论文投稿百科

模糊数学论文题材

发布时间:2024-07-02 04:48:53

模糊数学论文题材

数学专业毕业论文选题方向

1动态规划及其应用问题。

2计算方法中关于误差的分析。

3微分中值定理的应用。

4模糊聚类分析在学生素质评定中的应用。

5关于古典概型的几点思考。

6浅谈数形结合在数学解题中的应用。

7高校毕业生就业竞争力分析。

8最大模原理及其推广和应用。

9 最大公因式求解算法。

10行列式的计算。

现代计算机的计算速度及贮存能力几乎达到了无与伦比的程度,它不仅可以解决复杂的数学问题,还可以参与控制航天飞机等。既然计算机有如此威力,那么为什么在判断和推理方面有时不如人脑呢? 美国加利福尼亚大学Zadeh(扎德)教授仔细的研究了这个问题,以至于他在科研工作中经常回旋与“人脑思维”、“大系统”与“计算机”的矛盾之中。1965年,他发表了论文《模糊集合论》“隶属函数”这个概念来描述现象差异中的中间过渡,从而突破了古典集合论中属于或不属于的绝对关系。Zadeh教授这一开创性的工作,标志着模糊数学这门学科的诞生。模糊数学的研究内容主要有以下三个方面:第一,研究模糊数学的理论,以及它和精确数学、随机数学的关系。查德以精确数学集合论为基础,并考虑到对数学的集合概念进行修改和推广。他提出用“模糊集合”作为表现模糊事物的数学模型。并在“模糊集合”上逐步建立运算、变换规律,开展有关的理论研究,就有可能构造出研究现实世界中的大量模糊的数学基础,能够对看来相当复杂的模糊系统进行定量的描述和处理的数学方法。在模糊集合中,给定范围内元素对它的隶属关系不一定只有“是”或“否”两种情况,而是用介于0和1之间的实数来表示隶属程度,还存在中间过渡状态。比如“老人”是个模糊概念,70岁的肯定属于老人,它的从属程度是 1,40岁的人肯定不算老人,它的从属程度为 0,按照查德给出的公式,55岁属于“老”的程度为,即“半老”,60岁属于“老”的程度。查德认为,指明各个元素的隶属集合,就等于指定了一个集合。当隶属于0和1之间值时,就是模糊集合。第二,研究模糊语言学和模糊逻辑。人类自然语言具有模糊性,人们经常接受模糊语言与模糊信息,并能做出正确的识别和判断。为了实现用自然语言跟计算机进行直接对话,就必须把人类的语言和思维过程提炼成数学模型,才能给计算机输入指令,建立合适的模糊数学模型,这是运用数学方法的关键。查德采用模糊集合理论来建立模糊语言的数学模型,使人类语言数量化、形式化。如果我们把合乎语法的标准句子的从属函数值定为1,那么,其他近义的,以及能表达相仿的思想的句子,就可以用以0到1之间的连续数来表征它从属于“正确句子”的隶属程度。这样,就把模糊语言进行定量描述,并定出一套运算、变换规则。现时,模糊语言还很不成熟,语言学家正在深入研究。人们的思维活动常常要求概念的确定性和精确性,采用形式逻辑的排中律,即:非真即假,然后进行判断和推理,得出结论。现有的计算机都是建立在二值逻辑基础上的,它在处理客观事物的确定性方面,发挥了巨大的作用,但是却不具备处理事物和概念的不确定性或模糊性的能力。为了使计算机能够模拟人脑高级智能的特点,就必须把计算机转到多值逻辑基础上,研究模糊逻辑。现时,模糊逻辑还很不成熟,尚需继续研究。第三,研究模糊数学的应用。模糊数学是以不确定性的事物为其研究对象的。模糊集合的出现是数学适应描述复杂事物的需要,查德的功绩在于用模糊集合的理论找到解决模糊性对象加以确切化,从而使研究确定性对象的数学与不确定性对象的数学沟通起来,过去精确数学、随机数学描述感到不足之处,就能得到弥补。在模糊数学中,现今已有模糊拓扑学、模糊群论、模糊图论、模糊概率、模糊语言学、模糊逻辑学等分支。

