论文投稿百科

傅里叶级数毕业论文

发布时间:2024-07-05 22:37:53

傅里叶级数毕业论文

傅立叶级数总结傅立叶(Fourier, Jean Baptiste Joseph, 1768-1830)法国数学家,物理学家.1768年3月21日生于欧塞尔, 1830年5月16日卒于巴黎.9岁父母双亡,被当地教堂收养 .12岁由一主教送入地方军事学校读书.17岁(1785)回乡教数学,1794到巴黎,成为高等师范学校的首批学员, 次年到巴黎综合工科学校执教.1798年随拿破仑远征埃及时任军中文书和埃及研究院秘书,1801年回国后任伊泽尔 省地方长官.1817年当选为科学院院士,1822年任该院终身秘书,后又任法兰西学院终身秘书和理工科大学校务委 员会主席.主要贡献是在研究热的传播时创立了一套数学理论.1807年向巴黎科学院呈交《热的传播》论文,推导 出著名的热传导方程,并在求解该方程时发现解函数可以由三角函数构成的级数形式表示 ,从而提出任一函数都可以展成三角函数的无穷级数.1822 年在代表作《热的分析理论》中解决了热在非均匀加热的 固体中分布传播问题,成为分析学在物理中应用的最早例证之一,对19世纪数学和理论物理学的发展产生深远影响 .傅立叶级数(即三角级数),傅立叶分析等理论均由此创始.其它贡献有:最早使用定积分符号,改进了代数方 程符号法则的证法和实根个数的判别法等. 欧拉的故事1707年4月15日,莱昂哈德·欧拉诞生在瑞士巴塞尔城的近郊.父亲是位基督教的教长,喜爱数学,是欧拉的启蒙老师.欧拉幼年聪明好学他父亲希望他"子承父业",但欧拉却不热衷于宗教.1720年,13岁的欧拉进入了巴塞尔大学,学习神学,医学,东方语言.由于他非常勤奋,显露出很高的才能,受到该大学著名数学家约翰·伯努利教授的赏识.伯努利教授决定单独教他数学,这样一来,欧拉同约翰·伯努利的两个儿子尼古拉·伯努利和丹尼尔·伯努利结成了好朋友.这里要特别说明的是,伯努利家族是个数学家庭,祖孙四代共出了十位数学家.欧拉16岁大学毕业,获得硕士学位.在伯努利家庭的影响下,欧拉决心以数学为终生的事业.他18岁开始发表论文,十九岁发表了关于船桅的论文,荣获巴黎科学院奖金.以后,他几乎连年获奖,奖金成了他的的固定收入.欧拉大学毕业后,经丹尼尔·伯努利的推荐,应沙皇叶卡特琳娜一世女王之约,来到俄国的首都彼得堡.在他十六岁时担任了彼得堡科学院的数学教授.在沙皇时代,生活条件较差,加上欧拉夜以继日的工作,研究,终于在1735年,得了眼病,导致右眼失明.1741年,欧拉因普鲁士国王的邀请到柏林科学院供职兼任物理数学所所长.1759年,欧拉成为柏林科学院的领导人.1741~1766年这四分之一世纪间,欧拉精神虽不是十分愉快,但他正值壮年黄金时代,为柏林与圣彼保这两个科学院提交了几百篇论文.特别是,他成功地将数学应用于各种实际科学与技术领域,为普鲁士王国解决了大量社会实际问题.欧拉59岁时,因沙皇女王叶卡特琳娜二世诚恳地聘请,欧拉重回彼得堡.在一次研究计算慧星轨道的新方法时,旧病复发,导致仅有的左眼失明.灾难接踵而至,1771年彼得堡一场大火,次欧拉的藏书及大量研究成果都化为灰烬.接二连的打击,并没有使欧拉丧失斗志,他发誓要把损失夺回来.眼睛看不见,他就口述,由他儿子记录,继续写作.欧拉凭着他惊人的记忆力和心算能力,一直没有间断研究,时间长达十七年之久.欧拉对数学的贡献是巨大的.1748年在瑞士洛桑出版了《无穷小分析引论》,这是第一部沟通微积分与初等数学的分析学著作.1755年发表了《微分学原理》,1768年~1774年发表了《积分学原理》,这对牛顿和莱布尼茨的微积分与傅立叶级数理论的发展起了巨大的推动作用.1774年发表了《寻求具有某种极大或极小性质的曲线的技巧》一书,使变分法作为一个新的数学分支诞生了.欧拉还是复变函数论的先驱者.他在数论研究上也卓有功绩的.如著名的哥德巴赫猜想,就是他在1742年与哥德巴赫的通讯中,引深生发提出来的.1770年失明后欧拉,口述写了《代数学完整引论》,成为欧洲几代人的教科书.欧拉在概率论,微分几何,代数拓扑学等方面都有重大贡献,欧拉在初等数学的算术,代数,几何,三角学上的创见与成就更是比比皆是,不胜枚举.根据已经出版的欧拉书信与手稿集来看,其中数学所占的比例为40%,位居首位.从这些手稿中可以发现,欧拉成就最鲜明的特点是:他把数学研究之手伸入自然与社会的深层.他不仅是杰出的数学家,而且是理论联系实际的巨匠.他着眼实践,在社会与科学需要的推动下从事数学研究,反过来,又用数学理论促进各门自然科学的发展.还有一点值得一提的是,欧拉对数学符号的创立及推广的贡献.比如用 e 表示自然对数的底,用 i 表示,用 f(x) 作为函数的符号,π虽不是欧拉首先提出的,但是在欧拉倡导下推广普及的.同时,欧拉非常重视人才,奖掖后生.法国著名的数学家拉格朗日就是在欧拉的提拔之下,一举成名.瑞士的埃米尔·费尔曼是这样评价欧拉的:欧拉不仅是历史上最有成就的数学家,而且也是历来最博学的人之一……其声望而言,堪与伽利略,牛顿和爱因斯坦齐名.傅立叶级数最初应用在天文学中,这是由于太阳系的行星运动是周期性,欧拉于1729年解行星问题时就得出了这方面的一些结果,到1829年狄里赫莱第一次论证了傅立叶级数收敛的充分条件.一,问题的提出非正弦周期函数:矩形波不同频率正弦波逐个叠加二,三角级数及三角函数系的正交性正弦函数是一种常见的而简单的函数,例如描述简谐振动的函数y=Asin(t+)就是一个以为周期的正弦函数.