论文投稿百科

航空发动机叶片相关论文

发布时间:2024-07-04 13:13:27

航空发动机叶片相关论文

复材叶片在民用航空发动机中的应用

因复合材料的低密度、高比强度、高比刚度,能有效降低油耗、噪音,采用复合材料叶片已成为民用航空发动机的发展趋势。以下是我为大家推荐的相关论文范文,希望能帮到大家,更多精彩内容可浏览()。

摘要:进入新世纪以来,多领域技术都得到了巨大的发展,特别是随着交通运输业的进步,大型民用飞机开始成为交通运输的主力军,因而各国开始更加重视大型飞机的研制,航空业也开始成为衡量一个国家综合国力的重要标准。而大型飞机研发的重点以及核心技术便是发动机技术。随着民用航空业的发展,民用航空飞机核心技术———发动机技术也发展飞速,其中复材叶片已经逐步在多种民机型号中得以应用。

关键词:民用航空;复合材料;发动机;风扇叶片

过去飞机发动机叶片主要采用金属以及合金,随着新材料出现,复合材料开始被应用于航空发动机叶片,与金属材料相比,其具有低重、低噪、高效的优势,并且复材叶片数量更少,能够有效抗震颤、损伤,并且在抗鸟撞性上也更加优越,满足了现代民航适航需要。因而复材叶片开始受到世界各大发动机厂商的关注,并逐步得以推广应用。

1复合材料叶片的应用

复材叶片制造技术主要有预浸料/压模技术和3-DWOVEN/RTM技术。采用预浸料/模压技术的代表有GE90、GEnx、TRENT1000及TRENTXWB发动机的复合材料风扇叶片,而LEAP-X发动机复合材料风扇叶片采用3D-WOVEN/RTM技术成型。

预浸料/模压成型叶片

采用该种复材叶片的代表主要有GE90发动机和GEnx发动机(美国GE),此外罗•罗公司也在进行相关研发。(1)GE90发动机。该型号发动机为GE公司上世纪九十年代所研发的特大推力发动机,是国外应用于民航最早使用复材叶片的发动机之一。该发动机复材叶片使用了预浸料/模压成形技术,叶片从内至外逐渐减薄,叶尖厚度最薄。并且在叶身涂有防腐涂层(聚氨酯),叶背采用一般涂层,前缘包边采用钛合金材料,从而提高叶片鸟撞抗性。为防止复合材料在运行中分层,在叶片后缘以及叶尖处采用纤维缝合技术予以加固。叶根榫头为三角燕尾形,其表面涂有耐磨材料以降低榫头摩擦系数。GE90所采用的复材叶片为22片,相比较于钛合金空心叶片,复材叶片质量更轻,强度更高。经过十余年的运行,证明了复合材料风扇叶片适用于具有严格要求的商业飞行的需要。(2)GEnx发动机。该发动机所应用的复材叶片材料以及模压成型工艺,同GE90相比变化不大,在此基础上GEnx对GE90的复材叶片的结构设计进行了优化。GEnx主要采用了第3代GE复合材料,外形也类似GE90-115B发动机,但由于使用了新一代三元流设计,叶片数减为18片,总质量进一步降低。叶片尖部以及前缘使用钛合金护套,并在叶片榫根部位,增加了耐磨衬垫,便于后期维护检修。(3)随着复合材料在民航发动机中的应用,英国罗•罗公司也开始将目光从钛合金叶片上转移到复材叶片。其同GKN集团正共同进行碳纤维增强复材叶片的研发,该叶片同钛合金叶片同样薄,并且在量产、成本以及鲁棒性上均符合民航发动机标准。目前这种碳纤维风扇叶片已经完成了包括叶片飞出、鸟撞试验在内的地面试验。

成型复材叶片

对于风扇叶片中等推力发动机提出的强度要求更高,因而Snecma公司在CFM56系列发动机研发中,在LEAP-X中将会应用碳纤维对复合材料进行增强。相比较于GEnx以及GE90,所采用的碳纤维薄层铺设技术不同,Snecma公司在LEAP发动机叶片的制造中所采用的RTM工艺,是将碳纤维进行预先编制,在树脂注入以及叶片高压成型之前,碳纤维便已经成为3-DWOVEN结构。Snecma公司在复材叶片的制造上委托了AEC公司,由于AEC公司生产制造自动化程度相对较高,因而其制备三维编制预制体并完成整个叶片的制造仅需要24小时。同CFM56(CFM公司)发动机相比,LEAP发动机叶片成型采用了3-DWOVEN/RTM技术,前者结构上采用了更多的技术,而后者采用复合材料,有效减轻了发动机重量,提高了燃油效率,降低了排放量和发动机噪声。目前,LEAP-X发动机已经开始得到中国多种旅客机的关注,未来将会逐步在中国普及推广。

2复材叶片的发展趋势

因复合材料的低密度、高比强度、高比刚度,能有效降低油耗、噪音,采用复合材料叶片已成为民用航空发动机的发展趋势。制约复合材料叶片大规模应用的关键因素是预制体制备、复材成型技术等。