模式识别§2-1模式识别及识别的直接方法在日常生活中生活中,经常需要进行各种判断、预测。如图象文字识别、故障(疾病)的诊断、矿藏情况的判断等,其特点就是在已知各种标准类型前提下,判断识别对象属于哪个类型的问题。这样的问题就是模式识别。一、模糊模式识别的一般步骤 模式识别的问题,在模糊数学形成之前就已经存在,传统的作法主要用统计方法或语言的方法进行识别。但在多数情况下,标准类型常可用模糊集表示,用模糊数学的方法进行识别是更为合理可行的,以模糊数学为基础的模式识别方法称为模糊模式识别。 模式识别主要包括三个步骤: 第一步:提取特征,首先需要从识别对象中提取与识别有关的特征,并度量这些特征,设 分别为每个特征的度量值,于是每个识别对象 就对应一个向量 ,这一步是识别的关键,特征提取不合理,会影响识别效果。 第二步:建立标准类型的隶属函数,标准类型通常是论域 的模糊集, 是识别对象的第 个特征。 第三步:建立识别判决准则,确定某些归属原则,以判定识别对象属于哪一个标准类型。常用的判决准则有最大隶属度原则(直接法)和择近原则(间接法)两种。 二、最大的隶属度原则 若标准类型是一些表示模糊概念的模糊集,待识别对象是论域中的某一元素(个体)时,往往由于识别对象不绝对地属于某类标准类型,因而隶属度不为1,这类问题人们常常是采用称为“最大隶属度原则”的方法加以识别,这种方法(以及下面的“阈值原则”)是处理个体识别问题的,称为直接法。 最大隶属度原则:设 是 个标准类型, ,若 则认为 相对隶属于 所代表的类型。例1 通货膨胀识别问题通货膨胀状态可分成五个类型:通货稳定;轻度通货膨胀;中度通货膨胀;重度通货膨胀;恶性通货膨胀.以上五个类型依次用 (非负实数域,下同)上的模糊集 表示,其隶属函数分别为:其中对 ,表示物价上涨 。问 时,分别相对隶属于哪种类型?解 , , , , 由最大隶属原则, 应相对隶属于 ,即当物价上涨 时,应视为轻度通货膨胀; ,应相对隶属于 ,即当物价上涨 时,应视为恶性通货膨胀。三、阈值原则 在使用最大隶属度原则进行识别中,还会出现以下两种情况,其一是有时待识别对象 关于模糊集 中每一个隶属程度都相对较低,这时说明模糊集合 对元素 不能识别;其二是有时待识别对象 关于模糊集 中若干个的隶属程度都相对较高,这时还可以缩小 的识别范围,关于这两种情况有如下阈值原则。阈值原则: 是 个标准类型, 为一阈值(置信水平)令 若 则不能识别,应查找原因另作分析。若d且有 , … 则判决 相对地属于 例2 三角形识别问题我们把三角形分成等腰三角形 ,直角三角形 , 正三角形 ,非典型三角形 ,这四个标准类型,取定论域 这里 是三角形三个内角的度数,通过分析建立这四类三角形的隶属函数为:现给定, , 对上述四个标准类型的隶属度为: 由于 关于 , 的隶属程度都相对高,故采用阈值原则,取 ,因 , ,按阈值原则, 相对属于 ∩ ,即 可识别为等腰直角三角形。例3 癌细胞识别在癌细胞识别问题中细胞分成四个标准类型,即:癌细胞 ,重度核异质细胞 ,轻度核异质细胞 ,正常细胞 选取表征细胞状况的七个特征: 根据病理知识,反映细胞是否癌变的主要指标有以下六个,它们都是 上的模糊集: 上述 是适当选取的常数细胞识别中的几个标准类型分别定义为: 上述定义中的模糊集 的隶属函数为 。另两个模糊集 、 的隶属函数类似定义。给定待识别细胞 ,设 的核面积等七个特征值为 据此可算出 、 、 、 ,最后按最大隶属度原则识别。例4 冬季降雪量预报内蒙古丰镇地区流行三条谚语:(1)夏热冬雪大,(2)秋霜晚冬雪大,(3)秋分刮西北风冬雪大,现在根据三条谚语来预报丰镇地区冬季降雪量。为描述“夏热” 、秋霜晚 、秋分刮西北风 等概念,在气象现象中提取以下特征: :当年6~7月平均气温 :当年秋季初霜日期 :当年秋分日的风向与正西方向的夹角。于是模糊集 (夏热), (秋霜晚)、 (秋分刮西北风)的隶属函数可分别定义为: 其中 是丰镇地区若干年6、7月份气温的平均值, 为方差,实际预报时取 = = 其中 是若干年秋季初霜日的平均值, 是经验参数,实际预报时取 =17(即9月17日), =10(即9月10日)。取论域 ,“冬雪大”可以表示为论域 上的模糊集 ,其隶属函数为: ∧ ∨ 采用阈值原则,取阈值 ,测定当年气候因子 。计算 ,若 则预报当年冬季“多雪”,否则预报“少雪”。用这一方法对丰镇1959~1970年间隔12年作了预报,除1965年以外均报对,历史拟合率为11/12。§2-2 贴近度与模式识别的间接方法 一、贴近度 表示两个模糊集接近程度的数量指标,称为贴近度,其严格的数学定义如下: 定义1 设映射 : 满足下列条件:(1) , (2) , (3) 若 满足 有 则称映射 为 上的贴近度,称 为 与 的贴近度。贴近度的具体形式较多,以下介绍几种常见的贴近度公式 (1) Hamming 贴近度 或 (2)Euclid贴近度 或 (3)格贴近度定义7 映射 ⊙ ,(或= ⊙ )称为格贴近度,称 为 与 格贴近度。其中, (称为 与 的内积) ⊙ (称为 与 的外积)若 ,则 ⊙ 值得注意的是,这里的格贴近度是通过定义来规定的,事实上,格贴近度不满足定义1中(1),即 ,但是,当 时,格贴近度满足定义1的(1)-(3)。另外格贴近度的计算很方便,且用于表示相同类型模糊度的贴近度比较有效,所以在实际应用中也常选用格贴近度来反映模糊集接近程度。还有许多贴近度,这里不在一一介绍。贴近度主要用于模糊识别等具体问题,以上介绍的贴近度表示式各有优劣,具体应用时,应根据问题的实际情况,选用合适的贴近度。 二、模式识别的间接方法——择近原则在模式识别问题中,各标准类型(模式)一般是某个论域 上的模糊集,用模式识别的直接方法(最大隶属度原则、阈值原则)解决问题时,其识别对象是论域 中的元素。另有一类识别问题,其识别对象也是 上的模糊集,这类问题可以用下面的择近原则来识别判决。择近原则:已知 个标准类型 、 、…、 , 为待识别的对象, 上的贴近度,若 则认为 与 最贴近,判定 属于 一类。例5 岩石类型识别岩石按抗压强度可以分成五个标准类型:很差( )、差( )、较好( )、好( )、很好( )。它们都是 上的模糊集,其隶属函数如下(图2-1)0 200 400 600 900 1100 1800 2000图 2-1今有某种岩体,经实测得出其抗压强度为 上的模糊集 ,隶属函数为(图2-3)。 图 2-3 试问岩体 应属于哪一类。计算 与 的格贴近度,得: 按择近原则, 应属于 类,即 属于“较好”类( 类)的岩石。例6 小麦亲本识别在小麦杂交育种过程中,亲本选择是关键。现有五种类型的小麦亲本,它们是: :早熟型, :矮杆型, :大粒型, :高肥丰产型, :中肥丰产型。判断小麦亲本类型的主要依据是以下五种性状特征: :抽穗期, :株高, :有效穗数, :主穗粒数, :百粒重。第 种类型亲本的第 个特征,是模糊集 ,这些模糊集除 (早熟型的抽穗期)与 (矮杆型的株高)外,其余都是中间型的正态分布模糊集。为简单计,将正态分布函数展开,取前两项作它的近似值,则有 于是 的隶属函数可表示为: 而 , 的隶属函数取为偏小值型: 为确定隶属函数中的参数值,在熟知的标准类型中,每类型选出 个新本为样本,分别计算各样本的第 个特征的均值 及方差 ,取 以上参数值见表(2-1)表 2-1亲本参数性状 早熟 矮杆 大粒 高肥丰产 中肥丰产抽穗期 - 株高 - 有效穗数 主穗粒数 百粒重 现有一待识对象 ,它的第 个特征 是中间型正态分布模糊集,隶属函数可近似表示为: 。式中参数值见表(2-2)表 2-2特性参数 抽穗期 株高 有效穗数 主穗粒数 百粒重 4 70 计算识别对象 的第 个特征与第 种标准类型对应特征 的格贴近度 并定义第 种标准类型 与识别对象 的贴近度为: 计算结果列于表(2-3)表 2-3 早熟( )矮杆( )大粒( )高肥( )中肥( ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) 表(2-3)的最后一行为 与各标准类型的贴近度。由于 与 的贴近度最高(),故判定识别对象 为 代表的类型,即 为中肥丰产类型的亲本。例7 遥感土地复盖类型分类遥感是根据不同的地物对电磁波谱有不同的响应这一原理,来识别土地复盖的类型。空间遥感的一个象元相当于地面公倾地物的综合。遥感图象识别分类中,要涉及不少模糊概念,例如,“以红松为主的针叶林”就是一个没有明确界线的模糊概念。这是遥感本身的特性决定的。因此用模糊数学的方法对遥感图象进行识别分类应该是行之有效的方法。美国爱达荷大学 教授指出,国际上当以水体、沙地、森林、城镇、作物、干草作为分类单位(即标准类型)时,空间遥感的分类精度可达甚至更高。但当分类单位深入到更小的土地复盖单元时,精度就不理想了。现在将分类单位细分阶段为以下五种标准类型: :公路, :村庄农田, :红松为主的针叶林, :阔、针混交林, :白桦林。对于多波段遥感技术,假设采用 个波段,则每一地物对应一个 维数据向量 。1975年1月22日美国发射LandSat-2,提供了MSS-4,5,6,7这四个波段的数据,故有 。取论域 其中 分别为象元对应于MSS-4,5,6,7各波段的光谱强度。于是五种标准类型 可表为 上的模糊集。由于各波段光谱强度是正态分布模糊集,故第 个标准类型的( +3)波段光谱强度的隶属函数为: 定义第 种标准类型 为: 因而 其中 为若干个第 种类型第( +3)个波段光谱强度的均值, 为方差,东北凉水林场的这些参数值见表(2-4)表 2-4标准类型 MSS-4 MSS-5 MSS-6 17 45 设 为识别对象,定义 与 的贴近度为: (1)其中 = ⊙ (2)表 2-5类型N识别对象 max 判别 结果 效果 正确 正确 正确 正确 正确按 及 ⊙ (3-26)(这里 与 是 的均值与方差)。现有东北凉水林场空间遥感象元(待识别对象)五个,按(1)与(2)计算它们与五个标准类型的贴近度,计算结果在表(2-5)按择近原则进行识别判决,准确率100%。例8 雷达识别现有 个雷达类,每个雷达类可用发射频率、脉冲重复频率、脉冲宽度等特征来刻画,假设共有 个特征,第 类雷达的第 个特征可以取 个值。由于保密的需要及信号环境的日益复杂,这些特征及其取值都带有一定的模糊性。设第 类 雷达的 个特征为 类雷达的第 个特征 取值为 ,其隶属函数为中间型柯西分布,即 设 为待识别对象,它的 个特征为 的第 个特征 的隶属函数也取中间型柯西分布: 采用格贴近度,令 则 为识别对象 的第 个特征与 类雷达第 个特征贴近程度的度量。一般情况可令 ( 是各 的加权平均值,权系数 表示 个特征的重要性程度) 可作为识别对象 与第 类雷达总贴近的度量。根据 的大小可判定 属于何类雷达,但是,由于权系数 的确定有一定的模糊性, 及 的隶属函数的确定带有一定的主观性,从而导致贴近度 有一定的模糊性。因此对 及 进行模糊化处理,设 这里 , 都是 模糊数(见第五章),取 。令 的隶属函数为 则 为识别对象 与第 类雷达的贴近程度的模糊测度。为得到 所属雷达类别的确切判决,类似于阈值法则,给定水平值 ,令 若 且 唯一,则判定 为 类雷达;若 且 ,则判定 为 类雷达。用上述方法(将权系数及贴近度模糊化),经上千次仿真试验,比传统的贴近度及线性加弘平均法,误判率有所下降。第三章 模糊规划§3-1 模糊极值一、有界函数的模糊极值设 ( 为实数集) 是有界函数,求函数 的普通极值问题是求 使 满足上式的 为 在 上的最大值点, 为最大值,最大值点不一定唯一. 设 的一切最大值点的集合为 称 为 的优越集.当 时,函数在 处取到最大值 , 使 达到最优.当 时, 虽不是最大值,但对不同的 , 与最大值的差异有所不同,也就是说,对于不属于 的 ,它们的“优越性”程度有所不同,为了反映 中各点不同的优越程度,将优越集 模糊化,并利用它将极值模糊化.定义1设 是有界函数,定义 的隶属函数为 ( ) 称 为 的无条件模糊优越集称 的 的无条件模糊极大值.这里 ,它的求属函数按扩张原理为 (约定 )注 (1)当 为 的极大点,即 时 ,当 为 的极小点,即 时 , 充分必要条件是 (2)当 时, 当 时, 当 时, 因此, 反映了在模糊意义下, 对 的模糊数大值的求属程度.例1 设 , ,定义 , , , ,则 , 并且 于是 又 故 的无条件模糊极小集 定义为 的无条件极大集,显然有 且有, ,所有极小集 是极大集 的余集.二、模糊约束下有界函数的模糊极值设: 是有界函数, ,考虑 在 约束下的最大值问题,这是一个模糊规划问题,求解这个问题意味着既要最大限度地满足约束,又要最大限度地达到理想目标,为此定义如下:定义2 设目标函数 是有界函数, 是模糊约束,令 这里的 是定义1中 的无条件模糊优越集,称 为 在 约束下的条件模糊优越集,称 为 在 约束下的条件模糊极大值.它们的求属函数分别为:求解目标函数 在模糊约束 下的条件极大值有如下三个步骤: (1)求无条件模糊优越集 (2)求条件模糊优越集 (3)求条件最佳决策,即选择 ,使 就是所求的条件极大点, 就是在模糊约束 下的条件极大值.例2采区巷道布置是矿井开拓中的重要内容,其目的就是建立完善的矿井生产系统,实现采区合理集中生产,改善技术经济指标.因此,合理地选择最优巷道布置方案,对于矿井生产具有十分重要的意义.根据煤矿开采的特点和采区在矿井生产的作用,在选择最优巷道布置方案时,要求达到下列标准:(1)生产集中程度高; (2)采煤机械化程度高;(3)采区生产系统十分完善; (4)安全生产可靠性好;(5)煤炭损失率低; (6)巷道掘进费用尽可能低.上述问题,实际上就是一个模糊约束下的条件极值问题,我们可以把(1)~(5)作为模糊约束,而把(6)作为目标函数.设某矿井的采区巷道布置有六种方案可供选择,即 ={ (方案Ⅰ), (方案Ⅱ), (方案Ⅲ), (方案Ⅳ), (方案Ⅴ), (方案Ⅵ)}.经过对六种方案进行审议,评价后,将其结果列于表1方案评价项目 :生产集中程度高较低 高 较高 很高 较高 较高 :采煤机械化程度高高 较高 较高 高 很高 高 :采区生产系统完善一级 较低 较低 很高 高 较高 :安全生产可靠度高较低 一般 较低 高 一般 高 :煤炭损失率低高 较高 一般 一般 一般 很低 : 巷道掘进费用(万元) 将表1中的语言真值(评价结果)转化为各模糊约束集 , 的隶属度转化的对应关系如下:对 , , , 而言,对应关系为:很 低 较 低 一 般 较 高 高 很 高 对 而言,对应关系为很 低 较 低 一 般 较 高 高 很 高 将表1中的巷道掘进费用目标函数 用公式 计算出,因此得表2 其值语言与隶属函数转换表2方案 0 1 计算模糊判决集 为 (按列求最小) 由 根据最大求属度原则,方案四最优例3 在某种食品中投放某种调味剂,每公斤食品中的含量设为 克,对顾客爱好作调查统计,得爱好函数为 对于使爱好函数值越大的 值,所制产品越畅销,因而收益越大,但是由于成本核算等等原因,对 值需要进行限制,这种限制集合的边界是模糊的,即 的约束条件为一模糊集 ,其隶属函数为 试确定合理的剂量 ,使得在接受约束的条件下,获得最优收益.解 这是一个规划问题,分三步进行.(1) 求无条件模糊优越集 ,由于 ,令 ,得 .又当 时, , 时, ,因而 , .因此 (2) 求条件模糊优越集 其中 满足方程 (3) 选择 ,使 ,即 对目标 的可能度为,而要实现这种可能性,应选择调味剂的最佳剂量为克.需要说明的是,在本例中如果将约束条件确切化,以 的核[0,1]为约束,这是一个普通规划问题,所得结论是选择最佳剂量为1克.从约束条件看,已是100%遵守,但所能达到的最高目标相对整个目标函数来说是很低的,由 ,说明相对整个目标来说,其优越程度仅达.如果把条件放松为模糊约束条件 ,且适当降低 的水平,却可以获得较好的目标值.如例中的结果,当 时,从接受约束条件来看虽仅达,但目标函数的优越程度也升到了,从而提高了整体优化水平.由于在实际问题中,约束条件往往不是绝对的,有一定的伸缩性,模糊规划的思想就是利用这点灵活性,兼顾目标函数与约束条件综合地选择最优方案.例4 植物的种植密度与产量有密切的关系.已知某种杉树的种植密度 与产量 的关系如下: 这里 表示每公顷土地上种植的棵数, 表示每公顷土地产出木材的体积.现有一片杉树森林,其密度不均匀,估计 “大约是三千”.试估计该森林每公顷木材最高产量.解 设 表示“大约是三千”这一模糊, 的隶属函数为 估计木材产量的问题,就是求在 的约束下函数 的模糊条件极大值.为此先求有界函数 的无条件模糊优越集.因 , ,所以 在约束条件 下的条件模糊优越集为: 条件模糊极值为 ,其隶属函数为: 为求条件最佳决策 ,即满足条件 的 注意到 的隶属函数曲线是单调降的,而 是正态分布模糊集, 在约束 下的模糊最佳决策(即模糊条件极大点),是方程 的两个根当中的较小者,解之得 .由 可知, 时,接受约束的程度为,同时,相对于整体目标函数,优越程度也是.由 可知,该森林每公顷木材最高产量估计为 .§3-2 模糊线性规划一、普通线性规划普通线性规划的一般形式为 目标函数 约束条件 矩阵表达形式 其中线性规划问题的标准形式 (3-1) 二、模糊线性规划在实际问题中,有时线性规划的约束条件带有模糊性,这就是解谓的模糊线性规划,其模型为这是“ ”表示一种弹性约束,可读作“近似小于等于”.“近似小于等于”是一个模糊概念,可以用一个模糊集来表示它. 表示第 个约束的左边表达式,模糊集 表示“ ”这一事实,当 时,完全接受约束,应有 ;适当选择一个伸缩系数 ,约定当 时,不认为 ,这时应有 ;当 时, 应从1下降到0,表示约束程度降低.为了简单可行, 规定如下:设 ,对每一个约束 ,相应地有 中一个模糊渠 与之对应,它的隶属函数为其中 是适当选择的常数,叫做伸缩指标, ,这样一来,我们将弹性约束转化成模糊约束,再令 就将全部约束条件转化成一个模糊约束.当 时, 退化为普通约束集 ,模糊约束条件中“ ”退化为“ ”模糊线性规划的模型简记为 (3-2)约束的弹性必然导致目标的弹性,为将目标函数模糊化,先求解普通线性规划问题: 满足 (3-3)以及 满足 (3-4)其中 称为(3-2)的伸缩指标向量.设 是(3-32)的最优值, 是(3-4)的最优值. 所满足的约束条件为 ,对应的模糊约束 .若适当降低模糊约束的隶属度 ,可以相应提高目标函数值 , 所满足的约束条件已放到最宽 ,对应的模糊约束 也接近于0.于是目标函数的弹性可表示为 .为此构造模糊目标集 .其隶属函数为其中 由模糊目标的上述隶属函数可知,当 时, ,要提高目标函数值使之大于 .就必须降低 .为了兼顾目标与约束,可采用模糊决策为 ,最佳决策为 , 满足 若令 , 则有 于是求最佳决策 的问题,就转化为求普通线性规划问题:即 (3-5) 求解上述普通规划问题,可得最佳决策 目标函数值 . 例5:求解模糊线性规划问题 (3-6) 解 (一)解普通线性规划(二)解普通线性规划 (三) 解普通线性规划 解 这个线性规划采用大 法 原线性规划改写为 ∴ 从而(3-4)的最优值 例6某企业根据市场信息及自身生产能力,准备开发甲、乙两种系列产品.甲种系列产品最多大约能生产400套,乙种系列产品最多大约能生产250套.据测算,甲种产品每套成本3万元,每套获纯利润7万元;乙种系列产品每套成本2万元,每套获纯利润3万元.生产甲、乙两种系列产品的资金总投入大约不能超过1500万元.在上述条件下,如何安排两种系列产品的生产,才能使企业获利最大?解 设甲种系列产品生产 套,乙种系列产品生产 套,则目标: 约束: (3-7)设约束条件(1)、(2)、(3)的伸缩系数分别取为 (元), (套), (套).为将目标函数模糊化,解经典线性规划问题使 (4)用单纯形法求解,得 , , 再解经典线性规划问题 (5)解得 , , 于是 将 、 、 、 、 代入(3-5),将原问题经为经典线性规划问题: 使 上述线性规划问题最优解为 , , .因此安排甲种系列产品403套、乙种系列产品159套(取整数)时,能获得最大利润,最大利润为: 万元对比经典线性规划问题(4),利润提高万元,这是因为甲种系列产品403套比400套多3套;乙种系列产品生产159套比150套多9套,这是在伸缩指标允许范围内.总费用 元虽然比1500超出27元,这也是伸缩指标允许的.以上讨论说明,在适当放松约束时可以提高利润.

