论文投稿百科

基因编辑工程

发布时间:2024-07-01 11:45:37

基因编辑工程

基因编辑技术,可以用于编辑动植物甚至病毒的基因。通过改变基因让其改变性状,对人来说当然是有益的,不过目前这个技术并不完善。如果人类真正的掌握了基因编辑技术,那么就相当于掌握了任何物种的生物源代码,可以随意改变其性状向人类有益的地方发展。

什么是基因编辑技术?

举个非常简单的例子,夏天的蚊子非常惹人讨厌,赶也赶不走,杀也杀不尽,而且一咬一个包,奇痒无比。那么人类就可以通过基因编辑技术,对公蚊子进行基因编辑,比如让公蚊子不孕不育,这样就会减少文字的出生率。或者利用基因编辑技术制造一种病毒,只在蚊子之间传染,感染后蚊子便不吸食人血。

再比如说基因编辑技术运用于人类,在婴儿出生前就可以采用基因编辑技术对其性状进行改变,比如说改变它的毛发基因。想要什么颜色的头发?棕色还是黑色,或者改变其皮肤的基因,黑皮肤还是黄皮肤都可以随意进行改变。只不过这项技术有违伦理道德。而且目前基因编辑技术并不成熟,并不知道经过编辑之后该物种会不会产生突变或变异从而产生不可估量的后果,所以目前人类并不敢滥用基因编辑技术。

基因编辑技术,可用于编辑动植物甚至病毒的基因。通过改变基因让其改变性状,对人来说当然是有益的,但目前这个技术并不完善。如果人类真的掌握了基因编辑技术,就相当于掌握了任何物种的生物源代码,可以随意改变其性状向人类有益的地方发展。 那样的话真是太疯狂了。

想学基因编辑该学生物技术专业。

基因编辑是生物技术专业。基因编辑(GenomeEditing),又称基因组工程,是遗传工程的一种,是指在活体基因组中进行DNA插入、删除、修改或替换的一项技术。

生物技术毕业生应获得以下几方面的知识和能力:

1、掌握数学、物理、化学等方面的基本理论和基本知识;

2、掌握基础生物学、生物化学、分子生物学、微生物学、基因工程、发酵工程及细胞工程等方面的基本理论、基本知识和基本实验技能,以及生物技术及其产品开发的基本原理和基本方法;

3、了解相近专业的一般原理和知识;

4、熟悉国家生物技术产业政策、知识产权及生物工程安全条例等有关政策和法规;

5、了解生物技术的理论前沿、应用前景和最新发展动态,以及生物技术产业发展状况;

6、掌握资料查询、文献检索及运用现代信息技术获取相关信息的基本方法;具有一定的实验设计,创造实验条件,归纳、整理、分析实验结果,撰写论文,参与学术交流的能力。

排放冷却是对流冷却的另一种。与再生冷却不同,用于排放冷却的冷却剂对推力室冷却吸热后不进入燃烧室参与燃烧,而是排放出去。直接排放冷却剂会降低推力室比冲,因此需要尽可能减少用于排放冷却的冷却剂流量,同时只在受热相对不严重的喷管出口段采用排放冷却。还有一种是辐射冷却,其热流由燃烧产物传给推力室,再由推力室室壁想周围空间辐射散热。辐射冷却的特点是简单、结构质量小。主要应用于大喷管的延伸段和采用耐高温材料的小推力发动机推力室。在组织推力室内冷却时,是通过在推力室内壁表面建立温度相对较低的液体或气体保护层,以减少传给推力室室壁的热流,降低壁面温度,实现冷却。内冷却主要分为头部组织的内冷却(屏蔽冷却)、膜冷却和发汗冷却三种方法。推力室采用内冷却措施后,由于需要降低保护层的温度,所以燃烧室壁面附近的混合比不同于中心区域的最佳混合比(多数情况下采用富燃料的近壁层),造成混合比沿燃烧室横截面分布不均匀,使燃烧效率有一定程度的降低。膜冷却与屏蔽冷却类似,是通过在内壁面附近建立均匀、稳定的冷却液膜或气膜保护层,对推力室内壁进行冷却,只是用于建立保护层的冷却剂不是喷注器喷入的,而是通过专门的冷却带供入。冷却带一般布置在燃烧室或喷管收敛段的一个横截面上。沿燃烧室长度方向上可以有若干条冷却带。为提高膜的稳定性,冷却剂常常经各冷却带上的缝隙或小孔流入采用发汗冷却时,推力室内壁或部分内壁由多孔材料制成,其孔径为数十微米。多孔材料通常用金属粉末烧结而成,或用金属网压制而成。此情况下,尽可能使材料中的微孔分布均匀,是单位面积上的孔数增多。液体冷却剂渗入内壁,建立起保护膜,使传给壁的热流密度下降。当用于发汗冷却的液体冷却剂流量高于某一临界值,在推力室内壁附近形成的是液膜。当冷却剂流量低于临界值流量时,内壁温度会高于当前压力下的冷却剂沸点,部分或全部冷却剂蒸发,形成气膜。除了以上热防护外,还有其他热防护方法如:烧蚀冷却、隔热冷却、热熔式冷却以及室壁的复合防护等。3 高焓气体发生器热防护方案综合上述方法结合实际情况,便得到高焓气体发生器的热防护方法。高焓气体发生器的燃烧室与液体火箭发动机的不同,省去前面的推力室部分,使得其结构更简单而有效。那么,所涉及到的热防护即为对燃烧室室壁的热防护部分。由于燃料进入燃烧室内迅速分解并放出大量