预制体制备

复材叶片制造的难点之一是制备预制体。国外常用的预制体制备方法有两种:一种是选用IM7/8551-7和IM7/M91作为预浸料并采用激光定位手工/自动化成型技术制备,适用于制备大推力、大叶盘直径涡扇发动机的风扇叶片预制体;另一种是对IM7碳纤维进行预浸渍处理,通过3D-WOVEN/RTM自动化技术成型,主要用于制备小推力涡扇发动机风扇叶片的预制体。以往采用激光定位辅助+手工铺叠的技术进行预制体制造,而GKN公司开发了自动化丝束铺放设备(简称AFP)可实现预制体的自动化成型。罗•罗公司在研制TNENT系列发动机复合材料风扇叶片时使用了GKN公司的自动化纤维丝束铺放设备,实现了复材叶片预制体的自动化成型,并运用超声刀对预制体进行切割。Snecma公司率先提出了无余量预制体成型技术、预制体预变形技术以及高度自动化的预制体制备技术。Snecma公司的3DW/RTM成型风扇叶片预制体技术可降低传统二维风扇叶片的分层缺陷产生的可能性,让叶片顶部更薄、根部更厚;经纱连续的变截面成型技术提高预制体的承载能力;采用高压水射流对预制体进行无余量切割。

成型技术RTM

注射成型以及模压是目前国际上流行的复材叶片成型技术,虽然两者在技术上具有一定的差异性,但均可称为闭模成型技术。涡扇发动机的叶片扭转大且为双曲面,其结构形式相对复杂,常规的成型技术无法满足叶片加工精度,而闭模成型技术的成型精度高,能够很好的满足涡扇发动机对于叶片制造的需求,因而其逐步成为目前复材叶片成型的'主流技术。随着技术的逐步发展,目前国外开始利用复合材料模具代替金属模具,以此保证生产加工中模具和零件能够保持一致的热膨胀系数,进而获得更高的零件尺寸精度。此外,复材叶片成型加工技术开始引入数字仿真模拟技术,从而在技术研究前期对成形工艺进行方向性指导,在研制过程中合理规避风险,缩短研制周期,降低研制成本。

3结束语

复合材料以其优越的特性开始成为民航发动机叶片的主流材料,并且随着技术的发展,复材发动机叶片的制造效率更高,自动化程度也更先进。在未来高精度、可靠性、一致性会成为复材叶片生产研发的主要方向。我国自主研发的大型民用客机中也开始应用商用发动机,这为我国复材叶片的研发制造提供了一个契机,虽然目前复合材料在我国航空发动机制造中还处于初始应用阶段,复材叶片的制造业仅在起步阶段,但在我国技术人员的努力下,我国自主研发的应用复材叶片的涡扇发动机必然会在世界航空领域占据一席之地。

参考文献:

[1]李杰.GE复合材料风扇叶片的发展和工艺[J].航空发动机,2008,34(4):54-56.

[2]贺福.碳纤维及石墨纤维[M].北京:化学工业出版社,2010:1-16.

[3]赵云峰.先进纤维增强树脂基复合材料在航空航天工业中的应用[J].军民两用技术与产品,2010,37(1):4-6.

应该是歼11B战斗机 该战斗机是SU27的基础上改进的 在航电系统 武器 发动机 雷达都已经超越了原来的SU27 战力是SU27的4倍

因为铼是不会产生热胀冷缩的现象的,这种特性是非常适合制作一些飞在天上的东西,是不会产生一些意外的情况的,这种东西有着一个很好的稳定性的,可以应对一些极端的天气的。

因为钨的熔点在高温下容易与氧气发生反应,升为气态,所以不是生产发动机叶片的理想材料,而铼非常适合在高温下工作,它的抗拉伸强度非常高,而且在高温和极冷极热的状态下转换非常稳定,不会出现变形,所以是非常好的航空发动机叶片材料,可以提升单晶合金叶片的抗蠕变,耐高温、抗氧化的性能。

航空发动机涡轮叶片论文

因为钨的熔点在高温下容易与氧气发生反应,升为气态,所以不是生产发动机叶片的理想材料,而铼非常适合在高温下工作,它的抗拉伸强度非常高,而且在高温和极冷极热的状态下转换非常稳定,不会出现变形,所以是非常好的航空发动机叶片材料,可以提升单晶合金叶片的抗蠕变,耐高温、抗氧化的性能。

不知你所指的是压气机叶片还是燃气动力叶片,前者是在较低的温度,叶片负荷较小,后者再高温燃气中工作,叶片负荷较大,寿命较短。

航空发动机材料是制造航空发动机气缸、活塞、压气机、燃烧室、涡轮、轴和尾喷管等主要部件所用的结构材料。航空发动机早期采用铝合金、镁合金、高强度钢和不锈钢等制造;后期为适应增加发动机推力、提高飞机飞行速度的需要,钛合金、高温合金和复合材料相继得到应用。在航空发动机中,涡轮叶片由于处于温度最高、应力最复杂、环境最恶劣的部位而被列为第一关键件,并被誉为“王冠上的明珠”。涡轮叶片的性能水平,特别是承温能力成为一种型号发动机先进程度的重要标志,在一定意义上,也是一个国家航空工业水平的显著标志。 [1]