模糊数学模型论文

模糊数学是研究和处理模糊性现象的一种数学理论和方法 。 1965 年美国控制论学者.扎德发表论文《模糊集合》,标志着这门新学科的诞生。现代数学建立在集合论的基础上。一组对象确定一组属性,人们可以通过指明属性来说明概念,也可以通过指明对象来说明。符合概念的那些对象的全体叫做这个概念的外延,外延实际上就是集合。一切现实的理论系统都有可能纳入集合描述的数学框架。经典的集合论只把自己的表现力限制在那些有明确外延的概念和事物上,它明确地规定:每一个集合都必须由确定的元素所构成,元素对集合的隶属关系必须是明确的。对模糊性的数学处理是以将经典的集合论扩展为模糊集合论为基础的,乘积空间中的模糊子集就给出了一对元素间的模糊关系。对模糊现象的数学处理就是在这个基础上展开的。从纯数学角度看,集合概念的扩充使许多数学分支都增添了新的内容。例如不分明拓扑、不分明线性空间、模糊测度与积分、模糊群、模糊范畴、模糊图论等。其中有些领域已有比较深入的研究。模糊性数学发展的主流是在它的应用方面。由于模糊性概念已经找到了模糊集的描述方式,人们运用概念进行判断、评价、推理、决策和控制的过程也可以用模糊性数学的方法来描述。例如模糊聚类分析、模糊综合评判、模糊决策、模糊控制等。这些方法构成了一种模糊性系统理论,构成了一种思辨数学的雏形,它已经在医学、气象、心理、经济管理、石油、地质、环境、生物、农业、林业、化工、语言、控制、遥感、教育、体育等方面取得具体的研究成果。模糊性数学最重要的应用领域应是计算机智能。它已经被用于专家系统和知识工程等方面。 [编辑本段]模糊数学的产生现代数学是建立在集合论的基础上。集合论的重要意义就一个侧面看,在与它把数学的抽象能力延伸到人类认识过程的深处。一组对象确定一组属性,人们可以通过说明属性来说明概念(内涵),也可以通过指明对象来说明它。符合概念的那些对象的全体叫做这个概念的外延,外延其实就是集合。从这个意义上讲,集合可以表现概念,而集合论中的关系和运算又可以表现判断和推理,一切现实的理论系统都一可能纳入集合描述的数学框架。但是,数学的发展也是阶段性的。经典集合论只能把自己的表现力限制在那些有明确外延的概念和事物上,它明确地限定:每个集合都必须由明确的元素构成,元素对集合的隶属关系必须是明确的,决不能模棱两可。对于那些外延不分明的概念和事物,经典集合论是暂时不去反映的,属于待发展的范畴。在较长时间里,精确数学及随机数学在描述自然界多种事物的运动规律中,获得显著效果。但是,在客观世界中还普遍存在着大量的模糊现象。以前人们回避它,但是,由于现代科技所面对的系统日益复杂,模糊性总是伴随着复杂性出现。各门学科,尤其是人文、社会学科及其它“软科学”的数学化、定量化趋向把模糊性的数学处理问题推向中心地位。更重要的是,随着电子计算机、控制论、系统科学的迅速发展,要使计算机能像人脑那样对复杂事物具有识别能力,就必须研究和处理模糊性。我们研究人类系统的行为,或者处理可与人类系统行为相比拟的复杂系统,如航天系统、人脑系统、社会系统等,参数和变量甚多,各种因素相互交错,系统很复杂,它的模糊性也很明显。从认识方面说,模糊性是指概念外延的不确定性,从而造成判断的不确定性。在日常生活中,经常遇到许多模糊事物,没有分明的数量界限,要使用一些模糊的词句来形容、描述。比如,比较年轻、高个、大胖子、好、漂亮、善、热、远……。这些概念是不可以简单地用是、非或数字来表示的。在人们的工作经验中,往往也有许多模糊的东西。例如,要确定一炉钢水是否已经炼好,除了要知道钢水的温度、成分比例和冶炼时间等精确信息外,还需要参考钢水颜色、沸腾情况等模糊信息。因此,除了很早就有涉及误差的计算数学之外,还需要模糊数学。人与计算机相比,一般来说,人脑具有处理模糊信息的能力,善于判断和处理模糊现象。但计算机对模糊现象识别能力较差,为了提高计算机识别模糊现象的能力,就需要把人们常用的模糊语言设计成机器能接受的指令和程序,以便机器能像人脑那样简洁灵活的做出相应的判断,从而提高自动识别和控制模糊现象的效率。这样,就需要寻找一种描述和加工模糊信息的数学工具,这就推动数学家深入研究模糊数学。所以,模糊数学的产生是有其科学技术与数学发展的必然性。 [编辑本段]模糊数学的研究内容1965年,美国控制论专家、数学家查德发表了论文《模糊集合》,标志着模糊数学这门学科的诞生。模糊数学的研究内容主要有以下三个方面:第一,研究模糊数学的理论,以及它和精确数学、随机数学的关系。查德以精确数学集合论为基础,并考虑到对数学的集合概念进行修改和推广。他提出用“模糊集合”作为表现模糊事物的数学模型。并在“模糊集合”上逐步建立运算、变换规律,开展有关的理论研究,就有可能构造出研究现实世界中的大量模糊的数学基础,能够对看来相当复杂的模糊系统进行定量的描述和处理的数学方法。在模糊集合中,给定范围内元素对它的隶属关系不一定只有“是”或“否”两种情况,而是用介于0和1之间的实数来表示隶属程度,还存在中间过渡状态。比如“老人”是个模糊概念,70岁的肯定属于老人,它的从属程度是 1,40岁的人肯定不算老人,它的从属程度为 0,按照查德给出的公式,55岁属于“老”的程度为,即“半老”,60岁属于“老”的程度。查德认为,指明各个元素的隶属集合,就等于指定了一个集合。当隶属于0和1之间值时,就是模糊集合。第二,研究模糊语言学和模糊逻辑。人类自然语言具有模糊性,人们经常接受模糊语言与模糊信息,并能做出正确的识别和判断。为了实现用自然语言跟计算机进行直接对话,就必须把人类的语言和思维过程提炼成数学模型,才能给计算机输入指令,建立和是的模糊数学模型,这是运用数学方法的关键。查德采用模糊集合理论来建立模糊语言的数学模型,使人类语言数量化、形式化。如果我们把合乎语法的标准句子的从属函数值定为1,那么,其他文法稍有错误,但尚能表达相仿的思想的句子,就可以用以0到1之间的连续数来表征它从属于“正确句子”的隶属程度。这样,就把模糊语言进行定量描述,并定出一套运算、变换规则。目前,模糊语言还很不成熟,语言学家正在深入研究。人们的思维活动常常要求概念的确定性和精确性,采用形式逻辑的排中律,既非真既假,然后进行判断和推理,得出结论。现有的计算机都是建立在二值逻辑基础上的,它在处理客观事物的确定性方面,发挥了巨大的作用,但是却不具备处理事物和概念的不确定性或模糊性的能力。为了使计算机能够模拟人脑高级智能的特点,就必须把计算机转到多值逻辑基础上,研究模糊逻辑。目前,模糊逻辑还很不成熟,尚需继续研究。第三,研究模糊数学的应用。模糊数学是以不确定性的事物为其研究对象的。模糊集合的出现是数学适应描述复杂事物的需要,查德的功绩在于用模糊集合的理论找到解决模糊性对象加以确切化,从而使研究确定性对象的数学与不确定性对象的数学沟通起来,过去精确数学、随机数学描述感到不足之处,就能得到弥补。在模糊数学中,目前已有模糊拓扑学、模糊群论、模糊图论、模糊概率、模糊语言学、模糊逻辑学等分支。 [编辑本段]模糊数学的应用模糊数学是一门新兴学科,它已初步应用于模糊控制、模糊识别、模糊聚类分析、模糊决策、模糊评判、系统理论、信息检索、医学、生物学等各个方面。在气象、结构力学、控制、心理学等方面已有具体的研究成果。然而模糊数学最重要的应用领域是计算机职能,不少人认为它与新一代计算机的研制有密切的联系。目前,世界上发达国家正积极研究、试制具有智能化的模糊计算机,1986年日本山川烈博士首次试制成功模糊推理机,它的推理速度是1000万次/秒。1988年,我国汪培庄教授指导的几位博士也研制成功一台模糊推理机——分立元件样机,它的推理速度为1500万次/秒。这表明我国在突破模糊信息处理难关方面迈出了重要的一步。模糊数学还远没有成熟,对它也还存在着不同的意见和看法,有待实践去检验。

