论文投稿百科

盐酸多西环素片研究论文

发布时间:2024-07-02 09:53:50

盐酸多西环素片研究论文

yán suān duō xī huán sù

doxycycline hydrochloride [湘雅医学专业词典]

盐酸多西环素

Yansuan Duoxihuansu

Doxycycline Hyclate

C22H24N2O8·HCl··  

本品为6甲基4(二甲氨基)3,5,10,12,12a五羟基,1,11二氧代1,4,4a,5,5a,6,11,12a八氢2并四苯甲酰胺盐酸盐半乙醇半水合物。按无水与无乙醇物计算,含多西环素(C22H24N2O8)应为~。

本品为淡黄色至黄色结晶性粉末;无臭,味苦。

本品在水或甲醇中易溶,在乙醇或丙酮中微溶,在三氯甲烷中几乎不溶。

取本品,精密称定,加盐酸溶液(9→100)的甲醇溶液(1→100)溶解并定量稀释制成每1ml中约含10mg的溶液,在25℃时,依法测定(2010年版药典二部附录Ⅵ E),按无水与无醇物计算,比旋度为105°至120°。

(1)在含量测定项下记录的色谱图中,供试品溶液主峰的保留时间应与对照品溶液主峰的保留时间一致。

(2)取本品适量,加甲醇溶解并稀释制成每1ml中含20μg的溶液,照紫外-可见分光光度法(2010年版药典二部附录Ⅳ A)测定,在269nm和354nm的波长处有最大吸收,在234nm和296nm的波长处有最小吸收。

(3)本品的红外光吸收图谱应与对照的图谱(《药品红外光谱集》386图)一致。

(4)本品的水溶液显氯化物的鉴别反应(2010年版药典二部附录Ⅲ)。

取本品,加水制成每1ml中含10mg的溶液,依法测定(2010年版药典二部附录Ⅵ H),pH值应为~。

取本品,加盐酸溶液溶解并稀释制成每1ml中含多西环素的溶液,作为供试品溶液;精密量取适量,用盐酸溶液定量稀释制成每1ml中含多西环素4μg的溶液,作为对照溶液。照含量测定项下的色谱条件,取对照溶液20μl注入液相色谱仪,调节检测灵敏度,使主成分色谱峰的峰高约为满量程的20%,精密量取供试品溶液与对照溶液各20μl,分别注入液相色谱仪,记录色谱图至主成分峰保留时间的2倍。供试品溶液色谱图中如有杂质峰,美他环素与β多西环素峰面积分别不得大于对照溶液主峰面积(),其他单个杂质峰面积不得大于对照溶液主峰面积的倍(),各杂质峰面积之和不得大于对照溶液主峰面积的2倍()。

取本品,精密称定,加盐酸溶液(9→100)的甲醇溶液(1→100)溶解并定量稀释制成每1ml中含10mg的溶液,照紫外-可见分光光度法(2010年版药典二部附录Ⅳ A),在490nm波长处测定,吸光度不得过。

取本品约,精密称定,置10ml量瓶中,加内标溶液(正丙醇溶液)溶解并稀释至刻度,摇匀,作为供试品溶液;精密称取无水乙醇约,置100ml量瓶中,加上述内标溶液稀释至刻度,摇匀,作为对照品溶液。照气相色谱法(2010年版药典二部附录Ⅴ E),用二乙烯基-乙基乙烯苯型高分子多孔小球作为固定相,柱温为135℃;进样口温度与检测器温度均为150℃。乙醇峰与内标物质正丙醇峰的分离度应符合要求。精密量取供试品溶液与对照品溶液各2μl,分别注入气相色谱仪,记录色谱图,按内标法以峰面积比值计算,含乙醇的量应为~。

取本品,照水分测定法(2010年版药典二部附录Ⅷ M第一法 A)测定,含水分应为~。

取本品1g,依法检查(2010年版药典二部附录Ⅷ N),遗留残渣不得过。

取炽灼残渣项下遗留的残渣,依法检查(2010年版药典二部附录Ⅷ H第二法),含重金属不得过百万分之二十。

照高效液相色谱法(2010年版药典二部附录Ⅴ D)测定。

用十八烷基硅烷键合硅胶为填充剂(pH值适用范围应大于9);以醋酸盐缓冲液(醋酸铵-乙二胺四醋酸二钠-三乙胺(100:10:1),用冰醋酸或氨水调节pH值至]-乙腈(85:15)为流动相;柱温为35℃;检测波长为280nm。称取土霉素对照品、美他环素对照品、β多西环素对照品及多西环索对照品适量,加盐酸溶液溶解并稀释制成每1ml中分别约含土霉素、美他环索、β多西环素与多西环素的混合溶液,取20μl注入液相色谱仪,记录色谱图,多西环素峰与β多西环素峰的分离度应大于,多西环素峰与后相邻峰的分离度应符合要求。

取本品适量,精密称定,加盐酸溶液溶解并定量稀释制成每1ml中含多西环素的溶液,精密量取20μl注入液相色谱仪,记录色谱图;另取多西环素对照品适量,同法测定。按外标法以峰面积计算供试品中C22H24N2O8的含量。

四环素类抗生素。

遮光,密封保存。

(1)盐酸多西环素片  (2)盐酸多西环素胶囊

《中华人民共和国药典》2010年版

长效土霉素;多西环素;强力霉素;去氧土霉素;伟霸霉素薄膜片;盐酸多西霉素 ,盐酸多西环素

Doxycycline ,Doxitard, Gibidox, Liomycin

抗菌谱与四环素、土霉素基本相同,体内、外抗菌力均较四环素为强。微生物对盐酸多西环素与四环素、土霉素等有密切的交叉耐药性。口服吸收良好。主要用于敏感的革兰阳性菌和革兰阴性杆菌所致的上呼吸道感染、扁条体炎、胆道感染、淋巴结炎、蜂窝组炎、老年慢性支气管炎等,也用于治疗斑疹伤寒、羌虫病、支原体肺炎等。尚可用于治疗霍乱,也可用于预防恶性疟疾和钩端螺旋体感染。

主要用于敏感的革兰阳性球菌和革兰阴性杆菌所致的上呼吸道感染、扁桃体炎、胆道感染、淋巴结炎、蜂窝组织炎、老年慢性支气管炎等,也用于斑疹伤寒、恙虫病、支原体肺炎等。尚可用于治疗霍乱,也可用于预防恶性疟疾和勾端螺旋体感染。

口服:1次,1日2次。必要时首剂可加倍。8岁以上儿童:首剂每千克体重4mg;以后,每次每千克体重2mg,1日2次。一般疗程为3~7日。预防恶性疟:每周;预防勾端螺旋体病:每周2次,每次。

