论文投稿百科

矩阵的迹的应用毕业论文

发布时间:2024-07-06 21:15:32

矩阵的迹的应用毕业论文

矩阵的迹是指线性代数中矩阵的主对角线上各个元素的总和; 矩阵的迹拥有的性质为:矩阵的迹是所有对角元的和,矩阵的迹也是所有特征值的和,若矩阵有N阶,则矩阵的迹就等于矩阵的特征值的总和,也即矩阵的主对角线元素的总和。

矩阵的迹是指线性代数中矩阵的主对角线上各个元素的总和;矩阵的迹拥有的性质为:矩阵的迹是所有对角元的和,矩阵的迹也是所有特征值的和,若矩阵有N阶,则矩阵的迹就等于矩阵的特征值的总和,也即矩阵的主对角线元素的总和。一、设有N阶矩阵A,那么矩阵A的迹(用tr(A)表示)就等于A的特征值的总和,也即矩阵A的主对角线元素的总和。1.迹是所有对角元的和2.迹是所有特征值的和3.某些时候也利用tr(AB)=tr(BA)来求迹(mA+nB)=m tr(A)+n tr(B)二、奇异值分解(Singular value decomposition )奇异值分解非常有用,对于矩阵A(p*q),存在U(p*p),V(q*q),B(p*q)(由对角阵与增广行或列组成),满足A = U*B*VU和V中分别是A的奇异向量,而B是A的奇异值。AA'的特征向量组成U,特征值组成B'B,A'A的特征向量组成V,特征值(与AA'相同)组成BB'。因此,奇异值分解和特征值问题紧密联系。如果A是复矩阵,B中的奇异值仍然是实数。SVD提供了一些关于A的信息,例如非零奇异值的数目(B的阶数)和A的阶数相同,一旦阶数确定,那么U的前k列构成了A的列向量空间的正交基。三、在数值分析中,由于数值计算误差,测量误差,噪声以及病态矩阵,零奇异值通常显示为很小的数目。将一个矩阵分解为比较简单或者性质比较熟悉的矩阵之组合,方便讨论和计算。由于矩阵的特征值和特征向量在化矩阵为对角形的问题中占有特殊位置, 因此矩阵的特征值分解。尽管矩阵的特征值具有非常好的性质,但是并不是总能正确地表示矩阵的“大小”。矩阵的奇异值和按奇异值分解是矩阵理论和应用中十分重要的内容,已成为多变量反馈控制系统最重要最基本的分析工具之一,奇异值实际上是复数标量绝对值概念的推广, 表示了反馈控制系统的输出/输入增益,能反映控制系统的特性。

我的毕业论文题目是矩阵的乘法及其应用~个人感觉相当简单~我是数学与应用数学专业

两个矩阵相似时会用到 这两个矩阵的迹相等,由此可以确定一些带有有参数的矩阵

对角矩阵的应用毕业论文

这种老掉牙的课题写了干什么?前人已经研究的透彻不能再透彻了。既然写文章,搞研究就要真的做了点实质性的东西出来,否则只是浪费时间。

告诉你拟就会写吗。不如我给你写得了

1,求出一个矩阵的全部互异的特征值a1,a2……

2,对每个特征值,求特征矩阵a1I-A的秩,判断每个特征值的几何重数q=n-r(a1I-A),是否等于它的代数重数p,只要有一个不相等,A就不可 以相似对角化,否则, 就可以相似对角化

3,当可以相似对角化时,对每个特征值,求方程组,(aiI-A)X=0的一个基础解系

4,令P=这些基础解系,则P-1AP=diag(a1,a2,a3……),其中有qi个特征值

扩展资料:

判断方阵是否可相似对角化的条件:

(1)充要条件:An可相似对角化的充要条件是:An有n个线性无关的特征向量;

(2)充要条件的另一种形式:An可相似对角化的充要条件是:An的k重特征值满足n-r(λE-A)=k

(3)充分条件:如果An的n个特征值两两不同,那么An一定可以相似对角化;