模糊数学又称Fuzzy 数学,是研究和处理模糊性现象的一种数学理论和方法。模糊性数学发展的主流是在它的应用方面。

由于模糊性概念已经找到了模糊集的描述方式,人们运用概念进行判断、评价、推理、决策和控制的过程也可以用模糊性数学的方法来描述。

例如模糊聚类分析、模糊模式识别、模糊综合评判、模糊决策与模糊预测、模糊控制、模糊信息处理等。这些方法构成了一种模糊性系统理论,构成了一种思辨数学的雏形,它已经在医学、气象、心理、控制、遥感、教育、体育等方面取得具体的研究成果。

扩展资料

应用前景:

模式识别是计算机应用的重要领域之一。人脑能在很低的准确性下有效地处理复杂问题。如计算机使用模糊数学,便能大大提高模式识别能力,可模拟人类神经系统的活动。

在工业控制领域中,应用模糊数学,可使空调器的温度控制更为合理,洗衣机可节电、节水、提高效率。在现代社会的大系统管理中,运用模糊数学的方法,有可能形成更加有效的决策。

50年来,模糊数学的研究和应用取得了许多可喜的成就。它在科学技术领域和日常生活方面正在扮演着越来越重要的角色。

模糊数学是数学中的一门新兴学科,其前途未可限量。1965年,《模糊集合》的论文发表了。作者是著名控制论专家、美国加利福尼亚州立大学的扎德()教授。康托的集合论已成为现代数学的基础,如今有人要修改集合的概念,当然是一件破天荒的事。扎德的模糊集的概念奠定了模糊性理论的基础。这一理论由于在处理复杂系统特别是有人干预的系统方面的简捷与有力,某种程度上弥补了经典数学与统计数学的不足,迅速受到广泛的重视。近40年来,这个领域从理论到应用,从软技术到硬技术都取得了丰硕成果,对相关领域和技术特别是一些高新技术的发展产生了日益显著的影响。有一个古老的希腊悖论,是这样说的:“一粒种子肯定不叫一堆,两粒也不是,三粒也不是……另一方面,所有的人都同意,一亿粒种子肯定叫一堆。那么,适当的界限在哪里?我们能不能说,123585粒种子不叫一堆而123586粒就构成一堆?”确实,“一粒”和“一堆”是有区别的两个概念。但是,它们的区别是逐渐的,而不是突变的,两者之间并不存在明确的界限。换句话说,“一堆”这个概念带有某种程度的模糊性。类似的概念,如“年老”、“高个子”、“年轻人”、“很大”、“聪明”、“漂亮的人”、“价廉物美”等等,不胜枚举。经典集合论中,在确定一个元素是否属于某集合时,只能有两种回答:“是”或者“不是”。我们可以用两个值0或1加以描述,属于集合的元素用1表示,不属于集合的元素用0表示。然而上面提到的“年老”、“高个子”、“年轻人”、“很大”、“聪明”、“漂亮的人”、“价廉物美” 等情况要复杂得多。假如规定身高米算属于高个子范围,那么,米的算不算?照经典集合论的观点看:不算。但这似乎很有些悖于情理。如果用一个圆,以圆内和圆周上的点表示集A,而且圆外的点表示不属于A。A的边界显然是圆周。这是经典集合的图示。现在,设想将高个子的集合用图表示,则它的边界将是模糊的,即可变。因为一个元素(例如身高米的人)虽然不是100%的高个子,却还算比较高,在某种程度上属于高个子集合。这时一个元素是否属于集合,不能光用0和1两个数字表示,而可以取0和1之间的任何实数。例如对米的身高,可以说具有70%属于高个子集合的程度。这样做似乎罗嗦,但却比较合乎实际。精确和模糊,是一对矛盾。根据不同情况有时要求精确,有时要求模糊。比如打仗,指挥员下达命令:“拂晓发起总攻。”这就乱套了。这时,一定要求精确:“×月×日清晨六时正发起总攻。”我们在一些旧电影中还能看到各个阵地的指挥员在接受命令前对对表的镜头,生怕出个半分十秒的误差。但是,物极必反。如果事事要求精确,人们就简直无法顺利的交流思想——两人见面,问:“你好吗?”可是,什么叫“好”,又有谁能给“好”下个精确的定义?有些现象本质上就是模糊的,如果硬要使之精确,自然难以符合实际。例如,考核学生成绩,规定满60分为合格。但是,59分和60分之间究竟有多大差异,仅据1分之差来区别及格和不及格,其根据是不充分的。不仅普遍存在着边界模糊的集合,就是人类的思维,也带有模糊的特色。有些现象是精确的,但是,适当的模糊化可能使问题得到简化,灵活性大为提高。例如,在地里摘玉米,若要找一个最大的,那很麻烦,而且近乎迂腐。我们必须把玉米地里所有的玉米都测量一下,再加以比较才能确定。它的工作量跟玉米地面积成正比。土地面积越大,工作越困难。然而,只要稍为改变一下问题的提法:不要求找最大的玉米,而是找比较大的,即按通常的说法,到地里摘个大玉米。这时,问题从精确变成了模糊,但同时也从不必要的复杂变成意外的简单,挑不多的几个就可以满足要求。工作量甚至跟土地无关。因此,过分的精确实际成了迂腐,适当的模糊反而灵活。显然,玉米的大小,取决于它的长度、体积和重量 。大小虽是模糊概念,但长度、体积、重量等在理论上都可以是精确的。然而,人们在实际判断玉米大小时,通常并不需要测定这些精确值。同样,模糊的“堆”的概念是建立在精确的“粒”的基础上,而人们在判断眼前的东西叫不叫一堆时,从来不用去数“粒”。有时,人们把模糊性看成一种物理现象。近的东西看得清,远的东西看不清,一般的说,越远越模糊。但是,也有例外的情况:站在海边,海岸线是模糊的;从高空向下眺望,海岸线却显得十分清晰。太高了,又模糊。精确与模糊,有本质区别,但又有内在联系,两者相互矛盾、相互依存也可相互转化。所以,精确性的另一半是模糊。对模糊性的讨论,可以追溯得很早。20世纪的大哲学家罗素()在1923年一篇题为《含糊性》(Vagueness)的论文里专门论述过我们今天称之为“模糊性”的问题(严格地说,两者梢有区

模糊数学又称Fuzzy 数学,研究和处理模糊性现象的一种数学理论和方法。模糊数学法采用模糊数学模型,须先进行单项指标的评价,然后分别对各单项指标给予透当的权重,最后应用模糊矩阵复合运算的方法得出综合评价的结果。这一方法在地下水环境质量评价中已得到广泛的应用。

模糊数学为一门新兴学科,它已初步应用于模糊控制、模糊识别、模糊聚类分析、模糊决策、模糊评判、系统理论、信息检索、医学、生物学等各个方面。在气象、结构力学、控制、心理学等方面已有具体的研究成果。然而模糊数学最重要的应用领域是计算机智能,不少人认为它与新一代计算机的研制有密切的联系。

扩展资料

1965年,美国控制论专家扎德Zadeh(Lotfi A.Zadeh)教授在Information and Control杂志上发表了题为Fuzzy Sets的论文,提出用“隶属函数”来描述现象差异的中间过渡,从而突破了经典集合论中属于或不属于的绝对关系。

Zadeh教授这一开创性的工作,标志着数学的一个新分支——模糊数学的诞生。

模糊数学的基本思想就是:用精确的数学手段对现实世界中大量存在的模糊概念和模糊现象进行描述、建模,以达到对其进行恰当处理的目的。

模糊数学为以不确定性的事物为其研究对象的。模糊集合的出现为数学适应描述复杂事物的需要,Zadeh的功绩在于用模糊集合的理论将模糊性对象加以确切化,从而使研究确定性对象的数学与不确定性对象的数学沟通起来,过去精确数学、随机数学描述感到不足之处,就能得到弥补。

参考资料来源:百度百科-模糊数学法

参考资料来源:百度百科-模糊数学

模糊数学论文实际问题

在日常生活中,我们遇到的概念不外乎只有两类:一类是清晰的概念,对象是否属于这个概念是明确的。如人、自然数、正方形等概念,要么是人,要么不是人;非此即彼。另一类概念,对象从属的界限是模糊的,判断随人的思维而定。如美不美、早不早、便不便宜等概念。西施是我国古代公认的美女,但有道是“情人眼里出西施”,即便是相貌平平,可是在情人的眼里相貌可以与西施媲美。可见“美”与“不美”,是没有精确界限的。第二类概念,就是模糊数学研究的范畴。

举个例子你没办法评定一空气质量好坏那么 你根据经验和查阅资料给出几种污染物在空气中的百分比定值如果实际空气中污染物含量比这个百分比小 那么空气干净反之空气质量不好这是最简单的模糊数学的概念就是 当你无法评定一件事物时 给出一个具有说服力的标准再用标准去衡量它

所有的边界不清晰的问题都可以用模糊数学来建模。例如:如何界定 “年轻人”。假定我们可以判断15岁到25岁都是年轻的,于是可以用[15,25]这样的经典集合来描述。但仅从这个集合看,26岁就不是了么?事实上,人的语言并没有严格的界定“年轻”。这时候就适合 用模糊集来描述。

例题:判断一个人是否是儿童解答:将一个人接近儿童的程度记为A,即模糊数学中的隶属度,若其年龄在15或15岁以下,则其隶属度为1(1为最大值),给出计算公式:隶属度=1/(1+(年龄-15)/10),此时年龄大于或等于15岁,如25岁的隶属度为,容易看出,年龄越大,隶属度越小(其最小值为0)模糊数学就是用定量的,精确的方法处理模糊性问题

模糊图像数学建模论文范文

随着科学技术特别是信息技术的高速发展,数学建模的应用价值越来越得到众人的重视,

数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,以下是一篇关于数学建模教育开展策略探究的论文 范文 ,欢迎阅读参考。

大学数学具有高度抽象性和概括性等特点,知识本身难度大再加上学时少、内容多等教学现状常常造成学生的学习积极性不高、知识掌握不够透彻、遇到实际问题时束手无策,而数学建模思想能激发学生的学习兴趣,培养学生应用数学的意识,提高其解决实际问题的能力。数学建模活动为学生构建了一个由数学知识通向实际问题的桥梁,是学生的数学知识和应用能力共同提高的最佳结合方式。因此在大学数学教育中应加强数学建模教育和活动,让学生积极主动学习建模思想,认真体验和感知建模过程,以此启迪创新意识和 创新思维 ,提高其素质和创新能力,实现向素质教育的转化和深入。