基因编辑

什么是基因编辑技术

基因编辑是一种新兴的比较精确的能对生物体基因组特定目标基因进行修饰的一种基因工程技术。目前最高效最常用的基因编辑方法是利用CRISPR/Cas9技术进行体内体外的基因编辑。这个系统的原理是利用gRNA特异性识别靶序列,并引导Cas9核酸内切酶对靶序列的PAM上游进行切割,从而造成靶位点DNA双链断裂,随之利用细胞的非同源末端连接(NHEJ)或同源重组(HDR)的方式对切割位点进行修复,实现DNA水平的敲除、敲入或点突变。

排放冷却是对流冷却的另一种。与再生冷却不同,用于排放冷却的冷却剂对推力室冷却吸热后不进入燃烧室参与燃烧,而是排放出去。直接排放冷却剂会降低推力室比冲,因此需要尽可能减少用于排放冷却的冷却剂流量,同时只在受热相对不严重的喷管出口段采用排放冷却。还有一种是辐射冷却,其热流由燃烧产物传给推力室,再由推力室室壁想周围空间辐射散热。辐射冷却的特点是简单、结构质量小。主要应用于大喷管的延伸段和采用耐高温材料的小推力发动机推力室。在组织推力室内冷却时,是通过在推力室内壁表面建立温度相对较低的液体或气体保护层,以减少传给推力室室壁的热流,降低壁面温度,实现冷却。内冷却主要分为头部组织的内冷却(屏蔽冷却)、膜冷却和发汗冷却三种方法。推力室采用内冷却措施后,由于需要降低保护层的温度,所以燃烧室壁面附近的混合比不同于中心区域的最佳混合比(多数情况下采用富燃料的近壁层),造成混合比沿燃烧室横截面分布不均匀,使燃烧效率有一定程度的降低。膜冷却与屏蔽冷却类似,是通过在内壁面附近建立均匀、稳定的冷却液膜或气膜保护层,对推力室内壁进行冷却,只是用于建立保护层的冷却剂不是喷注器喷入的,而是通过专门的冷却带供入。冷却带一般布置在燃烧室或喷管收敛段的一个横截面上。沿燃烧室长度方向上可以有若干条冷却带。为提高膜的稳定性,冷却剂常常经各冷却带上的缝隙或小孔流入采用发汗冷却时,推力室内壁或部分内壁由多孔材料制成,其孔径为数十微米。多孔材料通常用金属粉末烧结而成,或用金属网压制而成。此情况下,尽可能使材料中的微孔分布均匀,是单位面积上的孔数增多。液体冷却剂渗入内壁,建立起保护膜,使传给壁的热流密度下降。当用于发汗冷却的液体冷却剂流量高于某一临界值,在推力室内壁附近形成的是液膜。当冷却剂流量低于临界值流量时,内壁温度会高于当前压力下的冷却剂沸点,部分或全部冷却剂蒸发,形成气膜。除了以上热防护外,还有其他热防护方法如:烧蚀冷却、隔热冷却、热熔式冷却以及室壁的复合防护等。3 高焓气体发生器热防护方案综合上述方法结合实际情况,便得到高焓气体发生器的热防护方法。高焓气体发生器的燃烧室与液体火箭发动机的不同,省去前面的推力室部分,使得其结构更简单而有效。那么,所涉及到的热防护即为对燃烧室室壁的热防护部分。由于燃料进入燃烧室内迅速分解并放出大量