1.胃肠道反应多见(约20%),如恶心、呕吐、腹泻等,饭后服药可减轻。

2.其他不良反应参见四环素。

3.用法应为1日2次,如每日应用次,不足以维持有效血药浓度。

4.在肝、肾功能轻度不全者,本药的半衰期与在正常者无显著区别,但对肝、肾功能重度不全者则应注意慎用。

5.对8岁以下小儿及孕妇、哺乳妇女一般应禁用。

硫酸盐酸性废水处理工艺研究论文

要在这里打出三千字来。。。显然是不太现实的。给你提供个百度文库里面关于污水处理设备的科普文章你研究一下吧:希望能帮助到你。

环境保护是我国的基本国策。世界经济发展的实践证明,为实现经济的持续稳定的发展,必须解决好发展与环境保护的矛盾。随着我国社会和经济的高速发展,城市环境污染特别是水污染的问题日趋严重。城镇生活污水的排放量逐年增加,2002年全国工业和城镇生活废水排放总量为亿吨,比上年增加。其中工业废水排放量亿吨,比上年增加;城镇生活污水排放量亿吨,比上年增加,其中仅有10%得到处理。[1]生活污水中含有较高的氮、磷等营养物质,未经处理直接排入江河湖海,是导致水域富营养化污染的主要原因。2002年监测数据显示,辽河、海河水系污染严重,劣V类水体占60%以上;淮河干流水质以III-V类水体为主,支流及省界河段水质仍然较差;黄河水系总体水质较差,干流水质以III-IV类水体为主,支流污染普通严重;松花江水系以III-IV类水体为主;珠江水系水质总体良好,以II类水体为主;长江干流及主要一级支流水质良好,以II类水体为主。由于“污染性”造成的水资源短缺,已成为严重制约我国社会经济持续发展的突出问题,丞待解决。目前我国水污染控制的重点已从以工业点源为主,逐步转变为以城市污水污染为主的控制。根据预测 [2],到2010年我国城市污水排放总量为1050亿m3,城市污水处理率要达到50%,预计需新建污水处理厂1000余座,而决定城市污水处理厂投资和运行成本的主要因素是污水处理工艺和技术的选择,因此开发适合我国国情的、高效、低耗、能满足排放要求、基建和运行费用低的污水处理新技术和新工艺,具有十分重要的现实意义。 二、生活污水处理工艺研究和应用领域共同关注的问题 长期以来,城市生活污水的二级生物处理多采用活性污泥法,它是当前世界各国应用最广的一种二级生物处理流程,具有处理能力高,出水水质好等优点。但却普遍存在着基建费、运行费高,能耗大,管理较复杂,易出现污泥膨胀、污泥上浮等问题,且不能去除氮、磷等无机营养物质。对于我国这样一个资源不足、人口众多的发展中国家,从可持续发展的角度来看,并不适合中国国情。由于污水处理是一项侧重于环境效益和社会效益的工程,因此在建设和实际运行过程中常受到资金的限制,使得治理技术与资金问题成为我国水污染治理的“瓶颈”。归纳起来,目前在城市生活污水处理研究和应用领域,普遍存在的问题有: (1)采用传统的活性污泥法,往往基建费、运行费高,能耗大,管理较复杂,易出现污泥膨胀现象;工艺设备不能满足高效低耗的要求。 (2)随着污水排放标准的不断严格,对污水中氮、磷等营养物质的排放要求较高,传统的具有脱氮除磷功能的污水处理工艺多以活性污泥法为主,往往需要将多个厌氧和好氧反应池串联,形成多级反应池,通过增加内循环来达到脱氮除磷的目的,这势必要增加基建投资的费用及能耗,并且使运行管理较为复杂。 (3)目前城市污水的处理多以集中处理为主,庞大的污水收集系统的投资远远超过污水处理厂本身的投资,因此建设大型的污水处理厂,集中处理生活污水,从污水再生回用的角度来说不一定是唯一可取的方案。 因此,如何使城市污水处理工艺朝着低能耗、高效率、少剩余污泥量、最方便的操作管理,以及实现磷回收和处理水回用等可持续的方向发展。已成为目前水处理技术研究和应用领域共同关注的问题,就要求污水处理不应仅仅满足单一的水质改善,同时也需要一并考虑污水及所含污染物的资源化和能源化问题,且所采用的技术必须以低能耗和少资源损耗为前提。 三、生物膜法处理工艺在生活污水处理中的应用研究发展 在污水生物处理的发展和应用中,活性污泥和生物膜法一直占据主导地位。随着新型填料的开发和配套技术的不断完善,与活性污泥法平行发展起来的生物膜法处理工艺在近年来得以快速发展。由于生物膜法具有处理效率高,耐冲击负荷性能好,产泥量低,占地面积少,便于运行管理等优点,在处理中极具竞争力。 1.生物膜法净化污水机理 污水中有机污染物质种类繁多,成分复杂。但对于生活污水来说,其有机成分归纳起来主要包括:蛋白质(40%-60%),碳水化合物(25%-50%)和油脂(10%),此外还含有一定量的尿素[3]。生物膜法依靠固定于载体表面上的微生物膜来降解有机物,由于微生物细胞几乎能在水环境中的任何适宜的载体表面牢固地附着、生长和繁殖,由细胞内向外伸展的胞外多聚物使微生物细胞形成纤维状的缠结结构,因此生物膜通常具有孔状结构,并具有很强的吸附性能。 生物膜附着在载体的表面,是高度亲水的物质,在污水不断流动的条件下,其外侧总是存在着一层附着水层。生物膜又是微生物高度密集的物质,在膜的表面上和一这深度的内部生长繁殖着大量的微生物及微型动物,形成由有机污染物 →细菌→原生动物(后生动物)组成的食物链。生物膜是由细菌、真菌、藻类、原生动物、后生动物和其他一些肉眼可见的生物群落组成。其中细菌一般有:假单苞菌属、芽苞菌属、产碱杆菌属和动胶菌属以及球衣菌属,原生动物多为钟虫、独缩虫、等枝虫、盖纤虫等。后生动物只有在溶解氧非常充足的条件下才出现,且主要为线虫。污水在流过载体表面时,污水中的有机污染物被生物膜中的微生物吸附,并通过氧向生物膜内部扩散,在膜中发生生物氧化等作用,从而完成对有机物的降解。生物膜表层生长的是好氧和兼氧微生物,而在生物膜的内层微生物则往往处于厌氧状态,当生物膜逐渐增厚,厌氧层的厚度超过好氧层时,会导致生物膜的脱落,而新的生物膜又会在载体表面重新生成,通过生物膜的周期更新,以维持生物膜反应器的正常运行。 生物膜法通过将微生物细胞固定于反应器内的载体上,实现了微生物停留时间和水力停留时间的分离,载体填料的存在,对水流起到强制紊动的作用,同时可促进水中污染物质与微生物细胞的充分接触,从实质上强化了传质过程。生物膜法克服了活性污泥法中易出现的污泥膨胀和污泥上浮等问题,在许多情况下不仅能代替活性污泥法用于城市污水的二级生物处理,而且还具有运行稳定、抗冲击负荷强、更为经济节能、具有一定的硝化反硝化功能、可实现封闭运转防止臭味等优点。 通过人工强化作用将生物膜引入到污水处理反应器中,便形成了生物膜反应器。近年来,物物膜反应器发展迅速,由单一到复合,有好氧也有厌氧,逐步形成了一套较完整的生物处理系统。 填料是生物膜技术的核心之一,它的性能对废水处理工艺过程的效率、能耗、稳定性以及可靠性均有直接关系。 2、厌氧生物膜法处理工艺在生活污水处理中的应用研究进展 (1)、复杂物料的厌氧降解阶段 在废水的厌氧处理过程中,废水中的有机物经大量微生物的共同作用,被最终转化为甲烷、二氧化碳、水、硫化氢和氨。在此过程中,不同的微生物的代谢过程相互影响,相互制约,形成复杂的生态系统。对复杂物料的厌氧过程的叙述,有助于我们了解这一过程的基本内容。所谓复杂物料,即指那些高分子的有机物,这些有机物在废水中以悬浮物或胶体形式存在。 复杂物料的厌氧降解过程可以被分为四个阶段。 水解阶段:高分子有机物因相对分子质量巨大,不能透过细胞膜,因此不可能为细菌直接利用。因此它们在第一阶段被细菌胞外酶分解为小分子。例如纤维素被纤维素酶水解为纤维二糖与葡萄糖,淀粉被淀粉酶分解为麦芽糖和葡萄糖,蛋白质被蛋白酶水解为短肽与氨基酸等。这些小分子的水解产物能够溶解于水并透过细胞膜为细菌所利用。 发酵(或酸化)阶段:在这一阶段,上述小分子的化合物在发酵细菌(即酸化菌)的细胞内转化为更为简单的化合物并分泌到细胞外。