一、数学建模的含义及特点

数学建模即抓住问题的本质,抽取影响研究对象的主因素,将其转化为数学问题,利用数学思维、数学逻辑进行分析,借助于数学 方法 及相关工具进行计算,最后将所得的答案回归实际问题,即模型的检验,这就是数学建模的全过程。一般来说",数学建模"包含五个阶段。

1.准备阶段

主要分析问题背景,已知条件,建模目的等问题。

2.假设阶段

做出科学合理的假设,既能简化问题,又能抓住问题的本质。

3.建立阶段

从众多影响研究对象的因素中适当地取舍,抽取主因素予以考虑,建立能刻画实际问题本质的数学模型。

4.求解阶段

对已建立的数学模型,运用数学方法、数学软件及相关的工具进行求解。

5.验证阶段

用实际数据检验模型,如果偏差较大,就要分析假设中某些因素的合理性,修改模型,直至吻合或接近现实。如果建立的模型经得起实践的检验,那么此模型就是符合实际规律的,能解决实际问题或有效预测未来的,这样的建模就是成功的,得到的模型必被推广应用。

二、加强数学建模教育的作用和意义

(一) 加强数学建模教育有助于激发学生学习数学的兴趣,提高数学修养和素质

数学建模教育强调如何把实际问题转化为数学问题,进而利用数学及其有关的工具解决这些问题, 因此在大学数学的教学活动中融入数学建模思想,鼓励学生参与数学建模实践活动,不但可以使学生学以致用,做到理论联系实际,而且还会使他们感受到数学的生机与活力,激发求知的兴趣和探索的欲望,变被动学习为主动参与其效率就会大为改善。数学修养和素质自然而然得以培养并提高。

(二)加强数学建模教育有助于提高学生的分析解决问题能力、综合应用能力

数学建模问题来源于社会生活的众多领域,在建模过程中,学生首先需要阅读相关的文献资料,然后应用数学思维、数学逻辑及相关知识对实际问题进行深入剖析研究并经过一系列复杂计算,得出反映实际问题的最佳数学模型及模型最优解。因此通过数学建模活动学生的视野将会得以拓宽,应用意识、解决复杂问题的能力也会得到增强和提高。

(三)加强数学建模教育有助于培养学生的创造性思维和创新能力

所谓创造力是指"对已积累的知识和 经验 进行科学地加工和创造,产生新概念、新知识、新思想的能力,大体上由感知力、 记忆力 、思考力、 想象力 四种能力所构成"[1].现今教育界认为,创造力的培养是人才培养的关键,数学建模活动的各个环节无不充满了创造性思维的挑战。

很多不同的实际问题,其数学模型可以是相同或相似的,这就要求学生在建模时触类旁通,挖掘不同事物间的本质,寻找其内在联系。而对一个具体的建模问题,能否把握其本质转化为数学问题,是完成建模过程的关键所在。同时建模题材有较大的灵活性,没有统一的标准答案,因此数学建模过程是培养学生创造性思维,提高创新能力的过程[2].

(四)加强数学建模教育有助于提高学生科技论文的撰写能力

数学建模的结果是以论文形式呈现的,如何将建模思想、建立的模型、最优解及其关键环节的处理在论文中清晰地表述出来,对本科生来说是一个挑战。经历数学建模全过程的磨练,特别是数模论文的撰写,学生的文字语言、数学表述能力及论文的撰写能力无疑会得到前所未有的提高。

(五)加强数学建模教育有助于增强学生的团结合作精神并提高协调组织能力建模问题通常较复杂,涉及的知识面也很广,因此数学建模实践活动一般效仿正规竞赛的规则,三人为一队在三天内以论文形式完成建模题目。要较好地完成任务,离不开良好的组织与管理、分工与协作[3].

三、开展数学建模教育及活动的具体途径和有效方法

(一)开展数学建模课堂教学

即在课堂教学中,教师以具体的案例作为主要的教学内容,通过具体问题的建模,介绍建模的过程和思想方法及建模中要注意的问题。案例教学法的关键在于把握两个重要环节:

案例的选取和课堂教学的组织。

教学案例一定要精心选取,才能达到预期的教学效果。其选取一般要遵循以下几点。

1. 代表性:案例的选取要具有科学性,能拓宽学生的知识面,突出数学建模活动重在培养兴趣提高能力等特点。

2. 原始性:来自媒体的信息,企事业单位的 报告 ,现实生活和各学科中的问题等等,都是数学建模问题原始资料的重要来源。

3. 创新性:案例应注意选取在建模的某些环节上具有挑战性,能激发学生的创造性思维,培养学生的创新精神和提高创造能力。

案例教学的课堂组织,一部分是教师讲授,从实际问题出发,讲清问题的背景、建模的要求和已掌握的信息,介绍如何通过合理的假设和简化建立优化的数学模型。还要强调如何用求解结果去解释实际现象即检验模型。另一部分是课堂讨论,让学生自由发言各抒己见并提出新的模型,简介关键环节的处理。最后教师做出点评,提供一些改进的方向,让学生自己课外独立探索和钻研,这样既突出了教学重点,又给学生留下了进一步思考的空间,既避免了教师的"满堂灌",也活跃了课堂气氛,提高了学生的课堂学习兴趣和积极性,使传授知识变为学习知识、应用知识,真正地达到提高素质和培养能力的教学目的[4].

(二)开展数模竞赛的专题培训指导工作

建立数学建模竞赛指导团队,分专题实行教师负责制。每位教师根据自己的专长,负责讲授某一方面的数学建模知识与技巧,并选取相应地建模案例进行剖析。如离散模型、连续模型、优化模型、微分方程模型、概率模型、统计回归模型及数学软件的使用等。学生根据自己的薄弱点,选择适合的专题培训班进行学习,以弥补自己的不足。这种针对性的数模教学,会极大地提高教学效率。

(三)建立数学建模网络课程

以现代 网络技术 为依托,建立数学建模课程网站,内容包括:课程介绍,课程大纲,教师教案,电子课件,教学实验,教学录像,网上答疑等;还可以增加一些有关栏目,如历年国内外数模竞赛介绍,校内竞赛,专家点评,获奖心得交流;同时提供数模学习资源下载如讲义,背景材料,历年国内外竞赛题,优秀论文等。以此为学生提供良好的自主学习网络平台,实现课堂教学与网络教学的有机结合,达到有效地提高学生数学建模综合应用能力的目的。[5,6]

(四)开展校内数学建模竞赛活动

完全模拟全国大学生数模竞赛的形式规则:定时公布赛题,三人一组,只能队内讨论,按时提交论文,之后指导教师、参赛同学集中讨论,进一步完善。笔者负责数学建模竞赛培训近 20 年,多年的实践证明,每进行一次这样的训练,学生在建模思路、建模水平、使用软件能力、论文书写方面就有大幅提高。多次训练之后,学生的建模水平更是突飞猛进,效果甚佳。

如 2008 年我指导的队荣获全国高教社杯大学生数学建模竞赛的最高奖---高教社杯奖,这是此赛设置的唯一一个名额,也是当年从全国(包括香港)院校的约 1 万多个本科参赛队中脱颖而出的。又如 2014 年我校 57 队参加全国大学生数学建模竞赛,43 队获奖,获奖比例达 75%,创历年之最。

(五)鼓励学生积极参加全国大学生数学建模竞赛、国际数学建模竞赛

全国大学生数学建模竞赛创办于 1992 年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛, 国际大学生数学建模竞赛是世界上影响范围最大的高水平大学生学术赛事。参加数学建模大赛可以激励学生学习数学的积极性,提高运用数学及相关工具分析问题解决问题的综合能力,开拓知识面,培养创造精神及合作意识。

四、结束语

数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,而高校数学教学改革的目的之一是要着力培养学生的创造性思维,提高学生的创新能力。因此应将数学建模思想融入教学活动中,通过不断的数学建模教育和实践培养学生的创新能力和应用能力从而提高学生的基本素质以适应社会发展的要求。

参考文献:

[1]辞海[M].上海辞书出版社,2002,1:237.

[2]许梅生,章迪平,张少林。 数学建模的认识与实践[J].浙江科技学院学报,2003,15(1):40-42.

[3]姜启源,谢金星,一项成功的高等教育改革实践[J].中国高教研究,2011,12:79-83.

[4]饶从军,王成。论高校数学建模教学[J].延边大学学报(自然科学学版),2006,32(3):227-230.

[5]段璐灵。数学建模课程教学改革初探[J].教育与职业,2013,5:140-142.

[6]郝鹏鹏。工程网络课程教学的实践与思考[J]科技视界,2014,29:76-77.

大部分数学知识是抽象的,概念比较枯燥,造成学生学习困难,而数学建模的运用,在很大程度上可以将抽象的数学知识转化成实体模型,让学生更容易理解和学习数学知识。教师要做的就是了解并掌握数学建模的方法,并且把这种 教学方法 运用到数学教学中。

对教师来说,发现好的教学方法不是最重要的,而是如何把方法与教学结合起来。通过对数学建模的长期研究和实践应用,笔者 总结 了数学建模的概念以及运用策略。

一、数学建模的概念

想要更好地运用数学建模,首先要了解什么是数学建模。可以说,数学建模就像一面镜子,可以使数学抽象的影像产生与之对应的具体化物象。

二、在小学数学教学中运用数学建模的策略

1.根据事物之间的共性进行数学建模

想要运用数学建模,首先要对建模对象有一定的感知。教师要创造有利的条件,促使学生感知不同事物之间的共性,然后进行数学建模。

教师应做好建模前的指导工作,为学生的数学建模做好铺垫,而学生要学会尝试自己去发现事物的共性,争取将事物的共性完美地运用到数学建模中。在建模过程中,教师要引导学生把新知识和旧知识结合起来的作用,将原来学习中发现的好方法运用到新知识的学习、新数学模型的构建中,降低新的数学建模的难度,提高学生数学建模的成功率。如在教学《图形面积》时,教师可以利用不同的图形模板,让学生了解不同图形的面积构成,寻找不同图形面积的差异以及图形之间的共性。这样直观地向学生展示图形的变化,可以加深学生对知识的理解,提高学生的学习效率。

2.认识建模思想的本质

建模思想与数学的本质紧密相连,它不是独立存在于数学教学之外的。所以在数学建模过程中,教师要帮助学生正确认识数学建模的本质,将数学建模与数学教学有机结合起来,提高学生解决问题的能力,让学生真正具备使用数学建模的能力。

建模过程并不是独立于数学教学之外的,它和数学的教学过程紧密相连。数学建模是使人对数学抽象化知识进行具体认识的工具,是运用数学建模思想解决数学难题的过程。因此,教师要将它和数学教学组成一个有机的整体,不仅要帮助学生完成建模,更要带领学生认识数学建模的本质,领悟数学建模思想的真谛,并逐渐引导学生使用数学建模解决数学学习过程中遇到的问题。

3.发挥教材在数学建模上的作用

教材是最基础的教学工具,在数学教材中有很多典型案例可以利用在数学建模上,其中很大一部分来源于生活,更易于小学生学习和理解,有助于学生构建数学建模思想。教师要利用好教材,培养学生的建模能力,帮助学生建造更易于理解的数学模型,从而提高学生的学习效率。如在教学加减法时,教材上会有很多数苹果、香蕉的例题,这些就是很好的数学模型,因为贴近生活,可以激发学生的学习兴趣,培养学生数学建模的能力,所以教师应该深入研究教材。

