论文投稿百科

毕业论文洛必达法则

发布时间:2024-07-04 19:18:49

毕业论文洛必达法则

数学与应用数学简介培养层次:本科授予学位:理学学士标准学制:四年修业年限:三至六年培养目标:本专业培养掌握数学科学的基本理论与基本方法,具备运用数学知识、使用计算机解决实际问题的能力,受到科学研究的初步训练,能在科技、教育和经济部门从事研究、教学工作或在生产经营及管理部门从事实际应用、开发研究和管理工作的高级专门人才。培养要求:本专业学生主要学习数学与应用数学的基础理论与基本方法,受到数学模型、计算机和数学软件方面的基本训练,具有较好的科学素养,初步具备科学研究、教学、解决实际问题及开发软件方面等基本能力。毕业生应获得以下几方面的知识和能力:1. 具有扎实的数学基础,受到比较严格的科学思维训练,初步掌握数学科学的思想方法;2. 具有应用数学知识去解决实际问题,特别是建立数学模型的初步能力,了解某一应用领域的基本知识;3. 能熟练使用计算机(包括常用语言、工具及一些数学软件),具有编写简单应用程序的能力;4. 了解国家科学技术等有关政策和法规;5. 了解数学科学的某些新发展和应用前景;6. 有较强的语言表达能力,掌握资料查询、文献检索及运用现代信息技术获得相关信息的基本方法,具有一定的科学研究和教学能力。专业特色:本专业对于学生实行厚基础、宽口径分类培养的原则,在基础课阶段将受到分析类、代数类、几何类、随机数学等方面完整的良好的数学基本功训练,然后,更具学生的兴趣和需求,进行专门化培养,对于有意从事理论研究或理论水平要求较高的学生让他们选学进一步的数学基础理论课程;对于有意从事与软件方面有关的学生,让他们选学一些计算机类课程;对于那些有意从事金融方面工作的学生,让他们选学一些保险精算类课程:此外,还可以工科专业为依托,进行其他门类的专业化训练。这样,学生一门进,多门出,既有扎实的数学基础,又有广泛的应用水平。主干学科:数学、信息与计算科学、统计学。主要课程:分析学、代数学、几何学、概率论、物理学、数学模型(数学实验)、计算机基础、数值方法、数学史等,以及根据应用方向选择的基本课程。主要实践性教学环节:包括军事训练、认识实习、计算机实习、生产实习、课程设计、科研训练或毕业论文等,一般安排10-20周。学生继续深造方向:本学科专业有硕士学位授予权;学生就业情况:在科技、教育和经济部门从事研究、教学工作或在生产经营及管理部门从事实际应用、开发研究和管理工作。师资情况:教师总数31名,其中教授3人,副教授14人,博导1人,硕导12人。

管理科学与工程专业研究生,是分很多方向的,包括管理科学、工程管理、工程造价、资讯系统与资讯管理等。不同方向,就业领域也不同。 如工程造价,主要是做土木、建筑、水利、安装等各类工程概算、预算的,而工程管理则主要对这些工程实施监督管理。

2015年数学三考试大纲 考试科目:微积分、线性代数、概率论与数理统计

考试形式和试卷结构 一、试卷满分及考试时间 试卷满分为150分,考试时间为180分钟. 二、答题方式 答题方式为闭卷、笔试. 三、试卷内容结构 微积分 约56% 线性代数 约22% 概率论与数理统计 约22% 四、试卷题型结构 单项选择题选题 8小题,每小题4分,共32分 填空题 6小题,每小题4分,共24分 解答题(包括证明题) 9小题,共94分 微积分 一、函式、极限、连续 考试内容 函式的概念及表示法 函式的有界性、单调性、周期性和奇偶性 复合函式、反函式、分段函式和隐函式 基本初等函式的性质及其图形 初等函式 函式关系的建立 数列极限与函式极限的定义及其性质 函式的左极限和右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:

函式连续的概念 函式间断点的型别 初等函式的连续性 闭区间上连续函式的性质 考试要求 1.理解函式的概念,掌握函式的表示法,会建立应用问题的函式关系. 2.了解函式的有界性、单调性、周期性和奇偶性. 3.理解复合函式及分段函式的概念,了解反函式及隐函式的概念. 4.掌握基本初等函式的性质及其图形,了解初等函式的概念. 5.了解数列极限和函式极限(包括左极限与右极限)的概念. 6.了解极限的性质与极限存在的两个准则,掌握极限的四则运演算法则,掌握利用两个重要极限求极限的方法. 7.理解无穷小量的概念和基本性质,掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系. 8.理解函式连续性的概念(含左连续与右连续),会判别函式间断点的型别. 9.了解连续函式的性质和初等函式的连续性,理解闭区间上连续函式的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质. 二、一元函式微分学 考试内容 导数和微分的概念 导数的几何意义和经济意义 函式的可导性与连续性之间的关系 平面曲线的切线与法线 导数和微分的四则运算 基本初等函式的导数 复合函式、反函式和隐函式的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L'Hospital)法则 函式单调性的判别 函式的极值 函式图形的凹凸性、拐点及渐近线 函式图形的描绘 函式的最大值与最小值 考试要求 1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程. 2.掌握基本初等函式的导数公式、导数的四则运演算法则及复合函式的求导法则,会求分段函式的导数,会求反函式与隐函式的导数. 3.了解高阶导数的概念,会求简单函式的高阶导数. 4.了解微分的概念、导数与微分之间的关系以及一阶微分形式的不变性,会求函式的微分. 5.理解罗尔(Rolle)定理、拉格朗日( Lagrange)中值定理,了解泰勒(Taylor)定理、柯西(Cauchy)中值定理,掌握这四个定理的简单应用. 6.会用洛必达法则求极限. 7.掌握函式单调性的判别方法,了解函式极值的概念,掌握函式极值、最大值和最小值的求法及其应用. 8.会用导数判断函式图形的凹凸性(注:在区间内,设函式具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函式图形的拐点和渐近线. 9.会描述简单函式的图形.

三、一元函式积分学 考试内容 原函式和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函式及其导数 牛顿-莱布尼茨(Newton- Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 反常(广义)积分 定积分的应用 考试要求 1.理解原函式与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法与分部积分法. 2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函式并会求它的导数,掌握牛顿-莱布尼茨公式以及定积分的换元积分法和分部积分法. 3.会利用定积分计算平面图形的面积、旋转体的体积和函式的平均值,会利用定积分求解简单的经济应用问题. 4.了解反常积分的概念,会计算反常积分.