其中y表示动点的位置,t表示时间,A为振幅,为角频率,为初相.在实际问题中,除了正弦函数外,还回遇到非正弦函数,它们反映了叫复杂的周期运动.例如电子技术中常用的周期为的矩形波.具体的说将周期为T的周期函数用一系列以T为周期的正弦函数组成的级数来表示,记为(1)其中都是常数.将周期函数按上述方式展开,它的物理意义是很明显的,这就是把一个比较复杂的周期运动看成许多不同运动 的叠加,为了 以后讨论方便起见,我们将正弦函数按三角公式变形得并令则(1)式右端的级数就可以写成(2)一般的,型如(2)的式的级数叫三角级数,其中都是常数.如同讨论幂级数是一样,我们必须讨论三角级数(2)的收敛问题,以及给定周期为2的周期函数如何把 它展开成三角级数(2)为此,我们首先介绍三角函数系的正交性.所谓三角函数系(3)在区间上正交,就是指在三角函数系(3)中任何不同的两个函数的乘积在区间上的积分等于零,即以上等式,都可以通过计算定积分来验证,现将第四式验证如下利用三角学中积化合差的公式当kn时,有其余不证.在三角函数系(3)中,两个相同函数的乘积在区间上的积分不等于零,即三,函数展开成傅立叶级数1.若以为周期的函数可展为三角函数,即, (4)我们假设上式可以逐项积分.先求,对上式从到逐项积分:根据三角函数(3)的正交性,等式右除第一项,其余都为零,所以于是得其次求用乘(4)式两端,再从到逐项积分,我们得到根据三角函数系(3)的正交性等式右端除k=n的一项处,其余各项均为零,所以于是得如果(5)式的积分都存在,这时它们的系数叫函数的傅立叶系数,将这些系数代入(4)式右,所得的三角级数叫做傅立叶级数.2.(Diriclilet收敛定理) 设是周期为的周期函数,如果它满足:⑴ 在一个周期内连续或只有有限个第一类间断点⑵ 在一个周期内至多只有有限个极值点,则的傅立叶级数收敛,且当是的连续点时,级数收敛于;当是的间断点时,级数收敛于Diriclilet收敛定理的证明:贝塞尔不等式设函数在区间上是连续的或至多有有限个第一类间断点.而是任意一个"n次"三角多项式,式中是常数.现在要来确定这些常数,使得平方平均偏差为最小.为此目的,我们先计算这个偏差的显表达式,因为容易得到其中是函数f(x)的傅立叶系数.而积分其中右端第二个积分中的被积函数是下面这些形式的函数的线性组合由于三角函数的正交性,它们在区间上的积分都为零,故得于是就有若在等式的右端同时加减如下的和则它又可以写成由此可见,当最后和式的各项为零时,即当时,为最小由于,于是推知这就是著名的贝塞尔不等式由于收敛级数的通项当n无限增大时趋近于零即以为周期的函数的Fourier级数的部分和将Euler-Fourier公式带入上式当时,由三角函数的积化和差公式,有而当时,若将右端理解位的极限,则等式依然成立.因此,上式对任意都是正确的.这样,就把部分和转化为积分形式,这个积分称为Dirichlet积分,是研究Fourier级数敛散性的重要工具.将积分区间分成和,稍加整理,就得到了Dirichlet积分的惯用形式.由前面的三角函数关系式,有,因此,对任意给定的函数,有,这样,若记则的Fourier级数是否收敛于某个就等价于极限是否存在且等于零.推论1(局部性原理) 可积且绝对可积函数f(x)的Fourier级数在x处是否收敛只与f(x)在区间上的性质有关,这里是一个任意小的正常数.证 由于对任意的,在可积且绝对可积,由Riemann引理,因此,若将的积分区间分成和两部分,则由积分和极限的性质,当时的敛散性显然只与有关,而这个积分只涉及f(x)在区间上的性质.推论2 设函数在区间可积,则成立由以上推论告诉我们,如果能找到适当的,使得对于充分小的定数,有,则f(x)Fourier级数必定收敛于这个在绝对可积,就可以由Riemann引理导出上面的结果.例1 已知,求⑴ 设的周期为,将展开为傅立叶级数;⑵ 证明解 ⑴从而有 ⑵ 令,有令,有注:利用周期函数的定积分性质,有3,正弦级数和余弦级数当为奇函数时,是奇函数,是偶函数,故(5)即知奇函数的傅立叶级数是含有正弦项的正弦级数(6)当为偶函数时,是偶函数是奇函数故(7)即知偶函数的 傅立叶级数是只含有常数项和余弦项的余弦级数(8)例2 将函数分别展开成正弦级数和余弦级数.解 先求正弦级数.为此对函数进行奇延拓.按公式(5)有将求得的代入(6)得在端点及处级数的和显然为零,它不代表原来函数的值再求余弦级数.为此对进行偶延拓.按公式(7)有将所求得的代入余弦级数(8)得4.若的周期为,则有,其中 (只需作变量代换,由2可得)5.当为奇函数时,,其中当为偶函数时,,其中6.当定义在上时要先对进行奇偶延拓,再周期延拓可将展开成正弦级数或余弦级数.小结:函数展为傅立叶级数的问题本来是由分解周期函数为谐波引出的,对非周期函数,甚至只是定义在上的函数,当它在上满足狄氏条件时,它的傅立叶级数在上收敛,而且由于其各项都有周期,故在上都收敛,其和函数是上的以为周期的函数.在之外与一般是不同的.但是,如果把定义在上的函数按周期延拓到数轴所有点上去,得到一个以为周期的新的函数,并且仍用表示这个新的函数,那么在整个数轴上就应有展开式:,若是的连续点,上式左边即是.傅立叶级数,作为一种函数的解析表达式,消除了初等函数和用几个式子联合分段表达的函数之间的界限——他们都融合成为一类无穷多项表达式了.这里,第一次用一个正交函数系中的函数作为函数项级数的项去表达一个函数,把函数在一个完备的正交函数系中进行分解是近代数学中一项很有意义的发展.