数学建模是一种很好的数学教学方法,教师要充分利用这种教学方法,真正做到实践与理论完美结合。

1、层次分析法,简称AHP,是指将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。该方法是美国运筹学家匹茨堡大学教授萨蒂于20世纪70年代初,在为美国国防部研究"根据各个工业部门对国家福利的贡献大小而进行电力分配"课题时,应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法。

2、多属性决策是现代决策科学的一个重要组成部分,它的理论和方法在工程设计、经济、管理和军事等诸多领域中有着广泛的应用,如:投资决策、项目评估、维修服务、武器系统性能评定、工厂选址、投标招标、产业部门发展排序和经济效益综合评价等.多属性决策的实质是利用已有的决策信息通过一定的方式对一组(有限个)备选方案进行排序或择优.它主要由两部分组成:(l) 获取决策信息.决策信息一般包括两个方面的内容:属性权重和属性值(属性值主要有三种形式:实数、区间数和语言).其中,属性权重的确定是多属性决策中的一个重要研究内容;(2)通过一定的方式对决策信息进行集结并对方案进行排序和择优。

3、灰色预测模型(Gray Forecast Model)是通过少量的、不完全的信息,建立数学模型并做出预测的一种预测方法.当我们应用运筹学的思想方法解决实际问题,制定发展战略和政策、进行重大问题的决策时,都必须对未来进行科学的预测.预测是根据客观事物的过去和现在的发展规律,借助于科学的方法对其未来的发展趋势和状况进行描述和分析,并形成科学的假设和判断。

4、Dijkstra算法能求一个顶点到另一顶点最短路径。它是由Dijkstra于1959年提出的。实际它能出始点到 其它 所有顶点的最短路径。

Dijkstra算法是一种标号法:给赋权图的每一个顶点记一个数,称为顶点的标号(临时标号,称T标号,或者固定标号,称为P标号)。T标号表示从始顶点到该标点的最短路长的上界;P标号则是从始顶点到该顶点的最短路长。

5、Floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在)从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。所以,我们假设Dis(i,j)为节点u到节点v的最短路径的距离,对于每一个节点k,我们检查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立,如果成立,证明从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j) = Dis(i,k) + Dis(k,j),这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的最短路径的距离。

6、模拟退火算法是模仿自然界退火现象而得,利用了物理中固体物质的退火过程与一般优化问题的相似性从某一初始温度开始,伴随温度的不断下降,结合概率突跳特性在解空间中随机寻找全局最优解。

7、种群竞争模型:当两个种群为争夺同一食物来源和生存空间相互竞争时,常见的结局是,竞争力弱的灭绝,竞争力强的达到环境容许的最大容量。使用种群竞争模型可以描述两个种群相互竞争的过程,分析产生各种结局的条件。

8、排队论发源于上世纪初。当时美国贝尔电话公司发明了自动电话,以适应日益繁忙的工商业电话通讯需要。这个新发明带来了一个新问题,即通话线路与电话用户呼叫的数量关系应如何妥善解决,这个问题久久未能解决。1909年,丹麦的哥本哈根电话公司.埃尔浪(Erlang)在热力学统计平衡概念的启发下解决了这个问题。

9、线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。决策变量、约束条件、目标函数是线性规划的三要素。

10、非线性规划:非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。20世纪50年代初,库哈() 和托克 () 提出了非线性规划的基本定理,为非线性规划奠定了理论基础。这一方法在工业、交通运输、经济管理和军事等方面有广泛的应用,特别是在“最优设计”方面,它提供了数学基础和计算方法,因此有重要的实用价值。

数学建模全国优秀论文相关 文章 :

★ 数学建模全国优秀论文范文

★ 2017年全国数学建模大赛获奖优秀论文

★ 数学建模竞赛获奖论文范文

★ 小学数学建模的优秀论文范文

★ 初中数学建模论文范文

★ 学习数学建模心得体会3篇

★ 数学建模论文优秀范文

★ 大学生数学建模论文范文(2)

★ 数学建模获奖论文模板范文

★ 大学生数学建模论文范文

数学建模论文范文一篇,带例题,结构格式要求有摘要、关键词、问题背景、建模过程、模型解释、小结、参考文献点一下就可以进去了,希望你早日完成论文。祝你顺利资料什么的都有,论文相关的。加油!

数学建模内容摘要:数学作为现代科学的一种工具和手段,要了解什么是数学模型和数学建模,了解数学建模一般方法及步骤。关键词:数学模型、数学建模、实际问题伴随着当今社会的科学技术的飞速发展,数学已经渗透到各个领域,数学建模也显得尤为重要。数学建模在人们生活中扮演着重要的角色,而且随着计算机技术的发展,数学建模更是在人类的活动中起着重要作用,数学建模也更好的为人类服务。一、数学模型数学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构.简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数,图形,代数方程,微分方程,积分方程,差分方程等)来描述(表述,模拟)所研究的客观对象或系统在某一方面的存在规律.随着社会的发展,生物,医学,社会,经济……,各学科,各行业都涌现现出大量的实际课题,急待人们去研究,去解决.但是,社会对数学的需求并不只是需要数学家和专门从事数学研究的人才,而更大量的是需要在各部门中从事实际工作的人善于运用数学知识及数学的思维方法来解决他们每天面临的大量的实际问题,取得经济效益和社会效益.他们不是为了应用数学知识而寻找实际问题(就像在学校里做数学应用题),而是为了解决实际问题而需要用到数学.而且不止是要用到数学,很可能还要用到别的学科,领域的知识,要用到工作经验和常识.特别是在现代社会,要真正解决一个实际问题几乎都离不开计算机.可以这样说,在实际工作中遇到的问题,完全纯粹的只用现成的数学知识就能解决的问题几乎是没有的.你所能遇到的都是数学和其他东西混杂在一起的问题,不是"干净的"数学,而是"脏"的数学.其中的数学奥妙不是明摆在那里等着你去解决,而是暗藏在深处等着你去发现.也就是说,你要对复杂的实际问题进行分析,发现其中的可以用数学语言来描述的关系或规律,把这个实际问题化成一个数学问题,这就称为数学模型.数学模型具有下列特征:数学模型的一个重要特征是高度的抽象性.通过数学模型能够将形象思维转化为抽象思维,从而可以突破实际系统的约束,运用已有的数学研究成果对研究对象进行深入的研究.数学模型的另一个特征是经济性.用数学模型研究不需要过多的专用设备和工具,可以节省大量的设备运行和维护费用,用数学模型可以大大加快研究工作的进度,缩短研究周期,特别是在电子计算机得到广泛应用的今天,这个优越性就更为突出.但是,数学模型具有局限性,在简化和抽象过程中必然造成某些失真.所谓"模型就是模型"(而不是原型),即是指该性质.二、数学建模 数学建模是利用数学方法解决实际问题的一种实践.即通过抽象,简化,假设,引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解.简而言之,建立数学模型的这个过程就称为数学建模.模型是客观实体有关属性的模拟.陈列在橱窗中的飞机模型外形应当象真正的飞机,至于它是否真的能飞则无关紧要;然而参加航模比赛的飞机模型则全然不同,如果飞行性能不佳,外形再象飞机,也不能算是一个好的模型.模型不一定是对实体的一种仿照,也可以是对实体的某些基本属性的抽象,例如,一张地质图并不需要用实物来模拟,它可以用抽象的符号,文字和数字来反映出该地区的地质结构.数学模型也是一种模拟,是用数学符号,数学式子,程序,图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略.数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识.这种应用知识从实际课题中抽象,提炼出数学模型的过程就称为数学建模.实际问题中有许多因素,在建立数学模型时你不可能,也没有必要把它们毫无遗漏地全部加以考虑,只能考虑其中的最主要的因素,舍弃其中的次要因素.数学模型建立起来了,实际问题化成了数学问题,就可以用数学工具,数学方法去解答这个实际问题.如果有现成的数学工具当然好.如果没有现成的数学工具,就促使数学家们寻找和发展出新的数学工具去解决它,这又推动了数学本身的发展.例如,开普勒由行星运行的观测数据总结出开普勒三定律,牛顿试图用自己发现的力学定律去解释它,但当时已有的数学工具是不够用的,这促使了微积分的发明.求解数学模型,除了用到数学推理以外,通常还要处理大量数据,进行大量计算,这在电子计算机发明之前是很难实现的.因此,很多数学模型,尽管从数学理论上解决了,但由于计算量太大而没法得到有用的结果,还是只有束之高阁.而电子计算机的出现和迅速发展,给用数学模型解决实际问题打开了广阔的道路.而在现在,要真正解决一个实际问题,离了计算机几乎是不行的.数学模型建立起来了,也用数学方法或数值方法求出了解答,是不是就万事大吉了呢 不是.既然数学模型只能近似地反映实际问题中的关系和规律,到底反映得好不好,还需要接受检验,如果数学模型建立得不好,没有正确地描述所给的实际问题,数学解答再正确也是没有用的.因此,在得出数学解答之后还要让所得的结论接受实际的检验,看它是否合理,是否可行,等等.如果不符合实际,还应设法找出原因,修改原来的模型,重新求解和检验,直到比较合理可行,才能算是得到了一个解答,可以先付诸实施.但是,十全十美的答案是没有的,已得到的解答仍有改进的余地,可以根据实际情况,或者继续研究和改进;或者暂时告一段落,待将来有新的情况和要求后再作改进. 应用数学知识去研究和和解决实际问题,遇到的第一项工作就是建立恰当的数学模型.从这一意义上讲,可以说数学建模是一切科学研究的基础.没有一个较好的数学模型就不可能得到较好的研究结果,所以,建立一个较好的数学模型乃是解决实际问题的关键之一.数学建模将各种知识综合应用于解决实际问题中,是培养和提高同学们应用所学知识分析问题,解决问题的能力的必备手段之一.三、数学建模的一般方法建立数学模型的方法并没有一定的模式,但一个理想的模型应能反映系统的全部重要特征:模型的可靠性和模型的使用性建模的一般方法:1.机理分析 机理分析就是根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,所建立的模型常有明确的物理或现实意义.(1) 比例分析法--建立变量之间函数关系的最基本最常用的方法. (2) 代数方法--求解离散问题(离散的数据,符号,图形)的主要方法. (3) 逻辑方法--是数学理论研究的重要方法,对社会学和经济学等领域的实际 问题,在决策,对策等学科中得到广泛应用. (4) 常微分方程--解决两个变量之间的变化规律,关键是建立"瞬时变化率"的表达式. (5) 偏微分方程--解决因变量与两个以上自变量之间的变化规律.2.测试分析方法 测试分析方法就是将研究对象视为一个"黑箱"系统,内部机理无法直接寻求,通过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模型. (1) 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法.(2) 时序分析法--处理的是动态的相关数据,又称为过程统计方法.(3) 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法.(4) 时序分析法--处理的是动态的相关数据,又称为过程统计方法.将这两种方法结合起来使用,即用机理分析方法建立模型的结构,用系统测试方法来确定模型的参数,也是常用的建模方法, 在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定.机理分析法建模的具体步骤大致可见左图.3.仿真和其他方法(1) 计算机仿真(模拟)--实质上是统计估计方法,等效于抽样试验.① 离散系统仿真--有一组状态变量.② 连续系统仿真--有解析表达式或系统结构图.(2) 因子试验法--在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构.(3) 人工现实法--基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的可能变化,人为地组成一个系统.(参见:齐欢《数学模型方法》,华中理工大学出版社,1996)四、数学模型的分类数学模型可以按照不同的方式分类,下面介绍常用的几种.1.按照模型的应用领域(或所属学科)分:如人口模型,交通模型,环境模型,生态模型,城镇规划模型,水资源模型,再生资源利用模型,污染模型等.范畴更大一些则形成许多边缘学科如生物数学,医学数学,地质数学,数量经济学,数学社会学等.2.按照建立模型的数学方法(或所属数学分支)分:如初等数学模型,几何模型,微分方程模型,图论模型,马氏链模型,规划论模型等.按第一种方法分类的数学模型教科书中,着重于某一专门领域中用不同方法建立模型,而按第二种方法分类的书里,是用属于不同领域的现成的数学模型来解释某种数学技巧的应用.在本书中我们重点放在如何应用读者已具备的基本数学知识在各个不同领域中建模.3.按照模型的表现特性又有几种分法:确定性模型和随机性模型 取决于是否考虑随机因素的影响.近年来随着数学的发展,又有所谓突变性模型和模糊性模型.静态模型和动态模型 取决于是否考虑时间因素引起的变化.线性模型和非线性模型 取决于模型的基本关系,如微分方程是否是线性的.离散模型和连续模型 指模型中的变量(主要是时间变量)取为离散还是连续的.虽然从本质上讲大多数实际问题是随机性的,动态的,非线性的,但是由于确定性,静态,线性模型容易处理,并且往往可以作为初步的近似来解决问题,所以建模时常先考虑确定性,静态,线性模型.连续模型便于利用微积分方法求解,作理论分析,而离散模型便于在计算机上作数值计算,所以用哪种模型要看具体问题而定.在具体的建模过程中将连续模型离散化,或将离散变量视作连续,也是常采用的方法.4.按照建模目的分:有描述模型,分析模型,预报模型,优化模型,决策模型,控制模型等.5.按照对模型结构的了解程度分:有所谓白箱模型,灰箱模型,黑箱模型.这是把研究对象比喻成一只箱子里的机关,要通过建模来揭示它的奥妙.白箱主要包括用力学,热学,电学等一些机理相当清楚的学科描述的现象以及相应的工程技术问题,这方面的模型大多已经基本确定,还需深入研究的主要是优化设计和控制等问题了.灰箱主要指生态,气象,经济,交通等领域中机理尚不十分清楚的现象,在建立和改善模型方面都还不同程度地有许多工作要做.至于黑箱则主要指生命科学和社会科学等领域中一些机理(数量关系方面)很不清楚的现象.有些工程技术问题虽然主要基于物理,化学原理,但由于因素众多,关系复杂和观测困难等原因也常作为灰箱或黑箱模型处理.当然,白,灰,黑之间并没有明显的界限,而且随着科学技术的发展,箱子的"颜色"必然是逐渐由暗变亮的.五、数学建模的一般步骤建模的步骤一般分为下列几步:1.模型准备.首先要了解问题的实际背景,明确题目的要求,搜集各种必要的信息.2.模型假设.在明确建模目的,掌握必要资料的基础上,通过对资料的分析计算,找出起主要作用的因素,经必要的精炼,简化,提出若干符合客观实际的假设,使问题的主要特征凸现出来,忽略问题的次要方面.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作.通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合.作假设时既要运用与问题相关的物理,化学,生物,经济等方面的知识,又要充分发挥想象力,洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化,均匀化.经验在这里也常起重要作用.写出假设时,语言要精确,就象做习题时写出已知条件那样.3.模型构成.根据所作的假设以及事物之间的联系, 利用适当的数学工具去刻划各变量之间的关系,建立相应的数学结构――即建立数学模型.把问题化为数学问题.要注意尽量采取简单的数学工具,因为简单的数学模型往往更能反映事物的本质,而且也容易使更多的人掌握和使用.4.模型求解.利用已知的数学方法来求解上一步所得到的数学问题,这时往往还要作出进一步的简化或假设.在难以得出解析解时,也应当借助计算机求出数值解.5.模型分析.对模型解答进行数学上的分析,有时要根据问题的性质分析变量间的依赖关系或稳定状况,有时是根据所得结果给出数学上的预报,有时则可能要给出数学上的最优决策或控制,不论哪种情况还常常需要进行误差分析,模型对数据的稳定性或灵敏性分析等.6.模型检验.分析所得结果的实际意义,与实际情况进行比较,看是否符合实际,如果结果不够理想,应该修改,补充假设或重新建模,有些模型需要经过几次反复,不断完善.7.模型应用.所建立的模型必须在实际中应用才能产生效益,在应用中不断改进和完善.应用的方式自然取决于问题的性质和建模的目的.参考文献:(1)齐欢《数学模型方法》,华中理工大学出版社,1996。(2)《数学的实践与认识》,(季刊),中国数学会编辑出版。