涡轮叶片材料发展

20世纪40年代,喷气式发动机原理早已提出,但没有合适的高温材料用于制造涡轮,发展迟缓。

五六十年代,英国的White公司开发出了镍基高温合金。此外,真空熔炼方法制造高温合金纯度得到提高,性能更好。航空发动机涡轮叶片采用变形高温合金和铸造高温合金。

70年代,随着航空发动机不断追求高推重比,开发出定向凝固、单晶铸造等高温部件制造工艺,使叶片的最高工作温度和耐疲劳性能进一步提高。国外现役发动机叶片材料主要采用第二代和第三代单晶合金。这些单晶合金由于富铼易产生脆性相,近年来研究加入钌或铱以减少脆性倾向,开发出第四代单晶合金。叶片技术发展的趋势是将结构一材料一工艺统一考虑,采用铸造及激光打孔工艺直接制造发散冷却孔道。

80年代,开始研制陶瓷叶片材料,除提高叶片材料的耐温等级外,将由金属间化合物与韧性金属组成的微叠层复合材料作为叶片的“热障涂层”受到重视。该技术依靠耐高温金属间化合物提供高温强度和蠕变抗力,利用高温金属作韧化元素,从而很好地克服了金属间化合物的脆性。采用真空热压箔、物理气相沉积、铸造和固态反应等方法已研制出几种微米层次的微叠层复合材料,包括Nb - Cr2Nb、NB - Nbs Si3以及NB - MoSi2等。微叠层纳米热障涂层可望将叶片的耐温能力提高260C°,除用于叶片外,微叠层复合材料在无疲劳合金涂层、抗砂蚀树脂基复合材料风扇叶片涂层等方面也有应用机遇。

我国发动机叶片材料发展态势良好,仅铸造涡轮叶片材料就超过20种,并开展了单晶镍基高温合金、金属间化合物、陶瓷和C/C复合材料的研制。我国低密变、低成本的第一代单晶合金DD3性能与国外同代合金相当,已用于直升机小发动机涡轮叶片;第二代单晶高温合金DD6正在推广应用于先进的涡轮发动机叶片,其承温能力相当于国外同代合金,而成本更低。就涡轮盘材料而言,除广泛使用的粉末盘及其发展成的双性能粉末盘、三性能粉末盘外,细晶变形盘由于成本低也被看好。俄罗斯制造业坚持认为采用传统熔铸变形盘完全可满足第四、五代发动机的需要。作为一种新的涡轮盘方案,近年来开发了无夹杂的喷射盘。该技术与粉末冶金工艺相比具有工序简化、成本降低的优势,其快凝组织特性又奠定了其性能优势,包括远优于铸锻工艺、相当或高F粉末冶金工艺的强度与持久寿命,优于粉末冶金工艺的塑性、韧性及低周疲劳寿命,因晶粒细化而改善的热加工性能等。由于传统变形盘的工艺设备均能使用,且材料利用率高,成本明显低于粉末盘,因此,喷射盘有可能成为粉末盘的强劲对手。 [1]

涡轮盘材料发展

20世纪40年代的涡轮进口温度约为800~ 900C°,其采用16 -25 -6铁基合金。

50年代,随着涡轮进口温度提高到950℃,出现了沉淀硬化合金,应用沉淀强化原理使合金具有更高的高温强度。

70年代,进口温度提高到了1240℃,出现了Rene95合金和粉末冶金高温合金。

在这些先进航空发动机中,高温材料仍属于核心技术。如军用发动机中的高温钛合金(压气机盘和叶片)、高温合金板材(燃烧室)和粉末冶金材料以及单晶叶片材料(涡轮)等,民用发动机中使用的单晶叶片材料和粉末高温合金涡轮盘材料。 [1]

发展趋势

编辑

发动机热端部件的材料主要以高温合金为主,如钛合金的应用就始于发动机,且至今仍是发动机压气机的主打材料。真空熔炼、定向凝固以及单晶铸造的引入使发动机涡轮进口温度从1940年的700℃增加到2000年的1 650°C,发动机的寿命也大为上升。下一步,涡轮进口温度将从1650℃增加到1715℃,2020年以后可能上升到1977°C。为实现这些苛刻的要求,还要依靠材料、工艺与冷却技术的完美结合。

航空发动机材料的一个重要发展趋势是继续开发新的三、四代单晶合金,美国NASA开发的第四代单晶合金工作温度比第三代高出27~42℃俄罗斯正在开发的ⅨC-55也属于第4代单晶,在1100℃、100h的持久强度高达180~190MPa。美国NASA还打算将工作温度比第四代单晶再提高56℃,这已十分接近合金的熔点了。此外,镍铝型合金也是发展方向之一。