这一阶段的主要产物有挥发性脂肪酸(简写作VFA)、醇类、乳酸、二氧化碳、氢气、氨、硫化氢等。与此同时,酸化菌也利用部分物质合成新的细胞物质,因此未酸化废水厌氧处理时产生更多的剩余污泥。 产乙酸阶段:在此阶段,上一阶段的产物被进一步转化为乙酸、氢气、碳酸以及新的细胞物质。 产甲烷阶段:这一阶段里,乙酸、氢气、碳酸、甲酸和甲醇等被转化为甲烷、二氧化碳和新的细胞物质。 在以上阶段里,还包含着以下这些过程:a、水解阶段里有蛋白质水解、碳水化合物的水解和脂类水解;b、发酵酸化阶段包含氨基酸和糖类的厌氧氧化与较高级的脂肪酸与醇类的厌氧氧化;c、产乙酸阶段里有从中间产物中形成乙酸和氢气和由氢气和 氧化碳形成乙酸;d、甲烷化阶段包括由乙酸形成甲烷和从氢气和二氧化碳形成甲烷。除以上这些过程之外,当废水含有硫酸盐时还会有硫酸盐还原过程。复杂化合物的厌氧降解可以利用图来表述(见图1) (2)厌氧生物膜法处理工艺的应用研究进展 a、厌氧滤器(AF) 厌氧滤器是60年代末由美国McCarty 等在Coulter等研究基础上发展并确立的第一个高速厌氧反应器。传统的好氧生物系统一般容积负荷在2KgCOD/(m3?d)以下。而在AF发明之前的厌氧反应器一般容积负荷也在4-5kgCOD/(m3?d)以下。但AF在处理溶解性废水时负荷可高达10-15 kgCOD/(m3?d)。[4]因此AF的发展大大提高了厌氧反应器的处理速率,使反应器容积大大减少。 AF作为高速厌氧反应器地位的确立,还在于它采用了生物固定化的技术,使污泥在反应器内的停留时间(SRT)极大地延长。McCarty发现在保持同样处理效果时,SRT的提高可以大大缩短废水的水力停留时间(HRT),从而减少反应器容积,或在相同反应器容积时增加处理的水量。这种采用生物固定化延长SRT,并把SRT和HRT分别对待的思想推动了新一代高速厌氧反应器的发展。 SRT的延长实质是维持了反应器内污泥的高浓度,在AF内,厌氧污泥的浓度可以达到10-20gVSS/L。AF内厌氧污泥的保留由两种方式完成:其一是细菌在AF内固定的填料表面(也包括反应器内壁)形成生物膜;其二是在填料之间细菌形成聚集体。高浓度厌氧污泥在反应器内的积累是AF具有高速反应性能的生物学基础,在一定的污泥比产甲烷活性下,厌氧反应器的负荷与污泥浓度成正比。同时,AF内形成的厌氧污泥较之厌氧接触工艺的污泥密度大、沉淀性能好,因而其出水中的剩余污泥不存在分离困难的问题。由于AF内可自行保留高浓度的污泥,也不需要污泥的回流。 在AF内,由于填料是固定的,废水进入反应器内,逐渐被细菌水解酸化、转化为乙酸和甲烷,废水组成在不同反应器高度逐渐变化。因此微生物种群的分布也呈现规律性。在底部(进水处),发酵菌和产酸菌占有最大的比重,随反应器高度上升,产乙酸菌和产甲烷菌逐渐增多并占主导地位。细菌的种类与废水的成分有关,在已酸化的废水中,发酵与产酸菌不会有太大的浓度。 细菌在反应器内分布的另一特征是反应器进水处(例如上流式AF的内部)细菌由于得到营养最多因而污泥浓度最高,污泥的浓度随高度迅速减少。 污泥的这种分布特征赋予AF一些工艺上的特点。首先,AF内废水中有机物的去除主要在AF底部进行(指上流式AF),据Young和Dahab报道[4], AF反应器在1m以上COD的去除率几乎不再增加,而大部分COD是在以内去除的。因此研究者认为在一定的容积负荷下,浅的AF反应器比深的反应器能有更好的处理效率。其次,由于反应器底部污泥浓度特别大,因此容易引起反应器的堵塞。堵塞问题是影响AF应用的最主要问题之一。据报道,上流式AF底部污泥浓度可高达60g/L。厌氧污泥在AF内的有规律分布还使得反应器对有毒物质的适应能力较强,可以生物降解的毒性物质在反应器内的浓度也呈现出规律性的变化,加之厌氧生物膜形成各种菌群的良好共生体系,因此在AF内易于培养出适应有毒物质的厌氧污泥。例如在处理三氯甲烷和甲醛废水中,发现AF反应器内的污泥产生了良好的适应性,这些有毒物质的去除效果和允许的进液浓度逐渐上升。AF同时也具有较大的抗冲击负荷能力。一般认为在相同的温度条件下,AF的负荷可高出厌氧接触工艺2~3倍,同时会有较高的COD去除率。 AF在应用上的问题除了堵塞和由局部堵塞引起的沟流以外,另一个问题是它需要大量的填料,填料的使用使其成本上升。由于以上问题,国外生产规模的AF系统应用也不是很多。据Le-ttinga在1993年估计,国外生产规模的AF系统大约仅有30~40个。[4] 作为升流式厌氧滤池的革新技术——厌氧膜床(S?pecial Anaerobic Film Bed, SAFB),采用较大颗粒及孔隙率的填料代替传统的小粒径填料,有效地解决了反应器的堵塞问题。厌氧膜床具有如下特点: 有效克服了厌氧滤池易堵塞和出水水质差的缺点; 生物固体浓度高,因此可获得较高的有机负荷; 在厌氧膜床内微生物通过附着在填料表面形成生物膜,以及悬浮于填料孔隙间形成细菌聚集体,因此在厌氧膜床内可以保持较高的生物量。因此可缩短水力停留时间,耐冲击负荷能力较强; 启动时间短,停止运行后再启动也较容易; 不需要回流污泥,运行管理方便; 在水量和负荷有较大变化的情况下,耐冲击性较好。 b、厌氧流化床反应器(AFBR) 在流化床系统中依靠在惰性的填料微粒表面形成的生物膜来保留厌氧污泥,液体与污泥的混合、物质的传递依靠使这些带有生物膜的微粒形成流态化来实现。 流化床反应器的主要特点可归纳如下: 流态化能最大程度使厌氧污泥与被处理的废水接触; 由于颗粒与流体相对运动速度高,液膜扩散阻力小,且由于形成的生物膜较薄,传质作用强,因此生物化学过程进行较快,允许废水在反应器内有较短的水力停留时间; 克服了厌氧滤器堵塞和沟流问题; 高的反应器容积负荷可减少反应器体积,同时由于其高度与直径的比例大于其它厌氧反应器,因此可以减少占地面积。 但是,厌氧流化床反应器存在着几个尚未解决的问题。其一,为了实现良好的流态化并使污泥和填料不致从反应器流失,必须使生物膜颗粒保持均匀的形状、大小和密度,但这几乎是难以做到的,因此稳定的流态化也难以保证。[5]其次,一些较新的研究认为流化床反应器需要有单独的预酸化反应器。同时,为取得高的上流速度以保证流态化,流化床反应器需要大量的回流水,这样导致能耗加大,成本上升。由于以上原因,流化床反应器至今没有生产规模的设施运行。有人认为它在今后应用的前景也不大。[5] c、厌氧附着膜膨胀床反应器(AAFEB) 厌氧附着膜膨胀床(Anaerobic Attached Film Expanded Bed)是Jewell等人在1974年研究和开发出来的一种污水处理工艺。与生物流化床相比,区别在于载体的膨胀程度。以填料层高度计,膨胀床的膨胀率约为10%~20%,此时颗粒间仍保持互相接触,而流化床则为20%~70%。Bruce 等[6]通过对比厌氧膨胀床、滴滤池和活性污泥法等工艺的经济性,发现对于小型污水处理厂而言,厌氧膨胀床后续滴滤池的设计是最为经济的选择,能耗量少,污泥产率量低。但目前此工艺仍主要停留在小试和中试研究阶段。 综上所述,采用厌氧生物膜反应器为主体的厌氧处理技术,作为生活污水处理的核心方法,在技术上已经成熟,并且较之其它方法有独到的一些优势。但是,厌氧方法在浓缩营养物(氮和磷)方面效果不大,同时它仅能除去部分病源微生物。此外,残存的BOD、悬浮物或还原性物质可能影响到出水的质量。所以厌氧生物膜反应器要成为完整的环境治理技术,合适的后处理手段必不可少。 3、好氧生物膜法处理技术——生物接触氧化 生物接触氧化法是由生物滤池和接触曝气氧化池演变而来的。早在20世纪30年代,已在美国出现生产型装置。