我来帮你搞定

比较归纳法属不属于论文研究方法 把提纲发给你,资料也有的 什么是归纳法和演绎法 非也、非也!虽说对于一般学生而言,这两种方法也许是没什么感觉,然而对于科学的发展过程而言,两者皆有其举足轻重的角色存在。所谓的归纳法(induction),指的是由许多个别事例,从中获得一个较具概括性的规则。这种方法主要是从收集到的既有资料,加以抽丝剥茧地分析,最后得以做出一个概括性的结论。而演译法〈deduction〉,则和归纳法相反,是从既有的结果,推论出个别特殊的情形的一种方式。由较大的范围,逐步缩小到所需的特定范围。若以数学的观点来说明,归纳法就像是由一群个别资料〈每一笔资料即一个别事例〉来求得支配他们的关系式的过程;而演绎法则是由这求得的关系式,获致另一笔资料的过程。这两种方法除了可以个别使用外,也可以彼此互相配合使用。 语文的议论文中归纳法和演绎法怎么解释 新年好!HappyChineseNewYear!1、演绎法,Deduction,DeductiveReasoning实质:层层推理,根据A推理到B,再推理到C。就是derive,我们的科学理论、数学理论、、、、都是运用演绎法。导数derivative,就是导出来的函数,就是延伸出来的、派生出来的、、、只要给定一个前提,只要有一个大家接受的方法,就可以一直推理下去。2、归纳法,Induction,InductiveResoning搞逻辑学的人,绝大多数都没有一丝一毫的科学根底,更没有工程理论的基础。他们会固执一词,强调归纳法跟演绎法都是属于完全推理,而无视归纳法的局限性。实质:将所有的示例归纳到一个结果中,一个公式中。缺陷:就数学、科学而言,有些结果,我们从其他方法,已经得到。为了肯定它的普适性、一般性,用归纳法证明一下它的普遍性。但是,经常会有一些结果不得而知,譬如级数求和,类似的结果已经获得,如自然数平方的导数和,通过傅里叶级数的方法而得到,但是立方的导数呢?五次方的导数呢?、、、、我们经常有猜想,结果是什么,然后用归纳法证明猜想是否合理、正确。归纳法,是演绎法的补充,但是不等于说它就是完全推理法。经常是验证性地证明,而不是语言性的证明。逻辑学者,越是强调它们的等量齐观,越说明他们知识的肤浅与愚顽不化,不可理喻。至于学习语法,这是我们的另一个怪圈,我们无视语言的丰富多彩性,死死以语法为准绳,在国际场合出尽洋相的事情比比皆是,甚至连国土不能统一也跟我们的一惯刚愎自用相关。学习英语,以用为主,才有效;以语从主人为原则。不要自创洋泾浜英语。归纳法、演绎法,语法、词法,都只是大概的参考。语感才是第一。 论文中的文献归纳法是文献综述吗 要考虑各部分之间的逻辑关系。初学撰写论文的人常犯的毛病,是论点和论据没有必然联系,有的只限于反复阐述论点,而缺乏切实有力的论据;有的材料一大堆,论点不明确;有的各部分之间没有形成有机的逻辑关系,这样的论文都是不合乎要求的,这样的论文是没有说服力的。为了有说服力,必须有虚有实,有论点有例证,理论和实际相结合,论证过程有严密的逻辑性,拟提纲时特别要注意这一点,检查这一点。语文的议论文中归纳法和演绎法怎么解释 根据一类事物的部分对象具有某种性质,推出这类事物的所有对象都具有这种性质的推理,叫做归纳推理(简称归纳)。归纳是从特殊到一般的过程,它属于合情推理。 演绎推理(Deductive Reasoning),就是从一般性的前提出发,通过推导即“演绎”,得出具体陈述或个别结论的过程。演绎推理的逻辑形式对于理性的重要意义在于,它对人的思维保持严密性、一贯性有着不可替代的校正作用。 一篇好的论文有什么部分组成的呢? 毕业论文的结构 一、毕业论文结构的基本型 人们在长期的写作实践过程中,对某些文体文章的写作逐步形成了一些特定规范——即结构的基本型。这种“型”开始是某个人的创造,但是由于它符合人们的思维规律,所以一直被沿,用下来,并在人们的反复运用中逐步完美、定型化。所以,这种“型”的产生不是偶然的,它是在人们共同思维规律的基础上形成的。我们利用这些“型”来写作,不但能比较省力,便于组织材料表达观点,而且这种“型”符合人们的思维规律而便于人们阅读。这是一种事半功倍的方法。当然,“型”不是个死板的套于,不考虑内容如何,一律削足适履地塞到里边去也是不行的。利用“型”写作,一要注意富于变化,灵活地运用;二要注意当现成的“型”有损于内容表达时,就要坚决地把它丢开。 毕业论文的结构形式是多种多样的。但是,它也有其基本型,即序论、本论、结论的三段式: (一)序论 毕业论文的序论,在写作上应包括下列内容: 说明研究这一课题的理由、意义。这一部分要写得简洁。一定要避免像作文那样,用很长的篇幅写自己的心情与感受,不厌其烦地讲选定这个课题的思考过程。 提出问题。这是序论的核心部分。问题的提出要明确、具体。有时,要写一点历史的回顾,关于这个课题,谁作了哪些研究,作者本人将有哪些补充、纠正或发展。 说明作者论证这一问题将要使用的方法。 如果是一篇较长的论文,在序论中还有必要对本论部分加以扼要、概括地介绍,或提示论述问题的结论。这是便于读者阅读、理解本论的。 序论只能简要地交代上述各项内容,尽管序论可长可短,因题而异,但其篇幅的分量在整篇论文中所占的比例要小,用几百字即可。至于序论的几种常见写法,因为后面专门有章节论述,这里不再展开。 (二)本论 这是展开论题,表达作者个人研究成果的部分。它是毕业论文的主体部分,必须下功夫把它写充分,写好。 有些毕业论文,序论部分中提出的问题很新颖、有见地,但是本论部分写得很单薄,论证不够充分,勉强引出的结论也难以站住脚。这样的毕业论文是缺乏科学价值的,所以一定要全力把本论部分写好。 一般议论文的本论安排,有所谓直线推论,又称为递进式结构(即,提出一个论点之后,一步步深入,一层层展开论述。论点,由一点到另一点,循着一个逻辑线索直线移动。)和并列分说,又称为并列式结构(即,把从属于基本论点的几个下依论点并列起来,一个一个分别加以论述。)。两者结合起来运用称为混合型。 由于毕业论文论述的是比较复杂的理论问题,一般篇幅又较长,所以常常使用直线推论与并列分论两者相结合的方法。而且往往是直线推论中包含有并列分论,而并列分论下又有直线推论,有时下面还有更下位的并列分论。毕业论文中的直线推论与并列分论是多重结合的,其他一些篇幅较长、论述问题比较复杂的论文也多采用这种方式,如《中国社会各阶级的分析》开头提出问题,接着就对各阶级进行分析,然后综合起来得出结论。文章步步深入,层层展开,用的是直线推论。然而,在对各阶级分析的那一层次中,又逐一分析了地主买办阶级、中产阶级、小资产阶级、半无产阶级和无产阶级,用的是并列分论。就整篇而言,就叫直线推论中包括著并列分论。 *** 同志运用这种结合形式,完满地表达了文章的内容,收到了很好的表达效果。至于本论部分的具体写法,因后面章节要论述,这里不再重复。 (三)结论 结论是论文的收束部分。毕业论文的结论应包括下述内容: 写论证得到的结果。这一部分要对本论分析、论证的问题加以综合概括,引出基本论点,这是课题解决的答...... 如何用归纳法在自然界中举例子.如题 谢谢了 归纳法分完全归纳法和不完全归纳法。 完全归纳法就是把某类事物的全部个体都研究一番,再经归纳得出结论。这种方法实际应用中工作量大,并且有时相当困难。 不完全归纳法中最常用的是最简单的枚举法。例如,现代鸟类和现代爬行动物有共同的祖先的这个结论就是应用归纳法中的简单枚举法,即把个别的事物经过研究提出带有普遍性的结论,这种论证方法就是简单枚举法。此种方法简单但不一定可靠,不能全盘皆用。例如,鱼有鳞,蛇也有鳞,若得出蛇是鱼进化而来的就错了。再如,鸟会飞,蝗虫也会飞,得出鸟和蝗虫由共同祖先进化而来,那也错了。所以说简单枚举法可靠性不大,不能全盘皆用。 达尔文的进化论是用不完全归纳法推理出来的,我们为什么说他正确的呢?因为,达尔文用不完全归纳法得出进化论依据了大量的事例,而且迄今尚未有反例。同学们以后应用不完全归纳法想得出正确结论时,也需要象达尔文一样尽力收集研究的例子,并且得出的结论没有反例。 求采纳