较先进的发动机上高温合金占55%~65%,钛合金用量25%~40%,发动机推重比已达到10,涡轮进口温度达到1650℃。要将发动机的推重比进一步提高,首先要发展高温结构材料,如金属间化合物材料、金属基复合材料、陶瓷及C/C基复合材料等,因此,这些材料也一直是航空发动机材料研究的重点。 [2]

材料特点

编辑

航空发动机的特点是体积小,功率大,各部件的工作条件严酷,特别是转动件在不同的温度、载荷、环境介质(空气,燃气)下工作,大多须用比强度高、耐热性好和抗腐蚀能力强的材料制造。航空发动机的使用期限不尽相同,军用飞机发动机一般为100~1000小时;民用机发动机甚至要求1万小时以上,所用材料的组织和性能须保持长时间稳定。航空发动机早期采用铝合金、镁合金、高强度钢和不锈钢等制造;后期为适应增加发动机推力、提高飞机飞行速度的需要,钛合金、高温合金和复合材料相继得到应用。

使用铸铝合金、合金钢制造的活塞式航空发动机,在1903年装备了第一架螺旋桨式飞机。40年代到50年代初有了高温合金,涡轮喷气发动机才得以研制成功,使飞机的飞行速度超过了音速。60年代由于铸造高温合金和钛合金的应用和发展,涡轮风扇发动机得以研制成功。70年代定向凝固高温合金空心涡轮叶片、粉末高温合金涡轮盘和新的钛合金的出现,使涡轮进口温度提高到1370°C,使涡轮风扇发动机的推重比达到8以上。

活塞式航空发动机 汽缸一般用强度达 1000 兆帕(约100公斤/毫米)的中碳铬-钼-铝钢制做,以便表面渗氮,提高耐磨性和耐蚀性。活塞用强度为300兆帕(约30公斤/毫米)的锻造铝合金制作,再嵌装上合金铸铁涨圈,起耐磨和封严的作用。联杆和曲轴用优质的铬-镍合金钢制造,有耐磨要求的部位还经过渗碳或氮化处理。

涡轮喷气发动机压气机的零部件工作温度一般低于650℃,要求用比强度和疲劳强度高、抗冲击和耐腐蚀的材料制造。离心式压气机的叶轮使用高强度铝合金。轴流式压气机的前风扇叶片用钛合金。低压转子的轮盘和叶片用钢和铝合金,发展趋势是全部用钛合金。高压转子的轮盘和叶片用耐热钢,发展趋势是用高温合金。前机匣用钢或钛合金制造,有的机匣为了隔音还需要用吸音材料。燃烧室内燃烧区的温度高达1800~2000°C,尽管引入气流冷却,燃烧室壁温一般仍在900°C以上,常用易成形、可焊接的高温合金(新型镍基和钴基合金)板材制造。为了防止燃气冲刷、热腐蚀和隔热,常喷涂防护涂层。弥散强化合金不需涂层即可用于制造耐1200°C的燃烧室。燃烧室用的材料均可用于制造加力燃烧室和尾喷管。制造涡轮叶片和涡轮盘的材料是影响发动机性能的重要材料。适宜于制造涡轮叶片的材料有铸造镍基合金。现代试验型发动机的涡轮进口温度已达到1650°C,更高的要求达到1930°C。正在研制定向单晶、定向共晶、钨丝增强镍基合

工作环境据我所知大概是高温,灰尘,有燃气排放的二氧化硫,五氧化二钒等NaCl /硫酸钠,高湿度,下面补充一下,叶片是在高温强气流冲刷、高低温循环、高应力载荷、交变应力作用的服役环境下工作,即除高温及气氛外(热物理化学环境:高温、腐蚀性气氛、冷热循环等),还有各种机械载荷(力学环境:高温蠕变与持久、高低周疲劳)作用于叶片上.