四、多元函式微积分学 考试内容 多元函式的概念 二元函式的几何意义 二元函式的极限与连续的概念 有界闭区域上二元连续函式的性质 多元函式偏导数的概念与计算 多元复合函式的求导法与隐函式求导法 二阶偏导数 全微分 多元函式的极值和条件极值、最大值和最小值 二重积分的概念、基本性质和计算 无界区域上简单的反常二重积分 考试要求 1.了解多元函式的概念,了解二元函式的几何意义. 2.了解二元函式的极限与连续的概念,了解有界闭区域上二元连续函式的性质. 3.了解多元函式偏导数与全微分的概念,会求多元复合函式一阶、二阶偏导数,会求全微分,会求多元隐函式的偏导数. 4.了解多元函式极值和条件极值的概念,掌握多元函式极值存在的必要条件,了解二元函式极值存在的充分条件,会求二元函式的极值,会用拉格朗日乘数法求条件极值,会求简单多元函式的最大值和最小值,并会解决简单的应用问题. 5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角座标、极座标),了解无界区域上较简单的反常二重积分并会计算.

五、无穷级数 考试内容 常数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法任意项级数的绝对收敛与条件收敛交错级数与莱布尼茨定理幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函式幂级数在其收敛区间内的基本性质简单幂级数的和函式的求法初等函式的幂级数展开式 考试要求 1.了解级数的收敛与发散、收敛级数的和的概念. 2.了解级数的基本性质及级数收敛的必要条件,掌握几何级数及级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法. 3.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,了解交错级数的莱布尼茨判别法. 4.会求幂级数的收敛半径、收敛区间及收敛域. 5.了解幂级数在其收敛区间内的基本性质(和函式的连续性、逐项求导和逐项积分),会求简单幂级数在其收敛区间内的和函式. 6.了解,,,及的麦克劳林(Maclaurin)展开式.

六、常微分方程与差分方程 考试内容 常微分方程的基本概念变数可分离的微分方程齐次微分方程一阶线性微分方程线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程及简单的非齐次线性微分方程差分与差分方程的概念差分方程的通解与特解一阶常系数线性差分方程微分方程的简单应用 考试要求 1.了解微分方程及其阶、解、通解、初始条件和特解等概念. 2.掌握变数可分离的微分方程、齐次微分方程和一阶线性微分方程的求解方法. 3.会解二阶常系数齐次线性微分方程. 4.了解线性微分方程解的性质及解的结构定理,会解自由项为多项式、指数函式、正弦函式、余弦函式的二阶常系数非齐次线性微分方程. 5.了解差分与差分方程及其通解与特解等概念. 6.了解一阶常系数线性差分方程的求解方法. 7.会用微分方程求解简单的经济应用问题. 线性代数 一、行列式 考试内容 行列式的概念和基本性质行列式按行(列)展开定理 考试要求 1.了解行列式的概念,掌握行列式的性质. 2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.

二、矩阵 考试内容 矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价 分块矩阵及其运算 考试要求 1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质. 2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质. 3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵. 4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法. 5.了解分块矩阵的概念,掌握分块矩阵的运演算法则.

三、向量 考试内容 向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组 等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系 向量的内积 线性无关向量组的正交规范化方法 考试要求 1.了解向量的概念,掌握向量的加法和数乘运演算法则. 2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法. 3.理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩. 4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系. 5.了解内积的概念.掌握线性无关向量组正交规范化的施密特(Schmidt)方法.

四、线性方程组 考试内容 线性方程组的克拉默(Cramer)法则线性方程组有解和无解的判定齐次线性方程组的基础解系和通解 非齐次线性方程组的解与相应的齐次线性方程组(汇出组)的解之间的关系非齐次线性方程组的通解 考试要求 1.会用克拉默法则解线性方程组. 2.掌握非齐次线性方程组有解和无解的判定方法. 3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法. 4.理解非齐次线性方程组解的结构及通解的概念. 5.掌握用初等行变换求解线性方程组的方法.

五、矩阵的特征值和特征向量 考试内容 矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值和特征向量及相似对角矩阵 考试要求 1.理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法. 2.理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法. 3.掌握实对称矩阵的特征值和特征向量的性质.

六、二次型 考试内容 二次型及其矩阵表示 合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性 考试要求 1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念. 2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形. 3.理解正定二次型、正定矩阵的概念,并掌握其判别法. 概率论与数理统计 一、随机事件和概率 考试内容 随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验 考试要求 1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算. 2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式等. 3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法. 二、随机变数及其分布 考试内容 随机变数随机变数分布函式的概念及其性质离散型随机变数的概率分布连续型随机变数的概率密度 常见随机变数的分布 随机变数函式的分布 考试要求 1.理解随机变数的概念,理解分布函式 () 的概念及性质,会计算与随机变数相联络的事件的概率. 2.理解离散型随机变数及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布及其应用. 3.掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布. 4.理解连续型随机变数及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用,其中引数为的指数分布的概率密度为 5.会求随机变数函式的分布.

三、多维随机变数的分布 考试内容 多维随机变数及其分布函式二维离散型随机变数的概率分布、边缘分布和条件分布二维连续型随机变数的概率密度、边缘概率密度和条件密度随机变数的独立性和不相关性常见二维随机变数的分布两个及两个以上随机变数简单函式的分布 考试要求 1.理解多维随机变数的分布函式的概念和基本性质. 2.理解二维离散型随机变数的概率分布和二维连续型随机变数的概率密度,掌握二维随机变数的边缘分布和条件分布. 3.理解随机变数的独立性和不相关性的概念,掌握随机变数相互独立的条件,理解随机变数的不相关性与独立性的关系. 4.掌握二维均匀分布和二维正态分布,理解其中引数的概率意义. 5.会根据两个随机变数的联合分布求其函式的分布,会根据多个相互独立随机变数的联合分布求其简单函式的分布.

四、随机变数的数字特征 考试内容 随机变数的数学期望(均值)、方差、标准差及其性质 随机变数函式的数学期望 切比雪夫(Chebyshev)不等式 矩、协方差、相关系数及其性质 考试要求 1.理解随机变数数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征. 2.会求随机变数函式的数学期望. 3.了解切比雪夫不等式.

五、大数定律和中心极限定理 考试内容 切比雪夫大数定律伯努利(Bernoulli)大数定律 辛钦(Khinchine)大数定律 棣莫弗—拉普拉斯(De Moivre-Laplace)定理 列维—林德伯格(Levy-Lindberg)定理 考试要求 1.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变数序列的大数定律). 2.了解棣莫弗—拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维—林德伯格中心极限定理(独立同分布随机变数序列的中心极限定理),并会用相关定理近似计算有关随机事件的概率.

六、数理统计的基本概念 考试内容 总体个体简单随机样本统计量经验分布函式 样本均值样本方差和样本矩分布分布 分布 分位数正态总体的常用抽样分布 考试要求 1.了解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为 2.了解产生变数、变数和变数的典型模式;了解标准正态分布、分布、分布和分布的上侧分位数,会查相应的数值表. 3.掌握正态总体的样本均值、样本方差、样本矩的抽样分布. 4.了解经验分布函式的概念和性质.

七、引数估计 考试内容 点估计的概念估计量和估计值矩估计法最大似然估计法 考试要求 1.了解引数的点估计、估计量与估计值的概念. 2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.