不算,书本是用来学习的,只能说是借鉴。你可以把书本放在参考文献目录中去。

傅里叶级数论文开题报告

【学者傅立叶】[编辑本段]【简介】傅立叶(Fourier,Jean Baptiste Joseph,1768-1830)法国数学家、物理学家。【履历】1768年3月21日生于欧塞尔, 1830年5月16日卒于巴黎。9岁父母双亡, 被当地教堂收养。12岁由一主教送入地方军事学校读书。17岁(1785)回乡教数学,1794到巴 黎,成为高等师范学校的首批学员, 次年到巴黎综合工科学校执教。1798年随拿破仑远征埃及时任军中文书和埃及研究院秘书,1801年回国后任伊泽尔 省地方长官。1817年当选为科学院院 士,1822年任该院终身秘书,后又任法兰西学院终身秘书和理工科大学校务委员会主席。 【主要贡献】■数学方面主要贡献是在研究热的传播时创立了一套数学理论。1807年向巴黎科学院呈交《热的传播》论文, 推导出著名的热传导方程 ,并在求解该方程时发现解函数可以由三角函数构成的级数形式表示,从而提出任一函数都可以展成三角函数的无穷级数。傅立叶级数(即三角级数)、傅立叶分析等理论均由此创始。其他贡献有:最早使用定积分符号,改进了代数方程符号法则的证法和实根个数的判别法等。傅里叶变换的基本思想首先由傅里叶提出,所以以其名字来命名以示纪念。 从现代数学的眼光来看,傅里叶变换是一种特殊的积分变换。它能将满足一定条件的某个函数表示成正弦基函数的线性组合或者积分。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。 傅立叶变换属于调和分析的内容。"分析"二字,可以解释为深入的研究。从字面上来看,"分析"二字,实际就是"条分缕析"而已。它通过对函数的" 条分缕析"来达到对复杂函数的深入理解和研究。从哲学上看,"分析主义"和"还原主义",就是要通过对事物内部适当的分析达到增进对其本质理解的目的。比如近代原子论试图把世界上所有物质的本源分析为原子,而原子不过数百种而已,相对物质世界的无限丰富,这种分析和分类无疑为认识事物的各种性质提供了很好的手段。 在数学领域,也是这样,尽管最初傅立叶分析是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征。"任意"的函数通过一定的分解,都能够表示为正弦函数的线性组合的形式,而正弦函数在物理上是被充分研究而相对简单的函数类,这一想法跟化学上的原子论想法何其相似!奇妙的是,现代数学发现傅立叶变换具有非常好的性质,使得它如此的好用和有用,让人不得不感叹造物的神奇: 1. 傅立叶变换是线性算子,若赋予适当的范数,它还是酉算子; 2. 傅立叶变换的逆变换容易求出,而且形式与正变换非常类似; 3. 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取; 4. 著名的卷积定理指出:傅立叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段; 5. 离散形式的傅立叶变换可以利用数字计算机快速的算出(其算法称为快速傅立叶变换算法(FFT)). 正是由于上述的良好性质,傅里叶变换在物理学、数论、组合数学、信号处理、概率、统计、密码学、声学、光学等领域都有着广泛的应用。 ■物理方面他是傅立叶定律的创始人,1822 年在代表作《热的分析理论》中解决了热在非均匀加热的固体中分布传播问题,成为分析学在物理中应用的最早例证之一,对19 世纪的理论物理学的发展产生深远影响。◎傅立叶定律相关简介英文名称:Fourier law傅立叶定律是传热学中的一个基本定律。可以用来计算热量的传导量。相关的公式为:Φ=-λA(dt/dx),q=-λ(dt/dx)其中Φ为导热量,单位为W,λ为导热系数,A为传热面积,单位为m^2,t为温度,单位为K,x为在导热面上的坐标,单位为m,q为热流密度,单位为W/m^2 ,负号表示传热方向与温度梯度方向相反,λ表征材料导热性能的物性参数(λ越大,导热性能越好)

1.傅立叶变换的物理意义傅立叶变换是数字信号处理领域一种很重要的算法。要知道傅立叶变换算法的意义,首先要了解傅立叶原理的意义。傅立叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。而根据该原理创立的傅立叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位。和傅立叶变换算法对应的是反傅立叶变换算法。该反变换从本质上说也是一种累加处理,这样就可以将单独改变的正弦波信号转换成一个信号。因此,可以说,傅立叶变换将原来难以处理的时域信号转换成了易于分析的频域信号(信号的频谱),可以利用一些工具对这些频域信号进行处理、加工。最后还可以利用傅立叶反变换将这些频域信号转换成时域信号。从现代数学的眼光来看,傅里叶变换是一种特殊的积分变换。它能将满足一定条件的某个函数表示成正弦基函数的线性组合或者积分。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。在数学领域,尽管最初傅立叶分析是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征。"任意"的函数通过一定的分解,都能够表示为正弦函数的线性组合的形式,而正弦函数在物理上是被充分研究而相对简单的函数类:1. 傅立叶变换是线性算子,若赋予适当的范数,它还是酉算子;2. 傅立叶变换的逆变换容易求出,而且形式与正变换非常类似;3. 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段;4. 离散形式的傅立叶的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取;5. 著名的卷积定理指出:傅立叶变换可以化复变换可以利用数字计算机快速的算出(其算法称为快速傅立叶变换算法(FFT))。正是由于上述的良好性质,傅里叶变换在物理学、数论、组合数学、信号处理、概率、统计、密码学、声学、光学等领域都有着广泛的应用。2.图像傅立叶变换的物理意义图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面空间上的梯度。如:大面积的沙漠在图像中是一片灰度变化缓慢的区域,对应的频率值很低;而对于地表属性变换剧烈的边缘区域在图像中是一片灰度变化剧烈的区域,对应的频率值较高。傅立叶变换在实际中有非常明显的物理意义,设f是一个能量有限的模拟信号,则其傅立叶变换就表示f的谱。从纯粹的数学意义上看,傅立叶变换是将一个函数转换为一系列周期函数来处理的。从物理效果看,傅立叶变换是将图像从空间域转换到频率域,其逆变换是将图像从频率域转换到空间域。换句话说,傅立叶变换的物理意义是将图像的灰度分布函数变换为图像的频率分布函数,傅立叶逆变换是将图像的频率分布函数变换为灰度分布函数。傅立叶变换以前,图像(未压缩的位图)是由对在连续空间(现实空间)上的采样得到一系列点的集合,我们习惯用一个二维矩阵表示空间上各点,则图像可由z=f(x,y)来表示。由于空间是三维的,图像是二维的,因此空间中物体在另一个维度上的关系就由梯度来表示,这样我们可以通过观察图像得知物体在三维空间中的对应关系。为什么要提梯度?因为实际上对图像进行二维傅立叶变换得到频谱图,就是图像梯度的分布图,当然频谱图上的各点与图像上各点并不存在一一对应的关系,即使在不移频的情况下也是没有。傅立叶频谱图上我们看到的明暗不一的亮点,实际上图像上某一点与邻域点差异的强弱,即梯度的大小,也即该点的频率的大小(可以这么理解,图像中的低频部分指低梯度的点,高频部分相反)。一般来讲,梯度大则该点的亮度强,否则该点亮度弱。这样通过观察傅立叶变换后的频谱图,也叫功率图,我们首先就可以看出,图像的能量分布,如果频谱图中暗的点数更多,那么实际图像是比较柔和的(因为各点与邻域差异都不大,梯度相对较小),反之,如果频谱图中亮的点数多,那么实际图像一定是尖锐的,边界分明且边界两边像素差异较大的。对频谱移频到原点以后,可以看出图像的频率分布是以原点为圆心,对称分布的。将频谱移频到圆心除了可以清晰地看出图像频率分布以外,还有一个好处,它可以分离出有周期性规律的干扰信号,比如正弦干扰,一副带有正弦干扰,移频到原点的频谱图上可以看出除了中心以外还存在以某一点为中心,对称分布的亮点集合,这个集合就是干扰噪音产生的,这时可以很直观的通过在该位置放置带阻滤波器消除干扰。另外我还想说明以下几点: 1、图像经过二维傅立叶变换后,其变换系数矩阵表明: 若变换矩阵Fn原点设在中心,其频谱能量集中分布在变换系数短阵的中心附近(图中阴影区)。若所用的二维傅立叶变换矩阵Fn的原点设在左上角,那么图像信号能量将集中在系数矩阵的四个角上。这是由二维傅立叶变换本身性质决定的。同时也表明一股图像能量集中低频区域。 2 、变换之后的图像在原点平移之前四角是低频,最亮,平移之后中间部分是低频,最亮,亮度大说明低频的能量大(幅角比较大)。3.傅立叶变换的提出让我们先看看为什么会有傅立叶变换?傅立叶是一位法国数学家和物理学家的名字,英语原名是Jean Baptiste Joseph Fourier(1768-1830), Fourier对热传递很感兴趣,于1807年在法国科学学会上发表了一篇论文,运用正弦曲线来描述温度分布,论文里有个在当时具有争议性的决断:任何连续周期信号可以由一组适当的正弦曲线组合而成。当时审查这个论文的人,其中有两位是历史上著名的数学家拉格朗日(Joseph Louis Lagrange, 1736-1813)和拉普拉斯(Pierre Simon de Laplace, 1749-1827),当拉普拉斯和其它审查者投票通过并要发表这个论文时,拉格朗日坚决反对,在近50年的时间里,拉格朗日坚持认为傅立叶的方法无法表示带有棱角的信号,如在方波中出现非连续变化斜率。法国科学学会屈服于拉格朗日的威望,拒绝了傅立叶的工作,幸运的是,傅立叶还有其它事情可忙,他参加了政治运动,随拿破仑远征埃及,法国大革命后因会被推上断头台而一直在逃避。直到拉格朗日死后15年这个论文才被发表出来。谁是对的呢?拉格朗日是对的:正弦曲线无法组合成一个带有棱角的信号。但是,我们可以用正弦曲线来非常逼近地表示它,逼近到两种表示方法不存在能量差别,基于此,傅立叶是对的。为什么我们要用正弦曲线来代替原来的曲线呢?如我们也还可以用方波或三角波来代替呀,分解信号的方法是无穷的,但分解信号的目的是为了更加简单地处理原来的信号。用正余弦来表示原信号会更加简单,因为正余弦拥有原信号所不具有的性质:正弦曲线保真度。一个正弦曲线信号输入后,输出的仍是正弦曲线,只有幅度和相位可能发生变化,但是频率和波的形状仍是一样的。且只有正弦曲线才拥有这样的性质,正因如此我们才不用方波或三角波来表示。

