论文投稿百科

光催化论文文献

发布时间:2024-07-05 02:48:53

光催化论文文献

纳米光催化技术在大气污染治理中的应用论文

在学习和工作中,大家都跟论文打过交道吧,论文是学术界进行成果交流的工具。如何写一篇有思想、有文采的论文呢?下面是我整理的纳米光催化技术在大气污染治理中的应用论文,欢迎大家分享。

摘要: 现如今,环境污染问题已成为全球性的问题,加大环境保护力度,促进环境与经济的协调发展是世界经济发展的主要手段。大气污染作为环境污染中的一种,加大大气污染的治理力度,缓解温室效应给社会发展带来的难题,有利于实现和谐社会的建设。基于此,文章主要对纳米光催化技术进行了分析,并对其在大气污染治理中的应用进行了研究,以供相关人士参考。

关键词: 纳米光催化技术;大气污染;治理应用

纳米光催化技术在大气污染中的应用,可以提高大气污染的治理水平。由于纳米光催化技术的光敏效果较好,容易达到其反应条件,效率高,对环境及人体具有无害的特点,所以,纳米光催化技术已成为当前社会最先进的空气净化技术。对纳米光催化技术进行分析与研究,充分了解其在大气污染治理中的应用,有利于解决我国严重的.雾霾问题,优化人们的生活环境,促进经济的快速发展。

一、纳米光催化技术理论

太阳能作为“取之不尽,用之不竭”的清洁能源之一,在能源短缺和环境污染日趋严重的今天,其有效利用显得尤为重要。而光催化污染物降解技术既能充分利用太阳能,又能解决大气污染物的处理难题。纳米光催化技术作为一种新型的大气污染物治理方法,在大气污染控制方面具有巨大的应用潜力。与传统的物理吸附法(活性炭)相比,利用纳米光催化技术净化空气具有以下优势:催化降解反应可以在常温常压下进行;操作简便;在太阳光的激发下,能有效去除大气中的污染物如NOx和VOCs,不会造成二次污染。

光催化技术理论主要基于“Fu-jishima-Honda”效应,20世纪70年代后期,Frank和Bard关于水中氰化物在TiO2表面的光分解研究及Carey等关于多氯联苯在TiO2紫外光下的降解研究,极大推动了光催化技术在环境污染治理方面的研究。半导体材料的催化氧化机理如下:当能量大于禁带宽度的光照射半导体催化剂时,价带(va-lenceband,VB)上的电子被激发,跃过禁带进入导带(conductionband,CB),而在价带上产生与电子()对应的空穴(),即产生自由电子-空穴对,活泼的电子、空穴在电场作用下可以分别从半导体的导带、价带迁移至半导体/吸附物界面,而且跃过界面,使被吸附物还原和氧化;同时也存在着电子、空穴的复合。价带空穴()将吸附的H2O氧化为羟基自由基(),导带电子()将空气中的O2还原为超氧自由基()。这两个自由基(),是降解污染物的关键活性基团。其反应原理如下:

二、纳米光催化技术的实际应用

纳米光催化技术在大气污染治理中的应用比较广泛,TiO2作为应用效果较好的光催化剂,具有较好的抗酸碱性、耐光腐蚀性,其化学性质稳定性较好,来源丰富,能源较大,具有产生的光生电子和空穴的电势电位较高等优势。但是,在实际的纳米光催化技术应用过程中,容易受到催化剂、有机物浓度的影响。因此,在大气污染治理过程中,相关人员应重视这些因素对光催化技术的影响。

(一)催化剂对纳米光催化技术的影响。纳米光催化技术的原理,是利用催化剂净化大气的。在反应过程中,催化剂的表面积、粒径等等,都会影响纳米光催化反应。如:当催化剂的粒径不断缩小时,溶液中的单位质量粒子就会增多,虽然光的吸附效率有所增加,但是,光吸收不易饱和;当催化剂系统的表面积增加时,就意味着催化剂参加反应的面积增大,有利于催化反应的进行,反之,则不利于催化反应的进行。另外,催化剂的表面羟基及混晶效应,也是影响纳米光催化反应的另一因素。

(二)光源与光强对大气污染的影响。纳米光催化技术常用的光源有黑光灯、高低压汞灯、紫外灯、杀菌灯等,波长在200-400nm的范围内。一般情况下,在纳米光催化反应过程中,其光的强度越强,催化反应速度就会逐渐趋于常数,但是,光量子效率则会随着光强度的变化而变化。此外,PH值不同,外加助催化剂及无机盐等等,在一定程度上也会影响纳米光催化技术的反应。

三、纳米光催化大气污染控制技术与其他技术的联用

(一)室内污染控制与通风技术。目前常用室内环境净化与通风技术有主动式和被动式2种。前者是将室内环境净化装置与机械通风系统有机结合起来成为一个整体,而后者采用空气净化过滤器结合自然通风系统。这两种技术均涉及高效通风技术,前者主要针对外源性污染,可采用高效低阻过滤的方式;而后者主要针对内源式污染,比较有效的方式为各种室内净化技术。目前主要通风方式包括混合通风、置换通风和个性化送风。混合通风和置换通风均以营造室内可感风环境为目的,若将空调设定温度调高必然会引起室内人员热舒适性的降低;个性化送风由于其实际使用中制约较多,在实际工程中较少。