这是个一级学科 包括很多很多内容及方向的 看你学的什么以及什么学校了

研究如何运用现代资讯科技帮助社会经济组织提高现代化管理的效率与水平。培养既懂管理又懂计算机的复合型高阶专门人才是本专业的主要特色。本专业领域目前已培养了一大批优秀本科毕业生和硕士研究生,他们在各自的工作岗位上发挥着重要的作用。 电子商务专业方向 以现代管理学和经济学理论知识为基础,系统掌握现代资讯科技知识,包括计算机硬体与软体技术知识、资料库技术和Inter/Intra网路技术知识、电子商务物流、电子商务网站建设、网路营销等相关知识,掌握电子商务系统分析、设计、实施和运营方面知识,具备从事计算机网路运营和开展电子商务活动及管理的能力。

管理科学与工程主要学的专业课:管理学、运筹学、经济学、电脑科学与技术。主要从业领域为:国家各级行政管理部门、国内外大中型工商企业、外资企业、跨国公司、三资企业等从事决策咨询、商务运作及管理工作;高等院校或科研机构从事相关专业的教学与科研工作。

相关简介:管理科学与工程是综合运用系统科学、管理科学、数学、经济和行为科学及工程方法,结合资讯科技研究解决社会、经济、工程等方面的管理问题的一门学科。这一学科是我国管理学门类中唯一按一级学科招生的学科,覆盖面广,包含了资源优化管理、公共工程组织与管理、不确定性决策研究和专案管理等众多研究领域,是国内外研究的热点。管理科学与工程学科下设管理资讯系统、工程管理、专案管理、管理科学、工业工程、物流供应链管理、 物流工程等专业方向。

1、管理科学与工程就是一个专业,不存在还有哪些专业的问题。 2、管理科学与工程专业下设有很多研究方向,而且不同招生单位的研究方向是不一样的,具体可以去招生单位官网检视专业目录。 3、专业和方向是两个不同的概念。研究生录取是按照专业,但不同研究方向的考试科目、导师和毕业论文选题可能不一样。以专业目录为准。

管理科学与工程专业各方向就业方向及相关职位: 适应在大中型企业特别是合资类与外向型企业、金融机构、 *** 机关、其它社会经济单位的资讯管理部门、综合管理部门、计算中心等相关部门从事资讯管理与资讯系统的建设、运营等管理工作。 电子商务专业方向: 在大中型企业特别是合资类与外向型企业、金融机构、 *** 机关、其它社会经济单位的资讯管理部门、营销管理部门、物流管理部门、计算机中心等相关部门从事电子商务系统的建设、运营等管理工作。 工程管理专业方向: 工程管理专业就业率进入了前20名。工程管理的物件是房屋建筑、道路交通,或者桥梁建设、船舶建设。管理的内容包括:工程专案管理,如工程专案的投资、进度、质量控制及合同管理;房地产经营与管理,如,房地产专案的开发与评估、房地产营销、房地产投资与融资、房地产估价;投资与造价管理,如,编制招标、投标档案,评定投标书,编制和稽核工程专案估算、概算、预算和决算;国际工程管理,如,国际工程专案招标与投标、合同管理、投资与融资。 工业工程专业方向: 培养具备现代工业工程和系统管理等方面的知识、素质和能力,能在工商企业从事生产、经营、服务等管理系统的规划、设计、评价和创新工作的高阶专门人才。

运筹学、概率与数理统计、生产经营管理(Production Opration management)、工程经济或技术经济(Engineering economy)、经济学(或巨集观经济、微观经济)、线性代数或高等代数、系统工程、控制论、高阶成本会计、企业资源管理ERP,演算法等。

就是一些管理学的课。不过分方向的,不同方向侧重不一样。一般没有学校把管工作为本科专业,就算作为本科专业,也会在大二大三分方向分成小班的。比如物流,那就除了一些基础的管理学、经济学的课,就要学物流相关的课;比如信管,那就侧重学计算机啊 资讯系统的课程。。等等