全国大学生数学建模竞赛论文格式规范 本科组参赛队从A、B题中任选一题,专科组参赛队从C、D题中任选一题。 论文用白色A4纸单面打印;上下左右各留出至少厘米的页边距;从左侧装订。 论文第一页为承诺书,具体内容和格式见本规范第二页。 论文第二页为编号专用页,用于赛区和全国评阅前后对论文进行编号,具体内容和格式见本规范第三页。 论文题目和摘要写在论文第三页上,从第四页开始是论文正文。 论文从第三页开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。 论文不能有页眉,论文中不能有任何可能显示答题人身份的标志。 论文题目用三号黑体字、一级标题用四号黑体字,并居中;二级、三级标题用小四号黑体字,左端对齐(不居中)。论文中其他汉字一律采用小四号宋体字,行距用单倍行距,打印时应尽量避免彩色打印。 提请大家注意:摘要应该是一份简明扼要的详细摘要(包括关键词),在整篇论文评阅中占有重要权重,请认真书写(注意篇幅不能超过一页,且无需译成英文)。全国评阅时将首先根据摘要和论文整体结构及概貌对论文优劣进行初步筛选。 引用别人的成果或其他公开的资料(包括网上查到的资料) 必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中书籍的表述方式为:[编号] 作者,书名,出版地:出版社,出版年。参考文献中期刊杂志论文的表述方式为:[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。参考文献中网上资源的表述方式为:[编号] 作者,资源标题,网址,访问时间(年月日)。 在不违反本规范的前提下,各赛区可以对论文增加其他要求(如在本规范要求的第一页前增加其他页和其他信息,或在论文的最后增加空白页等);从承诺书开始到论文正文结束前,各赛区不得有本规范外的其他要求(否则一律无效)。 本规范的解释权属于全国大学生数学建模竞赛组委会。[注]赛区评阅前将论文第一页取下保存,同时在第一页和第二页建立“赛区评阅编号”(由各赛区规定编号方式),“赛区评阅纪录”表格可供赛区评阅时使用(各赛区自行决定是否在评阅时使用该表格)。评阅后,赛区对送全国评阅的论文在第二页建立“全国统一编号”(编号方式由全国组委会规定,与去年格式相同),然后送全国评阅。论文第二页(编号页)由全国组委会评阅前取下保存,同时在第二页建立“全国评阅编号”。全国大学生数学建模竞赛组委会2009年3月16日修订数学建模论文一般结构1摘要 (单独成页)主要理解 、主要方法、 主要结果、 主要特点 (不要图、不要表)作用:了解文件重要性,对文件有大致认识最佳页副:页面2/3。2、问题重述和分析3、问题假设假设是建模的基础,具有导向性,容易被忽视。常犯错误有缺少假设或假设不切实际。对一些关键性的或对结果有重大影响的条件或参数应该在假设中明确约定。作假设的两个原则:① 简化原则:抓住主要矛盾,舍弃次要因素,方便 数学处理。② 贴近原则:贴近实际。以上两个原则是相互制约的,要掌握好“度”。通常是先建模后假设。4、符号说明 (可以合并)5、模型建立与求解(重要程度 :60%以上)6、模型检验(误差一般指均方误差)7、结果分析 (可以合并)8、模型的进一步讨论 或 模型的推广9、模型优缺点10、参考文件11、附件(结果千万不能放在附件中)论文最佳页面数:15-21页 论文结构一题目摘要1.问题的重述2.合理假设3.符号约定4.问题的分析5.模型的建立与求解6.模型的评价与推广1、误差分析2、模型的改进与推广对XXXX切实可行的建议和意见:1.……2.…………7.参考文献8.附录 数学建模论文一般格式 摘要(主要理解、主要方法、主要结果、主要特点)或(背景、目标、方法、结果、结论、建议) 问题重述与分析 问题假设 符号说明 模型建立与求解 模型检验 结果分析 模型的进一步讨论 模型优缺点优秀论文要点:1. 语言精练、有逻辑性、书写有条理2. 文字与图形相结合,使内容直观、清晰、明了、容易理解3. 切忌只用文字进行说明,多运用图形或表格,并对图形或表格做精简的分析,毕竟文字性东西太过于枯燥、乏味,没人有耐性去看那么冗长的文章4. 对论文中所引用或用到的知识、软件要清晰地予以说明。5. 在附录中附上论文所必须要的一些数据(图形或表格),并将论文中所编写的程序附上去各步骤解释摘要:主要理解 、主要方法、 主要结果、 主要特点 (不要图、不要表)作用:了解文件重要性,对文件有大致认识最佳页副:页面2/3问题重述与分析: 一向导、对题意的理解、 建模的创造性创造性是灵魂,文章要有闪光点。好创意、好想法应当既在人意料之外,又在人意料之中。新颖性(独特性)与合理性皆备。误区之一:数学用得越高深,越有创造性。解决问题是第一原则,最合适的方法是最好的方法。误区之二:创造性主要体现在建模与求解上。创造性可以体现在建模的各个环节上,并且可以有多种表现形式。误区之三:好创意来自于灵感,可遇不可求。好创意来自于对数学方法的掌握程度与对问题理解的透彻程度。 表达的清晰性好的文章 = 好的内容 + 好的表达 替读者着想。该交代的要交代,如对题目的理解,关键指标或参数的引入,建模的思路,结果的分析等。 写好摘要,包括:建模主要方法、主要结果,模型主要优点。 专人负责写作,及早动手。考虑写作的过程也是构思框架、理清思路的过程,有利于从总体上把握建模的思路,反过来促进建模。 适当采用图表,增加可读性。