当时的生物接触氧化池,填料的材质是砂石、竹木制品和金属制品,主要用于处理低浓度、低有机负荷的污水,它克服了活性污泥法在处理此类污水时,因污泥流失而不能维持正常运行的缺点,并取得了较好的效果。进入70年代,随着大孔径、高比表面积的蜂窝直管填料和立体波纹塑料填料的出现,使生物接触氧化法的应用范围得到拓宽,它不仅可用于处理生活污水,而且可用于处理高浓度有机废水和有毒有害工业废水,与其他生物处理方法相比,展现出了优越性,我国在70年代开始对生物接触氧化法进行了研究,第一座生产性试验装置用于处理城市污水,在处理效果、动力消耗、经济效益和管理维护等方面都明显优于活性污泥法。与活性污泥法比较,生物接触氧化具有以下主要优点:①生物接触化法以填料作为载体,供生物群栖息生长,形成稳定的生态体系,有较高的微生物浓度,一般可达10~20g/l;氧的利用率高,可达10%。具有较高的耐冲击负荷能力和对环境变化的适应能力,剩余污泥量少。②生物接触氧化法可以充分利用丝状菌的强氧化能力且不产生污泥膨胀。并且不需要象活性污泥法那样采用污泥回流以调整污泥量和溶解氧浓度,易于管理和操作。随着十余年的大量实践,对氧化池结构形式、填料的品种和安装方式、供气装置的种类和布置形式等方面进行了不断创新、不断优化。目前,生物接触氧化技术已经广泛应用处理生活污水、生活杂用水和不同有机物浓度的工业废水。 填料是微生物栖息的场所、生物膜的载体。填料的表面生长生物膜,生物膜的新陈代谢过程使污水得利净化。填料的性能直接影响着生物接触氧化技术的效果和经济上的合理性,因而填料的选择是生物接触氧化技术的关键。 填料的特性取决于填料的材质和结构形式。填料的材质应具有分子结构稳定、抗老化、耐腐蚀和生物稳定性好等特性。填料的结构形式应具有比表面积大、空隙率高、硬度高、有布水布气和切割气泡的功能。填料之间的空隙在外力作用下可发生变化,有利于剥落的生物膜及时排出填料区,以及填料的体积应具有可压缩性,并在复原后不发生变形,便于运输和安装。 固定化载体的发展 (1)固定式填料 固定式填料以蜂窝状及波纹状填料为代表,多用玻璃钢、各种薄形塑料片构成。新近有陶土直接烧结生产的陶瓷蜂窝填料,孔形为六角形,孔径在20~100mm之间。由于比表面积小,生物膜量小,表面光滑,生物膜易脱落,填料横向不流通,造成布气不均匀,易堵塞以至无法正常运转,且造价较高,近年来,此类填料已逐渐淘汰。 (2)悬挂式填料 悬挂式填料包括软性、半软性及组合填料、软性填料,理论比表面积大,空隙率>90%,挂膜快,空隙的可变性使之不易堵塞,而且造价低,组装方便,出水稳定,处理效果较好,COD和BOD5去除率达80%以上。但废水浓度高或水中悬浮物较大时,填料丝会结团,大大减少了实际利用的比表面积,且易发生断丝、中心绳断裂等情况,影响使用寿命,其寿命一般为1~2年。半软性填料,具有较强的气泡切割性能和再行布水布气的能力、挂膜脱膜效果较好、不堵塞;COD和BOD去除率在70-80%。使用寿命较软性填料长。但其理论比表面积较小(87-93m2/m3)生物膜总量不足影响污水处理效果,且造价偏高。 组合式填料,是鉴于软性、半软性存在的上述缺点并吸取软性填料比表面积大、易挂膜和半软性填料不结团,气泡切割性能好而设计的新型填料,在填料中央设计半软性部件支撑着外围的软性纤维束,其平面有如盾形,故又称盾式填料。其比表面积1000~2500 m2/m3,空隙率98%-99%,具有挂膜快,生物总量大,不结团等优点。污水处理能力优于软性、半软性填料,在正常水力负荷条件下COD去除率70%-85%,BOD5去除率达80%~90%,与之类似的还有灯笼式(或龙式)和YDT弹性立体填料。 (3)分散式填料 分散式填料包括堆积式、悬浮式填料,种类繁多。特点是无需固定和悬挂,只需将之放置于处理装置之中,使用方便,更换简单。北京晓清环保公司的多孔球形悬浮填料和北京桑德公司的SNP无剩余污泥悬浮填料等,具有充氧性能好,挂膜快,使用寿命长等优点。江西萍乡佳能环保工程公司新近开发的堆积式填料—球形轻质陶料,填料粒径2~4 mm,有巨大的比表面积,使反应器中单位体积内可保持较高的生物量,而且填料上的生物膜较薄,其活性相对较高,具有完全符合曝气生物滤池填料的国际性能标准,在法国承建的我国大连马栏河污水处理厂使用,这是我国新型填料开发的一项重大突破。 四、水解酸化—好氧活性污泥工艺在生活污水处理中的应用 城市污水经厌氧处理后,在现有的技术条件下,要达到二级出水标准,需要相当长的停留时间,结果使厌氧处理虽然在运行管理费用上占有优势,但在基建投资上却失去了竞争力。因此从微生物和化学角度讲,厌氧处理仅仅提供了一种预处理,它一般需要后处理方能满足新的污水排放标准。印度和南美国家在积极推广应用厌氧生活污水处理技术的同时,普遍意识到由于厌氧处理后氮和磷基本上没有去除,因此对厌氧出水进一步处理很有必要。缺乏合适的后处理技术,是导致厌氧生物处理技术在生活污水处理领域应用缓慢的主要原因之一。虽然已有的小试实验结果表明,两级厌氧系统组合可以获得良好的处理效果。但目前,在实际生产中,应用最为广泛的仍然是厌氧与好氧组合系统。在印度,氧化塘是最常用的后处理方法。经厌氧、氧化塘两级处理后的出水BOD5、CODcr和TSS去除率分别为87%、81%和90%。在巴西NovaVista市的7000人生活污水处理工程中,以及哥伦比亚Bucarmanga镇的160000人生活污水处理工程中,后处理均采用的是兼性氧化塘。在墨西哥的厌氧生活污水处理工程中,后处理方法比较多样化,二沉池+氯消毒、淹没滤池+二沉池+氯消毒、氧化沟等,最后直接排入城市污水管网或用于农灌。在日本,城镇生活污水一般采用厌氧消化+好氧活性污泥法联合处理、厌氧滤池+好氧滤池以及厌氧滤池+接触氧化法组合处理。并且最新研制的具有脱氮除磷功能的高级型JOHKASO小型家用生活污水净化器系统,广泛应用于分散处理生活污水方面。[7]厌氧和好氧生物处理技术的组合能够有效的去除大部分有机和无机污染物。厌氧生物专家G·Lettinga教授断言厌氧处理生物技术如果有合适的后处理方法相配合,可以成为分散型生活污水处理模式的核心手段,这一模式较之于传统的集中处理方法更具有可持续性和生命力,尤其适合发展中国家的情况。[8] 厌氧-好氧组合处理工艺,充分发挥了厌氧技术节能、好氧技术高效的优势,成为目前污水处理工艺发展的主要趋势。在国外,由上流式厌氧污泥床反应器(UASB)和好氧生物膜反应器组成的厌氧—好氧组合处理工艺一直是研究的重点,[9,10,11]并针对组合工艺的硝化/反硝化性能和动力学机理展开了较为深入的研究。[12,13]近年来,Ricardo Franci Goncalves等[14,15]进行的小试和中试的研究结果表明,采用UASB和淹没式曝气生物滤池(BF)组合工艺处理生活污水,两段HRT分别为6h和时系统对CODcr 、BOD5 和SS去除率均在90%以上,并且该组合系统相对单一的UASB污水处理系统而言,有更好的稳定出水水质的作用。当BF段的污泥回流至UASB段时,厌氧反应器内有机物甲烷化的能力提高,使产气量增加、剩余污泥量减少,可以减少甚至省去污泥浓缩池和消化池。 由于以UASB为主体的厌氧-好氧组合处理工艺,受温度的影响较大,特别是在低温条件下,系统的性能不能得到充分的发挥。Igor Bodik等[16]通过中试试验研究了厌氧折流板生物滤池反应器和淹没式曝气生物滤池组合工艺低温下处理生活污水时的脱氮性能。系统经过一年的运行,在厌氧段和好氧段的水力停留时间分别为15 h和4h的条件下,即使环境温度低于10℃(平均气温℃),对CODcr、BOD5和SS的去除率仍达80%左右。低温使硝化的活性受到一定的影响,温度在℃范围内,TKN的去除率在间变化,并且该系统也具有一定的反硝化功能,为低温环境下生活污水的脱氮处理提供了参考。