(二)过滤技术。过滤技术主要包括纳米纤维过滤技术、光催化纤维过滤技术、膜过滤技术。纳米纤维过滤技术具有一定梯度结构的复合过滤材料可大大提高过滤性能,已用于室内空气净化、水体有机物净化等领域,有望实现大规模工程化应用;纳米光催化技术是一种新型的处理大气污染物的方法,在大气污染控制方面具有巨大的应用潜力。

四、结语

在大气污染治理过程中,单独利用纳米光催化技术的效果并不是特别明显,因此,在治理大气污染过程中,相关人员应将纳米光催化技术与其他先进的大气净化技术进行有效结合,提高大气污染治理效果,保证人们生活健康。

参考文献:

[1]曹军骥,黄宇.纳米光催化技术在大气污染治理中的应用[J].科技导报,2016,17:64-71.

[2]王韶昱.光催化技术在室内空气净化器中的应用研究[D].浙江大学,2013.

第一作者:Zhong-Hua Xue

通讯作者:张华彬教授、楼雄文教授

通讯单位:阿卜杜拉国王 科技 大学、南洋理工大学

DOI:

全文速览

人工光催化能源转化是通过直接收集太阳能以解决能源危机和环境问题的一种非常有趣的策略,其中开发高效的光催化剂是推动光催化反应走向实际应用的中心任务。近年来,单原子催化剂(SACs)因其最大的原子利用率和优异的催化活性,而成为一种极具前景的光催化剂候选材料。在本文中,作者综述了面向光催化能源转化系统的SACs研究最新进展及当前面临的挑战,并系统性地探讨了单原子光催化过程中电荷分离/传输和分子吸附/活化的基本原理。作者不仅概述了单原子活性位点如何促进光生电子-空穴的传输并促进高效光活化循环的构建,而且全面介绍了SACs在各种光催化领域中的广泛应用。通过综述上述进展,并利用与SACs光催化整体发展相关的潜在解决方案以应对未来的一些挑战,从而为将来的SACs光催化能源转化研究提供一些启示。

背景介绍

对于无限且可自由获取的太阳能利用,人工光催化能源转化提供了一种很有希望的战略,即通过减少温室气体排放以克服全球能源危机和应对日益不稳定的气候变化。例如,光催化分解水是实现可持续清洁H2燃料生产的一种技术简单且具有成本竞争力的途径,而光催化CO2还原则是一种可部署且极具吸引力的战略,其将惰性的CO2转化为高附加值化学品并最终关闭碳循环。然而,传统的光催化系统在很大程度上依赖于催化剂的能带结构和表面结构,并由于电子-空穴对的分离缓慢和表面活性中心有限等问题,使其性能仍远不能令人满意。尽管已经付出巨大努力,但迄今为止多相光催化剂仍存在许多不足之处,如电荷载流子复合速度快、分子活化效率低等,从而显著抑制从催化剂表面到反应物物种的电荷传输与分子的进一步转化。

基于上述情况,SACs成为设计和开发经济高效的光催化剂和助催化剂的新选择及理念。有利的是,单原子光催化系统中孤立的反应位点不仅可以为光催化反应创建更多的活性中心,而且还可以拓宽光吸收范围以提高电荷分离/传输效率。所构建出的单原子光催化剂的构型具有高度可调控性,从而提供足够的光阱和表面结构精细修饰以吸附和活化分子。此外,单原子光催化剂的结构简单性可以使科研人员能够得出更精确的结构-性能相关性,从而更好地理解光催化的基本机理,并促进目标光催化剂的合理设计。尽管SACs在光催化系统中的应用研究仍处于起步阶段,但上述这些优势足以使其成为促进光催化反应的候选材料。为了推动这一新兴但发展迅速的领域,及时对单原子光催化应用的最新进展进行综述将不仅有助于揭示其主要工作机理,而且有助于启发未来的研究方向。据作者所知,尽管此前的文献中有一些非常优秀的综述重点介绍SACs的背景和合成策略,以及它们在光催化方面的独特优势;然而,这些综述并没有涵盖与单原子光催化中能带工程和能量转移路线高度相关的基本原理。

图1 . SACs用于光催化能源转化示意图。

在该综述中,作者重点从文献中提炼出单原子光催化的关键原理,以全面了解其工作机理,从而促进更高效单原子光催化剂的合理设计与制备。作者首先简要介绍了SACs光催化应用的成就和特点,随后对单原子光催化剂的合成策略及相关结构表征方法进行概述。更重要的是,作者通过举例说明了单原子金属位点加速表面电荷分离/传输的机理以及单原子光催化中分子的吸附和活化。此外,作者还介绍了SACs在众所周知的新兴光催化领域中的应用以及最新进展。最后,作者对SACs在光催化能源转化方面的未来发展方向提出了一些挑战与展望,有望为光催化中SACs的理解和工程提供一些新见解,并进一步加速这一重要新兴研究领域的发展。

图文解析

图2 . 从Webof Science中分析出单原子光催化的文献总结 :(a)通过搜索单原子光催化关键词获得的文献数量和引用数量(截止于2021-12-12);(b)近年来不同单原子光催化体系的百分比分布。

