶液,将试样放在其中浸泡并煮沸一段时间,取出进行滤水、干燥和称重,求得向试样中添加的二水合醋酸锌的质量,在后续的炼铁炉料冶金性能的试验过程中,加入的二水合醋酸锌将脱除结晶水并分解变成固体ZnO。ZnO占未浸泡试样的质量百分比即为试样的ZnO增量。通过调节醋酸锌水溶液的浓度和煮沸时间可以比较准确地控制试样的加锌质量。分别取粒度为10~12.5mm的烧结矿每份500g和粒度为21~25mm的焦炭每份200g进行浸泡加锌,加锌方案如表3所示。

1.2测试方法

铁矿石低温还原粉化性能的测定根据GB13242—92规定的方法进行。测定时模拟高炉上部条件:温度500℃,反应时间60min,气体成分为:N2、CO、CO2的体积分数分别为60%、20%、20%,气体流量15L/min,转鼓总转数300r、转速30r/min。烧结矿的还原性依据GB13241—91规定的检测方法进行检测,实验条件为:温度900℃,反应时间180min,气体成分为:N2、CO的体积分数分别为70%、30%,气体流量15L/min。焦炭反应性和反应后强度按照GB/T4000—2008规定的方法测定,实验条件为:温度1100℃,反应时间120min,纯CO2气体,气体流量5L/min,转鼓总转数600r、转速20r/min。

2结果与分析

2.1加锌对烧结矿低温还原粉化性能的影响

加锌前后烧结矿试样的低温还原粉化指数RDI+3.15、还原强度指数RDI+6.3和磨损指数RDI-0.5如图1所示。从图1中可以看出,随着烧结矿中ZnO含量的增加,RDI+3.15和RDI+6.3均呈减小趋势,而磨损指数RDI-0.5呈上升趋势,表明随着ZnO含量的.增加,烧结矿的低温还原粉化性能变差。ZnO与Fe2O3合成为铁酸锌的反应开始温度为500℃,且随着温度的升高反应速度加快[13]。低温还原粉化率测试试验的温度刚好为500℃,因此推测所加入氧化锌中的一部分能够与烧结矿中的赤铁矿反应生成铁酸锌,而且因为温度较低,生成的铁酸锌难以被CO还原分解而保持稳定。铁酸锌属于尖晶石型矿物,等轴晶系,密度为5.20g/cm3,而赤铁矿属于六方晶系,密度为4.9~5.3g/cm3,二者在晶形和密度方面差异明显,意味着新生成的铁酸锌会从大块赤铁矿上剥离下来形成粉末,并可能使赤铁矿的强度降低。这可能是导致烧结矿低温还原粉化性能变差特别是磨损指数RDI-0.5急剧增大的内在原因。

2.2加锌对烧结矿还原性的影响

对加锌烧结矿进行还原性实验,得到试样的失重量(包含烧结矿失重量与氧化锌失重量)随还原时间的变化曲线如图2所示。分析图2中的失重曲线可知,当还原时间在60min之内时,不同ZnO含量烧结矿的失重速率均较大,且失重量的值相差不大,其原因是,在还原的初始阶段,主要是由于矿石表面的ZnO和铁的氧化物被CO还原而造成的失重,ZnO对烧结矿的还原过程没有明显的抑制作用;反应时间为60~120min时,反应在矿石颗粒的内部进行,ZnO含量高的矿石因为开口气孔被ZnO粉末堵塞的机会较多,减少了CO与铁氧化物的接触机会,而且铁酸锌的生成数量也较多,所以随着ZnO含量的增加,试样的失重速率逐渐减小;反应时间为120~180min时,4种ZnO含量烧结矿的还原速率均趋近于零,表明此阶段的还原反应基本上已经结束。对还原性试验后的烧结矿样品进行SEM和EDS分析可知其中残留的Zn元素极少,因此可以假定试验结束时试样中没有ZnO残留,则由180min时的失重量计算可得烧结矿各试样的还原度RI如表4所示。从表4中可知,随着烧结矿中锌含量的增加,烧结矿的还原性变差,且ZnO增量对RI值的影响基本上是线性的,增幅为-7.13%(RI)/1%(w(ZnO))。烧结矿间接还原受阻意味着高炉焦比可能升高。ZnO对烧结矿还原反应有阻碍作用的原因可能有两点:一是黏附在烧结矿颗粒表面和开口气孔壁上的ZnO粉末妨碍了氧化铁与CO的接触;二是ZnO与Fe2O3反应会生成铁酸锌,而铁酸锌的还原分解要求较高的动力学条件,结果妨碍了铁矿石的还原[13]。