中和絮凝沉淀,泥水分离后水回用

研究硅酸盐有前途吗论文

从硅及其化合物在国民经济中的地位来看,从学科发展的角度来看,硅及其化合物在材料科学和信息技术等领域有广泛的用途,在半导体、计算机、建筑、通信及宇宙航行、卫星等方面大显身手,而且它们的应用前景十分广阔;硅酸盐工业在经济建设和日常生活中有着非常重要的地位。无机非金属材料中硅元素唱主角,而含硅元素的材料制品大都是以二氧化硅为原料。所以,首先介绍硅及其化合物,突出了它在社会发展历程中、在科学现代化中的重要性和应用价值。从物质存在和组成多样性的角度来看,硅是无机非金属的主角,是地壳的基本骨干元素。自然界中的岩石、土壤、沙子主要以二氧化硅或硅酸盐的形式存在,地壳的95%是硅酸盐矿。所以,介绍硅及其化合物,体现了硅元素存在的普遍性和广泛性。从认知规律来看,硅元素的主要化合价只有 4价,硅单质比较稳定,硅的化合物知识也比较简单。因此,学生的学习负担比较轻,有利于学习积极性的保护和培养。本节内容编排有以下特点:从硅及其化合物的知识体系来看,它由二氧化硅和硅酸、硅酸盐以及硅单质等三部分内容组成。在内容编排上打破常规,首先从硅的亲氧性引出硅主要存在的两种形式——二氧化硅和硅酸盐,接着介绍二氧化硅的性质,再介绍硅酸、硅酸盐的一些性质,最后介绍硅单质。先学习比较熟悉的硅的化合物,再学习单质硅的顺序符合认知规律,有利于学生接受。从知识内容的安排上来看,重点、非重点把握准确。主干内容保持一定量,并重彩描绘。例如,二氧化硅的知识突出酸性氧化物的性质,在“科学视野”中介绍硅氧四面体结构,了解二氧化硅的一些物理性质,然后以图配文的方式介绍了二氧化硅的用途,最后让学生通过日常生活中的一些事实,以“思考与交流”的方式得出二氧化硅的化学性质。在学习二氧化硅的化学性质时,既介绍了酸性氧化物的共性,又介绍了SiO2的特性,扩展了学生对非金属酸性氧化物的认识。硅酸盐重点介绍硅酸钠溶液的性质和用途。对非重点知识和拓展性内容,采用多种形式来呈现。例如,简要介绍了硅酸的制取原理和硅胶的用途,应用广泛的硅酸盐产品以图片的形式呈现,一些新型陶瓷以“科学视野”的方式介绍,硅酸盐的组成以“资料卡片”的形式介绍,等等。总之,硅及其化合物知识的介绍,既体现了元素存在的广泛性又体现了应用的前瞻性,既有亲近感又可以使学生开阔眼界,同时也能使学生增强对学习化学的重要性的认识。本节教学重点:二氧化硅的性质。本节教学难点:硅酸盐的丰富性和多样性。教学建议如下:1.采用对比的方法,联系碳、二氧化碳等学生已有的知识和生活经验来介绍硅、二氧化硅等新知识。联系和对比是一种有效的学习方法,通过对比可加深对知识的理解,有利于学生对知识的记忆和掌握。因此,应指导学生学会运用对比的方法来认识物质的共性和个性、区别和联系。碳和硅是同一主族相邻的两种元素,它们的性质既有相似之处,又有不同之处。在教学时要突出硅的亲氧性强于碳的亲氧性,从而引导学生理解硅的两种存在形式——二氧化硅和硅酸盐。对于SiO2化学性质的教学,可启发学生根据SiO2和CO2都是酸性氧化物这一特点,把它们的性质一一列出。然后引导学生从硅的亲氧性大,得出常温下SiO2的化学性质稳定;在加热的条件下,SiO2才能与碱性氧化物起反应,等等。在介绍硅酸时,可以补充这样一个实验:将CO2通入Na2SiO3溶液中,引导学生观察白色胶状沉淀的生成,从而加深对H2SiO3的酸性弱于碳酸的认识。对于硅单质,主要让学生了解硅是重要的半导体材料,在电子工业上有广泛的用途。SiO2的结构知识属于拓展性内容,在教学中不作要求。2.要多运用日常生活中的事例进行教学。非金属元素首先介绍硅元素,硅的化合物普遍存在是原因之一。因此,教学时要多注意联系生产和生活实际,充分利用实物、模型及教科书中的彩图和插图,通过放映教学录像,学生自己搜集有关的实物或照片,在课堂上展示交流等方法,增强教学的直观性,激发学生的学习兴趣,培养学生热爱科学的情感。例如,可用生活事例来说明SiO2质硬、不溶于水的性质,引导学生通过观察教科书中的图片、观察陶瓷和玻璃制品等实物来了解硅酸盐的广泛用途等。3.通过自学讨论的方法进行硅酸盐的教学。学生的学习是一个自主构建的过程。他们带着自己原有的知识背景、活动经验和理解走进学习活动,并通过自己的主动活动,包括独立思考、与他人交流和反思等,去构建对化学知识的理解。例如,讲硅酸盐时可指出,最常见的可溶性硅酸盐是Na2SiO3,它的水溶液称为水玻璃。然后展示样品,观察水玻璃的黏稠性。同时拿出一块反复充分浸过水玻璃并已干燥的布条,把它放在火焰上,结果布条不能燃烧,从而认识用水玻璃浸泡织物可以防火。最后,对于硅酸盐的丰富性和多样性,建议学生以阅读、交流的方式来完成。二、活动建议实验4-1】控制溶液混合物的酸碱性是制取硅酸凝胶的关键。盐酸的浓度以6 mol/L为宜。

我是景德镇陶瓷学院,无机非金属专业毕业的,你应该知道这个学校的,如果你是女生,我建议你不要报这个专业,我自己就是女生,女生一般都不从事本专业,要不去考研,考公务员去了。我考了非本校的研究生,因为我觉得传统硅酸盐方向已经没有什么可发展了。如果你是男生,这个专业还是不错的,男生毕业一般都是进工厂,工资一千五左右吧,在工厂里要吃得苦,肯干,几年下来四五千是没什么问题的,提醒一下,工厂是真的蛮辛苦的,经常三班倒的!工作也不用楼上说的去什么内蒙古,我们陶院毕业的基本都在佛山,江西、上海、潮州的也有一些!一些大厂比如,斯米克,箭牌,乐华,九牧...希望能帮到你!