(4)充分条件:如果An是实对称矩阵,那么An一定可以相似对角化。

【注】分析方阵是否可以相似对角化,关键是看线性无关的特征向量的个数,而求特征向量之前,必须先求出特征值。

掌握实对称矩阵的特征值和特征向量的性质

(1)不同特征值的特征向量一定正交

(2)k重特征值一定满足满足n-r(λE-A)=k

【注】由性质(2)可知,实对称矩阵一定可以相似对角化;且有(1)可知,实对称矩阵一定可以正交相似对角化。

会求把对称矩阵正交相似化的正交矩阵

【注】熟练掌握施密特正交化的公式;特别注意的是:只需要对同一个特征值求出的基础解系进行正交化,不同特征值对应的特征向量一定正交(当然除非你计算出错了会发现不正交)。

3、实对称矩阵的特殊考点:

实对称矩阵一定可以相似对角化,利用这个性质可以得到很多结论,比如:

(1)实对称矩阵的秩等于非零特征值的个数

这个结论只对实对称矩阵成立,不要错误地使用。

(2)两个实对称矩阵,如果特征值相同,一定相似,同样地,对于一般矩阵,这个结论也是不成立的。

实对称矩阵在二次型中的应用

使用正交变换把二次型化为标准型使用的方法本质上就是实对称矩阵的正交相似对角化。

1,求出一个矩阵的全部互异的特征值a1,a2……2,对每个特征值,求特征矩阵a1I-A的秩,判断每个特征值的几何重数q=n-r(a1I-A),是否等于它的代数重数p,只要有一个不相等,A就不可 以相似对角化,否则, 就可以相似对角化3,当可以相似对角化时,对每个特征值,求方程组,(aiI-A)X=0的一个基础解系4,令P=这些基础解系,则P-1AP=diag(a1,a2,a3……),其中有qi个特征值

矩阵的应用研究论文

告诉你拟就会写吗。不如我给你写得了

矩阵的研究历史悠久,拉丁方阵和幻方在史前年代已有人研究。

矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。 在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考矩阵理论。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。

随着现代科学的发展,数学中的矩阵也有更广泛而深入的应用,下面列举几项矩阵在现实生活中的应用:(1)矩阵在经济生活中的应用‍可“活用”行列式求花费总和最少等类似的问题;可“借用”特征值和特征向量预测若干年后的污染水平等问题。(2)在人口流动问题方面的应用这是矩阵高次幂的应用,比如预测未来的人口数数、人口的发展趋势。(3)矩阵在密码学中的应用可用可逆矩阵及其逆矩阵对需发送的秘密消息加密和译密。(4)矩阵在文献管理中的应用比如现代搜索中往往包括几百万个文件和成千的关键词,但可以利用矩阵和向量的稀疏性,节省计算机的存储空间和搜索时间。

[1]毛纲源. 一类特殊分块矩阵为循环矩阵的循环分块矩阵的几个性质[J]. 应用数学,1995,(3). [2]游兆永,姜宗乾,. 分块矩阵的对角占优性[J]. 西安交通大学学报,1984,(3). [3]曹重光. 体上分块矩阵群逆的某些结果[J]. 黑龙江大学自然科学学报,2001,(3). [4]庄瓦金. 非交换主理想整环上分块矩阵的秩[J]. 数学研究与评论,1994,(2). [5]曹礼廉,李芳芸,柴跃廷. 一种用于MRP的分块矩阵方法[J]. 高技术通讯,1997,(7). [6]逄明贤. 分块矩阵的Cassini型谱包含域[J]. 数学学报,2000,(3). [7]杨月婷. 一类分块矩阵的谱包含域[J]. 数学研究,1998,(4). [8]何承源. R-循环分块矩阵求逆的快速傅里叶算法[J]. 数值计算与计算机应用,2000,(1). [9]马元婧,曹重光. 分块矩阵的群逆[J]. 哈尔滨师范大学自然科学学报,2005,(4). [10]游兆永,黄廷祝. 两类分块矩阵的性质与矩阵正稳定和亚正定判定[J]. 工程数学学报,1995,(2).