我也打算考那里。管理本身就比较难考嘛。上线分就高。不过听说他们的企管比较好考,貌似上线就行。管工起码得370+吧

巴 斯 卡(Blaise Pasacl) 出生年代: 1623~1662 国籍: 法国 著作: 算术的三角形 发明了一 部计算机 生平: 巴斯卡,法国数学学家,物理学家,笃信宗教的哲学家, 散文大师,近代概率论的奠基者。他出生於法国的 Clermont,从童年到短暂的生命结束为止,都体弱不堪,他的父亲曾在他 15岁或16岁前企图禁止他念数学。但巴斯卡在12岁时硬要知道几何的真正面目, 就以所得的资料为基楚,开始自我摸索。17 岁时写成了数学成就很高的圆锥截线论这是他研究狄沙格的关於射影几何的经典工作的结果。布勒兹巴斯加尔是埃登尼巴斯加尔的儿子,埃登尼是麦尔生利的通信人"巴斯加尔坩线(Limacon of Pascal)" 就是 因唉尔登而命名的。布勒兹在父亲的教养下,智慧开发很早,在他十六岁时就发现了"巴斯加尔定理",这个定理涉及一个内 接於圆锥曲线的六边行。这个定理在1641年印在单页纸上发表,并显示其受笛卡儿的影响。没有几年,巴斯加尔又发明了一 部计算机。在他二十五岁时,他决心到太子港的修道院去过一种冉森派教徒的苦行生活,但仍然继续提供时间来从事於科学 和文学的研究。他论及一种对机率的研究极为有用,而是由二项式的系数所组成的"算术的三角形"的论著在他死后的1664年 出现。他对积分法的论著,极其对无穷小的思辩,这都影响到莱布尼兹。他也是首先建立完全归纳原理令人满意的叙述第一 人。在 1642~1644年间他设计并制造了一个计算装置,原只是为了帮他的父亲计算收税,却因此而闻名於当时,在某种意义 上,就是第一架数字计算机。1646年以前,巴斯卡一家都是信天主教,由於他父亲的一场病,使他和一种更深的宗教信仰有 所接触,对他以后的生活影响很深。1646年他为了检验物理学家伽利略的托里切利理论,制造 了水银气压计,为往后的流体静力学及流体动力学的研究铺平 了道路。在1651~ 1654年,紧张的科学工作,写了关於液体平 衡,空气的重量,和密度及算数三角形等篇论文。后一篇论文 奠定了概率计算的基楚。在1655 ~1659年间又写了许多的宗教著作,但从1659年起疾病使他不能正常工作,最后忍受了巨大 的病痛而逝世。 狄 沙 格 (Girard Desargues) 出生年代: 1591~1661 国籍: 法国 著作: <试论锥面与平面相截的结果的初稿>(1639) 生平: 狄沙格是法国数学学家,引入射影几何学的主要概念。 他是黎赛留枢机主教和法国政府的技术顾问。根据笛卡 儿传记的作者巴耶所述,狄沙格在1628年和笛卡儿相 识 。他早年的事绩极少人知,约1630年他成为一个数学组 织的成员。他在<论透视截面>(1636)中提出了两个三角 形透视的定理,但并未受到同代人的重视。他最重要的 著作<试论锥面与平面相截的结果的初稿>(1639)对把射 影几何学应用到圆锥截面理论上做了很大胆的创新,这 对他的追随者帕斯卡有了重要的影响。但他在这部作品 中独特得用植物学名词做数学术语,不用笛卡儿符号, 致使该书两百年无人问津。除了他的朋友麦瑟尼,笛卡 儿,帕斯卡,费马以外,他的同僚都称他为狂人。甚至 在笛卡儿得知其提出处理锥线的新方法时,也曾写信给 麦瑟尼说他不相信一个人可以不借助代数方法去处理圆锥曲面,但在看过狄沙格的论文之后,也对他推崇有加,费马认为狄沙格才是锥线理论的创始人, 从他作品中见到宗庙之美,但一般人无法了解,因而有了嫌厌之心,狄沙格也只好归隐於自己的老家。1845年发现他的手稿由於对於射影几何学的兴趣正在复苏,他的贡献的重要性才为人所认定。 罗 必 达 (L'Hospital) 出生年代: 1661~1704 国籍: 法国 著作: 《阐明曲线的无穷小分析》〔1696〕 生平: 洛必达是一位法国的数学家,1661年出生於法国的贵族家庭,1704年2月2日卒於巴黎。他曾受袭侯爵衔,并在军队中担任骑兵军官,后来因为视力不佳而退出军队,转向学术方面加以研。在他15岁时就学会解旋轮线的问题。稍后他放弃了炮兵的职务,投入更多的时间在数学上,在瑞士数学家白努利的门下学习微积分,并成为法国新解析的主要成员。 洛必达的<<无限小分析>>(1696)一书是微积分学方面最早的教科书,在十八世纪时为一模范著作,书中创造一种算法(洛必达法则),用以寻找满足一定条件的两函数之商的极限,洛必达於前言中向莱布尼兹和白努利致谢,特别是Jean Bernoulli。洛必达逝世之后,白努利发表声明该法则及许多的其它发现该归功於他。洛必达的著作尚盛行於18世纪的圆锥曲线的研究。他最重要的著作是《阐明曲线的无穷小分析》〔1696〕,这本书是世界上第一本系统的微积分学教科书,他由一组定义和公理出发,全面地阐述变量、无穷小量、切线、微分等概念,这对传播新创建的微积分理论起了很大的作用。在书中第九章记载著约翰第一‧伯努利在1694年7月22日告诉他的一个著名定理:「洛必达法则,则求一个分式当分子和分母都趋於零时的极限的法则。后人误以为是他的发明,故「洛必达法则」之名沿用至今。洛必达还写作过几何,代数及力学方面的文章。他亦计划写作一本关於积分学的教科书,但由於 他过早去逝,因此这本积分学教科书未能完成。而遗留的手稿於1720年巴黎出版,名为《圆锥曲线分析论》。 () 笛 卡 儿 (Descartes) 出生年代: 1596~1650 国籍: 法国 著作: 《论世界》《方法论》《形而上学的沉思》及《哲学原理 》《几何学》 生平: 笛卡儿是法国著名的哲学家、数学家、物理学家及自然科学家。他於 1596年3月31日出生於图伦一贵族家庭。童年就读於拉弗莱什公学时,因体弱多病,被允早晨在床上读书,渐渐养成一种喜爱宁静,擅於思考的习惯。在校内更结织了密友梅森。1612年,他到巴黎普瓦捷大学供读法律,四年后获颁博士学位,并成为律师。当时法国社会的有志之士,不是致力宗教,便是献身军事,这种风气甚为盛行,这驱使笛卡儿於1618年往荷兰从军。服役期间,他仍对数学感兴趣。某日休息,他在街上散步时受一荷兰招贴所吸引,但因不懂荷兰文,於是请身边的人译成拉丁文或法文。恰巧这人是多特学院院长毕克门。经此翻译,笛卡儿才得悉这是一张当时数学家所下的「挑战书」,广徵上列难题答案。笛卡儿竟在数小时内求得答案,使毕克门大为佩服 。1621年,笛卡儿脱离军队返法,但适逢内乱,於是游历於丹麦、德国、意大 利等地。直至1625年才返回法国,与梅森等人一起研 讨数学。1628年移居荷兰,并通过数学家梅森神父,与欧洲主要学者保持密切联络。闲时更从事数学、天文学、物理学、化学及生理学等领域的研究。他所有著作几乎全是在荷兰完成的。他的主要著作有指导哲理之原则;〔1628年写成〕,以哥白尼学说为基础之《论世界》1634年完成,但因伽利略受教会迫害而未出版〕,《方法论》1637年6月8日於莱顿匿名出版,《形而上学的沉思》及《哲学原理 〔1644年出版〕。 1649年冬,他应邀到斯德哥尔摩为瑞典女皇克利斯提娜授课。最后,这位以创立解析几何而闻名的数学家因肺炎於1650年 2月11日在当地病逝。笛卡儿早在读书时期,已怀疑和反对统治欧洲思想界的经院哲学。多年来的游历与多方面的科学研究,加上与社会各阶层人士之交往及不断的自我反思,使他坚信必须抛弃经院哲学,探求正确思想方法,创立为实践服务的哲学,才可成为自然的主人与统治者 」。 他认为数学是其他一切科学之理想与模型,提出了以数学为基础,以演绎法为核心的方法论及认识论,成为西方近代哲学创始人之一,对后世的哲学、数学及自然科学起了巨大作用。而且他还一直为捍卫他的学说而和教会及其他反对势力抗衡。