论文投稿百科

正定矩阵的判定与应用毕业论文

发布时间:2024-07-04 15:46:27

正定矩阵的判定与应用毕业论文

看看课本吧北大版的高等代数 经典上面说的很清楚

矩阵正定性的性质:

1、正定矩阵的特征值都是正数。

2、正定矩阵的主元也都是正数。

3、正定矩阵的所有子行列式都是正数。

4、正定矩阵将方阵特征值,主元,行列式融为一体。

正定矩阵的判别方法:

1、 对称矩阵A正定的充分必要条件是A的n个特征值全是正数。

2、对称矩阵A正定的充分必要条件是A合同于单位矩阵E。

3、对称矩阵A正定(半正定)的充分必要条件是存在n阶可逆矩阵U使A=U^TU

4、对称矩阵A正定,则A的主对角线元素均为正数。

5、对称矩阵A正定的充分必要条件是:A的n个顺序主子式全大于零。

扩展资料:

广义的正定矩阵判断:

设M是n阶方阵,如果对任何非零向量z,都有zTMz> 0,其中zT 表示z的转置,就称M正定矩阵。

例如:B为n阶矩阵,E为单位矩阵,a为正实数。aE+B在a充分大时,aE+B为正定矩阵。(B必须为对称阵)

狭义正定矩阵判断:

一个n阶的实对称矩阵M是正定的当且仅当对于所有的非零实系数向量z,都有zTMz> 0。其中zT表示z的转置。

参考资料来源:百度百科-正定矩阵

一. 定义 因为正定二次型与正定矩阵有密切的联系,所以在定义正定矩阵之前,让我们先定义正定二次型: 设有二次型 ,如果对任何x 0都有f(x)>0( 0) ,则称f(x) 为正定(半正定)二次型。 相应的,正定(半正定)矩阵和负定(半负定)矩阵的定义为: 令A为 阶对称矩阵,若对任意n 维向量 x 0都有 >0(≥0)则称A正定(半正定)矩阵;反之,令A为n 阶对称矩阵,若对任意 n 维向量 x≠0 ,都有 <0(≤ 0), 则称A负定(半负定)矩阵。 例如,单位矩阵E 就是正定矩阵。 二. 正定矩阵的一些判别方法 由正定矩阵的概念可知,判别正定矩阵有如下方法: 阶对称矩阵A正定的充分必要条件是A的 n 个特征值全是正数。 证明:若 , 则有 ∴λ>0 反之,必存在U使 即 有 这就证明了A正定。 由上面的判别正定性的方法,不难得到A为半正定矩阵的充要条件是:A的特征值全部非负。 2.n阶对称矩阵A正定的充分必要条件是A合同于单位矩阵E。 证明:A正定 二次型 正定 A的正惯性指数为n 3.n阶对称矩阵A正定(半正定)的充分必要条件是存在 n阶可逆矩阵U使 ;进一步有 (B为正定(半正定)矩阵)。 证明:n阶对称矩阵A正定,则存在可逆矩阵U使 令 则 令 则 反之, ∴A正定。 同理可证A为半正定时的情况。 4.n阶对称矩阵A正定,则A的主对角线元素 ,且 。 证明:(1)∵n阶对称矩阵A正定 ∴ 是正定二次型 现取一组不全为0 的数0,…,0,1,0…0(其中第I个数为1)代入,有 ∴ ∴A正定 ∴存在可逆矩阵C ,使 5.n阶对称矩阵A正定的充分必要条件是:A的 n 个顺序主子式全大于零。 证明:必要性: 设二次型 是正定的 对每个k,k=1,2,…,n,令 , 现证 是一个k元二次型。 ∵对任意k个不全为零的实数 ,有 ∴ 是正定的 ∴ 的矩阵 是正定矩阵 即 即A的顺序主子式全大于零。 充分性: 对n作数学归纳法 当n=1时, ∵ , 显然 是正定的。 假设对n-1元实二次型结论成立,现在证明n元的情形。 令 , , ∴A可分块写成 ∵A的顺序主子式全大于零 ∴ 的顺序主子式也全大于零 由归纳假设, 是正定矩阵即,存在n-1阶可逆矩阵Q使 令 ∴ 再令 , 有 令 , 就有 两边取行列式,则 由条件 得a>0 显然 即A合同于E , ∴A是正定的。 三. 负定矩阵的一些判别方法 1.n阶对称矩阵A是负定矩阵的充分必要条件是A的负惯性指数为n。 2.n阶对称矩阵A是负定矩阵的充分必要条件是A的特征值全小于零。 3.n阶对称矩阵A是负定矩阵的充分必要条件是A的顺序主子式 满足 , 即奇数阶顺序主子式全小于零,偶数阶顺序主子式全大于零。 由于A是负定的当且仅当-A是正定的,所以上叙结论不难从正定性的有关结论直接得出,故证明略。 四.半正定矩阵的一些判别方法 1. n阶对称矩阵A是半正定矩阵的充分必要条件是A的正惯性指数等于它的秩。 2. n阶对称矩阵A是半正定矩阵的充分必要条件是A的特征值全大于等于零,但至少有一个特征值等于零。 3. n阶对称矩阵A是负定矩阵的充分必要条件是A的各阶主子式全大于等于零,但至少有一个主子式等于零。 注:3中指的是主子式而不是顺序主子式,实际上,只有顺序主子式大于等于零并不能保证A是半正定的,例如: 矩阵 的顺序主子式 , , , 但A并不是半正定的。 关于半负定也有类似的定理,这里不再写出。