即便当前不能,以后会能的。基因编辑技术指能够让人类对目标基因进行“编辑”,实现对特定DNA片段的敲除、加入等。在过去几年中, 以ZFN (zinc-finger nucleases)和TALEN (transcription activator-like effector nucleases)为代表的序列特异性核酸酶技术以其能够高效率地进行定点基因组编辑, 在基础研究、基因治疗和遗传改良等方面展示出了巨大的潜力。而CRISPR/Cas9技术自问世以来,就有着其它基因编辑技术无可比拟的优势,技术不断改进后,更被认为能够在活细胞中最有效、最便捷地“编辑”任何基因。

crispr基因编辑技术

基因编辑革命先驱者詹妮弗·杜德纳讲述CRISPR技术的发现历史,作用机理个应用前景

CRISPR技术是一种简单而强大的基因组编辑工具。它使研究人员能够很容易地改变DNA序列和修改基因功能。它的许多潜在应用包括纠正遗传缺陷、治疗和防止疾病传播以及改良作物。然而,它的承诺也引起了伦理问题。

在流行用法中,“CRISPR”(发音为“crisper”)是“CRISPR-Cas9”的缩写。CRISPRs是DNA的特殊延伸。蛋白质Cas9(或“CRISPR相关”)是一种类似于一对分子剪刀的酶,能够切割DNA链。

CRISPR技术是根据细菌和古细菌(单细胞微生物领域)的自然防御机制改编而成的。这些生物体利用CRISPR衍生的RNA和各种Cas蛋白(包括Cas9)来抵御病毒和其他异物的攻击。他们这样做主要是通过切割和破坏外国侵略者的DNA。当这些成分被转移到其他更复杂的有机体中时,它允许对基因进行操作或“编辑”。

直到2017年,没有人真正知道这个过程是什么样子的。在2017年11月10日发表在《自然通讯》杂志上的一篇论文中,由金泽大学的Shibata Mikihiro和东京大学的Hiroshi Nishimasu领导的一个研究小组展示了CRISPR第一次运行时的样子。[一个惊人的新GIF显示CRISPR咀嚼DNA]

CRISPRs:“CRISPR”代表“有规律间隔的短回文重复序列簇”。它是DNA的一个特殊区域,具有两个明显的特征:核苷酸重复序列和间隔序列的存在。核苷酸的重复序列——DNA的组成部分——分布在CRISPR区域。间隔序列是散布在这些重复序列中的DNA片段。

对于细菌来说,间隔序列是从先前攻击有机体的病毒中提取的。它们作为一个记忆库,使细菌能够识别病毒并抵御未来的攻击。

这是由食品配料公司Danisco的Rodolphe Barrangou和一组研究人员首次通过实验证明的。在2007年发表在《科学》杂志上的一篇论文中,研究人员以酸奶和其他乳制品培养物中常见的嗜热链球菌为模型。他们观察到,病毒攻击后,新的间隔蛋白被整合到CRISPR区域。此外,这些间隔区的DNA序列与病毒基因组的部分序列相同。他们还通过取出或放入新的病毒DNA序列来操纵间隔区。通过这种方式,他们能够改变细菌对特定病毒攻击的抵抗力。因此,研究人员证实了CRISPR在调节细菌免疫中的作用。

CRISPR RNA(crRNA):一旦一个间隔基被结合并且病毒再次攻击,CRISPR的一部分被转录并加工成crisprrna或“crRNA”。CRISPR的核苷酸序列作为模板产生互补的单链RNA序列。根据Jennifer Doudna和Emmanuelle Charpentier在2014年发表在《科学》杂志上的一篇评论,每个crRNA由一个核苷酸重复序列和一个间隔部分组成。

Cas9:Cas9蛋白是一种切割外来DNA的酶。

该蛋白通常与两个RNA分子结合:crRNA和另一个称为tracrRNA(或“反式激活crRNA”)。两人随后将Cas9引导至目标地点,在那里进行切割。这片DNA是对crRNA的20个核苷酸延伸的补充。