航空动力学报和航空发动机

严成忠历任设计员、总体性能组组长、副总设计师、副所长、总设计师。先后参加和主持多种型号发动机的总体方案论证、设计和调试工作。历史记录了他的丰硕成果:20世纪60年代中期,在国内领先研究出“内外涵混合加力式涡轮风扇发动机特性计算方法”,成功地运用到涡扇6发动机的总体设计;70年代初,完成了“带平行进气内外涵混合加力燃烧室的涡轮风扇发动机最佳调节计划”的研究,应用于涡扇6发动机和新型号自动调节系统;70年代中期到80年代初,从事发动机稳态和瞬态性能数字仿真技术研究,该成果在“昆仑”等新机研制中得到广泛应用;90年代中期,严成忠亲自发起和主持高马赫数、高负荷、高效率风扇研究,提出用高切线速度提高级负荷,用掠形技术降低激波损失的设计思路,亲自审定设计方案,落实加工,组织试验,试验结果全部达到设计指标,使我国单、双级风扇研究水平跻身于世界先进行列。1961年8月,严成忠以优异成绩毕业于南京航空学院,被分配到刚刚组建的我国第一个航空发动机设计研究机构——沈阳发动机设计研究所,从此踏上了航空报国之路。年仅27岁的严成忠,在1966年5月到1967年7月受命去越南执行特殊任务。当时正是“抗美援越”战争最激烈的时候。他所在的防区里,美国飞机天天轮番轰炸,随时都有牺牲的危险。“感谢防区的高炮部队,是他们一次又一次地把敌机击落,有的战士付出了宝贵的生命,保证我们圆满完成了组织上交给的任务!”说到这里,严成忠拿出一枚“援越抗美纪念章”深情地说:“看到它,我就想到了自己的责任,不研制出自己的发动机,真对不起死难的烈士!”严成忠不仅经受了战争枪林弹雨生与死的洗礼,也经过和平时期科研试验生与死的考验。20世纪60年代末,上级决定涡扇6甲转到湖南株洲三三一厂研制。沈阳发动机研究所派出一百多名科研人员下厂“三结合”。1970年6月24日,涡扇6甲试车,仪表指示发动机振动时大时小。时任“三结合”小组副组长的严成忠带领4名同志去试车间观察振动情况。正在发动机向高转速推进时,突然风扇大叶片飞出,击中了滑油散热器,碎片乱飞,烈火浓烟顷刻弥漫了整个试车间,情势万分危急!有人喊道:“试车间里的同志完啦!……”万幸的是消防车及时赶到,他们才得以脱身。一位老同志回忆说: “老严是大难不死,拣一条命回来!”这使严成忠深切地感到,搞科研光靠不怕死是不行的,不能做无谓的牺牲,必须按科学规律办事。从那以后,“整机试车时,消防车必须到场;试车间内慢车以上开车时不准任何人员入内”就成了一条铁的规定。机遇往往偏爱那些出类拔萃的佼佼者。20世纪70年代末,组织上安排严成忠去北京航空学院补习英语。恰巧,英国Cranfield理工学院来招生,单兵教练。主考官是该校机械工程系主任弗莱切教授。严成忠坦然自若,对答如流,尤其讲了正在研究燃气涡轮发动机稳态与瞬态性能数字仿真技术的课题之后,弗莱切教授非常感兴趣,立即表态:“恭喜,你被录取了!”1980年4月,严成忠以访问学者的身份来到了英国。当时,校方也正在搞发动机数字仿真研究。由于严成忠功底深厚,又刻苦钻研,只用半年时间便完成了博士研究生要两到三年才能做完的过渡态仿真研究课题。1982年,严成忠又和导师帕沫先生合作研究开发了一种通用的积木块式的、灵活而容易掌握的高水平程序 ——TURBOTRANS。它可以方便地对带任意调节系统的各种类型的燃气涡轮发动机的稳态与瞬态性能进行仿真,达到当时的世界先进水平。论文在伦敦的国际学术会议上交流后,引起重视。美国阿诺德工程发展中心(AEDC)的高级工程师、AIAA高级会员M.A.Chappell和仿真与模拟专题研究室主任P.W.Melaughlin称TURBOTRANS为80年代初期涡轮发动机仿真技术的代表作。至今,仍在国内外得到广泛使用。“居高声自远,非是藉秋风”。严成忠先后被聘为北京航空航天大学、西北工业大学、南京航空航天大学兼职或名誉教授;历任中国航空学会动力分会委员和《航空动力学报》编委、副主编,曾任《航空发动机》副主编、主编,“863”航天技术领域第二届专家委员会委员,总装备部常规动力技术专业组成员等职。先后荣获国防科学技术一等奖、航空工业总公司“昆仑”首飞一等功、中航一集团“昆仑”设计定型特等功、辽宁省科技进步二等奖;曾被选为辽宁省党代会代表,沈阳市人大代表;曾被授予辽宁省创业标兵,获五一劳动奖章,沈阳市劳动模范等荣誉称号。“昆仑”定型后,严成忠深情地说:“我们自行研制发动机好像接力赛,一棒一棒往下传。我很幸运,‘昆仑’这根棒传到我手中成功了,这是我们航空几代人智慧和汗水的结晶,不是我个人的功劳。许多人未看到这一天,就过早地走了,留下无法弥补的遗憾,想起他们就心里难过。我义不容辞的责任就是把这根接力棒传下去!”

1985年毕业于北京清华大学热能工程专业,

1990年西北工业大学获工程热物理硕士学位。

1990年至1994年任西北工业大学动力与能源学院讲师,

1994年晋升为副教授。

本科生专业课《工程热力学》,《热工设备》

研究生专业课《高等工程热力学》,《热流体学》,《先进流体与传热计算技术》

工程热力学系统,传热学,航空发动机冷却防护技术,空气系统,镟转盘腔及空气预镟系统,热流量计,流量计,温度测试技术

[1] "非圆形扰流柱换热与流动特性的实验研究" 1999~2001年,航空基础科学基金资助项目

[2] 非圆形扰流柱换热与流动特性及其镟转效应的实验研究,国防科技航空发动机气动热力重点实验室项目,2000 年~2002 年

[3] "高压涡轮盘腔内流动与换热最佳化研究",罗罗公司德国分公司合作项目,2000 年~2005 年

[4]气冷叶片供气系统设计与分析技术,2008年~2011年

[5]"封严篦齿结构设计和试验研究",2012~2014。

[6]"有增压轮的预镟系统流动、温降特性研究",中航商用航空发动机公司项目,2012~2014。

[7]"高压预镟系统流动传热研究", 2012~2015。

发表学术论文30余篇,其中被EI收录20余篇。代表性论文:

1."套用TVD格式分离求解不可压N-S流动",《航空动力学报》,第9卷,第1期,1994年1月

2."转轮式干燥剂除湿器性能的相似分析与计算",《太阳能学报》第15卷,第2期, 1994年4月

3."转轮式干燥剂除湿器数学模型及RDEH程式",《太阳能学报》, 第15卷,第3期 1994年7月

4."转盘-静盘腔内层流流动的相似分析及N-S方程数值解",《航空动力学报》第9卷,第4期1994年10月

5."转轮式固体干燥剂制冷空调系统的数值计算与分析",《太阳能学报》,第17卷,第1期 1996年1月

6. "带有微型涡轮的镟转盘腔局部换热特性" ,《推进技术》2005年6月 Vol. 26,No. 3,

7."新型热流计测量技术的探索研究",《计测技术》, 2007 年第27卷,第2 期

8."带微型涡轮的镟转盘腔内流场的数值仿真研究"《计算机仿真》,第24卷,第11期

9."带盖板预镟进气系统的温降实验误差分析"《科 学 技 术 与 工 程》Vo , ,

10."带盖板的预镟系统温降和压力损失数值研究",《航空动力学报》 , 2010年 11期

11."带盖板预镟系统的流动实验",《推进技术》,2011 年10 月第32卷第5 期,Oct. 2011,Vol. 32 No. 5

12. "Two and Three Dimensional Computation of the Flow Field in a Rotating Cavity with Micro Turbine "RR/AVIC Technical Symposium April 8-10,2003

13."镟转对非圆形扰流柱换热影响的数值研究"《第十三届燃烧与传热传质专业学术讨论会论文集》,中国航空学会专业分会燃烧与传热传质专业委员会,2005年10月,云南,昆明

14. "非圆形扰流柱换热和流动特性的实验与计算研究"中国国防科技报告,编号GF-A0041692M,中国航空科技报告,编号HK-JB003781M

15."镟转涡轮盘腔中等转速下内部流场分布实验" 《推进技术》,2006年8月,

16.《工程热力学》,2006年9月,西北工业大学出版社,国防科工委"十五"规划教材

(1)回流式传热风洞和扇形孔气膜冷却流动和传热实验

中国航空工业总公司1996年科技成果三等奖

(2)航空发动机中的传热与冷却技术研究

国家教委1997年科技进步三等奖

(3)气冷叶片流动与有/无气膜时端壁换热的试验研究

中国航空工业总公司1999年科技成果一等奖

(4)复合式气冷叶片外换热分析与实验

中国航空工业总公司1999年科技成果二等奖

(5)高主流湍流度下涡轮叶片外换热的实验和分析研究

陕西高等学校2003年科学技术二等奖

(6) "层板叶片传热机理研究"获2006年国防科学技术二等奖

(7)《工程热力学》教材获2011年西北工业大学第八届优秀教材奖励,2011年10月

(8)《工程热力学》教材获2011年陕西省优秀教材二等奖

航空发动机论文范文

记得当年的毕业论文写的是进气道喘振问题。呵呵 很多年前的事了。

复材叶片在民用航空发动机中的应用

因复合材料的低密度、高比强度、高比刚度,能有效降低油耗、噪音,采用复合材料叶片已成为民用航空发动机的发展趋势。以下是我为大家推荐的相关论文范文,希望能帮到大家,更多精彩内容可浏览()。

摘要:进入新世纪以来,多领域技术都得到了巨大的发展,特别是随着交通运输业的进步,大型民用飞机开始成为交通运输的主力军,因而各国开始更加重视大型飞机的研制,航空业也开始成为衡量一个国家综合国力的重要标准。而大型飞机研发的重点以及核心技术便是发动机技术。随着民用航空业的发展,民用航空飞机核心技术———发动机技术也发展飞速,其中复材叶片已经逐步在多种民机型号中得以应用。

关键词:民用航空;复合材料;发动机;风扇叶片

过去飞机发动机叶片主要采用金属以及合金,随着新材料出现,复合材料开始被应用于航空发动机叶片,与金属材料相比,其具有低重、低噪、高效的优势,并且复材叶片数量更少,能够有效抗震颤、损伤,并且在抗鸟撞性上也更加优越,满足了现代民航适航需要。因而复材叶片开始受到世界各大发动机厂商的关注,并逐步得以推广应用。

1复合材料叶片的应用

复材叶片制造技术主要有预浸料/压模技术和3-DWOVEN/RTM技术。采用预浸料/模压技术的代表有GE90、GEnx、TRENT1000及TRENTXWB发动机的复合材料风扇叶片,而LEAP-X发动机复合材料风扇叶片采用3D-WOVEN/RTM技术成型。