矩阵的性质及应用毕业论文

矩阵的性质和运算法则如下:

一、矩阵的定义

在数学中,矩阵是一个依照长方阵列摆放的复数或实数调集,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首要提出。一个m×n的矩阵是一个由m行n列元素排列成的矩形阵列,矩阵里的元素可以是数字、符号或数学式。

二、矩阵的性质

运算性质满足结合律和分配律。转置矩阵的行列式不变。将矩阵的行列互换得到的新矩阵称为转置矩阵,转置矩阵的行列式不变。

数值分析的主要分支致力于开发矩阵计算的有效算法,矩阵分解方法简化了理论和实际的计算。针对特定矩阵结构(如稀疏矩阵和近角矩阵)定制的算法在有限元方法和其他计算中加快了计算。

三、矩阵的运算法则

矩阵的基本运算公式加法,减法,数乘,转置,共轭和共轭转置。“矩阵的转置是矩阵的一种运算,在矩阵的所有运算法则中占有重要地位。”

总的来说,矩阵的根本意义是为了在某些应用上方便计算。例如在计算机图形学中,矩阵运算常常与坐标的级联变换有关,其中最著名的四大矩阵投影、平移、旋转、缩放矩阵。

相关性质:

1、(A^T)^T=A

2、(A+)B^T=A^T+B^T

3、(kA)^T=kA^T

4、(AB)^T=B^TA^T

5、转置矩阵的行列式不变

将矩阵的行列互换得到的新矩阵称为转置矩阵,转置矩阵的行列式不变。

相关应用:

线性变换及其所对应的对称,在现代物理学中有着重要的角色。例如,在量子场论中,基本粒子是由狭义相对论的洛伦兹群所表示,具体来说,即它们在旋量群下的表现。

数值分析的主要分支致力于开发矩阵计算的有效算法,这是一个几个世纪以来的课题,是一个不断扩大的研究领域。 矩阵分解方法简化了理论和实际的计算。 针对特定矩阵结构(如稀疏矩阵和近角矩阵)定制的算法在有限元方法和其他计算中加快了计算。 无限矩阵发生在行星理论和原子理论中。 无限矩阵的一个简单例子是代表一个函数的泰勒级数的导数算子的矩阵。

矩阵的加法运算满足交换律:A + B = B + A矩阵的转置和数乘运算对加法满足分配律:(A + B)^T = A^T + B^Tc(A + B) = cA + cB矩阵初等变换,即对矩阵的某些行和某些列进行三类操作:交换两行(列)将一行(列)的每个元素都乘以一个固定的量将一行(列)的每个元素乘以一个固定的量之后加到另一行(列)的相应元素上

在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。

矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的`运算。

对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考矩阵理论。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。

对角化矩阵的应用毕业论文

1,求出一个矩阵的全部互异的特征值a1,a2……2,对每个特征值,求特征矩阵a1I-A的秩,判断每个特征值的几何重数q=n-r(a1I-A),是否等于它的代数重数p,只要有一个不相等,A就不可 以相似对角化,否则, 就可以相似对角化3,当可以相似对角化时,对每个特征值,求方程组,(aiI-A)X=0的一个基础解系4,令P=这些基础解系,则P-1AP=diag(a1,a2,a3……),其中有qi个特征值

一种吧!设所求矩阵为A,求出它的全部特征值,求(A-£E)x=0的基础解系,再两两正交单位化,得正交矩阵P,再求P-1AP=PTAP=^

根据|xE-A|=0 求出特征值 x1,x2,x3 把xi分别带入 (xiE-A)x=0 就出基础解系就是特征向量

不可以的.矩阵的对角化不是只用初等变换把它变成对角线形式就叫对角化了,而是对角线必须为特征值.如果把它变成对角线形式就叫对角化,那可以在任一行乘个数,结果就变了,而对角形式保持不变如矩阵0 -11 0 用初等变换交换2行就成对角式了,但对角化必须是特征值正负i.当然,用初等变换当然可以实现对角化,但是只能是你知道对角化矩阵后在用初等变换往上靠

相关百科
热门百科
首页
发表服务