使用两个独立的区域,或其结构上的“域”,Cas9切割DNA双螺旋的两条链,使所谓的“双链断裂”,根据2014年的科学文章。

有一个内置的安全机制,它确保Cas9不会在基因组中的任何地方被切断。已知短DNA序列s-PAMs(“邻近原间隔基序”)作为标记,与目标DNA序列相邻。如果Cas9复合物的目标DNA序列旁边没有PAM,它就不会被切割。根据《自然生物技术》(Nature Biotechnology)2014年发表的一篇评论,这可能是Cas9从未攻击细菌CRISPR区的一个原因。

不同生物体的基因组在其DNA序列中编码一系列信息和指令。基因组编辑包括改变这些序列,从而改变信息。这可以通过在DNA中插入一个切口或一个断裂,并诱细胞的自然DNA修复机制来引入人们想要的改变来实现。CRISPR-Cas9提供了一种方法。

在2012年,两篇关键的研究论文发表在《科学》和《国家科学院学报》上,这两篇论文帮助细菌CRISPR-Cas9转化为一个简单的、可编程的基因组编辑工具。

这项研究由不同的小组进行,结论:Cas9可以直接切割DNA的任何区域。这可以通过简单地改变crRNA的核苷酸序列来实现,crRNA与互补的DNA靶点结合。在2012年的《科学》文章中,Martin Jinek和他的同事们进一步简化了这个系统,将crRNA和tracrRNA融合在一起形成一个单一的“导向RNA”。因此,基因组编辑只需要两个组成部分:导向RNA和Cas9蛋白。

,哈佛医学院遗传学教授乔治·丘奇说:“你设计了一段20个核苷酸碱基对,它们与你想要编辑的基因相匹配。”。构建了与这20对碱基互补的RNA分子。丘奇强调了确保核苷酸序列只在目标基因中发现,而在基因组中没有其他发现的重要性。”然后,RNA加上蛋白质[Cas9]会像剪刀一样在那个位置切割DNA,理想情况下是在别的地方,“他解释道,”一旦DNA被切割,细胞的自然修复机制就会启动,并将突变或其他变化引入基因组。这有两种可能发生的方式。根据斯坦福大学的亨廷顿外展项目,一种修复方法是将两个切口粘在一起。这种被称为“非同源末端连接”的方法容易引入错误。核苷酸意外插入或删除,导致突变,从而破坏基因。在第二种方法中,通过用核苷酸序列填充间隙来固定断裂。为了做到这一点,细胞使用短链DNA作为模板。科学家可以提供他们选择的DNA模板,从而写入他们想要的任何基因,或纠正突变。

CRISPR-Cas9近年来变得流行起来。Church指出,这项技术易于使用,其效率大约是之前最好的基因组编辑工具(称为TALENS)的四倍,美国麻省理工学院和哈佛大学博德研究所的丘奇和张峰实验室的研究人员首次发表了在实验环境中使用CRISPR-Cas9编辑人体细胞的报告。利用人类疾病的体外(实验室)和动物模型进行的研究表明,该技术可以有效地纠正遗传缺陷。根据《自然生物技术》杂志2016年发表的一篇评论文章,此类疾病的例子包括囊性纤维化、白内障和范科尼贫血。这些研究为人类的治疗应用铺平了道路。

“我认为公众对CRISPR的认识非常集中于临床上使用基因编辑治疗疾病的想法,”纽约基因组中心的内维尔·桑贾纳和纽约大学生物、神经科学和生理学助理教授说这无疑是一个令人兴奋的可能性,但这只是一小部分。

CRISPR技术也被应用于食品和农业工业,以设计益生菌培养物和疫苗食用工业培养物(例如酸奶)以防病毒。它还被用于提高作物的产量、耐旱性和营养特性。

另一个潜在的应用是创造基因驱动。这些是遗传系统,它增加了一个特殊的性状从父母传给后代的机会。最终,根据Wyss研究所的研究,这种特性会在几代人中传播到整个群体。根据2016年《自然生物技术》的文章,基因驱动可以通过增强疾病载体(雌性冈比亚按蚊)的不育性来帮助控制疟疾等疾病的传播。此外,根据Kenh Oye及其同事在2014年发表在《科学》杂志上的一篇文章,基因驱动也可用于根除入侵物种,逆转对杀虫剂和除草剂的抗性,Church告诉Live Science:“CRISPR-Cas9并非没有缺点,