图3 . 单原子光催化的发展成就和特性表征时间线。

图4 . 单原子光催化剂的合成策略。

图5 . 孤立金属位点能带调控。

总结与展望

综上所述,本文详细地总结了SACs的主要原理及其在光催化领域的广泛应用。毫无疑问,单原子光催化剂因其可以加速电荷分离/传输效率和增强分子吸附/活化能力,是构建高效光催化系统的优秀候选材料。除了此前已获得的杰出成就外,单原子光催化剂的 探索 和实际应用还面临着许多挑战,包括如何实现孤立反应位点的长期稳定性和高负载等。为了克服当前的挑战,作者提出以下十点未来的研究方向和解决方案:

1. 单原子催化剂相对较低的稳定性,是其在光催化领域中应用的一个明显缺点。由于反应中间体或副产物与孤立金属位点的强键合而产生的毒化效应,可能使单原子光催化剂失活。此外,光生电子诱导的单原子反应位点向零价态金属原子的转化,也可能导致孤立金属位点的聚集形成团簇或纳米颗粒。在理想条件下,增强金属-载体相互作用和优化光催化反应,可能在一定程度上能够防止反应过程中孤立金属位点的团聚。

2. 尽管单原子光催化剂的能量转换效率在平均反应位点方面具有显著优势,但由于不饱和活性位点的密度较低,其整体性能仍远不能令人满意。因此,应进一步修饰半导体载体的表面结构以增强相互作用,可以增加单原子的负载量。此外,在基底中引入足够多的锚定位点(例如N、P和S)或特定官能团(例如吡啶和-NH2)也可用于提供丰富的结合位点以稳定单原子。

3. 精确控制反应位点的配位几何结构和单原子的数量,对于调节单原子光催化剂的活性和选择性至关重要,但这仍然是一个巨大的挑战。在合成过程中需要精确控制孤立反应位点和半导体载体之间的相互作用,以构建所需构型。通过基于结构-性能关系的理论预测,也可以提供一种可行的策略。此外,在实践中非常需要提高表征策略的准确性以准确分析单原子光催化剂的配位构型。

4. 探究两个相邻单体之间的协同作用,对于控制催化性能和加深对多相催化机理的理解具有巨大的潜力。因此,双原子或多金属单原子光催化剂的可控合成是非常必要的。由于双原子或多金属单原子光催化剂中相邻反应位点之间的协同效应,反应物的反应路径可能会大大改变,从而导致反应势垒显著降低,催化性能得到显著提高。

5. 自然界中的光催化和酶催化系统为从太阳能到化学能的转化提供了一个精妙的蓝图,其在环境条件下通常表现出卓越的活性和选择性。通过模仿自然光合反应中酶催化等活性位点的结构,可以实现更高水平SACs的仿生设计,以进一步提高SACs的整体光催化能源转化性能。将末端功能配体或孤立金属位点周围的附加活性位点进行集成,可能是开发仿生单原子光催化剂的可行策略。

6. 大量单原子光催化剂是基于含缺陷的半导体材料所开发,其中含有丰富配位金属原子的表面结合位点,从而实现增强的电荷分离/传输。然而,高浓度的缺陷可能会恶化半导体材料的结晶度,从而增加单原子光催化剂体相或表面上电子-空穴对的大量复合。因此,作者建议仔细调控单原子光催化剂中半导体载体的结构(如结晶度、缺陷),并进一步确定其对整个反应过程的贡献。

7. 对单金属位点诱导的单原子光催化剂中电荷分离/传输过程的完整理解目前仍然具有挑战性。为此,将超快瞬态吸收光谱与电化学或显微镜技术相结合,是研究光催化反应中能量转移和捕获过程的有力手段。开发实时超快瞬态吸收技术来跟踪光催化中光生载流子的动力学,将进一步加深对电子泵模型和孤立金属位点诱导电子陷阱态的理解。

8. 追踪光催化反应过程中活性位点的结构演化,不仅可以深入了解单原子的光活化过程,还可以为合理设计高效的光催化剂提供指导。然而,目前相关的实验证据仍然非常有限,通常无法理解光催化系统中SACs的分子吸附/活化机制。利用原位或operando研究结合各种技术如拉曼光谱、XAS和XPS,可能是检测反应过程中孤立金属位点化学状态和配位环境动态演化的极好方法。

9. 将理论计算与实验结果相结合,已成为研究催化剂电子结构和光催化过程中分子吸附/活化的有力手段,其可以揭示出单原子光催化在原子尺度上的工作机理。然而,光催化反应过程中活性中心动态演化的理论模型,在实现对单原子光活化循环的合理认识方面相当有限。结合不同的模拟方法,可为 探索 单原子光催化剂在反应过程中的演化和揭示光催化活化机理提供合理途径。

10. 作为人工智能最有力的组成部分之一,基于计算机算法的机器学习可通过数据挖掘实现了快速可靠的预测,其在 探索 高效催化剂方面也显示出巨大潜力。因此, 探索 合适的机器学习方法并结合理论计算数据来预测单原子光催化剂的催化性能,并找出目标反应的理想构型是非常必要的。机器学习的实施还将为光催化反应构建结构-性能关系,从而提高对单原子光催化的理解,并促进具有高度应用潜力的高效单原子光催化剂合理开发。

文献来源

Zhong-Hua Xue, Deyan Luan, Huabin Zhang, Xiong Wen (David) Lou. Single-atom catalysts for photocatalytic energy conversion. Joule. 2022. DOI:.