很巧,我也是突然想知道这两个复的要的东东有什么区别和联系。联系:两者都要人命,难啊区别:应用不同吧。反正得记公式,掌握积分。

傅里叶级数展开的实际意义:傅立叶变换是数字信号处理领域一种很重要的算法。要知道傅立叶变换算法的意义,首先要了解傅立叶原理的意义。傅立叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。而根据该原理创立的傅立叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位。和傅立叶变换算法对应的是反傅立叶变换算法。该反变换从本质上说也是一种累加处理,这样就可以将单独改变的正弦波信号转换成一个信号。因此,可以说,傅立叶变换将原来难以处理的时域信号转换成了易于分析的频域信号(信号的频谱),可以利用一些工具对这些频域信号进行处理、加工。最后还可以利用傅立叶反变换将这些频域信号转换成时域信号。从现代数学的眼光来看,傅里叶变换是一种特殊的积分变换。它能将满足一定条件的某个函数表示成正弦基函数的线性组合或者积分。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。在数学领域,尽管最初傅立叶分析是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征。"任意"的函数通过一定的分解,都能够表示为正弦函数的线性组合的形式,而正弦函数在物理上是被充分研究而相对简单的函数类:1) 傅立叶变换是线性算子,若赋予适当的范数,它还是酉算子;2) 傅立叶变换的逆变换容易求出,而且形式与正变换非常类似;3) 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段;4) 离散形式的傅立叶的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取;5. 著名的卷积定理指出:傅立叶变换可以化复变换可以利用数字计算机快速的算出(其算法称为快速傅立叶变换算法(FFT))。正是由于上述的良好性质,傅里叶变换在物理学、数论、组合数学、信号处理、概率、统计、密码学、声学、光学等领域都有着广泛的应用。参考链接:傅里叶级数展开的实际意义_百度文库

分数阶傅里叶毕业论文

非平稳信号广泛存在于自然界与现实生活中,作为非平稳信号的线性调频信号(Liner Frequency Modulation,LFM)和正弦调频信号(Sinusoidal Frequency Modulation,SFM)广泛应用于通信、雷达、声纳、地震勘测和生物医学等众多领域。由于经典的傅里叶变换不反映非平稳信号的时变本质,时频联合分析技术成为处理此类信号的有效方法,由于能够描述信号频率与时间的关系,目前被广泛应用于非平稳信号分析与处理中。首先,本文对各种LFM信号参数估计方法进行了研究,诸如,分数阶傅里叶变换(Fractional Fourier Transform,FRFT)、离散Chirp-Fourier变换(Discrete Chirp FourierTransform,DCFT)、匹配傅里叶变换(Matched Fourier Transform,MFT)和三次相位变换(Cubic Phase Transform,CPT),并通过仿真比较各种算法的性能。然后,基于一阶局部多项式傅里叶变换(Local Polynomial Fourier Transform,LPFT)对LFM信号具有良好的时频聚集和抑制较叉干扰的性能,提出基于两级搜索LPFT1与FFT结合(Two Step LPFT1-Fast Fourier Transform,TSLPFT1-FFT)的LFM信号参数估计方法。仿真结果表明,与现有方法相比,提出的方法在相同的信噪比条件下改善了参数估计精度,并且适用于多分量LFM信号的处理。最后,由于SFM信号时频特性函数呈余弦曲线变化,现有的LFM信号分析处理方法不适用于分析此类信号,根据信号特征提出正弦调频变换(SinusoidFrequencyModulation Transform,SFMT),理论分析说明SFM信号在离散正弦调频变换(DiscreteSFMT,DSFMT)域具有明显的聚敛特征,经仿真验证,基于DSFMT的SFM信号参数估计方法性能接近于参数估计的Cramer-Rao下限。