“我认为CRISPR最大的局限是它没有百分之百的效率。”。此外,基因组编辑效率可能会有所不同。根据Doudna和Charpentier在2014年发表的一篇科学文章,在一项在水稻上进行的研究中,接受Cas9 RNA复合物的细胞中,近50%发生了基因编辑。然而,其他的分析表明,根据目标,编辑效率可以达到80%或更高。

也有“目标外效应”的现象,即DNA在目标以外的位置被切割。这可能导致意外突变的引入。此外,丘奇还指出,即使系统按目标进行了削减,也有可能得不到精确的编辑。他称之为“基因组破坏”。

CRISPR技术的许多潜在应用提出了关于篡改基因组的伦理价值和后果的问题。

在2014年的科学文章中,Oye和同事们指出了使用基因驱动器的潜在生态影响。一个引进的性状可以通过杂交从目标群体传播到其他有机体。基因驱动也会降低目标群体的遗传多样性。

对人类胚胎和生殖细胞(如 *** 和卵子)进行基因修饰被称为生殖系编辑。由于这些细胞的变化可以遗传给下一代,使用CRISPR技术进行生殖系编辑已经引起了许多伦理问题。

的可变功效、偏离目标的效果和不精确的编辑都会带来安全风险。此外,还有许多科学界尚不清楚的问题。在2015年发表在《科学》杂志上的一篇文章中,大卫巴尔的摩和一组科学家、伦理学家和法律专家指出,生殖系编辑增加了对后代产生意外后果的可能性,“因为我们对人类遗传学、基因与环境相互作用的知识有限,以及疾病的途径(包括一种疾病与同一病人的其他情况或疾病之间的相互作用)。

其他伦理问题更为微妙。我们是否应该在未经后代同意的情况下,做出可能从根本上影响后代的改变?如果使用生殖系编辑从一种治疗工具转变为一种增强工具,以适应各种人类特征,会怎么样?

为了解决这些问题,国家科学、工程和医学院编写了一份全面的报告,其中包括基因组编辑的指导方针和建议。

尽管国家科学院敦促谨慎从事生殖系编辑,他们强调“谨慎并不意味着禁止”,他们建议只在导致严重疾病的基因上进行生殖系编辑,并且只有在没有其他合理的治疗方法的情况下才进行。在其他标准中,他们强调需要有关于健康风险和益处的数据,以及在临床试验期间需要持续监督。他们也推荐

最近有许多基于CRISPR的研究项目生物化学家和CRISPR专家萨姆·斯特恩伯格(Sam Sternberg)说:“由于CRISPR,基础研究发现的速度已经爆炸了。”他是加利福尼亚州伯克利市Caribou Biosciences Inc.的技术开发小组负责人,该公司正在开发基于CRISPR的医药、农业解决方案,以及生物研究。

这里是一些最新的发现:

“Live Science contributor Alina Bradford的附加报告”

附加资源

基因编辑婴儿死了

现在他们被人们呵护着成长,因为他们免疫了艾滋,但是无法免疫其他的病毒感染。

科技部副部长徐南平表示,2003年颁布的《人胚胎干细胞研究伦理指导原则》规定,可以以研究为目的,对人体胚胎实施基因编辑和修饰,但体外培养期限自受精或者核移植开始不得超过14天。而本次“基因编辑婴儿”如果确认已出生,属于被明令禁止的,将按照中国有关法律和条例进行处理。

南方科技大学副教授贺建奎在第二届人类基因组编辑峰会召开前一天(11月26日)宣布:一对基因编辑婴儿于2018年11月在中国健康诞生。

这是一对双胞胎姐妹——露露和娜娜,她们在胚胎形成时经过基因剪刀CRISPR/Cas9对其生殖细胞核中一个基因(CCR5)进行了编辑修改,使得她们出生后即能天然抵抗艾滋病。这是世界首例免疫艾滋病的基因编辑婴儿。

自从该消息发布后,引起了相当大的风波。不说国际上如何反映,就是国内也是反对声一片。有122个科学家联名信明确反对该项研究;南方科技大学直接否认贺建奎是该校副教授,指出已经从该校停薪留职。

而所有信息明确指向的合作医院——深圳和美妇儿科医院直接否认,甚至表示双胞胎也不是该院出生的。随后,广东省卫生健康委员会表示,针对这一大众关注的热点事件,省卫健委已组织力量展开调查,并将及时向社会公布调查结果。