1、行列式法

对于给定的二次型

写出它的矩阵,根据对称矩阵的所有顺序主子式是否全大于零来判定二次型 (或对称矩阵)的正定性。

2、正惯性指数法

对于给定的二次型 ,先将化为标准形,然后根据标准形中平方项系数为正的个数是否等于n来判定二次型的正定性。

通过正交变换,将二次型化为标准形后,标准形中平方项的系数就是二次型矩阵的特征值。因此,可先求二次型矩阵的特征值,然后根据大于零的特征值个数是否等于n来判定二次型的正定性。

扩展资料:

正定矩阵的判定:

1、求出A的所有特征值。若A的特征值均为正数,则A是正定的;若A的特征值均为负数,则A为负定的。

2、计算A的各阶主子式。若A的各阶主子式均大于零,则A是正定的;若A的各阶主子式中,奇数阶主子式为负,偶数阶为正,则A为负定的。

正定矩阵的判定毕业论文目录

一.定义因为正定二次型与正定矩阵有密切的联系,所以在定义正定矩阵之前,让我们先定义正定二次型:设有二次型,如果对任何x0都有f(x)>0(0),则称f(x)为正定(半正定)二次型。相应的,正定(半正定)矩阵和负定(半负定)矩阵的定义为:令a为阶对称矩阵,若对任意n维向量x0都有>0(≥0)则称a正定(半正定)矩阵;反之,令a为n阶对称矩阵,若对任意n维向量x≠0,都有<0(≤0),则称a负定(半负定)矩阵。例如,单位矩阵e就是正定矩阵。二.正定矩阵的一些判别方法由正定矩阵的概念可知,判别正定矩阵有如下方法:阶对称矩阵a正定的充分必要条件是a的n个特征值全是正数。证明:若,则有∴λ>0反之,必存在u使即有这就证明了a正定。由上面的判别正定性的方法,不难得到a为半正定矩阵的充要条件是:a的特征值全部非负。2.n阶对称矩阵a正定的充分必要条件是a合同于单位矩阵e。证明:a正定二次型正定a的正惯性指数为n3.n阶对称矩阵a正定(半正定)的充分必要条件是存在n阶可逆矩阵u使;进一步有(b为正定(半正定)矩阵)。证明:n阶对称矩阵a正定,则存在可逆矩阵u使令则令则反之,∴a正定。同理可证a为半正定时的情况。4.n阶对称矩阵a正定,则a的主对角线元素,且。证明:(1)∵n阶对称矩阵a正定∴是正定二次型现取一组不全为0的数0,…,0,1,0…0(其中第i个数为1)代入,有∴∴a正定∴存在可逆矩阵c,使5.n阶对称矩阵a正定的充分必要条件是:a的n个顺序主子式全大于零。证明:必要性:设二次型是正定的对每个k,k=1,2,…,n,令,现证是一个k元二次型。∵对任意k个不全为零的实数,有∴是正定的∴的矩阵是正定矩阵即即a的顺序主子式全大于零。充分性:对n作数学归纳法当n=1时,∵,显然是正定的。假设对n-1元实二次型结论成立,现在证明n元的情形。令,,∴a可分块写成∵a的顺序主子式全大于零∴的顺序主子式也全大于零由归纳假设,是正定矩阵即,存在n-1阶可逆矩阵q使令∴再令,有令,就有两边取行列式,则由条件得a>0显然即a合同于e,∴a是正定的。三.负定矩阵的一些判别方法1.n阶对称矩阵a是负定矩阵的充分必要条件是a的负惯性指数为n。2.n阶对称矩阵a是负定矩阵的充分必要条件是a的特征值全小于零。3.n阶对称矩阵a是负定矩阵的充分必要条件是a的顺序主子式满足,即奇数阶顺序主子式全小于零,偶数阶顺序主子式全大于零。由于a是负定的当且仅当-a是正定的,所以上叙结论不难从正定性的有关结论直接得出,故证明略。四.半正定矩阵的一些判别方法1.n阶对称矩阵a是半正定矩阵的充分必要条件是a的正惯性指数等于它的秩。2.n阶对称矩阵a是半正定矩阵的充分必要条件是a的特征值全大于等于零,但至少有一个特征值等于零。3.n阶对称矩阵a是负定矩阵的充分必要条件是a的各阶主子式全大于等于零,但至少有一个主子式等于零。注:3中指的是主子式而不是顺序主子式,实际上,只有顺序主子式大于等于零并不能保证a是半正定的,例如:矩阵的顺序主子式,,,但a并不是半正定的。关于半负定也有类似的定理,这里不再写出。