从分数阶Fourier域与时域、频域间的关系可以看出,分数阶Fourier变换实质上是一种同意的时频变换,同时反映了信号在时域、频域的信息,与常用二次型时频分布不同的是它用单一变量来表示时频信息,且没有交叉项困扰。目前,信号处理领域对分数阶Fourier变换的应用主要有如下6中方式,其实这也正好体现了分数阶Fourier变换的6个特点:(1) 分数阶Fourier变换是一种统一的时频变换,随着阶数从0连续增长到1,分数阶Fourier变换展示出信号从时域逐步变化到频域的所有变化特征,可以为信号的时频分析提供更大的选择余地;最直接的利用方式就是将传统时域、频域的应用推广到分数阶Fourier域以获得某些性能上的改善;(2)分数阶Fourier变换可以理解为chirp基分解,因此它十分适合处理chirp类信号,而chirp类信号在雷达、通信、声纳及自然界中经常遇到;(3)分数阶Fourier变换是对时频平面的旋转,利用这一特点可以建立起分数阶Fourier变换与时频分析工具的关系,即可以用来估计瞬时频率、恢复相位信息,又可以用来设计新的时频分析工具;(4)相比Fourier变换,分数阶Fourier变换多了一个自由参数,因此在某些应用场合能够得到更好的效果,如数字水印和图像加密;(5)分数阶Fourier变换是线性变换,没有交叉项干扰,在具有加性噪声的多分量情况下更具优势;(6)具有比较成熟的快速离散算法,这既保证了分数阶Fourier变换能够进入数字信号处理的工程实用领域,又可以以它为基础为其他的分数阶算子或变换提供快速离散算法,如分数阶卷积、相关及分数阶哈特利变换等 。

快速傅里叶变换毕业论文

[8] 蒋长锦 蒋勇. 快速傅里叶变换及 c 程序 [M].中国科技大学出版社. 2004. [9] 迂回相位编码的傅里叶变换计算全息图及其再现 王永仲 2004 红外技术. [10] 近距离数字全息术记录和再现问题 罗鹏 2007 光学学报. [11] FFT算法的一种FPGA设计 陆旦前 2007 现代电子技术 希望对你有帮助~

看了很多网上关于FFT的讲解,有一些是直接忽略了公式的推导,另外一些有推导,但是推导中的细节却没有讲清楚。本着不懂就学的心态,我把FFT的思维和推导细节用公式讲清楚,方便后人能更细致地学习FFT。

在了解FFT之前,需要有一些前置的知识,以下为目录。

其中i为虚数单位即 即虚数单位

复数形式: ,其中i为虚数单位

复数乘法: 对于两个复数 和 ,则 由于欧拉公式(见公式1)令 则复数 其中 为该复数所在复平面圆的半径, 为该复数在复平面中的幅角。则两个复数为 ,即 根据4式可得,两个复数的相乘可以看作是 幅角相加,模长相乘 。

单位根: 对于满足 方程的复数,我们称其为n次单位根。由于根据复数乘法,我们可知: 复数相乘为幅角相加,模长相乘 。则对于每个单位根,模长为1,幅角的n倍为0。即 (易得)。

为了保证幅角的n倍始终为0,由于 这个性质,我们可以将单位根表示为 ,其中 。

我们发现无论k取值, 的n倍始终为0。

记 ,则n次单位根可以表示为

多项式的系数表达: 给定一个多项式 其中 为系数向量

多项式的点值表达: 给定一个多项式如公式(5),我们将其离散化,设取 (这里为什么是n+1项,将在第四节中讲到) 互不相同的值 ,将其代入可得 ,则 为 在 上的点值表达。

多项式系数表达的乘法: 给定两个多项式 则多项式系数表达的乘法为 其中: 有式(9)可得,计算复杂度为

多项式点值表达的乘法: 给定两个多项式如式(6)与(7),则其在 上的点值表达分别为: 则多项式点值表达的乘法为 可见,当我们已知 即可在 的复杂度下求得结果多项式的点值表达。

对于一个多项式的乘法,根据上述前置知识的补充,我们可以得知:降低多项式乘法复杂度的方法是将常见的多项式系数表达转变为多项式的点值表达,做完点值表达的乘法后,最后再将点值表达转化为系数表达,即可完成多项式乘法。 所以问题转变为: 1.如何将多项式系数表达转变为多项式点值表达 2.如何将多项式点值表达转变为多项式系数表达 由此引出了 离散傅里叶变换 DFT(Discrete Fourier Transformation)和 逆离散傅里叶变换 IDFT(Inverse Discrete Fourier Transformation)

离散化多项式的一种方法是将值代入到多项式中,依次求出点值。显而易见,这种方法的复杂度是 的,这与我们降低复杂度的想法是冲突的。 于是我们引入了FFT的经典算法——Cooley-Tukey 算法,来降低离散化的复杂度,这是一个基于分治策略的算法。

给定一个多项式 我们将其根据奇偶项分成两个项数相同的多项式(将多项式补充到 ,补充项数系数为0。PS:为什么是 项呢,后续将会提及): 显而易见:

在进一步之前:我们需要返回单位根的知识点。根据n次单位根的表达 ,我们可以获得一个等式

我们将其代入式子(14),(15)可得: 即 至此我们发现原本需要 次代入值的等式降低到了 次,依次递归下去,则我们只需要递归 次即可在 的复杂度下求得式子,即我们求得 个点值对的复杂度为 ,是可以接受的复杂度。

为了更加严谨的证明,以下过程供还有疑问的读者参考 由于式子(16)可得 则 其中求和中的 直接被替换为 的原因是,经过平方以后,负号被抵消。 复杂度公式则为

以上为Cooley-Tukey离散傅里叶变换DFT的思路。

经过DFT,我们将多项式的系数表达转换为多项式的点值表达。在完成乘法运算以后,我们为了获取系数的变换,需要将多项式的点值表达转换为多项式的系数表达。这时我们使用的方法是逆离散傅里叶变换IDFT,他是DFT的逆。

求解IDFT的过程实际上是一个求解线性方程的问题,给出 个线性方程为: 矩阵形式如下: 假设上述矩阵为 ,则对于矩阵 中值 设两个矩阵相乘以后的结果为 当 时, 当 时, (其中由于 为 次单位根,又因为 次单位根的 次为1,所以上式成立) 所以 则 则IDFT便是将 对结果再做一次DFT,即可获得最后的系数。

在具体实现FFT的过程中,还需要考虑到对于每一次递归我们如何进行合理的划分。于是这里引入bitreverse算法,也叫做蝴蝶变换。

通过这种划分方法,我们同时还能总结出另外一个规律,对于对于 个数字中的任意一个位置的数字,假设原本位置为 ,二进制反转的函数为 ,则最后其所在的位置为 (第一个位置为0),其中 为 位二进制。 举例说明: 对于 个数字中的 ,则其 位二进制的反转为 ,则其最后的位置为第 位(ps:图中没有继续将所有的数字划分到每组一个,读者可自行划分检验)

这里可以补充一个写法:假如我们将原数组定义为 ,经过反转后的数组定义为 ,则 。 又因为如果 是偶数,则 ,则对于 ,但考虑到如果是 是奇数,则 ,则对于 其中 为满足 的最小值。 综合写可以写成 通过这个写法,我们可以直接写出所有数字经过DFT划分后的结果。

参考: 从多项式乘法到快速傅里叶

傅里叶变换仿真毕业论文

这儿的数学博士应该很少.

随着社会的进步,工业的发展,我国机械制造业得到了巨大的发展。下文是我为大家整理的关于机械设计方面毕业论文例文参考的内容,欢迎大家阅读参考!