此外,他於1637年以法文写成的《方法论》〔最早的一部著作〕,附设三短论及一篇序言分别为:《折光学》、《气象学》、《几何学》及《科学中正确运用理性和追求真理的方法论》。当中以《几何学》为代表作,亦因此确立了他於数学史上之地位。这亦是他唯一的数学论著。全书共分三卷,内容分析了几何学与代数学的优劣,表示要寻求另一种包含两者好处而没有两者劣处的方法。在卷一中,他把几何问题化作代数问题,提出几何问题的统一作图法:以单位线段及线段的加、减、乘、除、开方等概念,将线段和数量联系起来,通过线段间的关系设立方程。在卷二中,他以这新方法解决帕普斯问题时,在平面上以一直线为基线,为它规定一起点及选定与之相交的另一直线,三项分别为 x轴,点及 y轴,形成一个斜座标系。 此时,该平面上的任何一点位置均可以〔x,y〕唯一地表示。帕普斯问题便化为一含两个未知数的二次不定方程。他指出方程的次数与座标系的选择无关,因此可依方程的次数 将曲线分类。 在卷三中,他指出方程可有与它的次数一样多的根,且提出笛儿符号法则:方程正根的最多个数等同其系数变号的次数;其负根〔假根〕的最多个数等同符号不变的次数。笛卡儿还以a,b、c,……表示已知量及x,y,z,……表示未知量去改进韦达所创的符号系统。《几何学》提出了解析几何学之主要思想与方法,这标志著解析几 何学之诞生。笛卡儿毕生专注於各项知识部门的研究,为人类的科学宝库带来丰厚的成果,对后世的研究影响深远。 棣 美 弗 (Moivre Abraham de) 出生年代: 1667~1754 国籍: 法国 著作: 论赌博法 生平: 数学家,发现解析三角和概率论的先驱.生於法国,是喀尔文派新教徒.1685年因保护喀尔文教徒的南特令被废除而监禁. 不久获释,迁居伦敦,成为牛顿和哈雷的挚友.1697年被选为伦敦皇家学会会员,后又被选为柏林科学 院和法国科学院院士. 尽管他是著名的数学家,但无固定工作,靠当家庭教师和赌博与任保险顾问谋生.1718年,他把1711年在((皇家学会会报))(Philosophical Transactions)上连载的论文((论赌博法))(Demensura sortis) 扩充为''机遇说((The Doctrine of Chances)) 一书.虽然现代概率论肇始於巴斯葛(Blaise Pascal)与费马(Pierre de Fermat)之间未发表 的通信 (1654)和惠更斯 (Christiaan Huygens) 的论文关於赌博中的推断 (De Ratiociniis in Ludo Aleae,1657), 但棣美弗的著作大大推进了机率论的研究.所谓统计独立的定义, 即各独力事件的积的机率等於各独立事件机率的乘积,最先是在棣美弗的((机遇说))中说到的.他的第二篇关於概率论的著作是((综合分析))(Misellanea Analytica,1730) 他第一个使用概率积分,这种积分的被积函数是exp(-x*x) 又首创斯特凌公式,即对於大数 n!但这公式却被误认为是英国的詹姆斯.斯特凌(1692-1770)最先提出的.1733年他利用斯特凌公式导出正态频率曲线作为二式项定理的近似.他是最早在三角学中应用复数的人之一.以他命名的棣美弗公式对始三角学从几何领域进入分析领域起很大作用. 费 马 (Fermat Pierre de) 出生年代: 1601~1665 国籍: 法国 生平: 费马是法国数学家费马於1601年8月17日在法国南部德洛马涅出生。早年在家乡受教育,后来进入图卢兹大学攻读法律,毕业后任职律师,自1631年起担任图卢兹议会议员。其间他於空闲时间专研数学,并常以书信与笛卡儿,梅森等名学者交往,讨论数学问题。他饱览群书,精於数国的文字,掌握多门科学的知识。虽然年近30才认真注意数学,但成就累累。最后於1655年在卡斯特尔逝世。他生前由於性情淡泊,为人谦逊,因此较少发表论作,大多成果只留在手稿,通信,或书业之空白处。他的儿子在1679年将其遗稿整理成书在图卢兹出版。费马与笛卡儿同为17世纪上半期的首要数学家,近代数论中,在一个世纪后的欧拉之前,无人能与之匹敌。他独立於笛卡儿发现了解析几何的基本原理。由於所设想求曲线的切线及其极大极小点的方法而被认为是微积分的先驱。通过了巴斯卡的通信,成为了概率论的共同创办人之一。在1629年,他开始重写几何学家阿坡罗尼乌斯久以失传的<<平面轨迹>>,不久发现透过座标将代数用於几何,轨迹的研究将会易於进行。在光学中,费马应用了极大极小的方法,揭示了光线的折射定律同他的"最短时间原理"相吻合。受到<<算术>>一书的影响,费马在数论得到很多新的结果。最出色的结果之一是4n+1的素数均能唯一的表示为两个平方数之和。费马所提出的定理中,有两个分别被称为大定理与小定理,前者又称为最后定理。小定理是费马给他的朋友福兰尼可的信中提出的,其内容是p为质数,a p互质,则a的p次方减a能被p整除。大定理是---若n2则方程式没有整数解。费马在书中的空白处写下了这个定理,也发现了奇妙的证明方法,只是空白处不够而未将其写下。由於他在数论,解析几何,概率论,等方面的贡献良多,被后世誉为"业余数学家之王" 。 () 罗 伯 勃 (Gilles Persone de Roberval) 出生年代: 1602~1675 国籍: 法国 生平: 罗伯勃是法国数学家。在曲线几何上有重大发展。1632年任巴黎法兰西学院教授。研究了却定立体的表面积和体积的方法。罗伯勃常与当时的数学家进行科学论战,包括数学家笛卡儿。罗伯勃在他的(Trait des indivisible) (虽然迟至1693年才发表,才1634年起就有其纪录)中,将阿基米德在螺线上求切线的方法一般化,与阿基米德一样,罗伯勃把曲线看成动点的轨迹,它受两种速度的作用,例如从炮口上射出的抛物体,受到水平速度,和垂直速度的作用,其合成速度为边的长方形之对角线;罗伯勃把这种合成向量当作曲线在P点之切线;根据托里拆利的解说,罗伯勃德方法是利用伽利略所论断的一个定理:水平速度和垂直速度是互相独立的。将切线当作合成速度的说法,远叫希腊时代将切线当作与曲线相触的直线为复杂,前者成处理许多后者不能处理的问题。再将纯几何与动力学联结的作用上,它是一个非常重要的角色;在伽利略之前,纯几何与动力学是各自为政的。换句话说,这种切线观使数学园地实体化,因为它是以物理观念来定义切线。但有许多曲线和运动无关,此时切线就无由而生,所以需要以其他的方法来寻求切线。 伯 斯 (Abraham Bosse) 出生年代: 1602~1676 国籍: 法国 著作: Maniere universelle de pratiquer la- perspective 生平: 从事射影几何(Projective Geometry)的研究,为名数学家迪沙格(Desargues)的挚友,且将笛氏的一些重要的三角定理和其他定理加以整理。 资料出处: 幼狮数学大辞典 张 诚 (Gerbillon Jean-Francois) 出生年代: 1654~1707 国籍: 法国 著作: <实用和理论几何学><几何原本>的汉文<算法纂耍总纲><测量高远仪器用法>和<比例规解> 生平: 法国数学家,公年1687年来华,取中文名张诚,精通天文数算,曾任清康熙帝教师、讲授墨法,测算等西学。其中几何学为法人巴蒂所著之<实用和理论几何学>,此外还有<几何原本>的汉文 ,本及<算法纂耍总纲><测量高远仪器用法>和<比例规解>等书。对於康熙主办<数理精蕴>的巨著编制影响甚大。 福 兰 尼 可 (Frenicle de Bessy Bernard) 出生年代: 1605~1675 国籍: 法国 生平: 法国代数学家,为伟大数学家费马的至友,费马曾於1640年十月十八日致函说明minor 定理,其内容为:若p为质数,a,q互质,则能被q整除。