2.3加锌对焦炭热态性能的影响

不同加锌量焦炭试样的反应性(CRI)和反应后强度(CSR)的测试结果如表5所示。从表5中可以看出,随着ZnO增量的增加,焦炭的CRI值呈增大的趋势,而CSR值则有着相应降低的趋势,表明ZnO对焦炭热性能有负面的影响。影响焦炭反应性的因素主要分为两大类:一是焦炭的微观结构,其中焦炭的石墨化程度和炼焦煤煤种产生的影响最大;二是外在因素的影响,主要包括焦炭的气孔率、气孔结构和内在矿物质的影响。焦炭气孔率越大,气孔分布越均匀,焦炭的反应性就越高;矿物质中的碱金属对焦炭的气化反应影响最大,其次为碱土金属和过渡元素[14],而ⅡB族元素(锌、镉、汞)因在形成稳定配位化合物的能力上与传统的过渡元素相似,故常常也将其归入过渡元素范围。本研究中,由于在焦炭中加入了ZnO,而ZnO在焦炭反应性实验条件下很容易被碳还原为锌蒸气,使焦炭气孔率增加,在一定程度上起到促进气化反应的作用,从而使CRI值增大。另一方面,与碱土金属类似,金属锌和ZnO之间的转化符合电子迁移理论和氧迁移理论的条件[15],故锌对气化反应也起到一定的催化作用。增大气孔率和催化气化反应这两方面的作用,使得ZnO的添加提高了焦炭的CRI,而CSR则由于焦炭气孔率增大和气化反应增强而减小。文献[11]报道,焦炭中的w(ZnO)由0.06%增加到3.09%时,CRI从20.77%增至25.53%,升高了近5个百分点;CSR约从70%降至60%,下降了约10个百分点。而本研究中,ZnO增量由0增至3.45%时,CRI从25.44%增大到28.89%,增加了3.45个百分点,CSR从61.62%降至57.42%,下降了4.2个百分点。两相比较发现,在焦炭中ZnO增量基本相同的情况下,本文测定的ZnO对CRI的影响幅度只有文献[11]中的70%左右,对CSR的影响幅度只有文献[11]中的40%左右。这可能是由于锌的添加方法不同引起的,文献[11]中采用的是喷洒ZnSO4水溶液的方法,ZnSO4在1100℃下分解生成SO3,而SO3对焦炭气化反应也有明显的催化作用,结果显得ZnO对焦炭热性能的影响程度较大。

3结论

(1)随着烧结矿中ZnO含量的增加,烧结矿低温还原粉化指数RDI+3.15减小,还原强度指数RDI+6.3减小,磨损指数RDI-0.5明显增大。烧结矿中锌含量的增加使烧结矿的低温还原粉化性变差。低温还原粉化性能变差的原因可能是因为加入ZnO使烧结矿在低温还原反应中生成的铁酸锌和赤铁矿在晶形和密度方面有较大差异造成的。

(2)烧结矿中锌含量的增加使烧结矿的还原性变差,烧结矿的还原度RI降低幅度与ZnO增量基本上呈线性关系。还原性变差的原因一方面是因为烧结矿的开口气孔被ZnO阻塞,另一方面可能是因为生成的铁酸锌难以被CO还原分解,阻碍了Fe3+的还原。

(3)随着焦炭中ZnO含量的升高,烧结矿CRI随之升高,CSR则随之降低。焦炭中锌含量的增加使焦炭的热性能变差。焦炭热性能变差的原因,一方面是因为ZnO本身与C反应使焦炭的气孔率增大,另一方面是因为Zn元素对焦炭气化反应有催化作用。

(4)与喷洒ZnSO4水溶液加锌方法相比,采用醋酸锌水溶液浸泡加锌方法能更准确地确定ZnO对焦炭热性能的影响程度。

参考文献

[1]郑华伟,夏进朝,李博.武钢5号高炉锌负荷分析及控制[J].炼铁,2014,33(2):17-20.

[2]肖钊聚,高占锋.有害元素Zn对安源高炉生产的影响及对策[J].炼铁,2013,32(5):50-52.

[3]梁南山.涟钢高炉有害元素的分布与控制[J].中国冶金,2014,24(6):27-35.

[4]王西鑫.锌在高炉生产中的危害分析及其防治[J].西安冶金建筑学院学报,1993,25(1):91-96.

[5]李肇毅.宝钢高炉的锌危害及其抑制[J].宝钢技术,2002(6):18-20,24.