只是找一份搞专业的工作并不难,尤其内蒙古的西部区硅酸盐(水泥)发展很好,新上的项目很多,都是新型干法窑,并且水泥厂的位置一般也不是很偏。主要是你自己好好的学自己的专业课。

目前上海硅酸盐研究所毕业生就业情况良好,具有较强的就业竞争力。上海硅酸盐研究所,是上海市科学技术委员会批准的研究机构,专注于硅酸盐材料的研究和应用。该单位的人才质量高,拥有一流的科研成果,是上海市政府,企业、科研机构及大专院校进行专业技术合作的重要研究方向。硅酸盐材料在新能源领域也得到了广泛的应用,比如太阳能电池等,因此研究所毕业生在这个领域有着较强的就业优势。硅酸盐材料行业在行业发展中发挥着重要作用,很多企业或研究机构都会聘用从硅酸盐研究所毕业的优秀人才,因此有较强的就业机会。

硅酸盐水泥研究现状论文

你那没有条件做水泥试验,混凝土试验容易得多

近年来,红色硅酸盐涂料在城镇建设中的应用领域不断扩大[12],品种在增多,用量也呈增势。因此,业内人士看好它的市场前景,预测后市会渐旺。城市建设规划及设计部门把红色硅酸盐涂料作为能体现审美观念及城市色调、风格的建材之一,足以证明红色硅酸盐涂料具有一定的市场潜力。因此,市场竞争显得十分激烈,具体表现为企业之间大打价格战,且有愈演愈烈之势。红色硅酸盐涂料前景看好。硅酸盐涂料瓦、红色硅酸盐涂料广场砖、道路砖、地砖以及红色硅酸盐涂料装饰外墙,已经在全国各大中城市相继得到应用。北京的“银街”、西单商业区、前门商业区,上海的外高桥保税区、环球乐园等地方的建筑中,硅酸盐涂料都有较大量的应用,其使用效果和装饰效果都颇佳,社会效果也不错。城市建设规划及设计部门把硅酸盐涂料作为能体现审美观念及城市色调、风格的建材之一,足以证明硅酸盐涂料具有一定的市场潜力