文献链接:

光催化期刊

Applied Surface Science期刊的中科院分区基础版为2区,升级版为1区,最新期刊影响因子为. 本期刊所在地为荷兰,隶属于ELSEVIER出版集团,每年24期。

期刊的五年影响因子变化情况,该期刊影响因子逐年上升,最新数据为。

Applied Surface Science涵盖对表面,界面,纳米结构及其应用的更好理解的主题。该期刊与特定表面分析技术和/或计算方法以及此类结构的处理有关的原子和分子水平的科学研究有关。

该期刊包含如下主题:

·催化、电催化和光催化的表面科学;

·沉积和生长;

二维组装;通过定向能量沉积(激光、离子或电子束)或其他技术(如等离子体)进行表面和界面改性;表面工程和功能化;功能性表面和涂层;表面电化学和腐蚀保护策略·应用于能量转换和储存的表面科学;表面纳米技术和器件;半导体——表面和界面;生物界面

光催化的核心期刊推荐--催化学报

催化学报

大核心期刊、CSCD核心期刊、统计源期刊收录。催化学报主要报道能源、环境、有机化工、新材料、多相催化、均相催化、生物催化、光催化、电催化、表面化学、催化动力学等学科领域的基础性和应用基础性的最新研究成果。

2.光学学报

是国内外公开发行的光学学术刊物,反映中国光学科技的新概念、新成果、新进展。 《光学学报》内容主要包括量子光学、非线性光学、适应光学、纤维光学、激光与物质相互作用、激光器件、全息和信息处理、光学元件和...

3.应用光学

《应用光学》是一本综合性技术类期刊,综合因子为:,被北大核心期刊、CSCD核心期刊收录。应用光学重点反映光电子技术国内外的发展状况、研究水平、应用情况,密切跟踪国外高新技术的研究动态。

普通期刊:

中国光学

基础光学、发光理论与发光技术、光谱学与光谱技术、激光与激光技术、集成光学与器件、纤维光学与器件、光通信、薄膜光学与技术、光电子技术与器件、信息光学、新型光学材料、光学工艺、现代光学仪器与光学测试、光...

光催化期刊一区

Applied Surface Science期刊的中科院分区基础版为2区,升级版为1区,最新期刊影响因子为. 本期刊所在地为荷兰,隶属于ELSEVIER出版集团,每年24期。

期刊的五年影响因子变化情况,该期刊影响因子逐年上升,最新数据为。

Applied Surface Science涵盖对表面,界面,纳米结构及其应用的更好理解的主题。该期刊与特定表面分析技术和/或计算方法以及此类结构的处理有关的原子和分子水平的科学研究有关。

该期刊包含如下主题:

·催化、电催化和光催化的表面科学;

·沉积和生长;

二维组装;通过定向能量沉积(激光、离子或电子束)或其他技术(如等离子体)进行表面和界面改性;表面工程和功能化;功能性表面和涂层;表面电化学和腐蚀保护策略·应用于能量转换和储存的表面科学;表面纳米技术和器件;半导体——表面和界面;生物界面

光催化的核心期刊推荐--催化学报

催化学报

大核心期刊、CSCD核心期刊、统计源期刊收录。催化学报主要报道能源、环境、有机化工、新材料、多相催化、均相催化、生物催化、光催化、电催化、表面化学、催化动力学等学科领域的基础性和应用基础性的最新研究成果。

2.光学学报

是国内外公开发行的光学学术刊物,反映中国光学科技的新概念、新成果、新进展。 《光学学报》内容主要包括量子光学、非线性光学、适应光学、纤维光学、激光与物质相互作用、激光器件、全息和信息处理、光学元件和...

3.应用光学

《应用光学》是一本综合性技术类期刊,综合因子为:,被北大核心期刊、CSCD核心期刊收录。应用光学重点反映光电子技术国内外的发展状况、研究水平、应用情况,密切跟踪国外高新技术的研究动态。

普通期刊:

中国光学

基础光学、发光理论与发光技术、光谱学与光谱技术、激光与激光技术、集成光学与器件、纤维光学与器件、光通信、薄膜光学与技术、光电子技术与器件、信息光学、新型光学材料、光学工艺、现代光学仪器与光学测试、光...

光催化剂研究论文

纳米光催化技术在大气污染治理中的应用论文

在学习和工作中,大家都跟论文打过交道吧,论文是学术界进行成果交流的工具。如何写一篇有思想、有文采的论文呢?下面是我整理的纳米光催化技术在大气污染治理中的应用论文,欢迎大家分享。

摘要: 现如今,环境污染问题已成为全球性的问题,加大环境保护力度,促进环境与经济的协调发展是世界经济发展的主要手段。大气污染作为环境污染中的一种,加大大气污染的治理力度,缓解温室效应给社会发展带来的难题,有利于实现和谐社会的建设。基于此,文章主要对纳米光催化技术进行了分析,并对其在大气污染治理中的应用进行了研究,以供相关人士参考。

关键词: 纳米光催化技术;大气污染;治理应用

纳米光催化技术在大气污染中的应用,可以提高大气污染的治理水平。由于纳米光催化技术的光敏效果较好,容易达到其反应条件,效率高,对环境及人体具有无害的特点,所以,纳米光催化技术已成为当前社会最先进的空气净化技术。对纳米光催化技术进行分析与研究,充分了解其在大气污染治理中的应用,有利于解决我国严重的.雾霾问题,优化人们的生活环境,促进经济的快速发展。