预浸料/模压成型叶片

采用该种复材叶片的代表主要有GE90发动机和GEnx发动机(美国GE),此外罗•罗公司也在进行相关研发。(1)GE90发动机。该型号发动机为GE公司上世纪九十年代所研发的特大推力发动机,是国外应用于民航最早使用复材叶片的发动机之一。该发动机复材叶片使用了预浸料/模压成形技术,叶片从内至外逐渐减薄,叶尖厚度最薄。并且在叶身涂有防腐涂层(聚氨酯),叶背采用一般涂层,前缘包边采用钛合金材料,从而提高叶片鸟撞抗性。为防止复合材料在运行中分层,在叶片后缘以及叶尖处采用纤维缝合技术予以加固。叶根榫头为三角燕尾形,其表面涂有耐磨材料以降低榫头摩擦系数。GE90所采用的复材叶片为22片,相比较于钛合金空心叶片,复材叶片质量更轻,强度更高。经过十余年的运行,证明了复合材料风扇叶片适用于具有严格要求的商业飞行的需要。(2)GEnx发动机。该发动机所应用的复材叶片材料以及模压成型工艺,同GE90相比变化不大,在此基础上GEnx对GE90的复材叶片的结构设计进行了优化。GEnx主要采用了第3代GE复合材料,外形也类似GE90-115B发动机,但由于使用了新一代三元流设计,叶片数减为18片,总质量进一步降低。叶片尖部以及前缘使用钛合金护套,并在叶片榫根部位,增加了耐磨衬垫,便于后期维护检修。(3)随着复合材料在民航发动机中的应用,英国罗•罗公司也开始将目光从钛合金叶片上转移到复材叶片。其同GKN集团正共同进行碳纤维增强复材叶片的研发,该叶片同钛合金叶片同样薄,并且在量产、成本以及鲁棒性上均符合民航发动机标准。目前这种碳纤维风扇叶片已经完成了包括叶片飞出、鸟撞试验在内的地面试验。

成型复材叶片

对于风扇叶片中等推力发动机提出的强度要求更高,因而Snecma公司在CFM56系列发动机研发中,在LEAP-X中将会应用碳纤维对复合材料进行增强。相比较于GEnx以及GE90,所采用的碳纤维薄层铺设技术不同,Snecma公司在LEAP发动机叶片的制造中所采用的RTM工艺,是将碳纤维进行预先编制,在树脂注入以及叶片高压成型之前,碳纤维便已经成为3-DWOVEN结构。Snecma公司在复材叶片的制造上委托了AEC公司,由于AEC公司生产制造自动化程度相对较高,因而其制备三维编制预制体并完成整个叶片的制造仅需要24小时。同CFM56(CFM公司)发动机相比,LEAP发动机叶片成型采用了3-DWOVEN/RTM技术,前者结构上采用了更多的技术,而后者采用复合材料,有效减轻了发动机重量,提高了燃油效率,降低了排放量和发动机噪声。目前,LEAP-X发动机已经开始得到中国多种旅客机的关注,未来将会逐步在中国普及推广。

2复材叶片的发展趋势

因复合材料的低密度、高比强度、高比刚度,能有效降低油耗、噪音,采用复合材料叶片已成为民用航空发动机的发展趋势。制约复合材料叶片大规模应用的关键因素是预制体制备、复材成型技术等。

预制体制备

复材叶片制造的难点之一是制备预制体。国外常用的预制体制备方法有两种:一种是选用IM7/8551-7和IM7/M91作为预浸料并采用激光定位手工/自动化成型技术制备,适用于制备大推力、大叶盘直径涡扇发动机的风扇叶片预制体;另一种是对IM7碳纤维进行预浸渍处理,通过3D-WOVEN/RTM自动化技术成型,主要用于制备小推力涡扇发动机风扇叶片的预制体。以往采用激光定位辅助+手工铺叠的技术进行预制体制造,而GKN公司开发了自动化丝束铺放设备(简称AFP)可实现预制体的自动化成型。罗•罗公司在研制TNENT系列发动机复合材料风扇叶片时使用了GKN公司的自动化纤维丝束铺放设备,实现了复材叶片预制体的自动化成型,并运用超声刀对预制体进行切割。Snecma公司率先提出了无余量预制体成型技术、预制体预变形技术以及高度自动化的预制体制备技术。Snecma公司的3DW/RTM成型风扇叶片预制体技术可降低传统二维风扇叶片的分层缺陷产生的可能性,让叶片顶部更薄、根部更厚;经纱连续的变截面成型技术提高预制体的承载能力;采用高压水射流对预制体进行无余量切割。