2018年11月26日,南方科技大学副教授贺建奎宣布一对名为露露和娜娜的基因编辑婴儿于11月在中国健康诞生,由于这对双胞胎的一个基因(CCR5)经过修改,她们出生后即能天然抵抗艾滋病病毒HIV。这一消息迅速激起轩然大波,震动了世界。

2018年11月26日,国家卫健委回应"基因编辑婴儿"事件,依法依规处理。11月27日,科技部副部长徐南平表示,本次“基因编辑婴儿”如果确认已出生,属于被明令禁止的,将按照中国有关法律和条例进行处理。

中国科协生命科学学会联合体发表声明,坚决反对有违科学精神和伦理道德的所谓科学研究与生物技术应用。11月28日,国家卫生健康委员会、科学技术部发布了关于“免疫艾滋病基因编辑婴儿”有关信息的回应:对违法违规行为坚决予以查处。

2019年1月21日,从广东省“基因编辑婴儿事件”调查组获悉,现已初步查明,该事件系南方科技大学副教授贺建奎为追逐个人名利,自筹资金,蓄意逃避监管,私自组织有关人员,实施国家明令禁止的以生殖为目的的人类胚胎基因编辑活动。

12月30日,“基因编辑婴儿”案在深圳市南山区人民法院一审公开宣判。贺建奎、张仁礼、覃金洲等3名被告人因共同非法实施以生殖为目的的人类胚胎基因编辑和生殖医疗活动,构成非法行医罪,分别被依法追究刑事责任。

参考资料来源:百度百科-基因编辑婴儿事件

基因编辑婴儿会带来的风险:有严重缺乏科学评估验证,安全性存在不可预知风险。

在伦理与道德上,在严重缺乏科学评估验证,安全性存在不可预知风险的情况下,贸然开展以生殖为目的的人类生殖细胞基因编辑临床操作,严重违背了基本伦理规范和科学道德。

扩展资料:

科技工作者必须加强科学道德自律,强化自我管束,在探索和创新活动中必须遵守相应的伦理道德准则和法律法规。针对科学技术发展中出现的新情况、新挑战,科技界要深入思考,认真研究,未雨绸缪,加强教育,完善相关行业规范和伦理指南,以保证科技界从事负责任的研究。

有关部门要动态完善相关法规,严格审查监管程序,适时推进有关立法工作,严密防范科研伦理不端行为发生。

参考资料:中国新闻网-工程院:“基因编辑婴儿”严重违背伦理和科学道德

用实践和真理辩证统一关系,分析基因婴儿事件如下:(1)实践是有条件的,真理也是相对的(即在一定条件下);婴儿的基因编辑实践尚不成熟,无法发展成为真理;(2)真理是在实践中检验并发展着的,实践的成功与失败,都有可能推动真理的呈现;基因编辑婴儿的实践能否经得起推敲与考验,会随着时间不断发展。(3)婴儿的基因编辑涉及技术操作性和伦理问题,从科学真理和伦理道德上尚未均走通的事,实践起来必然引发舆论关注。

2021年基因编辑进展

随着科技的不断发展,经过不断的努力,实现了在碱基编辑器上直接 DNA 进行化学反应,来精准编辑基因进行自由替换

历时22年,研究人员终于从头到尾破译了完整的人类基因组序列。

钛媒体App4月1日消息,据科技日报,全球顶级期刊《Science》(科学)杂志今天凌晨连发6篇论文报告,公布了人类基因组测序的最新进展:国家人类基因组研究中心(NHGRI)组成的端粒到端粒 (T2T) 联盟科学团队,通过新的技术研究出全球第一个完整的、无间隙的人类基因组序列,首次揭示了高度相同的节段重复基因组区域及其在人类基因组中的变异。

这是对标准人类参考基因组,即2013年发布的参考基因组序列(GRCh38)的“重大升级”,增加了之前整条染色体上隐藏的DNA片段,破译了缺失的大约2亿个DNA碱基对以及2000多个新基因——占人类基因组的8%。

这篇研究成果意义重大。科研人员揭示的完整人类基因组序列,是世界上最复杂的谜题之一,这一研究使得人类第一次看到最完整的、无间隙的DNA碱基基因序列,对于人类了解基因组变异的全谱,以及某些疾病的遗传贡献至关重要,将会推动与癌症、出生缺陷和衰老相关的研究与科学发展。