一、纳米光催化技术理论

太阳能作为“取之不尽,用之不竭”的清洁能源之一,在能源短缺和环境污染日趋严重的今天,其有效利用显得尤为重要。而光催化污染物降解技术既能充分利用太阳能,又能解决大气污染物的处理难题。纳米光催化技术作为一种新型的大气污染物治理方法,在大气污染控制方面具有巨大的应用潜力。与传统的物理吸附法(活性炭)相比,利用纳米光催化技术净化空气具有以下优势:催化降解反应可以在常温常压下进行;操作简便;在太阳光的激发下,能有效去除大气中的污染物如NOx和VOCs,不会造成二次污染。

光催化技术理论主要基于“Fu-jishima-Honda”效应,20世纪70年代后期,Frank和Bard关于水中氰化物在TiO2表面的光分解研究及Carey等关于多氯联苯在TiO2紫外光下的降解研究,极大推动了光催化技术在环境污染治理方面的研究。半导体材料的催化氧化机理如下:当能量大于禁带宽度的光照射半导体催化剂时,价带(va-lenceband,VB)上的电子被激发,跃过禁带进入导带(conductionband,CB),而在价带上产生与电子()对应的空穴(),即产生自由电子-空穴对,活泼的电子、空穴在电场作用下可以分别从半导体的导带、价带迁移至半导体/吸附物界面,而且跃过界面,使被吸附物还原和氧化;同时也存在着电子、空穴的复合。价带空穴()将吸附的H2O氧化为羟基自由基(),导带电子()将空气中的O2还原为超氧自由基()。这两个自由基(),是降解污染物的关键活性基团。其反应原理如下:

二、纳米光催化技术的实际应用

纳米光催化技术在大气污染治理中的应用比较广泛,TiO2作为应用效果较好的光催化剂,具有较好的抗酸碱性、耐光腐蚀性,其化学性质稳定性较好,来源丰富,能源较大,具有产生的光生电子和空穴的电势电位较高等优势。但是,在实际的纳米光催化技术应用过程中,容易受到催化剂、有机物浓度的影响。因此,在大气污染治理过程中,相关人员应重视这些因素对光催化技术的影响。

(一)催化剂对纳米光催化技术的影响。纳米光催化技术的原理,是利用催化剂净化大气的。在反应过程中,催化剂的表面积、粒径等等,都会影响纳米光催化反应。如:当催化剂的粒径不断缩小时,溶液中的单位质量粒子就会增多,虽然光的吸附效率有所增加,但是,光吸收不易饱和;当催化剂系统的表面积增加时,就意味着催化剂参加反应的面积增大,有利于催化反应的进行,反之,则不利于催化反应的进行。另外,催化剂的表面羟基及混晶效应,也是影响纳米光催化反应的另一因素。

(二)光源与光强对大气污染的影响。纳米光催化技术常用的光源有黑光灯、高低压汞灯、紫外灯、杀菌灯等,波长在200-400nm的范围内。一般情况下,在纳米光催化反应过程中,其光的强度越强,催化反应速度就会逐渐趋于常数,但是,光量子效率则会随着光强度的变化而变化。此外,PH值不同,外加助催化剂及无机盐等等,在一定程度上也会影响纳米光催化技术的反应。

三、纳米光催化大气污染控制技术与其他技术的联用

(一)室内污染控制与通风技术。目前常用室内环境净化与通风技术有主动式和被动式2种。前者是将室内环境净化装置与机械通风系统有机结合起来成为一个整体,而后者采用空气净化过滤器结合自然通风系统。这两种技术均涉及高效通风技术,前者主要针对外源性污染,可采用高效低阻过滤的方式;而后者主要针对内源式污染,比较有效的方式为各种室内净化技术。目前主要通风方式包括混合通风、置换通风和个性化送风。混合通风和置换通风均以营造室内可感风环境为目的,若将空调设定温度调高必然会引起室内人员热舒适性的降低;个性化送风由于其实际使用中制约较多,在实际工程中较少。

(二)过滤技术。过滤技术主要包括纳米纤维过滤技术、光催化纤维过滤技术、膜过滤技术。纳米纤维过滤技术具有一定梯度结构的复合过滤材料可大大提高过滤性能,已用于室内空气净化、水体有机物净化等领域,有望实现大规模工程化应用;纳米光催化技术是一种新型的处理大气污染物的方法,在大气污染控制方面具有巨大的应用潜力。

四、结语

在大气污染治理过程中,单独利用纳米光催化技术的效果并不是特别明显,因此,在治理大气污染过程中,相关人员应将纳米光催化技术与其他先进的大气净化技术进行有效结合,提高大气污染治理效果,保证人们生活健康。

参考文献:

[1]曹军骥,黄宇.纳米光催化技术在大气污染治理中的应用[J].科技导报,2016,17:64-71.

[2]王韶昱.光催化技术在室内空气净化器中的应用研究[D].浙江大学,2013.