一、 水泥生产原燃料及配料生产硅酸盐水泥的主要原料为石灰原料和粘土质原料,有时还要根据燃料品质和水泥品种,掺加校正原料以补充某些成分的不足,还可以利用工业废渣作为水泥的原料或混合材料进行生产。1、 石灰石原料石灰质原料是指以碳酸钙为主要成分的石灰石、泥灰岩、白垩和贝壳等。石灰石是水泥生产的主要原料,每生产一吨熟料大约需要吨石灰石,生料中80%以上是石灰石。2、 黏土质原料黏土质原料主要提供水泥熟料中的 、 、及少量的 。天然黏土质原料有黄土、黏土、页岩、粉砂岩及河泥等。其中黄土和黏土用得最多。此外,还有粉煤灰、煤矸石等工业废渣。黏土质为细分散的沉积岩,由不同矿物组成,如高岭土、蒙脱石、水云母及其它水化铝硅酸盐。3、 校正原料当石灰质原料和黏土质原料配合所得生料成分不能满足配料方案要求时(有的 含量不足,有的 和 含量不足)必须根据所缺少的组分,掺加相应的校正原料(1) 硅质校正原料 含 80%以上(2) 铝质校正原料 含 30%以上(3) 铁质校正原料 含 50%以上二、 硅酸盐水泥熟料的矿物组成硅酸盐水泥熟料的矿物主要由硅酸三钙( )、硅酸二钙( )、铝酸三钙( )和铁铝酸四钙( )组成。三、 工艺流程1、 破碎及预均化 (1)破碎 水泥生产过程中,大部分原料要进行破碎,如石灰石、黏土、铁矿石及煤等。石灰石是生产水泥用量最大的原料,开采后的粒度较大,硬度较高,因此石灰石是生产水泥用量最大的原料,开采后的粒度较大,硬度较高,因此石灰石的破碎在水泥厂的物料破碎中占有比较重要的地位。 破碎过程要比粉磨过程经济而方便,合理选用破碎设备和和粉磨设备非常重要。在物料进入粉磨设备之前,尽可能将大块物料破碎至细小、均匀的粒度,以减轻粉磨设备的负荷,提高黂机的产量。物料破碎后,可减少在运输和贮存过程中不同粒度物料的分离现象,有得于制得成分均匀的生料,提高配料的准确性。 (2)原料预均化 预均化技术就是在原料的存、取过程中,运用科学的堆取料技术,实现原料的初步均化,使原料堆场同时具备贮存与均化的功能。 原料预均化的基本原理就是在物料堆放时,由堆料机把进来的原料连续地按一定的方式堆成尽可能多的相互平行、上下重叠和相同厚度的料层。取料时,在垂直于料层的方向,尽可能同时切取所有料层,依次切取,直到取完,即“平铺直取”。 意义:(1)均化原料成分,减少质量波动,以利于生产质量更高的熟料,并稳定烧成系统的生产。 (2)扩大矿山资源的利用,提高开采效率,最大限度扩大矿山的覆盖物和夹层,在矿山开采的过程中不出或少出废石。 (3)可以放宽矿山开采的质量和控要求,降低矿山的开采成本。 (4)对黏湿物料适应性强。 (5)为工厂提供长期稳定的原料,也可以在堆场内对不同组分的原料进行配料,使其成为预配料堆场,为稳定生产和提高设备运转率创造条件。 (6)自动化程度高。2、生料制备 水泥生产过程中,每生产1吨硅酸盐水泥至少要粉磨3吨物料(包括各种原料、燃料、熟料、混合料、石膏),据统计,干法水泥生产线粉磨作业需要消耗的动力约占全厂动力的60%以上,其中生料粉磨占30%以上,煤磨占约3%,水泥粉磨约占40%。因此,合理选择粉磨设备和工艺流程,优化工艺参数,正确操作,控制作业制度,对保证产品质量、降低能耗具有重大意义。 工作原理: 电动机通过减速装置带动磨盘转动,物料通过锁风喂料装置经下料溜子落到磨盘中央,在离心力的作用下被甩向磨盘边缘交受到磨辊的辗压粉磨,粉碎后的物料从磨盘的边缘溢出,被来自喷嘴高速向上的热气流带起烘干,根据气流速度的不同,部分物料被气流带到高效选粉机内,粗粉经分离后返回到磨盘上,重新粉磨;细粉则随气流出磨,在系统收尘装置中收集下来,即为产品。没有被热气流带起的粗颗粒物料,溢出磨盘后被外循环的斗式提升机喂入选粉机,粗颗粒落回磨盘,再次挤压粉磨。3、生料均化新型干法水泥生产过程中,稳定入窖生料成分是稳定熟料烧成热工制度的前提,生料均化系统起着稳定入窖生料成分的最后一道把关作用。均化原理:采用空气搅拌,重力作用,产生“漏斗效应”,使生料粉在向下卸落时,尽量切割多层料面,充分混合。利用不同的流化空气,使库内平行料面发生大小不同的流化膨胀作用,有的区域卸料,有的区域流化,从而使库内料面产生倾斜,进行径向混合均化。4、预热分解 把生料的预热和部分分解由预热器来完成,代替回转窑部分功能,达到缩短回窑长度,同时使窑内以堆积状态进行气料换热过程,移到预热器内在悬浮状态下进行,使生料能够同窑内排出的炽热气体充分混合,增大了气料接触面积,传热速度快,热交换效率高,达到提高窑系统生产效率、降低熟料烧成热耗的目的。 工作原理: 预热器的主要功能是充分利用回转窑和分解炉排出的废气余热加热生料,使生料预热及部分碳酸盐分解。为了最大限度提高气固间的换热效率,实现整个煅烧系统的优质、高产、低消耗,必需具备气固分散均匀、换热迅速和高效分离三个功能。(1)物料分散换热80%在入口管道内进行的。喂入预热器管道中的生料,在与高速上升气流的冲击下,物料折转向上随气流运动,同时被分散。(2)气固分离当气流携带料粉进入旋风筒后,被迫在旋风筒筒体与内筒(排气管)之间的环状空间内做旋转流动,并且一边旋转一边向下运动,由筒体到锥体,一直可以延伸到锥体的端部,然后转而向上旋转上升,由排气管排出。(3)预分解预分解技术的出现是水泥煅烧工艺的一次技术飞跃。它是在预热器和回转窑之间增设分解炉和利用窑尾上升烟道,设燃料喷入装置,使燃料燃烧的放热过程与生料的碳酸盐分解的吸热过程,在分解炉内以悬浮态或流化态下迅速进行,使入窑生料的分解率提高到90%以上。将原来在回转窑内进行的碳酸盐分解任务,移到分解炉内进行;燃料大部分从分解炉内加入,少部分由窑头加入,减轻了窑内煅烧带的热负荷,延长了衬料寿命,有利于生产大型化;由于燃料与生料混合均匀,燃料燃烧热及时传递给物料,使燃烧、换热及碳酸盐分解过程得到优化。因而具有优质、高效、低耗等一系列优良性能及特点。4、水泥熟料的烧成生料在旋风预热器中完成预热和预分解后,下一道工序是进入回转窑中进行熟料的烧成。在回转窑中碳酸盐进一步的迅速分解并发生一系列的固相反应,生成水泥熟料中的 、 、 等矿物。随着物料温度升高近 时, 、 、 等矿物会变成液相,溶解于液相中的 和 进行反应生成大量 (熟料)。熟料烧成后,温度开始降低。最后由水泥熟料冷却机将回转窑卸出的高温熟料冷却到下游输送、贮存库和水泥磨所能承受的温度,同时回收高温熟料的显热,提高系统的热效率和熟料质量。5、水泥粉磨水泥粉磨是水泥制造的最后工序,也是耗电最多的工序。其主要功能在于将水泥熟料(及胶凝剂、性能调节材料等)粉磨至适宜的粒度(以细度、比表面积等表示),形成一定的颗粒级配,增大其水化面积,加速水化速度,满足水泥浆体凝结、硬化要求。6、水泥包装水泥出厂有袋装和散装两种发运方式。硅酸盐水泥生产的原料1.硅酸盐水泥的主要成分硅酸三钙(3CaO•SiO2)、硅酸二钙(2CaO•SiO2)、铝酸三钙(3CaO•AI2O3)、铁铝酸四钙(4CaO•AI2O3•Fe2O3)其中:CaO 62~67%; SiO2 20~24%; AI2O3 4~7%; Fe2O3 2~6%。2.硅酸盐水泥生产的主要原料(1) 石灰质原料:以碳酸钙为主要成分的原料,是水泥熟料中CaO的主要来源。如石灰石、白垩、石灰质泥灰岩、贝壳等。一吨熟料约需~吨石灰质干原料,在生料中约占80%左右。石灰质原料的质量要求品位 CaO(%) MgO(%) R2O(%) SO3(%) 燧石或石英(%)一级品 >48 < < < <二级品 45~48 < < < <(2)粘土质原料: 含碱和碱土的铝硅酸盐,主要成分为SiO2,其次为AI2O3,少量Fe2O3,是水泥熟料中SiO2、AI2O3、Fe2O3的主要来源。粘土质原料主要有黄土、粘土、页岩、泥岩、粉砂岩及河泥等。一吨熟料约需~吨粘土质原料,在生料中约占11~17%。粘土质原料的质量要求品位 硅酸率 铁率 MgO(%) R2O(%) SO3(%) 塑性指数一级品 ~ ~ < < < >12二级品 ~或~ 不限 < < < >12一般情况下SiO2含量60~67%,AI2O3含量14~18%。(3)主要原料中的有害成分① MgO:影响水泥的安定性。水泥熟料中要求MgO<5%,原料中要求MgO<3%。② 碱含量(K2O、Na2O):对正常生产和熟料质量有不利影响。水泥熟料中要求R2O<,原料中要求R2O<4%。③ P2O5:水泥熟料中含少量的P2O5对水泥的水化和硬化有益。当水泥熟料中P2O5含量在时,效果最好,但超过1%时,熟料强度便显著下降。P2O5含量应限制。④ TiO2:水泥熟料中含有适量的TiO2,对水泥的硬化过程有强化作用。当TiO2含量达~,强化作用最显著,超过3%时,水泥强度就要降低。如果含量继续增加,水泥就会溃裂。因此在石灰石原料中应控制TiO2<。3. 硅酸盐水泥生产的辅助原料(1)校正原料① 铁质校正原料:补充生料中Fe2O3的不足,主要为硫铁矿渣和铅矿渣等。② 硅质校正原料:补充生料中SiO2的不足,主要有硅藻土等。③ 铝质校正原料:补充生料中AI2O3的不足,主要有铝钒土、煤矸石、铁钒土等。校正原料的质量要求硅质原料 硅 率 SiO2(%) R2O(%)> 70~90 <铁质原料 Fe2O3>40%铝质原料 AI2O3>30%(2) 缓凝剂:以天然石膏和磷石膏为主。掺加量3~5%。4.工业废渣的利用① 赤泥:烧结法生产氧化铝排出的赤色废渣,以CaO、SiO2为主。掺加石灰质原料可配制成生料。② 电石渣:以CaO为主。可替代部分石灰石生产水泥。③ 煤矸石:以SiO2、AI2O3为主。可替代粘土生产水泥。④ 粉煤灰:以SiO2、AI2O3为主。可替代粘土配制生料,也可作混合材料。⑤ 石煤:以SiO2、AI2O3为主。可作不粘土质原料,也可作燃料。