同时,这也是《Science》创刊141年来,首次在同一期杂志中连发6篇论文揭示人类基因组研究。

本论文作者,圣路易斯华盛顿大学医学院遗传学家Ting Wang(音译:王庭)表示,此次拥有完整的基因组,一定会改善生物医学研究。“毫无疑问,这是一项重要的成就。”

据中国科学报,人类基因组计划参与者、中国科学院北京基因组研究所研究员于军表示,假如把人类基因组序列比作一辆非常复杂的汽车,那么与20年前完成的人类基因组草图相比,完整的新序列非常于增添了更多零件。

“我们看到了以前从未阅读过的章节,”本论文通讯作者,华盛顿大学霍华德-休斯医学研究所(HHMI)研究员Evan Eichler(艾希勒)表示,这是全行业的一件大事。

Science封面图研究人员到底破译了什么?人类基因组由超过60亿个独立的DNA碱基、大约2-3万个蛋白质编码基因(整个基因仍未有统一答案)组成,与黑猩猩等其他灵长类动物的数量差不多,分布在23对染色体上。为了读取数以万计的基因组,科学家们首先将所有的DNA链切成几百到几千个单位长度的DNA片段。然后用测序机器读取每个片段中的各个碱基,科学家们试图按照正确的顺序组装这些片段,就像拼凑一个复杂的拼图。

2001年2月12日,由6国科学家共同参与的国际人类基因组计划首次公布人类基因组图谱及初步分析结果;2003年4月15日,公布了人类基因组序列草图。

然而,由于技术限制,当初的人类基因组计划留下了大约8%的“空白”间隙。这部分很难被测序,由高度重复、复杂的DNA块组成,其中包含功能基因以及位于染色体中间和末端的着丝粒和端粒。

实际上,核心的挑战在于,基因组的某些区域反复重复相同的碱基。重复的区域包括着丝粒和核糖体DNA等,过去无法按照正确的顺序组装一些被切碎的片段。这就像拥有相同的拼图碎片一样,科学家们不知道哪块碎片在哪里,因此基因组图中留下了很大的空白。

而且大多数细胞包含两个基因组--一个来自父亲,一个来自母亲。当研究人员试图组装所有的片段时,来自父母双方的序列可能混合在一起,掩盖了个体基因组内的实际变异。

如今,研究人员通过新的纳米机器设备与核心技术,实现了新的无间隙版本T2T-CHM13,由亿个碱基对和19969个蛋白质编码基因组成。增加了近2亿个碱基对的新DNA序列,包括99个可能编码蛋白质的基因和其中近2000个需要进一步研究的候选基因。

这些候选基因大多数是失活的,但其中115个仍然可能表达。团队还在人类基因组中发现了大约200万个额外的变异,其中622个出现在与医学相关的基因中。此外,新序列还纠正了GRCh38中的数千个结构错误。

近端着丝粒染色体的显示图样(来源:论文)

具体而言,新序列填补的空白包括人类5条染色体的整个短臂,并覆盖了基因组中一些最复杂的区域。其中包括在重要的染色体结构中及其周围发现的高度重复的DNA序列,如染色体末端的端粒和在细胞分裂过程中协调复制染色体分离的着丝粒。

此外,新序列还揭示了以前未被发现的节段重复,即在基因组中复制的长DNA片段,并揭示了关于着丝粒周围区域的前所未见的细节。这一区域内的变异性可能为人类祖先如何进化提供新证据。

值得一提的是,本研究成果的关键进展,其实是利用了新的技术设备——英国牛津纳米孔技术公司和太平洋生物科学公司制造的快速迭代的基因测序机器。

早在2017年,国家人类基因组研究中心(NHGRI)负责人Adam Phillippy(亚当-菲利皮),以及加州大学圣克鲁兹分校(UCSC)的凯伦-米加意识到,新的纳米孔机器实现了一次准确读取100万个DNA碱基的能力,可以为最终解决基因组难点打开了大门。

大约在同一时间,华盛顿大学霍华德-休斯医学研究所(HHMI)Evan Eichler(艾希勒)领导的科研团队已经证明,使用太平洋生物科学公司的设备技术,可以解决更复杂形式的遗传变异技术。