广义定义:设M是n阶方阵,如果对任何非零向量z,都有zTMz> 0,其中zT 表示z的转置,就称M为正定矩阵。

例如:B为n阶矩阵,E为单位矩阵,a为正实数。在a充分大时,aE+B为正定矩阵。(B必须为对称阵)。

狭义定义:一个n阶的实对称矩阵M是正定的的条件是当且仅当对于所有的非零实系数向量z,都有zTMz> 0。其中zT表示z的转置。

扩展资料

正定矩阵在相合变换下可化为规范型, 即单位矩阵。所有特征值大于零的对称矩阵(或厄米特矩阵)是正定矩阵。正定矩阵的性质:

1、正定矩阵的行列式恒为正;

2、实对称矩阵A正定当且仅当A与单位矩阵合同;

3、若A是正定矩阵,则A的逆矩阵也是正定矩阵;

4、两个正定矩阵的和是正定矩阵;

5、正实数与正定矩阵的乘积是正定矩阵。

等价条件:

1、AA是半正定的;

2、AA的所有主子式均为非负的;

3、AA的特征值均为非负的;

4、存在n阶实矩阵C,使A=C'CC,使A=C′C;

5、存在秩为r的r×n实矩阵BB,使A=B'BA=B′B。

参考资料来源:百度百科-正定矩阵

正定矩阵

1.正定矩阵的任一主子矩阵也是正定矩阵。

2.若A为n阶对称正定矩阵,则存在唯一的主对角线元素都是正数的下三角阵L,使得A=L*L′,此分解式称为 正定矩阵的楚列斯基(Cholesky)分解。

3.若A为n阶正定矩阵,则A为n阶可逆矩阵。

判定一个矩阵半正定

1、对于半正定矩阵来说,相应的条件应改为所有的主子式非负。顺序主子式非负并不能推出矩阵是半正定的。

2、半正定矩阵

定义:设A是实对称矩阵。如果对任意的实非零列矩阵X有XT*A*X≥0,就称A为半正定矩阵。

3、A∈Mn(K)是半正定矩阵的充分条件是:A的所有主子式大于或等于零。

负定矩阵

定义:设A是实对称矩阵。如果对任意的实非零列矩阵X有XTAX<0,就称A为负定矩阵。

1. A∈Mn(K)是负定矩阵的充要条件是:-A是正定矩阵。

2. A∈Mn(K)是负定矩阵的充要条件是:$A^{-1}$是负定矩阵。

3. A∈Mn(K)是负定矩阵的充要条件是:A的所有奇数阶顺序主子式小于零,所有偶数阶顺序主子式大于零。

问题一:怎么判断一个矩阵是否为正定矩阵? 5分 正定矩阵的定义是从正定二次型来的 正定二次型的矩阵称为正定矩阵, 对称阵A为正定的充分必要条件是:A的特征值全为正。 所以计算得到矩阵的特征值,全部为正数就是正定矩阵 问题二:线性代数求解哪个是正定矩阵 怎么判断 根据正定矩阵顺序主子式都大于0,所以选D 问题三:如何判定一个矩阵半正定? 你记住:对A的特征值全为正数,那么是正定的。 不正定,那么就非正定或半正定。若A的特征值大于等于,则半正定。否则非正定。 就这么简单。其他的你可以根据特征根的相关知识推到。。 问题四:如何判断一个矩阵正定 你记住:对A的特征值全为正数,那么是正定的。 不正定,那么就非正定或半正定。若A的特征值大于等于,则半正定。否则非正定。 就这么简单。其他的你可以根据特征根的相关知识推到。。

正定矩阵的性质研究小论文