第一作者:Jingrun Ran, Hongping Zhang, Sijia Fu

通讯作者: 乔世璋

通讯单位:澳大利亚阿德莱德大学

论文DOI:

全文速览

高性能、低成本的光催化剂是实现大规模太阳能制氢的关键。本文报告了一种液体剥离方法来制备 NiPS3 超薄纳米片。该纳米片可作为一种多功能平台,能够极大地改善各种光催化剂(包括 TiO2、CdS、In2ZnS4 和 C3N4)上的光催化产氢性能。与纯 CdS 相比,NiPS3/CdS 异质结具有最高的改进因子(~1,667%),实现了极高的可见光诱导制氢速率(13,600 μmol h-1g-1)。这种更好的性能归因于强关联的 NiPS3/CdS 界面确保了有效的电子-空穴解离/传输;以及 NiPS3超薄纳米片上丰富的原子级边缘 P/S 位点和活化的S 位点,促进了氢的析出。这些发现通过最先进的表征和理论计算来证明。该工作首次证明了金属磷硫属化物可作为一个通用平台的巨大潜力,能极大地提高不同光催化剂的性能。

背景介绍

不可再生化石燃料的大量消耗导致全球能源短缺、环境污染和气候变化。因此,寻找可再生、清洁和无碳的能源至关重要。太阳能光催化水分解产氢 (H2) 被认为是一种有前途、廉价且环境友好的技术,其可利用阳光生产绿色 H2 燃料。然而,迄今为止开发的光催化剂效率低、稳定性差、价格高,严重制约了光催化工艺的大规模应用。因此,寻找高活性、稳定和廉价的光催化剂对于实现工业规模的太阳能制氢具有重要意义。高性能光催化剂的合理设计和制备,不仅需要从原子级尺度理解结构/组成-活性关系,还需要精确而深刻地理解光催化剂中的光生电子-空穴的动力学和热力学。结合原子分辨率像差校正扫描透射电子显微镜 (AC-STEM) 和理论计算,研究人员可以提供关于光催化剂的结构/组成-活性关系的原子级阐释。特别是,通过上述方法可以准确地揭示光催化剂中存在的各种原子级反应位点,例如单原子、边缘位点和缺陷。另一方面,光生电子和空穴的分离/迁移在确定整体光催化性能方面起着关键作用。因此,必须采用各种先进的表征,例如超快瞬态吸收光谱 (TAS)、瞬态表面光电压 (SPV) 光谱、瞬态光致发光 (PL) 光谱和原位 X 射线光电子能谱 (XPS),对光生电子/空穴的动力学和热力学进行时间分辨研究,特别是在光催化剂表面。此外,将上述两种策略结合起来,同时评估光催化剂的原子级结构/组成-性能关系和时间分辨电荷载流子分离/转移机制,是具有重要意义的。

图文解析

图1. NiPS3 UNS的理论预测、表征和应用。a NiPS3 单层 (100) 边缘的 HER 活性 P、S2 和 S3 位点。b NiPS3单层 (010) 边缘的 HER 活性 S 位点。c 在 NiPS3单层的 (1-30) 边缘处的 HER 活性 P1、S2、S3 和 S8 位点。d 在 NiPS3单层的 (100) 边缘、(010) 边缘或 (1-30) 边缘的活性位点上,遵循 Volmer-Heyrovsky 路径的 HER 吉布斯自由能图。e 在NiPS3 单层的 (100) 或(1-30) 边缘的活性位点上,遵循 Volmer-Tafel 路径的 HER 吉布斯自由能图。NiPS3 UNS 的 f 基面和 g 边缘的原子分辨率HAADF-STEM 图像。h NiPS3 UNS 的(基于同步加速器的)Ni L2,3-edge XANES。i TiO2、NiPS3/TiO2、CdS、NiPS3/CdS、In2ZnS4、NiPS3/In2ZnS4、C3N4和 NiPS3/C3N4在约 vol% 三乙醇胺水溶液中的光催化产氢速率。

图 2. 的形貌、微观结构和化学成分。a TEM 图像和 b HRTEM 图像。在 N 中,c NiPS3 UNSs 和 d CdS NPs的原子分辨率 HAADF-STEM 图像。e 的EDX 光谱。f 的 Ni L2,3-edge EELS 光谱。g 的 HAADF-STEM 图像,和 中 h Cd、i S、j Ni 和 k P 元素的相应元素mapping图像。注意:将不同体积的 NiPS3 UNSs 乙醇溶液(、、 和  ml)分别添加到研钵中,在室温下通过机械研磨与 50 mg CdS NPs 复合。所得的光催化剂分别标记为 、、 和 。纯 CdS NPs 表示为。

图 3. NiPS3/CdS 系统中的强电子相互作用。a NiPS3UNS、 和 的高分辨率Ni 2p XPS 光谱。、 和 的基于同步加速器的S L-edge XANES。c NiPS3 UNS 和 的 Ni L2,3-edge EELS 光谱。d CdS(200)晶面和e NiPS3(002)晶面沿z轴方向的平均电位分布。f NiPS3/CdS系统的微分电荷密度图。金色和青色等值面分别表示净电子积累和耗尽区域。考虑到在 17 vol% 三乙醇胺水溶液中的溶剂化效应,计算了功函数和微分电荷密度图。