因此,三人一起创办了端粒到端粒(T2T)联盟,利用全球约100名科学家团队资源,使其加快了研究佳偶。

随后,该团队连续六个月不间断地利用快速迭代的纳米孔基因测序机器,并请来几十位科学家来组装这些基因片段并分析结果。最终利用设备、技术等,实现了长读数测序读数,并将长读测序与牛津纳米孔的数据相结合,准确率超过了99%,填补了全球基因学研究的空白。

一直到2020年夏天,该团队已经拼上了两条染色体。在新冠疫情爆发的期间,团队通过Slack等通讯工具进行远程工作,获得了另外21条染色体,将每个染色体从一端或端粒排序到另一端。而且,科研人员人员还试图组装基因组中最难的区域,即着丝粒中高度重复的DNA序列。

最终,通过长时间的研究与团队合作,该团队成功实现了对每个染色体进行了测序,包含了编码用于制造核糖体的RNA的基因的多个拷贝,总共400个。

2021年6月,这份研究成果首次发表在预印版平台bioRxiv上。经过同行评议等,如今一系列论文登上了《Science》(科学)杂志。

研究人员在会后采访中表示,下一阶段的研究将对不同人的基因组进行测序,以充分掌握人类基因的多样性、作用以及人类与近亲、其它灵长类动物的关系。

年增速超20%,中国百亿基因市场前景广阔

随着生物学技术的不断发展,新的行业层出不穷,本次研究成果所属的中国基因测序行业是一个百亿级市场,拥有广阔的发展前景。

根据千际投行的研究统计数据显示,早在2019年,基因测序所在的全球生物制品行业市场规模就达到了3172亿元,未来五年有望达到万亿级别。其中,2019年中国基因测序行业市场规模约为149亿元,年增速超20%。

近年来,基因测序行业得到迅速发展,吸引了大量资本和企业的进入。从产业上下游来看,基因测序产业链主要包括了上游仪器、中游服务提供商以及下游终端应用三个环节。涉及到的公司包括华大基因、达安基因、药明康德,以及互联网巨头苹果公司、亚马逊、谷歌、微软等。

整个产业看似简单,但上游的基因测序仪及配套试剂是整个产业链壁垒最高的部分,下游终端应用还涉及领域覆盖面非常广,既包括医疗领域的人体基因组、人体微生物基因组以及基础研究领域,还包括非医疗领域的环境治理、石油存储探测、农牧软文种等。

实际上,早在几十年前,医学界就对此有过尝试,将狒狒的心脏移植给了一个罹患先天性心脏病的孩子。如今,通过嵌合的方式,通过基因编辑的方式,甚至是通过合成生物学的方式,实现了猪心脏在人类身上的移植。

华大集团CEO尹烨曾表示,其实,今天人类进入了生命时代,我们关心的则是自身的基因和健康,以此就将去整合物理世界、信息世界和生命世界。

在应用场景不断拓宽,测序能力进一步加强的共同促进作用下,全球基因测序行业市场规模将不断增长,中国基因行业市场规模虽然与全球头部企业差距较大,但是在国内市场中仍然占据较大的优势,未来要想提高国际市场份额,还需进一步加强技术研发,未来发展具有巨大的想象空间。

今天,新的基因组序列研究成果,是科研人员必不可少的第一步,也是实现商业化的重要一步。

Evan Eichler(艾希勒)表示,“现在我们有了一块罗塞塔石碑(注:一块制作于公元前196年的花岗闪长岩石碑,解读出已经失传千余年的埃及象形文之意义与结构),可以在未来研究数十万个其他基因组的完整编译。”

本文是一篇中文综述,于2018年12月发表于《生物技术通报》,文章对CRISPR/Cas9系统中的引导RNA研究进展进行了综述,围绕引导 RNA 的序列组成、结构特征以及转录产生方式这3方面内容,展望引导RNA今后的研究发展趋势。这是一篇较为全面的了解引导RNA的文章。 文章的通讯作者-许建平博士,是先正达集团北京创新中心的资深首席科学家,担任先正达基因编辑技术团队总监,分子技术团队总监等职务。 本人也于2021年6月19日,在山东济南举办的中国遗传学会基因组编辑分会上,现场聆听了许博士的学术报告(见下图)。 下面把文章全文分享给大家,感兴趣的可以学习了解。

因为这个难题是科学家一直探索的问题,他的发现对以后的研究有很大的帮助。

相关百科
热门百科
首页
发表服务