浅析大型机械驾驶室减振设计

摘要:本文概述了工程机械减振技术的发展概况,并以大型机械的驾驶室减振设计为背景,探讨了发动机悬置设计的基本原则,并对发动机减振的布置的力学特性进行分析,最后提出了以驾驶室模态试验为基础来检验现有类型的驾驶室的结构弱点检验和构件加强的方法。

关键词:机械 驾驶室 减振设计

1、概述

工程机械在水利工程、道路施工、矿山等场合得到大量的使用,其性能的可靠性直接影响到工程建设的正常开展。这类机械的设计时通常采用静态设计,设计理念上更多的是考虑机械的强度、耐久性等和机械的工作性质直接相关因素。但从实际使用情况来看,国产的大型工程机械普遍存在着施工过程中振动过大的问题,这将间接影响设备的抗疲劳特性和操作人员的舒适性和操作的稳定性。

由于工程机械的工作环境恶劣,车体结构的振动问题更加明显,直接影响到驾驶员的舒适性和驾驶的安全性。因此对于大型工程机械而言,控制车体振动尤其是驾驶室的振动,寻求有效的减震设计方法,对于提高驾驶员的舒适度和车体驾驶室构件的疲劳寿命都是有重要意义的。大型工程机械的振动控制问题是个非常复杂的问题,本文将这一问题缩小到驾驶室的减振设计上,主要通过发动机悬置位置的优化设计,以及基于模态分析和被动隔振理论来降低驾驶室的振动效应。

早期的汽车发动机减振方法是利用硫化橡胶,但硫化橡胶在耐油和耐高温方面表现不够理想。20世纪40年代设计出了液压悬置装置来降低发动机的振幅,并取得了较好的使用效果。但液压悬置减振装置在高频激励下会出现动态硬化的问题,已经逐渐不适应汽车发动机减振的要求。

上述几类减振方式都属于被动减振技术,在此基础上,随着发动机减振技术的进步,半主动减振技术开始应用到发动机减振中,这类减振技术的代表作是半主动控制式液压悬置装置,这类减振技术的应用最为广泛。尽管后来又出现了由被动减振器、激振器等所构成的主动减振技术,这一技术能够较好的实现降噪性能,但结构非常复杂,在恶劣工作环境下的工程车辆较少使用。

在工程车辆驾驶室的舒适度设计方面,主要所依据的是动态舒适性理论,用以评价驾驶人员在驾驶室振动的条件下对主观舒适程度。从驾驶员所承受的振动来源来看,主要是受发动机的周期性振动和来自于路面的随机激励。其传递机理较为复杂,跟发动机、驾驶室、座椅等的减振都有关系。因此为便于分析,本文中只针对驾驶室的减振问题展开研究。

2、大型工程机械驾驶室的减振设计

如前文所述,驾驶室的振源激励主要来自于路面和发动机及其传动机构。来自于路面的振源激励具有很大的随机性,要进行理论分析非常困难。加之在需要使用大型工程机械的场合机械的运动速度一般都较慢,随之产生的路面激振频率较低。因此相比之下,大型机械的发动机在运行时一直都处在高速运转状态,由此产生的激振频率很高,也更容易导致构件的疲劳损坏,实践证明发动机及其附件的疲劳损坏主要是由发动机周期激振力产生的交变应力引起的。从物理背景来看,工程机械的驾驶室所受到的振动激励主要来从车架传递到台架,驾驶室的振动行为属于被动响应。为了便于分析,将驾驶室的隔振系统进行简化,以单自由度弹簧阻尼系统来对驾驶室受到振动激励过程进行分析。

发动机的悬置设计

发动机在工作过程中的振动原因主要是不平衡力和力矩,这类振动不仅会引起车架的的振动,也会形成较强烈的噪声,不仅会影响到构件的使用寿命也会影响驾驶员的舒适度。要缓解发动机振动所造成的负面影响,采用悬置的设计方式是比较有效的途径,其实现方式是在动力总成和车架之间加入弹性支承元件。悬置设计方式的理论基础是发动机解耦理论,通过解除发动机六个自由度解耦,改变发动机的支撑位置,从而实现发动机自由度间振动耦合的解除。

此外,需要配合使用解除耦合后的各自由度方向的刚度与相应的阻尼系数,但应注意在解耦之后振动最强的自由度方向的共振控制,可应用主动隔振理论来确定减震器的刚度和阻尼系数。采用合适的刚度和阻尼系数的目的在于控制发动机悬置系统的减振区域。

具体到悬置设计的细节方面,主要是确定发动机支撑的数目和相应的布置位置。在考虑发动机动力总成悬置系统的支撑数目时,考虑的因素包括承重量和激振力两大类。在设计时通常都会依据车辆类型的不同选择三点或者四点支撑方式。对于大型机械而言,在实践中一般都会采用四点支撑的方式,本文中作为算例的发动机属于某型重型挖掘机的发动机。因此采用经典的四点支撑。其支撑位置选择在飞轮端和风扇端,上述两个位置分别设置两个对称的支撑点,采用支撑对称的目的在于后期解耦方便。从布置的方式上看,主要有平置、汇聚和斜置三种典型布置方式,具体采用哪种方式取决于发动机周围附属配件的布局方式以及车架所能提供的空间有关。本文中不重点讨论减振支撑的布置方式,因此仍然采用平置式的减振布置方式。

悬置系统的动力学分析

为减少研究成本,在支撑的材料上选用橡胶减振器。由前节所述,由于采用的是四个平置式的橡胶减震器,因此可以在进行力学分析时将其简化为三个互相垂直的弹簧阻尼系统,从而可以构建一个发动机主动隔振的力学模型。

驾驶室模态试验

在上述基本力学分析的基础上,进一步采用驾驶室模态试验的方法来检验整个驾驶室的减振效果,其目的在于掌握驾驶室的动态特性和找出驾驶室结构上的薄弱部位,同时以试验为基础还可以调整驾驶室减震器的系数匹配,减小驾驶室的整体振动响应。在试验时以快速傅里叶变换为以及,测量激振力和振动响应之间的关系,从而得到二者之间的传递函数,而模态分析的目的是通过实现来实现传递函数的曲线拟合和确定结构的模态参数。本试验中采用LMS模态测试分析软件,驾驶室所受的激振用力锤激振器来模拟。

在试验时用力锤敲击驾驶室从而制造出1-200HZ脉冲信号。通过记录下在不同激振频率下驾驶室结构的反应来确定驾驶室各个构件的强度,以及应该避免的激振频率。在得到这些基础数据后可为后续的驾驶室减振设计的选择悬置系统的减振区域的临界值,使得驾驶室所有构件的固有频率都能够位于减振器的减振区域内,从而起到抑制驾驶室结构的振动响应。

参考文献

[1]司爱国.轮式装载机行驶稳定系统开发与研究[D].北京:北京科技大学硕士学位论文.

[2]王敏.轻卡动力总成悬置系统的隔振性能[D].合肥:合肥工业大学硕士学位论文.