成型技术RTM

注射成型以及模压是目前国际上流行的复材叶片成型技术,虽然两者在技术上具有一定的差异性,但均可称为闭模成型技术。涡扇发动机的叶片扭转大且为双曲面,其结构形式相对复杂,常规的成型技术无法满足叶片加工精度,而闭模成型技术的成型精度高,能够很好的满足涡扇发动机对于叶片制造的需求,因而其逐步成为目前复材叶片成型的'主流技术。随着技术的逐步发展,目前国外开始利用复合材料模具代替金属模具,以此保证生产加工中模具和零件能够保持一致的热膨胀系数,进而获得更高的零件尺寸精度。此外,复材叶片成型加工技术开始引入数字仿真模拟技术,从而在技术研究前期对成形工艺进行方向性指导,在研制过程中合理规避风险,缩短研制周期,降低研制成本。

3结束语

复合材料以其优越的特性开始成为民航发动机叶片的主流材料,并且随着技术的发展,复材发动机叶片的制造效率更高,自动化程度也更先进。在未来高精度、可靠性、一致性会成为复材叶片生产研发的主要方向。我国自主研发的大型民用客机中也开始应用商用发动机,这为我国复材叶片的研发制造提供了一个契机,虽然目前复合材料在我国航空发动机制造中还处于初始应用阶段,复材叶片的制造业仅在起步阶段,但在我国技术人员的努力下,我国自主研发的应用复材叶片的涡扇发动机必然会在世界航空领域占据一席之地。

参考文献:

[1]李杰.GE复合材料风扇叶片的发展和工艺[J].航空发动机,2008,34(4):54-56.

[2]贺福.碳纤维及石墨纤维[M].北京:化学工业出版社,2010:1-16.

[3]赵云峰.先进纤维增强树脂基复合材料在航空航天工业中的应用[J].军民两用技术与产品,2010,37(1):4-6.

航空涡轮叶片毕业论文

这个问题比较复杂,可以当我们研究生毕业论文去写了...这只能给你说个大概了。首先压气机每一级叶片都是分为静叶和动叶的(不是你说的风扇,那个只有一级动叶),涡轮做功带动前面的压气机的动叶(也可以理解为转子)旋转对从进气道进来的空气进行压缩。它并不是你说的每一级的速度是一样的,压气机整体是收缩的通道,空气压缩后体积变小了,最多也只能说是角速度一样;在级与级之间的每一级的压气机转子的角度(这里面是有很多角度的)也是不同的,这个主要根据设计人员来决定,考虑的因素会很多,不仅仅是只考虑压缩比的因素(效率、空间、防止喘振和发动机结构之间配合等等)。还有一个问题,压气机是增压减速的,最好可以减速到零,动压力全部转化为静压力(当然这几乎是不可能的)。可不是你说的加速啊。可以简单来说压气机工作原理,动叶起到压缩的作用,可是由于动叶旋转后(目前常用的是轴流式压气机)将会使得空气具有一个切向的速度,所以无法直接立刻进入下一级动叶进行压缩,需要一级静叶使得空气再只进行轴向运动(切向速度为零);静叶的作用是保证压气机的压气效率。目前的军用航空发动机压气机的级数6、7级左右,总压缩比在25+,开始的几级压缩比很高,后几级压缩比也就,主要是为了保证效率,和以一个稳定的流场进入燃烧室,从而提高燃烧效率;民用的级数更多10+,总压缩是越高越好,(这个和经济性相关)有40+。只能说成这样了,我就不找个大段的文章粘过来给你看了,如果你想具体从原理到设计的了解航空发动机的压气机工作原理,可以自己去找本书看看,相关的:叶轮机工作原理,流体力学等等

我虽然不会写论文!但我精通数控电火花加工!数控电火花线切割!尤其是XY线切割!! 要是你用到技术方面的就找我261457165QQ

叶片角度每一级都不同。单级的压气效率是有理论极限的,多级的话可以大大提高这一理论极限。具体的挺复杂。

每一级压气机包括一个固定在机匣上的导向叶轮,导向叶片之后是安装在发动机转轴上的转子叶轮。空气首先经过导向叶片,以一定的流速和方向进入后面的转子叶片,转子叶片对空气做功,使气体压缩,升温。然后进入下一级压气机的导向叶片,调整方向之后再进入后面的转子叶片,继续对空气做功,使之进一步压缩。。。。若干次之后,空气被压缩到很高的压力和温度,就进入燃烧室和燃油喷雾混合,点火燃烧了。燃烧后产生高温高压的燃气,从燃烧室出来,推动各级涡轮转动,将燃烧的能量转化为转动功率,带动前面的压气机转子和风扇(或螺旋桨)。压气机每一级的叶片转速和角度都不一样,叶片翼型也不一样,而且气流通道一直变化,越往后越窄,是逐级压缩的。最根本的原因,是压气机转子叶片对气流做功了,能量的转换,上过中学物理课都应该知道的。以常见的轴流式燃气涡轮发动机为例,从前往后,依次是风扇(或螺旋桨,转速最低)、低压压气机(若干级,转速低)、高压压气机(若干级,转速高)——进入燃烧室,燃烧后流出高能量的燃气——高压涡轮(若干级,带动前面的高压压气机叶片,转速高)、低压涡轮(若干级,带动前面的低压压气机,转速低)、动力涡轮(若干级,带动前面的风扇或螺旋桨),最后排出发动机。

相关百科
热门百科
首页
发表服务