关於major Fermat“定理”认为若n>2,则方程式无 整数解。费马曾提到用无限前推法以证明n=4的情形,来述细节后福兰尼可在所发表之著作 :Traite des triangles rectangles annombres (既关於直角三角形的数学性质)证明了n=4的过程,该论著在他死后之次年发表,后刊於 I'Acad, des Sci, Paeis, 5,1729, 83-166。 白 晋 (Bouvet Joachim) 出生年代: 1656~1730 国籍: 法国 生平: 法国数学家,白晋为抵华后所取中文名,通晓天文、历法和数算。十七世纪初叶,法国势力日益强,大法路易十四世拟拓展劫力至东,方故派遣多位传教士前来中国,白晋(又名白进)为其中著名数学家,公元1687年来华滞留京城“供奉内廷”,曾任清朝康熙帝的教师。 佩 蒂德.比利(Jacques de Billy) 出生年代: 1602~1679 国籍: 法国 著作: 数论 生平: 1602年3月18日生於瓦兹。曾在里昂当数学教师。1679年1月14日逝世。 德.比利与费马就数论方面问题有过书信往来,他还研究过算术。曾提出一系列问题,这些问题引起了许多数学家的关注,有的被欧拉等人解决。 资料出处: 静宜大学一楼资料库(数学家的辞典)索书号:R/ 德.伯利(Jacques de Billy) 出生年代: 1601~1652 国籍: 法国 著作: 生平: 德.伯恩,又称伯恩。当过军官和法官。德.伯恩是第一个领会笛卡儿数学思想的人,他也有不少数学研究的成果发表於笛卡儿的「几何学」里。首先提出方程式ax+by=c确定一条直线的观点几何学文章数篇 资料出处: 数学家的辞典 J Bernier, Histoire de Blois (Paris, 1682), 563-568. P Costabel, Florimond de Beaune, érudit et savant de Blois, Revue d'histoire des sciences 27 (1974), 73-75. P Costabel, Le traité de l'angle solide de Florimond de Beaune, in 1968 Actes du Onzième Congrès International d'Histoire des Sciences, Sect. III : Histoire des Sciences Exactes (Astronomie, Mathématiques, Physique) (Wroclaw, 1968), 189-194. A Thibaut, Florimond de Beaune, Bull. de la Soc. des sciences et lettres du Loir et Cher 4 (1896), 13-29. 法里布丁(Honoré Fabri) 出生年代: 1607~1688 国籍: 法国 著作: 几何学概述(1669年) 正弦曲线与割线的几何学研究(1659年) 生平: 法布里,1607年4月5日出生。他是卡瓦列里的学生。1688年3月8日逝世。正弦曲线这一术语就是他在其著作中,首先引入的。Honoré Fabri在 1626 年参加了耶稣会命令,花费两年在亚维农。在1628年他进入了里昴的耶苏会学院学习哲学,从1632到1636在里昴继续研究神学。在 1635年时他被任命了他的第一个职位是耶苏学院中,即作为1636到1638年中哲学的教授。耶苏会学院的更进一步的位置跟随了他。在他在学院那时, 1638年一年中他成了逻辑学的教授,而在1640年之后六年中,他更成为在耶苏会学院中逻辑和数学两项的教授。他写了多於三十个著作,一些它回顾了在哲学会议录中。Fabri 是由耶苏教会学院产生的许多著名教授第一个;他的学生包括了Pierre Mousnier,Francois de Raynaud,Jean-Dominique Cassini和Philippe de La Hire。他是用 Gassendi 到友谊里领导的数学家的一个圆圈的领导者他,莱布尼兹,Mersenne ,笛凯尔和两个 Huygenes (父亲和儿子) , 克劳德 Dechales 和 Berthet 。 Fabri's 的极大活动的注意力在於,土星的环,潮汐的理论,磁力学,光学设备,和动力学中的几乎所有紧急科学问题。在数学中,无穷小方法和连接区问题更显著。 Fabri 试图为基础以月亮的行动的潮水现象的解释。把 Fabri 也看作 Jansenism 错误的最好的专家。在他的紧密朋友中间是耶苏会伙伴和他的在学院的同学Père Lachaise,在他以后在巴黎中命名为这个著名墓地。在1646时Fabri去到罗马,他在那遇到了瑞希,他参加了调查涉及学院的问题而入狱。因为他自己不能相信宗教问题和他相信的哲学被控告了。笛卡尔在他回到罗马关入监狱中和在1668到69年中花费一年以后回到法兰西。经由瑞希他相识利奥波德大公爵II并且Fabri不久后就从监狱解脱了。 Fabri 对天文学,物理学和数学工作。 在 1660 年他所研究土星环的一个主题,使他和Huygens在争论方面变得复杂而且持续了五年。 他也发现了这个仙女座星云。Fabri 发展了基於月亮的行动的潮汐理论。他也研究了磁,光学设备和微积分。 在微积分中他比Cavalieri更接近牛顿且他的标记法较麻烦。他在微积分方面的工作在他的主要数学出版物方面出现了几何小品。由於关於由产生的摆线的争论写了这本书向巴斯卡挑战。Fabri在这个工作方面计算了。 Honoré Fabri尽力沿著几何学的线统一所有物理学。在皇家协会的哲学会议录中描述了这个努力," 涉及他的方法他已经 几何学方法中领悟了整个物理学。也给为什麼这个天空是蓝的第一个合理解释的 Fabri 发现了毛细管弥散,使他的原因以光的弥散为基础。他应用这个微积分到这个新近发明的物质世界迅速和他应用得是第一个为伽利略的表明物体在同等时间中落下同等距离的实验提供一个使人信服原因。伽利略依次由於另一个耶苏会徒Niccolo Cabeo,. 的著作首先变得对问题感兴趣。 在亚历山大下教皇他的关於伽利略情况的声明在监狱里 50 天带来了 Fabri VII,并且仅仅由利奥波德 II的干涉释放了他。他仍然在他的 Dialogi physici ( 1665 ) 授权的" de motu terrae " 中放了一章节 (" 涉及地球的运动" )。Fabri's 的摆线的具有创造才能正交鼓舞了年轻 Gottfried 莱布尼兹。Issac 牛顿宣称他首先从Honoré Fabri的著作听到了 Grimaldi's 的光衍射的教学。 资料出处: 数学家的辞典 奥扎南(Jacques Ozanam) 出生年代: 1640~1717 国籍: 法国 著作: 字典(1690年) 数学教程(1693年) 数学与物理学游戏 生平: 奥扎南,1640年出生。1701年成为巴黎科学院院士。1717年逝世。他主要研究代数和几何学。他於1690年发表了著作「字典」,其中对『解析』这一术语进行的解释是:用代数方法进行分析。他承认四维空间,但存在於想像空间。 卡尔加维(Pierre de Carcavi) 出生年代: 1600~1684 国籍: 法国 生平: Pierre de Carcavi 没有正式大学的文凭。在1632年到1636年之间,他是Toulouse议会的顾问。事实上,1632年他第一次遇到费马,当他们都是Toulouse议会的成员而且他们仍是朋友。1636年Carcavi在巴黎的Grand Conseil议会买了一间办公室。 1648年,无论如何,连续的艰苦打击