[6]李博,章铭明.武钢5号高炉低品位矿冶炼实践[J].武钢技术,2014,52(6):1-3.

[7]YangXuefeng,ChuMansheng,ShenFengman,etal.Mechanismofzincdamagingtoblastfurnacetuyererefractory[J].ActaMetallurgicaSinica:EnglishLetters,2009,22(6):454-460.

[8]黄小晓.原燃料中有害元素对高炉冶炼影响的研究[D].昆明:昆明理工大学,2013:17-21.

[9]EsezoborDE,BalogunSA.Zincaccumulationdur-ingrecyclingofironoxidewastesintheblastfur-nace[J].IronmakingandSteelmaking,2006,33(5):419-425.

[10]尹慧超,张建良.烧结矿和球团矿吸附锌的规律及冶金性能变化的研究[J].钢铁,2010,45(2):15-18.

[11]康泽朋,李建朝,司俊朝,等.有害微量元素对邯钢高炉炉料冶金性能的影响[J].钢铁研究,2014,42(3):10-12,15.

[12]崔平,杨敏,彭静,等.焦炭反应性的多元素矿物催化研究[J].钢铁,2006,41(3):16-19.

[13]徐采栋,林蓉,汪大成.锌冶金物理化学[M].上海:上海科学技术出版社,1979:55-158.

[14]吴小兵,张建良,孔德文,等.高反应性焦炭在日本的研究与进展[C]//中国金属学会.2012年全国炼铁生产技术会议暨炼铁学术年会文集(上),2012:438-440.

[15]傅永宁.高炉焦炭[M].北京:冶金工业出版社,1995:56.

楼主要详细的 和高炉炼铁有关的毕业论文范文 3500字左右~

我有一篇硕士的论文,要不要 要的话给我留言

关于地铁供电的论文题目

网上题目很多的,可以写安全,服务,管理,未来发展,选题方面很多,主要还是看你自己觉得哪方面好写,也可以去你们学校图书馆看看,找那个可查阅资料比较多的写

浅谈环网供电技术地铁供电中的应用论文

城市化进程的不断加快, 城市的发展速度的提升,城市中人口的总数越来越多,交通拥堵现象愈加严重。而为了更好的解决这一问题, 各城市都在大力的开展以地铁为基点的公共交通事业建设。该文主要就地铁供电系统中存在的一些关于环网供电技术的应用问题进行一些讨论, 并提出了一些自己的意见和建议, 旨在为地铁环网供电技术的实际应用提供一些参考。

1 环网供电概述

( 1 ) 环网供电的概念。城市的地铁主干线一般采用环形线路, 这种线路是一个连续的配电线路,能够形成闭合的环形电路,它的起点和终点是在同一组母线上连接的,而为了增加运行过程中的灵活性,往往在每个区段内都会设置各自的断路器, 通常情况下, 我们采用分段断路器将母线分为两段, 再将两个端口连接在线路保护器的两端,线路保护器是一种纵差保护电路,这种保护器在线路发生故障时, 能够通过保护器将故障电路从主线路中隔离出来,而不会影响到其他正常部分的电路工作。

( 2 ) 供电方式。环形电网可以划分为两种运行形式,即开环运行和闭环运行,而地铁中的供电系统主要是以闭环运行来展开的。这样可以将闭环供电不间断供电的特性发挥出来。而对于继电保护装置来说,由于其在装置的整定方面存在较大的困难, 所以通常采用开环运行。如果严格按照规定, 对于开环点的选取是要经过一系列的计算和设计之后才能够确定的, 但是在实际的工作过程中, 我们是选取环网干线的中间位置来展开开环点的设置,如此一来,开环点就可以很好地将故障点隔离开来,现如今,我们国内的中压( 1 0~3 5kV)环形电网都采用的是开环的运行模式。

2 常见的地铁供电方式

( 1 )采用集中式的供电方式。由于地铁线的长度过长,而电容量又受到限制,所以就必须在地铁站内建立专门的供电站, 这一供电站要承担向地铁中的中压环形电网供电的责任。这种供电方式的好处是:供电不容易受到外界因素的影响, 具有较高的可靠性;供电站内有专用的载调压变压器,能够为一些专用电路进行供电, 供电的质量比较好;进行调度管理时,具有较强的自由度,当具有了优良的调度管理体系之后,地铁供电站所具有的高效性和可靠性的效能就可以最大的发挥出来; 该供电方式的检修工作相对来说比较简单, 所涉及到的建设工程量比较小,比较容易实现。而缺点在于:投入的资金量比较大,对于整个地铁站内供电系统的调度统筹要求比较高。