一. 定义 因为正定二次型与正定矩阵有密切的联系,所以在定义正定矩阵之前,让我们先定义正定二次型: 设有二次型 ,如果对任何x 0都有f(x)>0( 0) ,则称f(x) 为正定(半正定)二次型。 相应的,正定(半正定)矩阵和负定(半负定)矩阵的定义为: 令A为 阶对称矩阵,若对任意n 维向量 x 0都有 >0(≥0)则称A正定(半正定)矩阵;反之,令A为n 阶对称矩阵,若对任意 n 维向量 x≠0 ,都有 <0(≤ 0), 则称A负定(半负定)矩阵。 例如,单位矩阵E 就是正定矩阵。 二. 正定矩阵的一些判别方法 由正定矩阵的概念可知,判别正定矩阵有如下方法: 阶对称矩阵A正定的充分必要条件是A的 n 个特征值全是正数。 证明:若 , 则有 ∴λ>0 反之,必存在U使 即 有 这就证明了A正定。 由上面的判别正定性的方法,不难得到A为半正定矩阵的充要条件是:A的特征值全部非负。 2.n阶对称矩阵A正定的充分必要条件是A合同于单位矩阵E。 证明:A正定 二次型 正定 A的正惯性指数为n 3.n阶对称矩阵A正定(半正定)的充分必要条件是存在 n阶可逆矩阵U使 ;进一步有 (B为正定(半正定)矩阵)。 证明:n阶对称矩阵A正定,则存在可逆矩阵U使 令 则 令 则 反之, ∴A正定。 同理可证A为半正定时的情况。 4.n阶对称矩阵A正定,则A的主对角线元素 ,且 。 证明:(1)∵n阶对称矩阵A正定 ∴ 是正定二次型 现取一组不全为0 的数0,…,0,1,0…0(其中第I个数为1)代入,有 ∴ ∴A正定 ∴存在可逆矩阵C ,使 5.n阶对称矩阵A正定的充分必要条件是:A的 n 个顺序主子式全大于零。 证明:必要性: 设二次型 是正定的 对每个k,k=1,2,…,n,令 , 现证 是一个k元二次型。 ∵对任意k个不全为零的实数 ,有 ∴ 是正定的 ∴ 的矩阵 是正定矩阵 即 即A的顺序主子式全大于零。 充分性: 对n作数学归纳法 当n=1时, ∵ , 显然 是正定的。 假设对n-1元实二次型结论成立,现在证明n元的情形。 令 , , ∴A可分块写成 ∵A的顺序主子式全大于零 ∴ 的顺序主子式也全大于零 由归纳假设, 是正定矩阵即,存在n-1阶可逆矩阵Q使 令 ∴ 再令 , 有 令 , 就有 两边取行列式,则 由条件 得a>0 显然 即A合同于E , ∴A是正定的。 三. 负定矩阵的一些判别方法 1.n阶对称矩阵A是负定矩阵的充分必要条件是A的负惯性指数为n。 2.n阶对称矩阵A是负定矩阵的充分必要条件是A的特征值全小于零。 3.n阶对称矩阵A是负定矩阵的充分必要条件是A的顺序主子式 满足 , 即奇数阶顺序主子式全小于零,偶数阶顺序主子式全大于零。 由于A是负定的当且仅当-A是正定的,所以上叙结论不难从正定性的有关结论直接得出,故证明略。 四.半正定矩阵的一些判别方法 1. n阶对称矩阵A是半正定矩阵的充分必要条件是A的正惯性指数等于它的秩。 2. n阶对称矩阵A是半正定矩阵的充分必要条件是A的特征值全大于等于零,但至少有一个特征值等于零。 3. n阶对称矩阵A是负定矩阵的充分必要条件是A的各阶主子式全大于等于零,但至少有一个主子式等于零。 注:3中指的是主子式而不是顺序主子式,实际上,只有顺序主子式大于等于零并不能保证A是半正定的,例如: 矩阵 的顺序主子式 , , , 但A并不是半正定的。 关于半负定也有类似的定理,这里不再写出。