洛必达法则的应用毕业论文

洛必达法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。

应用条件:

在运用洛必达法则之前,首先要完成两项任务:一是分子分母的极限是否都等于零(或者无穷大);二是分子分母在限定的区域内是否分别可导。

如果这两个条件都满足,接着求导并判断求导之后的极限是否存在:如果存在,直接得到答案;如果不存在,则说明此种未定式不可用洛必达法则来解决;如果不确定,即结果仍然为未定式,再在验证的基础上继续使用洛必达法则。

扩展资料:

洛必达是法国中世纪的王公贵族,他喜欢并且酷爱数学,后拜伯努利为师学习数学。知名的洛必达法则,其实并非洛必达本人研究,而是他的师父伯努利。

当时由于伯努利境遇困顿,生活困难,而学生洛必达又是王公贵族,洛必达表示愿意用财物换取伯努利的学术论文,伯努利也欣然接受。“洛必达法则”的内容:

对于一定条件下的不定式求极限问题,可以先对分母和分子求导后再求极限,比如0/0型:

简要分析:对于各种存在极限的不定式,比如0^∞,∞^0, ∞/∞,1^∞, ∞-∞等等,一般都可以化为0/0型,两个函数的极限都趋于一个点,那么从他们曲线上来看,该点处他们函数极限值的比值,其实就是他们在此处切线斜率之比,也就是求导后的函数,在此处的值之比。

参考资料:百度百科——洛必达法则

洛必达法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。

众所周知,两个无穷小之比或两个无穷大之比的极限可能存在,也可能不存在。因此,求这类极限时往往需要适当的变形,转化成可利用极限运算法则或重要极限的形式进行计算。

洛必达法则便是应用于这类极限计算的通用方法。

因为当分子分母都趋近于0或无穷大时,如果单纯的代入极限值是不能求出极限的,但是直观的想,不管是趋近于0或无穷大,都会有速率问题,就是说谁趋近于0或无穷大快一些,而速率可以通过求导来实现,所以就会有洛必达法则

应用条件

在运用洛必达法则之前,首先要完成两项任务:一是分子分母的极限是否都等于零(或者无穷大);二是分子分母在限定的区域内是否分别可导。

如果这两个条件都满足,接着求导并判断求导之后的极限是否存在:如果存在,直接得到答案;如果不存在,则说明此种未定式不可用洛必达法则来解决;如果不确定,即结果仍然为未定式,再在验证的基础上继续使用洛必达法则。

注意事项

求极限是高等数学中最重要的内容之一,也是高等数学的基础部分,因此熟练掌握求极限的方法对学好高等数学具有重要的意义。洛比达法则用于求分子分母同趋于零的分式极限 [3]  。

⑴ 在着手求极限以前,首先要检查是否满足  或  型构型,否则滥用洛必达法则会出错(其实  形式分子并不需要为无穷大,只需分母为无穷大即可)。当不存在时(不包括 情形),就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。比如利用泰勒公式求解。

⑵ 若条件符合,洛必达法则可连续多次使用,直到求出极限为止。

⑶ 洛必达法则是求未定式极限的有效工具,但是如果仅用洛必达法则,往往计算会十分繁琐,因此一定要与其他方法相结合,比如及时将非零极限的乘积因子分离出来以简化计算、乘积因子用等价量替换等。

⑷ 洛必达法则常用于求不定式极限。基本的不定式极限: 型;  型(  或  ),而其他的如  型,  型,以及 型, 型和  型等形式的极限则可以通过相应的变换转换成上述两种基本的不定式形式来求解。

参考资料:百度百科 洛必达法则

洛必达法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。这种方法主要是在一定条件下通过分子分母分别求导再求极限来确定未定式的值.在运用洛必达法则之前,首先要完成两项任务:一是分子分母的极限是否都等于零(或者无穷大);二是分子分母在限定的区域内是否分别可导;如果这两个条件都满足,接着求导并判断求导之后的极限是否存在:如果存在,直接得到答案;如果不存在,则说明此种未定式不可用洛必达法则来解决;如果不确定,即结果仍然为未定式,再在验证的基础上继续使用洛必达法则。

应用

主要贡献

洛必达的著作尚盛行于18世纪的圆锥曲线的研究。他最重要的著作是《阐明曲线的无穷小于分析》(1696),这本书是世界上第一本系统的微积分学教科书,他由一组定义和公理出发,全面地阐述变量、无穷小量、切线、微分等概念,这对传播新创建的微积分理论起了很大的作用。在书中第九章记载著约翰‧伯努利在1694年7月22日告诉他的一个著名定理:「洛必达法则」,就是求一个分式当分子和分母都趋于零时的极限的法则。后人误以为是他的发明,故「洛必达法则」之名沿用至今。洛必达还写作过几何,代数及力学方面的文章。他亦计划写作一本关于积分学的教科书,但由于他过早去世,因此这本积分学教科书未能完成。而遗留的手稿于1720年巴黎出版,名为《圆锥曲线分析论》。

洛必达(L 'Hopital)法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。

洛必达法则(定理)

设函数f(x)和F(x)满足下列条件:

⑴x→a时,lim f(x)=0,lim F(x)=0;

⑵在点a的某去心邻域内f(x)与F(x)都可导,且F(x)的导数不等于0;

⑶x→a时,lim(f'(x)/F'(x))存在或为无穷大

则 x→a时,lim(f(x)/F(x))=lim(f'(x)/F'(x))

也就是说,满足上述条件时有

洛必达法则及其应用毕业论文

洛必达(L 'Hopital)法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。

洛必达法则(定理)

设函数f(x)和F(x)满足下列条件:

⑴x→a时,lim f(x)=0,lim F(x)=0;

⑵在点a的某去心邻域内f(x)与F(x)都可导,且F(x)的导数不等于0;

⑶x→a时,lim(f'(x)/F'(x))存在或为无穷大

则 x→a时,lim(f(x)/F(x))=lim(f'(x)/F'(x))

也就是说,满足上述条件时有

洛必达法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。这种方法主要是在一定条件下通过分子分母分别求导再求极限来确定未定式的值.在运用洛必达法则之前,首先要完成两项任务:一是分子分母的极限是否都等于零(或者无穷大);二是分子分母在限定的区域内是否分别可导;如果这两个条件都满足,接着求导并判断求导之后的极限是否存在:如果存在,直接得到答案;如果不存在,则说明此种未定式不可用洛必达法则来解决;如果不确定,即结果仍然为未定式,再在验证的基础上继续使用洛必达法则。