图 4. NiPS3/CdS体系的光催化产氢活性和载流子动力学。a 在~ vol% 三乙醇胺水溶液中使用可见光照射(λ > 400 nm)的、、、、 和 NiPS3UNSs 的光催化产氢速率。 和 的b稳态和 c 瞬态 PL 光谱。c 插图显示了 和 的拟合电荷寿命。用 400 nm 激光脉冲激发后,乙醇溶液中 d 和 e 的二维伪彩色 TA 光谱。f 和 g 在不同泵-探针延迟时间下的 TA 光谱。h 和 的归一化衰减动力学和拟合线,基于约 516 和约 514 nm 处的GSB 峰。i 和 的归一化衰减动力学和拟合线,基于 ~480 和 ~474nm 处的ESA 峰。

图 5. NiPS3/CdS 系统中的电荷载流子动力学。 和 的a瞬态和 b 稳态 SPV 光谱。c 在黑暗和光照下进行的 的 CPD 测试。NiPS3UNSs 的高分辨率 d Ni 2p、e P 2p 和 f S 2p XPS 光谱,分别在光照打开和关闭的情况下测量。的高分辨率g Ni 2p、h Cd 3d 和 i S 2p XPS光谱,分别在光照打开和关闭的情况下测量。

图 6. NiPS3/CdS体系的表面催化反应和光吸收。a  M KOH 水溶液中,、、NiPS3UNSs 和 20 wt% Pt/C 的电化学 HER 活性。b NiPS3/CdS 的俯视原子结构,显示了 Ni、P 和 S 位点。c 在 NiPS3/CdS 体系中的NiPS3 基面的 Ni、P 和 S 位点上,遵循 Volmer-Heyrovsky 路径计算的 HER 自由能图。d 在NiPS3/CdS体系中的NiPS3 基面的Ni、P和S位点上,遵循 Volmer-Tafel途径计算的HER自由能图。e 、、、 和 的 UV-Vis 漫反射光谱。f 分别在氙灯照射 (λ > 400 nm) 和630-nm LED 下,在约 vol% 三乙醇胺水溶液中测量 的光催化产氢速率。考虑到 17 vol% 三乙醇胺水溶液中的溶剂化效应,进行了所有的Gibbs 自由能计算。

图 7. NiPS3/CdS体系中的光催化产氢机理示意图。在NiPS3/CdS体系中,可见光激发(λ > 400 nm)、光生电子和空穴的分离/迁移、以及表面催化反应的示意图。

总结与展望

基于上述结果,本文首次报道了一种简便的液体剥离技术,来合成具有超薄厚度(~ nm)的2D NiPS3。合成后的 NiPS3 UNS 可作为通用平台,用于提高各种光催化剂(包括TiO2, CdS, In2ZnS4 和 C3N4)的光驱动产氢性能。与原始 CdS相比,所制备的 NiPS3/CdS 复合物显示出最高的光催化产氢 (H2) 活性(13,600 μmol h-1 g-1),最大增强因子约为 1667%。NiPS3/CdS 的性能大幅提升有两个原因:(1)NiPS3 UNS 和 CdS NPs 之间的电子耦合界面明显促进了电荷载流子的分离/传输。特别是,光生空穴向 CdS NPs 表面的传输显著增强,这是由牺牲电子供体三乙醇胺收集的。因此,CdS NPs 上剩余的光生电子可以有效地迁移到 NiPS3 UNSs 以产生 H2;(2) 在NiPS3 UNSs中,大量的原子级P/S边缘位点和活化的S位点极大地促进了H2的析出反应。这些发现得到了理论计算和高级表征的支持,例如原子分辨率 AC-STEM、瞬态 PL 光谱、瞬态SPV 光谱、超快 TAS 和原位 XPS。该研究不仅展示了 MPCx 家族作为一个通用平台的巨大潜力,可用于极大地提高各种半导体光催化剂的光催化产氢活性,更重要的是,通过了解光催化中的原子级结构/组成-活性相关性和电子-空穴动力学/热力学,实现了光催化剂的合理设计/制备。

请留下邮箱,传递论文,文章无法直接罗列

光催化研究进展论文

纳米光催化技术在大气污染治理中的应用论文

在学习和工作中,大家都跟论文打过交道吧,论文是学术界进行成果交流的工具。如何写一篇有思想、有文采的论文呢?下面是我整理的纳米光催化技术在大气污染治理中的应用论文,欢迎大家分享。

摘要: 现如今,环境污染问题已成为全球性的问题,加大环境保护力度,促进环境与经济的协调发展是世界经济发展的主要手段。大气污染作为环境污染中的一种,加大大气污染的治理力度,缓解温室效应给社会发展带来的难题,有利于实现和谐社会的建设。基于此,文章主要对纳米光催化技术进行了分析,并对其在大气污染治理中的应用进行了研究,以供相关人士参考。

关键词: 纳米光催化技术;大气污染;治理应用

纳米光催化技术在大气污染中的应用,可以提高大气污染的治理水平。由于纳米光催化技术的光敏效果较好,容易达到其反应条件,效率高,对环境及人体具有无害的特点,所以,纳米光催化技术已成为当前社会最先进的空气净化技术。对纳米光催化技术进行分析与研究,充分了解其在大气污染治理中的应用,有利于解决我国严重的.雾霾问题,优化人们的生活环境,促进经济的快速发展。