正定矩阵在合同变换下可化为标准型, 即对角矩阵。所有特征值大于零的对称矩阵(或厄米矩阵)也是正定矩阵。判定定理1:对称阵A为正定的充分必要条件是:A的特征值全为正。判定定理2:对称阵A为正定的充分必要条件是:A的各阶顺序主子式都为正。判定定理3:任意阵A为正定的充分必要条件是:A合同于单位阵。正定矩阵的性质:1.正定矩阵一定是非奇异的。奇异矩阵的定义:若n阶矩阵A为奇异阵,则其的行列式为零,即 |A|=0。2.正定矩阵的任一主子矩阵也是正定矩阵。3.若A为n阶对称正定矩阵,则存在唯一的主对角线元素都是正数的下三角阵L,使得A=L*L′,此分解式称为 正定矩阵的乔列斯基(Cholesky)分解。4.若A为n阶正定矩阵,则A为n阶可逆矩阵。

1 相关定义 定义1 设A∈,若对≠ x∈,都有AX > 0,则称A为正定矩阵,记为A∈. 记={A|≠ x∈,使AX > 0}. 定义2设A∈,如果对≠X∈,都有正对角矩阵D=> 0,使得AX > 0,则称A为广义正定矩阵,记为A∈,若D=与x无关,则记为A∈。记={A∈|≠X]正对角矩阵D,使DAX > 0}.定义3 设A∈,若=A,对≠ x∈ ,都有AX > 0,则称A为实对称正定矩阵,记为A ∈ S+. 记={A∈|≠x,=A,使AX > 0}.定义4 设A∈,如果对≠X,都有S=∈使得DAX > 0,则称A为广义正定矩阵,记为A∈,若S=与x无关,则记为A∈.记={A∈|≠X,S=,使DAX > 0}.定义5设A∈,如果对≠ X∈,都有S=.s+,使得AX > 0,则称A为广义正定矩阵,记为A∈.若S=与x无关,则记为A∈

矩阵的迹的应用毕业论文

矩阵的迹是指线性代数中矩阵的主对角线上各个元素的总和; 矩阵的迹拥有的性质为:矩阵的迹是所有对角元的和,矩阵的迹也是所有特征值的和,若矩阵有N阶,则矩阵的迹就等于矩阵的特征值的总和,也即矩阵的主对角线元素的总和。

矩阵的迹是指线性代数中矩阵的主对角线上各个元素的总和;矩阵的迹拥有的性质为:矩阵的迹是所有对角元的和,矩阵的迹也是所有特征值的和,若矩阵有N阶,则矩阵的迹就等于矩阵的特征值的总和,也即矩阵的主对角线元素的总和。一、设有N阶矩阵A,那么矩阵A的迹(用tr(A)表示)就等于A的特征值的总和,也即矩阵A的主对角线元素的总和。1.迹是所有对角元的和2.迹是所有特征值的和3.某些时候也利用tr(AB)=tr(BA)来求迹(mA+nB)=m tr(A)+n tr(B)二、奇异值分解(Singular value decomposition )奇异值分解非常有用,对于矩阵A(p*q),存在U(p*p),V(q*q),B(p*q)(由对角阵与增广行或列组成),满足A = U*B*VU和V中分别是A的奇异向量,而B是A的奇异值。AA'的特征向量组成U,特征值组成B'B,A'A的特征向量组成V,特征值(与AA'相同)组成BB'。因此,奇异值分解和特征值问题紧密联系。如果A是复矩阵,B中的奇异值仍然是实数。SVD提供了一些关于A的信息,例如非零奇异值的数目(B的阶数)和A的阶数相同,一旦阶数确定,那么U的前k列构成了A的列向量空间的正交基。三、在数值分析中,由于数值计算误差,测量误差,噪声以及病态矩阵,零奇异值通常显示为很小的数目。将一个矩阵分解为比较简单或者性质比较熟悉的矩阵之组合,方便讨论和计算。由于矩阵的特征值和特征向量在化矩阵为对角形的问题中占有特殊位置, 因此矩阵的特征值分解。尽管矩阵的特征值具有非常好的性质,但是并不是总能正确地表示矩阵的“大小”。矩阵的奇异值和按奇异值分解是矩阵理论和应用中十分重要的内容,已成为多变量反馈控制系统最重要最基本的分析工具之一,奇异值实际上是复数标量绝对值概念的推广, 表示了反馈控制系统的输出/输入增益,能反映控制系统的特性。