浅谈机械的可靠性设计

【摘要】本文主要叙述机械可靠性设计的一些基本内容,在此基础上进一步的分析了机械可靠性的优化设计,以及重点的分析了机械可靠性设计的稳健设计,希望能够对我国的机械可靠性设计发展有所帮助。

【关键词】机械可靠性设计;发展沿革;优化设计;稳健设计

引言:20世纪40年代的时候出现了可靠性设计思想,这种思想主要是将安全度作为主题所研究的可靠性理论,这项技术出现后在理论学术界以及实际工程界都有了很大的关注度,相关的理论以及方式也是不断的出现。比如:M onte C arlo 模拟法 、矩方法和以矩方法为基础的可靠性理论、响应面法、支持向量机法 、最大熵方法、随机有限元法和非概率分析方法等这些理论设计到了静强设计、疲劳强度设计、有限寿命设计的各个方面,对于结构系统、机构系统、震动系统等有这可靠性的研究。

1.机械可靠性设计的概述

在产品质量中可靠性是其最为主要的指标以及最重要的技术指标,工程界对于这一点也是越来越重视。在产品的设计、研制、装配、调试等各个环节中可靠性都有着一定的关联性,所以说在概率统计理论的基础上要加大其的推广认识,这样对于原本传统的相关问题能够很好的解决点,同时将产品质量提升上去而且使得产品成本有所降低。经过多年的发展,可靠性技术的不断发展,使得机械可靠性以及设计方式出现了很好的种类,但是就具体的实质来说,大致的分为数学模型法以及物流原因方式两种。

数学模型法就是通过某种实验数据所得概率统计为基础,逐渐的划分为两点,第一点为时间范畴中所涉及的量是可靠性质的,也是就是说因为依据某种规律在时间变动下,疲劳寿命以及耗损失都是在一定的范围之内的;第二种为,将某种偶然因素所发生结果所表现的可靠性,主要是因为不定期所出现的偶然因素所波动的,都是通过概率可靠性对于随机事件计算的,也会发展为两个方面:第一种是对模型法或者相关扩展方式,这样的方式主要是对于产品实效原因产生与产品上应力大于产品本身的强度,所以说应力概率是低于可靠度强度的,第二种为随即过程中或者是随机场不超出规定水准的概率。

2.可靠性优化设计

可靠性优化设计的基本理论

无论是什么样的机械产品,在最开始的方案构建到后期的生产制造实施,都是需要经过一个设计过程的,但是现在计算不断发展,新的知识、新的材料、新的手工艺、新的会计不断的出现,使得机械产品日益在完善,这就是所谓的知识成就了技术、技术成就了产品时间。使得研究的时间越来越短,但是结构确实越来越复杂,这样的情况下顾客对于产品功能、性能、质量、或者是相关服务都有着很大的要求。

这样的趋势下,对于设计整个过程要加大进度,设计周期要缩短。同时需要注意的是,对于设计是不是能够完善来说,产品的力学性能或者是使用价值、制造成本都是有着一定行的影响的,但是对于产品企业的工作质量或者是仅仅效果也是有着相对影响的,所以说,如何将设计质量提升上去,设计理论怎么发展下去,设计技术怎么做到更好,设计过程怎么才能加快嫉妒,都是现在机械设计中所研究的重要问题。

60年代的时候是机械优化设计发展最为迅速的时候,将数学规划以及计算机技术这两种结合在一起。所谓的数学规划理念在现在已经是不断的成熟起来,计算机技术也是高速的发展和广泛的使用中,在工程设计中为最普遍使用优化设计提供相关理论以及方式。

国家能源以及相关资源的是否被合理使用都受到了产品最佳、最可靠性的问题影响,通过使用最佳或者是最可靠性设计能够得到小体积、轻质量、节能材料的产品,同时这样产品有着一定的可靠性,机械产品所进行优化设计的主要目标就是根据一定的预期点或者是安全需要,通过一种最优化的形式将产品展示处理,在进行设计的同时需要将各种载荷随机性考虑到位,同时不能忽略的是结构参数的随机性,这两点对于产品都有着一定性能的影响。

所谓的可靠性优化设计是指质量、成本、可靠度这三方面的,将产品的总体可靠度进行一定的性能约束优化,将所出现的问题合理安全性的相结合,这样也是在结构布局或者是产品质量有保证情况,使得产品有了最大化的可靠度。

近年来可靠性优化设计发展

最近的30年内,机械设计领域中,因为科技的融入使得现代化设计方式以及相关的科学方式不断的出现,在可靠性设计或者是优化设计方面一定有着很高的水准,但是就单方面来说,无论是可靠性设计或者是优化设计,都不能很好的将其所具备的巨大潜力展示出来。一点是因为可靠性设计和优化设计是不相同的,在机械产品经过可靠性设计之后,不能将其工作性能或者是参数达到最为优秀的一点,还有一点是因为优化设计所包含的不是可靠性设计,机械产品要是在不可靠性情况下所进行的优化设计,不能保证产品在一定的条件下或者是时间内,能够将所规定的功能很好的完成,有的时候也许会出现一定的事故,这样直接都有着经济损失。

除此之外,因为机械产品有着很多的设计参数,要是对于多个设计参数进行确定的时候,单纯的可靠性设计就不是这样有地位了,所以在进行可靠性优化设计研究的前提下,要将机械产品可靠性要求先保证,同时保证所运行的环境是最佳的工作性能以及参数,将可靠性或者是优化性设计很好的结合在一起,然后在发展研究设计,才能得出最为优秀的设计方式。

关于可靠性的稳健设计

产品质量是企业赢得用户的关键因素 。任何一种产品,它的总体质量一般可分为用户质量if't-部质量)和技术质量(内部质量)。前者是指用户所能感受到、见到、触到或听到的体现产品优劣的一些质量特性 ;后者是指产品在优良的设计和制造质量下达到理想功能 的稳健性。稳健设计作为一种低成本和高质量的设计思想和方法,对产 品性能、质量和成本综合考虑,选择出最佳设计,不仅可以提高产品的质量,而且可以降低成本。在机械产 品设计中,正确地应用稳健设计的理论与方法可以使产品在制造和使用中,或是在规定的寿命期 问内当设计因素发生微小变化时都能保证产品质量的稳定 。

结束语:总而言之,对于机械的可靠性设计而言,设计人员应该根据实际,做出最优的设计,只有这样的设计才能将可靠性或者是优化设计巨大潜力发挥出来,将两点所具有的优势已近特长全部发挥出来,才能达到产品最佳以及最可靠点,这样的设计有着最为先进和最实用的设计特点,才能最好的达到预定的目标,和保证在设计中的机械产品的质量以及经济效益。

【参考文献】

[1]杨为民,盛~兴.系统可靠性数字仿真[M ].北京:北京航空航天大学出版社,1990.

[2]谢里阳,何雪法,李佳.机电系统可靠性与安全性设计[M].哈尔滨:哈尔滨工业大学出版社,2006.

[3]阎楚良,杨方飞.机械数字化设计新技术[M ].北京:机械工业 出版.2007.

[4]张义民,刘巧伶.多随机参数结构可靠性分析的随机有限元法[J] 东北工学院学报,2012,13(增刊):

[5] 金雅娟,张义民,张艳林,等.任意分布参数的涡轮盘裂纹扩展寿命可靠性分析[J].工程设计学报,2009,l6(3):196-199 .

跳频扩频通信系统的MATLAB建模与仿真基于类傅里叶变换的信号去噪千GHz波段通信微弱信号的数字同步检测技术

相关百科
热门百科
首页
发表服务