( 2 )采用分散式的供电方式。由于地铁沿线所引入的城市电网电源比较多, 而区域内的变电所对地铁车站内采用直接降压的方式来完成供电的供电方式。这种供电方式的优点:投入的资金数量比较少,能够方便的实现城市电网的同意规划和管理。而所存在的缺陷就是: 正常的供电过程容易受到其他的外界因素影响。由于与城市电网的连接较多, 这就加大了城市电网统一规划和管理的难度, 如果出现供电故障则难以获取较为合适的解决办法; 而整流机在工作的时候会产生大量的告辞谐波, 这也会对城市电网的正常运行产生较大的影响。

( 3 )采用混合式供电方式。将集中式和分散式的供电方式进行有效的结合所形成的一种全新的供电方式。其主要有两种形式: ①将集中式和分散式的供电方式进行并联,然后在整个地铁环线的'供电网中, 一部分采用集中式供电, 另一部分采用分散式供电; ②对地铁站的中压环线中主要采用集中供电的办法进行供电, 而将集中供电站变为分散供电站的取电点, 从而建立起分散式供电站的完整体系。

3 环网供电技术在地铁供电系统中的应用

3 . 1 环网接线

我们常说的“ N- 1安全原则”是电网在供电过程中必须满足的一个基本原则, 并且在实际工作中我们是通过对电网的接线方式和设备的运行率的调整来完成电网的安全运行的。传统的电网接线方式是单环网的接线方式,这种方式的供电网络,一旦出现线路故障, 就必须花费大量的时间和经济,进行人工倒闸、维修,然后才能够恢复供电,基于此,我们可以发现这种方式的供电手段的稳定性相对来说较差, 根本不能满足现阶段铁路运行的基本需求。而在地铁供电系统采用了双环形的供电网络之后,由于有两个独立的平行电源,即便是一个电源出现了问题, 也不会影响到另一个备用电源的正常供电, 这种采用并联的方式将两个电源或者一个电源的不同母线连接起来的接线方法可以很好的保证地铁供电系统的稳定性。当整个供电系统正常工作时,所有的开关都处于打开的状态,而当某一路段的供电线路出现问题时, 即刻通过开关的转换, 将线路负荷转移到另外一个供电线路上, 以保证地铁供电系统的正常。由此可见,利用合并开关的方式,将线路的故障控制在某一个封闭的单元内部,而不影响其他路段的正常供电, 这种方式可以极大地提升供电的可靠性。这种始终留有备用线路的接线方式可以保证, 当工作线路出现问题时, 可以采用备用线路完成正常的供电任务,如此一来,将地铁供电的可靠性提升到了一个全新的层面之上,更提升了线路的综合利用率。

3 . 2 地铁中压交流环网系统

为了达到调度方便,运行稳定的目的,在设计供电网络时应当做到以下几点:

( 1 )线路的连接一定要尽可能的简单, 运行过程要尽量灵活可靠,并具有较高的经济性;

( 2 )对于供电网络的线路容量设计时,应当留有一定的容量空间;

( 3 )地铁供电系统的线路应当按照最高标准来设计, 而且要留有备用线路;

( 4 )当电网中的负荷达到了最大值时, 必须保证所有的设备能够正常工作,而当某一条线路发生故障,并且在备用线路承载了最大负荷的情况下, 供电系统也要能够正常工作。一般来说,当牵引变电所出现故障时, 由主变电所来完成整个电网的供电任务,同样的,当主供电所出现故障时,有牵引变电站完成供电。而如果牵引变电所或者主变电所同时发生故障, 也要保证地铁供电系统的正常供电。

4 结语

在整个地铁环网供电系统中, 每一个用电点都有两路和电源连接, 从而形成环形电网,提升了供电的可靠性,有助于改善电压的超负荷情况,减少电路出现的损失。而当前,必须提升相关产品的制造水准,开发出多种产品, 在设计中留有较大的改造余地, 从而促进整个环网技术在地铁供电系统中的发展和普及应用。

我的题目《地铁供电系统继电保护整定配合研究》,提出利用EMD分解对震荡电流与短路电流提取模态特征向量,分析结果证明此方法可有效地对两种电流进行辨别。交流侧继电保护受励磁涌流的影响同样容易发生误动,本文利用小波包对励磁涌流信号、正常运行电流及短路电流信号进行分解。开始也感觉好难,还是寝室同学给的莫‘文网,专业的就是靠谱的说,很快就帮忙搞定了

相关百科
热门百科
首页
发表服务