我的毕业论文题目是矩阵的乘法及其应用~个人感觉相当简单~我是数学与应用数学专业

两个矩阵相似时会用到 这两个矩阵的迹相等,由此可以确定一些带有有参数的矩阵

对角矩阵的应用毕业论文

这种老掉牙的课题写了干什么?前人已经研究的透彻不能再透彻了。既然写文章,搞研究就要真的做了点实质性的东西出来,否则只是浪费时间。

告诉你拟就会写吗。不如我给你写得了

1,求出一个矩阵的全部互异的特征值a1,a2……

2,对每个特征值,求特征矩阵a1I-A的秩,判断每个特征值的几何重数q=n-r(a1I-A),是否等于它的代数重数p,只要有一个不相等,A就不可 以相似对角化,否则, 就可以相似对角化

3,当可以相似对角化时,对每个特征值,求方程组,(aiI-A)X=0的一个基础解系

4,令P=这些基础解系,则P-1AP=diag(a1,a2,a3……),其中有qi个特征值

扩展资料:

判断方阵是否可相似对角化的条件:

(1)充要条件:An可相似对角化的充要条件是:An有n个线性无关的特征向量;

(2)充要条件的另一种形式:An可相似对角化的充要条件是:An的k重特征值满足n-r(λE-A)=k

(3)充分条件:如果An的n个特征值两两不同,那么An一定可以相似对角化;

(4)充分条件:如果An是实对称矩阵,那么An一定可以相似对角化。

【注】分析方阵是否可以相似对角化,关键是看线性无关的特征向量的个数,而求特征向量之前,必须先求出特征值。

掌握实对称矩阵的特征值和特征向量的性质

(1)不同特征值的特征向量一定正交

(2)k重特征值一定满足满足n-r(λE-A)=k

【注】由性质(2)可知,实对称矩阵一定可以相似对角化;且有(1)可知,实对称矩阵一定可以正交相似对角化。

会求把对称矩阵正交相似化的正交矩阵

【注】熟练掌握施密特正交化的公式;特别注意的是:只需要对同一个特征值求出的基础解系进行正交化,不同特征值对应的特征向量一定正交(当然除非你计算出错了会发现不正交)。

3、实对称矩阵的特殊考点:

实对称矩阵一定可以相似对角化,利用这个性质可以得到很多结论,比如:

(1)实对称矩阵的秩等于非零特征值的个数

这个结论只对实对称矩阵成立,不要错误地使用。

(2)两个实对称矩阵,如果特征值相同,一定相似,同样地,对于一般矩阵,这个结论也是不成立的。

实对称矩阵在二次型中的应用

使用正交变换把二次型化为标准型使用的方法本质上就是实对称矩阵的正交相似对角化。

1,求出一个矩阵的全部互异的特征值a1,a2……2,对每个特征值,求特征矩阵a1I-A的秩,判断每个特征值的几何重数q=n-r(a1I-A),是否等于它的代数重数p,只要有一个不相等,A就不可 以相似对角化,否则, 就可以相似对角化3,当可以相似对角化时,对每个特征值,求方程组,(aiI-A)X=0的一个基础解系4,令P=这些基础解系,则P-1AP=diag(a1,a2,a3……),其中有qi个特征值

相关百科
热门百科
首页
发表服务