一、纳米光催化技术理论

太阳能作为“取之不尽,用之不竭”的清洁能源之一,在能源短缺和环境污染日趋严重的今天,其有效利用显得尤为重要。而光催化污染物降解技术既能充分利用太阳能,又能解决大气污染物的处理难题。纳米光催化技术作为一种新型的大气污染物治理方法,在大气污染控制方面具有巨大的应用潜力。与传统的物理吸附法(活性炭)相比,利用纳米光催化技术净化空气具有以下优势:催化降解反应可以在常温常压下进行;操作简便;在太阳光的激发下,能有效去除大气中的污染物如NOx和VOCs,不会造成二次污染。

光催化技术理论主要基于“Fu-jishima-Honda”效应,20世纪70年代后期,Frank和Bard关于水中氰化物在TiO2表面的光分解研究及Carey等关于多氯联苯在TiO2紫外光下的降解研究,极大推动了光催化技术在环境污染治理方面的研究。半导体材料的催化氧化机理如下:当能量大于禁带宽度的光照射半导体催化剂时,价带(va-lenceband,VB)上的电子被激发,跃过禁带进入导带(conductionband,CB),而在价带上产生与电子()对应的空穴(),即产生自由电子-空穴对,活泼的电子、空穴在电场作用下可以分别从半导体的导带、价带迁移至半导体/吸附物界面,而且跃过界面,使被吸附物还原和氧化;同时也存在着电子、空穴的复合。价带空穴()将吸附的H2O氧化为羟基自由基(),导带电子()将空气中的O2还原为超氧自由基()。这两个自由基(),是降解污染物的关键活性基团。其反应原理如下:

二、纳米光催化技术的实际应用

纳米光催化技术在大气污染治理中的应用比较广泛,TiO2作为应用效果较好的光催化剂,具有较好的抗酸碱性、耐光腐蚀性,其化学性质稳定性较好,来源丰富,能源较大,具有产生的光生电子和空穴的电势电位较高等优势。但是,在实际的纳米光催化技术应用过程中,容易受到催化剂、有机物浓度的影响。因此,在大气污染治理过程中,相关人员应重视这些因素对光催化技术的影响。

(一)催化剂对纳米光催化技术的影响。纳米光催化技术的原理,是利用催化剂净化大气的。在反应过程中,催化剂的表面积、粒径等等,都会影响纳米光催化反应。如:当催化剂的粒径不断缩小时,溶液中的单位质量粒子就会增多,虽然光的吸附效率有所增加,但是,光吸收不易饱和;当催化剂系统的表面积增加时,就意味着催化剂参加反应的面积增大,有利于催化反应的进行,反之,则不利于催化反应的进行。另外,催化剂的表面羟基及混晶效应,也是影响纳米光催化反应的另一因素。

(二)光源与光强对大气污染的影响。纳米光催化技术常用的光源有黑光灯、高低压汞灯、紫外灯、杀菌灯等,波长在200-400nm的范围内。一般情况下,在纳米光催化反应过程中,其光的强度越强,催化反应速度就会逐渐趋于常数,但是,光量子效率则会随着光强度的变化而变化。此外,PH值不同,外加助催化剂及无机盐等等,在一定程度上也会影响纳米光催化技术的反应。

三、纳米光催化大气污染控制技术与其他技术的联用

(一)室内污染控制与通风技术。目前常用室内环境净化与通风技术有主动式和被动式2种。前者是将室内环境净化装置与机械通风系统有机结合起来成为一个整体,而后者采用空气净化过滤器结合自然通风系统。这两种技术均涉及高效通风技术,前者主要针对外源性污染,可采用高效低阻过滤的方式;而后者主要针对内源式污染,比较有效的方式为各种室内净化技术。目前主要通风方式包括混合通风、置换通风和个性化送风。混合通风和置换通风均以营造室内可感风环境为目的,若将空调设定温度调高必然会引起室内人员热舒适性的降低;个性化送风由于其实际使用中制约较多,在实际工程中较少。

(二)过滤技术。过滤技术主要包括纳米纤维过滤技术、光催化纤维过滤技术、膜过滤技术。纳米纤维过滤技术具有一定梯度结构的复合过滤材料可大大提高过滤性能,已用于室内空气净化、水体有机物净化等领域,有望实现大规模工程化应用;纳米光催化技术是一种新型的处理大气污染物的方法,在大气污染控制方面具有巨大的应用潜力。

四、结语

在大气污染治理过程中,单独利用纳米光催化技术的效果并不是特别明显,因此,在治理大气污染过程中,相关人员应将纳米光催化技术与其他先进的大气净化技术进行有效结合,提高大气污染治理效果,保证人们生活健康。

参考文献:

[1]曹军骥,黄宇.纳米光催化技术在大气污染治理中的应用[J].科技导报,2016,17:64-71.

[2]王韶昱.光催化技术在室内空气净化器中的应用研究[D].浙江大学,2013.

AAU3D打印很高兴为您解答本科的时候接触过一段时间微生物燃料电池,给一点个人建议,仅供参考,可能很多表述不够专业,请见谅关键词:半导体、微生物、光催化意思大概是微生物燃料电池中,将光催化与微生物催化耦合在一起,促使微生物光电系统产生电子转移并产氢。针对微生物燃料电池处理废水产电的优点,以及光催化技术在制氢过程中效率低和需要添加牺牲剂的缺点,提出一种新的低成本、无污染的微生物光电化学系统产电制氢技术,阴极光生电子与阳极生物氧化产生的电子在还原制氢中的协同作用机制。

相关百科
热门百科
首页
发表服务