碱金属硼酸盐研究进展论文

2020 年,是王晓离开哈佛大学医学院回到母校南京大学任教的第三年。也是这一年,他对核糖的自然选择这个重要的问题进行了大胆 探索 。 随着时间流逝,核糖逐渐演化成脱氧核糖(deoxy ribose),RNA 也逐渐被 DNA 取代,后者也成为绝大多数生物的遗传物质。但是,为何 RNA 的骨架是核糖,而不是别的糖?之前有人尝试 探索 这个问题,然而没找到一个简单、普适而有效的答案。这个问题始终悬而未决。 就这一问题,目前有两大学派。其一是生物学学派。生物学家认为核糖并非在第一步生成,原始 RNA 骨架才是首先生成的。该学派认为,最初生成的骨架逐渐被核糖取代掉。但问题在于为什么它会被核糖取代?核糖的专一性也需要得到进一步解释,而该学派一般认为核糖对 RNA 的构象可起到促进作用。 其二是化学学派。2004 年,时任佛罗里达大学教授的著名生物化学家、古基因学家史蒂文•班纳(Steven Benner),首次提出硼酸盐假说,相关论文发表在 Science。他发现,比起阿拉伯糖、木糖、来苏糖这三种五碳糖,核糖能和硼酸盐形成比较稳定的络合物。 但是,硼酸盐假说的局限性在于地壳中硼的储量太低,因此不能有效推动这一选择过程;硅酸盐假说的缺陷在于它无法证明核糖和硅酸盐的络合物比其他三种五碳糖络合物更稳定。二者也存在一个共同的问题,即生成的共价键络合物太过稳定,几乎不能参与核苷酸合成。 对于这一很少有学者涉足的难题,南京大学化学化工学院的王晓课题组,重新拾起了这一“难啃骨头”。而要想理解这项成果,必须先介绍聚糖反应。学界普遍认为聚糖反应是一种天然糖合成反应,该反应一般由甲醛分子出发,在碱的作用下,可生成极其复杂的单糖或多糖混合物。 其中核糖不仅产率极低,在碱性溶液中也极不稳定,这意味着它无法长时间存在,自然也就难以生成核苷。上述假说的局限性也包括它们认定核糖来自于聚糖反应。对于硼酸盐假说,储量极小的硼酸盐,能遇上产率极小的核糖,是一个小概率事件。化学家们不断改进聚糖反应,试图提高核糖产率,但结果都不理想。 为此,王晓团队提出了一个更为普适的新假说。在本次工作中,他们跳出了聚糖反应的束缚,首先从现代糖分析技术中得到启发,考察各种单糖在离子色谱或配体交换色谱中的保留行为,通过对分析化学、发酵学、海洋学等多个领域的大量文献进行元分析,发现了一个重要现象:核糖在所有单糖里保留时间最长。 这一点格外引人注目。基于上述现象,他们认为前生物环境中核糖的自然选择很有可能是分离过程决定的,而不是化学反应决定的,而决定核糖这一特殊性质的很可能是它与金属之间较强的配位作用。 配体交换色谱柱上含有固载的金属离子,因为带正电的金属离子会吸引糖;糖上的氧原子喜欢和金属离子结合,这种作用叫做配位作用。配位作用对于其他糖来说,可能没有核糖那么强烈。王晓设想了一种可吸附金属离子的材料,能通过金属离子去吸引糖,这样核糖就能得到富集。于是他想到了黏土。 地壳中的黏土非常丰富,它的主要成分是硅铝酸盐,而它的一大特性就是吸附或交换金属离子。高岭土作为一种最常见的黏土,它的工业用途之一就是吸附重金属离子。有了黏土和金属离子,就有了一个可能选择吸附核糖的“天然固定相”。从这一猜想出发,他提出了一种史前化学的模型,称为“黏土-金属”模型(Metal-Doped-Clay, MDC)。 基于该假设,王晓团队开始用实验来验证猜想。研究中,他们采用了几种可吸附二价金属的黏土,并考察了二价铜、二价铁等金属。采用二价金属离子的依据在于,距今约 26 亿年前(原始生命诞生之后),地球上曾发生过一次大氧化事件。 目前普遍认为大氧化事件是由于蓝藻类的生物造成的。在大氧化事件之后,地球上才有大量氧气,金属才能以高价态形式出现。 王晓团队一开始考察了四种五碳糖,发现金属附着的黏土对核糖均有选择性吸附,也就是说核糖在上面吸附得最多。此外,他们使用密度泛函理论(DFT)计算模拟了四种五碳糖和黏土-金属材料的配合物,借此从深层次研究了核糖和黏土-金属结合的特殊稳定性。 然后,他们测试了高岭土、蒙脱石、云母这几种最常见的黏土和金属离子的组合,发现大多数黏土-金属材料(MDC)对 R 都存在选择性吸附。并把该实验拓展到十种四、五、六碳糖的混合物,发现富集在 MDC 上最多的依然是核糖。 实验中,他们还使用了先进的连续流微反应系统,这种反应系统含有一个固定床微反应器,它是一组非常精密的不锈钢模块。他们把 MDC 材料装填在微固定床里,用它来模拟在水流冲刷下的核糖选择性吸附行为,发现直到流动化学实验结束时,MDC 依然可以吸附更多的核糖。王晓把这个过程比作“枕石漱流”:核糖吸附在黏土-金属上(“枕石”),经过水流的涤荡(“漱流”),成为唯一被富集的糖类,完成了自然选择。 最后,为进一步验证 MDC 模型,他们尝试在聚糖反应中直接加入 MDC 。结果显示,对于复杂的反应混合物,核糖依然是停留在 MDC 上最多的 C5 - C7 单糖。 也就是说,虽然单次聚糖反应的核糖产率有限,但核糖可以通过在 MDC 上选择性吸附和稳定化,最终实现富集。对于“下游反应”,他们测试了 MDC 吸附的核糖对于各类碱基的反应活性,发现其活性与游离核糖没有差异。 同时对 MDC 吸附核糖的稳定性进行了跟踪,发现至少六周以后,吸附的核糖依然存在。这表明,MDC 吸附的核糖在稳定性和反应性之间,实现了一个非常好的平衡,同时解决了这两方面的问题。 除了糖苷化反应外,他们还研究了 MDC 存在下的核苷磷酸化反应,发现相应核苷酸的产率和 5’ 位选择性均高于已报道的最佳条件。简言之,核糖在生成之后,就会吸附并富集在黏土-金属材料上,随后发生糖苷化反应,并通过磷酸化反应来生成核苷酸,最终形成 RNA。 王晓团队推测,富含黏土–金属的地球环境可能形成于冥古宙(Hadean)晚期至太古宙(Archaean)早期。在这一时期,海底热液流体(Hydrothermal Fluid)带出的大量二价金属离子和海底超基性岩作用,生成了黏土–金属。 原始生命诞生于太古宙早期,这一过程应该不会重复发生,因为从太古宙中期开始,陆地出现,海洋面积减小,因此他们推测黏土-金属形成的几率也随之减小。 2021 年 9 月 23 日,这项工作以“A plausible prebiotic selection of ribose for RNA-formation, dynamic isolation, and nucleotide synthesis based on metal-doped-clays”为题发表在 Chem 上。南大化院 2020 级博士研究生赵泽润为论文第一作者,王晓副教授为通讯作者[1]。 能提出这一假说,也和王晓多年的化学积累有关。2003 年,他毕业于南京大学化学系,获理学学士学位。同年赴美国匹兹堡大学学习,师从著名有机氟化学家丹尼斯·科闰(Dennis Curran)教授,2009 年获博士学位。2008 年至 2011 年,他在美国科学院院士、麻省理工学院(MIT)斯蒂芬·布赫瓦尔德(Stephen Buchwald)教授实验室进行博士后研究。博后研究结束后,他在哈佛大学医学院任 Instructor。2017 年 11 月起,他正式回到南京大学任教。 谈及未来,王晓表示,在短期内他们还将继续 探索 “ RNA 世界”中的各种难题,比如核糖和碱基的糖苷化反应能否选择性地生成 N9 嘌呤核苷,能否直接生成嘧啶核苷。同时他强调,由于缺乏“化学化石”(Chemical Fossil)的佐证,生命起源的研究是很难有定论的,人们只可能无限接近真相。一个假说或理论要经得住考验,除了它能解决的核心问题外,需要遵循几个要素:符合原始地球环境、逻辑严谨、能和现代生物学接轨。他们会努力做到这几点。 专业支持:猫学长 参考: 1. Ze-Run Zhao、Xiao Wang,Chem23,(2021)

tgtt454

将硼酸加热致100℃,由于不断地失去水分,它首先变成偏硼酸,它有三种变体,熔点分别为176℃、201℃和236℃。硼酸的脱水以生成偏硼酸宣告结束(只要温度不超过150℃)。再继续加热,水被脱净生成氧化硼。晶体氧化硼450°C时溶化。无定型氧化硼没有固定的熔点,它在325℃时开始软化,500℃全部成为液体。稳定性硼酸是一种稳定结晶体,通常保存下不会发生化学反应。温度、湿度发生剧变时会发生重结晶而结块。储存时应注意远离剧变的环境,保证完好的包装.

相关百科
热门百科
首页
发表服务