应用

主要贡献

洛必达的著作尚盛行于18世纪的圆锥曲线的研究。他最重要的著作是《阐明曲线的无穷小于分析》(1696),这本书是世界上第一本系统的微积分学教科书,他由一组定义和公理出发,全面地阐述变量、无穷小量、切线、微分等概念,这对传播新创建的微积分理论起了很大的作用。在书中第九章记载著约翰‧伯努利在1694年7月22日告诉他的一个著名定理:「洛必达法则」,就是求一个分式当分子和分母都趋于零时的极限的法则。后人误以为是他的发明,故「洛必达法则」之名沿用至今。洛必达还写作过几何,代数及力学方面的文章。他亦计划写作一本关于积分学的教科书,但由于他过早去世,因此这本积分学教科书未能完成。而遗留的手稿于1720年巴黎出版,名为《圆锥曲线分析论》。

洛必达法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法 。

应用条件:

在运用洛必达法则之前,首先要完成两项任务:一是分子分母的极限是否都等于零(或者无穷大);二是分子分母在限定的区域内是否分别可导。

如果这两个条件都满足,接着求导并判断求导之后的极限是否存在:如果存在,直接得到答案;如果不存在,则说明此种未定式不可用洛必达法则来解决;如果不确定,即结果仍然为未定式,再在验证的基础上继续使用洛必达法则。

洛必达法则的注意事项:

求极限是高等数学中最重要的内容之一,也是高等数学的基础部分,因此熟练掌握求极限的方法对学好高等数学具有重要的意义。洛比达法则用于求分子分母同趋于零的分式极限  。

⑴ 在着手求极限以前,首先要检查是否满足构型,否则滥用洛必达法则会出错。当不存在时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。比如利用泰勒公式求解。

⑵ 若条件符合,洛必达法则可连续多次使用,直到求出极限为止。

⑶ 洛必达法则是求未定式极限的有效工具,但是如果仅用洛必达法则,往往计算会十分繁琐,因此一定要与其他方法相结合,比如及时将非零极限的乘积因子分离出来以简化计算、乘积因子用等价量替换等等。

⑷ 洛必达法则常用于求不定式极限。基本的不定式极限形式的极限则可以通过相应的变换转换成上述两种基本的不定式形式来求解。

洛必达法则论文的开题报告

洛必达法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。

应用条件:

在运用洛必达法则之前,首先要完成两项任务:一是分子分母的极限是否都等于零(或者无穷大);二是分子分母在限定的区域内是否分别可导。

如果这两个条件都满足,接着求导并判断求导之后的极限是否存在:如果存在,直接得到答案;如果不存在,则说明此种未定式不可用洛必达法则来解决;如果不确定,即结果仍然为未定式,再在验证的基础上继续使用洛必达法则。

扩展资料:

洛必达是法国中世纪的王公贵族,他喜欢并且酷爱数学,后拜伯努利为师学习数学。知名的洛必达法则,其实并非洛必达本人研究,而是他的师父伯努利。

当时由于伯努利境遇困顿,生活困难,而学生洛必达又是王公贵族,洛必达表示愿意用财物换取伯努利的学术论文,伯努利也欣然接受。“洛必达法则”的内容:

对于一定条件下的不定式求极限问题,可以先对分母和分子求导后再求极限,比如0/0型:

简要分析:对于各种存在极限的不定式,比如0^∞,∞^0, ∞/∞,1^∞, ∞-∞等等,一般都可以化为0/0型,两个函数的极限都趋于一个点,那么从他们曲线上来看,该点处他们函数极限值的比值,其实就是他们在此处切线斜率之比,也就是求导后的函数,在此处的值之比。

参考资料:百度百科——洛必达法则

洛必达法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。这种方法主要是在一定条件下通过分子分母分别求导再求极限来确定未定式的值.在运用洛必达法则之前,首先要完成两项任务:一是分子分母的极限是否都等于零(或者无穷大);二是分子分母在限定的区域内是否分别可导;如果这两个条件都满足,接着求导并判断求导之后的极限是否存在:如果存在,直接得到答案;如果不存在,则说明此种未定式不可用洛必达法则来解决;如果不确定,即结果仍然为未定式,再在验证的基础上继续使用洛必达法则。

应用

主要贡献

洛必达的著作尚盛行于18世纪的圆锥曲线的研究。他最重要的著作是《阐明曲线的无穷小于分析》(1696),这本书是世界上第一本系统的微积分学教科书,他由一组定义和公理出发,全面地阐述变量、无穷小量、切线、微分等概念,这对传播新创建的微积分理论起了很大的作用。在书中第九章记载著约翰‧伯努利在1694年7月22日告诉他的一个著名定理:「洛必达法则」,就是求一个分式当分子和分母都趋于零时的极限的法则。后人误以为是他的发明,故「洛必达法则」之名沿用至今。洛必达还写作过几何,代数及力学方面的文章。他亦计划写作一本关于积分学的教科书,但由于他过早去世,因此这本积分学教科书未能完成。而遗留的手稿于1720年巴黎出版,名为《圆锥曲线分析论》。

.洛必达法则的概念.定义:求待定型的方法(与此同时 );定理:若f(x)与g(x)在(a,a+)上有定义,且f(x)= g(x)=0;并且 与在(a,a+)上存在. 0 且 =A 则= =A,(A可以是).证明思路: 补充定义x=a处f(x)=g(x)=0则[a,a+) 上== 即 x时,x,于是= 定理推广:由证明过程显然定理条件x可推广到x, x,x。所以对于待定型,可利用定理将分子、分母同时求导后再求极限。注意事项:1.对于同一算式的计算中,定理可以重复多次使用。2.当算式中出现Sin或Cos形式时,应慎重考虑是否符合洛必达法则条件中与的存在性。向其他待定型的推广。1. 可化为=,事实上可直接套用定理。2. 0=03. -=-,通分以后= 。4.、、取对数0Ln0、Ln1、0Ln0、0、0 。洛必达法则是解决求解“0/0”型与“∞/∞”型极限的一种有效方法,利用洛必达法则求极限只要注意以下三点:1、在每次使用洛必达法则之前,必须验证是“0/0”型与“∞/∞”型极限。否则会导致错误;2、洛必达法则是分子与分母分别求导数,而不是整个分式求导数;3、使用洛必达法则求得的结果是实数或∞(不论使用了多少次),则原来极限的结果就是这个实数或∞,求解结束;如果最后得到极限不存在(不是∞的情形),则不能断言原来的极限也不存在,应该考虑用其它的方法求解。

复函数的洛必达法则论文题目

点击放大:

答案是直接用重要极限的,详情如图所示

不是转成0/0或者∞/∞,也不是用的洛必达法则,而是转成特殊函数形式。书上有讲的两种特殊函数形式。看到1^∞次方想到的方法就是应该转换成特殊函数形式(1+无穷小)的无穷大次方极限为e。

相关百科
热门百科
首页
发表服务