模糊数学论文及代码实现

哈哈,数学一个分支,太有用了,天文上

模糊数学是研究和处理模糊性现象的一种数学理论和方法 。 1965 年美国控制论学者.扎德发表论文《模糊集合》,标志着这门新学科的诞生。现代数学建立在集合论的基础上。一组对象确定一组属性,人们可以通过指明属性来说明概念,也可以通过指明对象来说明。符合概念的那些对象的全体叫做这个概念的外延,外延实际上就是集合。一切现实的理论系统都有可能纳入集合描述的数学框架。经典的集合论只把自己的表现力限制在那些有明确外延的概念和事物上,它明确地规定:每一个集合都必须由确定的元素所构成,元素对集合的隶属关系必须是明确的。对模糊性的数学处理是以将经典的集合论扩展为模糊集合论为基础的,乘积空间中的模糊子集就给出了一对元素间的模糊关系。对模糊现象的数学处理就是在这个基础上展开的。从纯数学角度看,集合概念的扩充使许多数学分支都增添了新的内容。例如不分明拓扑、不分明线性空间、模糊测度与积分、模糊群、模糊范畴、模糊图论等。其中有些领域已有比较深入的研究。模糊性数学发展的主流是在它的应用方面。由于模糊性概念已经找到了模糊集的描述方式,人们运用概念进行判断、评价、推理、决策和控制的过程也可以用模糊性数学的方法来描述。例如模糊聚类分析、模糊综合评判、模糊决策、模糊控制等。这些方法构成了一种模糊性系统理论,构成了一种思辨数学的雏形,它已经在医学、气象、心理、经济管理、石油、地质、环境、生物、农业、林业、化工、语言、控制、遥感、教育、体育等方面取得具体的研究成果。模糊性数学最重要的应用领域应是计算机智能。它已经被用于专家系统和知识工程等方面。 [编辑本段]模糊数学的产生现代数学是建立在集合论的基础上。集合论的重要意义就一个侧面看,在与它把数学的抽象能力延伸到人类认识过程的深处。一组对象确定一组属性,人们可以通过说明属性来说明概念(内涵),也可以通过指明对象来说明它。符合概念的那些对象的全体叫做这个概念的外延,外延其实就是集合。从这个意义上讲,集合可以表现概念,而集合论中的关系和运算又可以表现判断和推理,一切现实的理论系统都一可能纳入集合描述的数学框架。但是,数学的发展也是阶段性的。经典集合论只能把自己的表现力限制在那些有明确外延的概念和事物上,它明确地限定:每个集合都必须由明确的元素构成,元素对集合的隶属关系必须是明确的,决不能模棱两可。对于那些外延不分明的概念和事物,经典集合论是暂时不去反映的,属于待发展的范畴。在较长时间里,精确数学及随机数学在描述自然界多种事物的运动规律中,获得显著效果。但是,在客观世界中还普遍存在着大量的模糊现象。以前人们回避它,但是,由于现代科技所面对的系统日益复杂,模糊性总是伴随着复杂性出现。各门学科,尤其是人文、社会学科及其它“软科学”的数学化、定量化趋向把模糊性的数学处理问题推向中心地位。更重要的是,随着电子计算机、控制论、系统科学的迅速发展,要使计算机能像人脑那样对复杂事物具有识别能力,就必须研究和处理模糊性。我们研究人类系统的行为,或者处理可与人类系统行为相比拟的复杂系统,如航天系统、人脑系统、社会系统等,参数和变量甚多,各种因素相互交错,系统很复杂,它的模糊性也很明显。从认识方面说,模糊性是指概念外延的不确定性,从而造成判断的不确定性。在日常生活中,经常遇到许多模糊事物,没有分明的数量界限,要使用一些模糊的词句来形容、描述。比如,比较年轻、高个、大胖子、好、漂亮、善、热、远……。这些概念是不可以简单地用是、非或数字来表示的。在人们的工作经验中,往往也有许多模糊的东西。例如,要确定一炉钢水是否已经炼好,除了要知道钢水的温度、成分比例和冶炼时间等精确信息外,还需要参考钢水颜色、沸腾情况等模糊信息。因此,除了很早就有涉及误差的计算数学之外,还需要模糊数学。人与计算机相比,一般来说,人脑具有处理模糊信息的能力,善于判断和处理模糊现象。但计算机对模糊现象识别能力较差,为了提高计算机识别模糊现象的能力,就需要把人们常用的模糊语言设计成机器能接受的指令和程序,以便机器能像人脑那样简洁灵活的做出相应的判断,从而提高自动识别和控制模糊现象的效率。这样,就需要寻找一种描述和加工模糊信息的数学工具,这就推动数学家深入研究模糊数学。所以,模糊数学的产生是有其科学技术与数学发展的必然性。 [编辑本段]模糊数学的研究内容1965年,美国控制论专家、数学家查德发表了论文《模糊集合》,标志着模糊数学这门学科的诞生。模糊数学的研究内容主要有以下三个方面:第一,研究模糊数学的理论,以及它和精确数学、随机数学的关系。查德以精确数学集合论为基础,并考虑到对数学的集合概念进行修改和推广。他提出用“模糊集合”作为表现模糊事物的数学模型。并在“模糊集合”上逐步建立运算、变换规律,开展有关的理论研究,就有可能构造出研究现实世界中的大量模糊的数学基础,能够对看来相当复杂的模糊系统进行定量的描述和处理的数学方法。在模糊集合中,给定范围内元素对它的隶属关系不一定只有“是”或“否”两种情况,而是用介于0和1之间的实数来表示隶属程度,还存在中间过渡状态。比如“老人”是个模糊概念,70岁的肯定属于老人,它的从属程度是 1,40岁的人肯定不算老人,它的从属程度为 0,按照查德给出的公式,55岁属于“老”的程度为,即“半老”,60岁属于“老”的程度。查德认为,指明各个元素的隶属集合,就等于指定了一个集合。当隶属于0和1之间值时,就是模糊集合。第二,研究模糊语言学和模糊逻辑。人类自然语言具有模糊性,人们经常接受模糊语言与模糊信息,并能做出正确的识别和判断。为了实现用自然语言跟计算机进行直接对话,就必须把人类的语言和思维过程提炼成数学模型,才能给计算机输入指令,建立和是的模糊数学模型,这是运用数学方法的关键。查德采用模糊集合理论来建立模糊语言的数学模型,使人类语言数量化、形式化。如果我们把合乎语法的标准句子的从属函数值定为1,那么,其他文法稍有错误,但尚能表达相仿的思想的句子,就可以用以0到1之间的连续数来表征它从属于“正确句子”的隶属程度。这样,就把模糊语言进行定量描述,并定出一套运算、变换规则。目前,模糊语言还很不成熟,语言学家正在深入研究。人们的思维活动常常要求概念的确定性和精确性,采用形式逻辑的排中律,既非真既假,然后进行判断和推理,得出结论。现有的计算机都是建立在二值逻辑基础上的,它在处理客观事物的确定性方面,发挥了巨大的作用,但是却不具备处理事物和概念的不确定性或模糊性的能力。为了使计算机能够模拟人脑高级智能的特点,就必须把计算机转到多值逻辑基础上,研究模糊逻辑。目前,模糊逻辑还很不成熟,尚需继续研究。第三,研究模糊数学的应用。模糊数学是以不确定性的事物为其研究对象的。模糊集合的出现是数学适应描述复杂事物的需要,查德的功绩在于用模糊集合的理论找到解决模糊性对象加以确切化,从而使研究确定性对象的数学与不确定性对象的数学沟通起来,过去精确数学、随机数学描述感到不足之处,就能得到弥补。在模糊数学中,目前已有模糊拓扑学、模糊群论、模糊图论、模糊概率、模糊语言学、模糊逻辑学等分支。 [编辑本段]模糊数学的应用模糊数学是一门新兴学科,它已初步应用于模糊控制、模糊识别、模糊聚类分析、模糊决策、模糊评判、系统理论、信息检索、医学、生物学等各个方面。在气象、结构力学、控制、心理学等方面已有具体的研究成果。然而模糊数学最重要的应用领域是计算机职能,不少人认为它与新一代计算机的研制有密切的联系。目前,世界上发达国家正积极研究、试制具有智能化的模糊计算机,1986年日本山川烈博士首次试制成功模糊推理机,它的推理速度是1000万次/秒。1988年,我国汪培庄教授指导的几位博士也研制成功一台模糊推理机——分立元件样机,它的推理速度为1500万次/秒。这表明我国在突破模糊信息处理难关方面迈出了重要的一步。模糊数学还远没有成熟,对它也还存在着不同的意见和看法,有待实践去检验。

模糊数学是数学中的一门新兴学科,其前途未可限量。1965年,《模糊集合》的论文发表了。作者是著名控制论专家、美国加利福尼亚州立大学的扎德()教授。康托的集合论已成为现代数学的基础,如今有人要修改集合的概念,当然是一件破天荒的事。扎德的模糊集的概念奠定了模糊性理论的基础。这一理论由于在处理复杂系统特别是有人干预的系统方面的简捷与有力,某种程度上弥补了经典数学与统计数学的不足,迅速受到广泛的重视。近40年来,这个领域从理论到应用,从软技术到硬技术都取得了丰硕成果,对相关领域和技术特别是一些高新技术的发展产生了日益显著的影响。有一个古老的希腊悖论,是这样说的:“一粒种子肯定不叫一堆,两粒也不是,三粒也不是……另一方面,所有的人都同意,一亿粒种子肯定叫一堆。那么,适当的界限在哪里?我们能不能说,123585粒种子不叫一堆而123586粒就构成一堆?”确实,“一粒”和“一堆”是有区别的两个概念。但是,它们的区别是逐渐的,而不是突变的,两者之间并不存在明确的界限。换句话说,“一堆”这个概念带有某种程度的模糊性。类似的概念,如“年老”、“高个子”、“年轻人”、“很大”、“聪明”、“漂亮的人”、“价廉物美”等等,不胜枚举。经典集合论中,在确定一个元素是否属于某集合时,只能有两种回答:“是”或者“不是”。我们可以用两个值0或1加以描述,属于集合的元素用1表示,不属于集合的元素用0表示。然而上面提到的“年老”、“高个子”、“年轻人”、“很大”、“聪明”、“漂亮的人”、“价廉物美” 等情况要复杂得多。假如规定身高米算属于高个子范围,那么,米的算不算?照经典集合论的观点看:不算。但这似乎很有些悖于情理。如果用一个圆,以圆内和圆周上的点表示集A,而且圆外的点表示不属于A。A的边界显然是圆周。这是经典集合的图示。现在,设想将高个子的集合用图表示,则它的边界将是模糊的,即可变。因为一个元素(例如身高米的人)虽然不是100%的高个子,却还算比较高,在某种程度上属于高个子集合。这时一个元素是否属于集合,不能光用0和1两个数字表示,而可以取0和1之间的任何实数。例如对米的身高,可以说具有70%属于高个子集合的程度。这样做似乎罗嗦,但却比较合乎实际。精确和模糊,是一对矛盾。根据不同情况有时要求精确,有时要求模糊。比如打仗,指挥员下达命令:“拂晓发起总攻。”这就乱套了。这时,一定要求精确:“×月×日清晨六时正发起总攻。”我们在一些旧电影中还能看到各个阵地的指挥员在接受命令前对对表的镜头,生怕出个半分十秒的误差。但是,物极必反。如果事事要求精确,人们就简直无法顺利的交流思想——两人见面,问:“你好吗?”可是,什么叫“好”,又有谁能给“好”下个精确的定义?有些现象本质上就是模糊的,如果硬要使之精确,自然难以符合实际。例如,考核学生成绩,规定满60分为合格。但是,59分和60分之间究竟有多大差异,仅据1分之差来区别及格和不及格,其根据是不充分的。不仅普遍存在着边界模糊的集合,就是人类的思维,也带有模糊的特色。有些现象是精确的,但是,适当的模糊化可能使问题得到简化,灵活性大为提高。例如,在地里摘玉米,若要找一个最大的,那很麻烦,而且近乎迂腐。我们必须把玉米地里所有的玉米都测量一下,再加以比较才能确定。它的工作量跟玉米地面积成正比。土地面积越大,工作越困难。然而,只要稍为改变一下问题的提法:不要求找最大的玉米,而是找比较大的,即按通常的说法,到地里摘个大玉米。这时,问题从精确变成了模糊,但同时也从不必要的复杂变成意外的简单,挑不多的几个就可以满足要求。工作量甚至跟土地无关。因此,过分的精确实际成了迂腐,适当的模糊反而灵活。显然,玉米的大小,取决于它的长度、体积和重量 。大小虽是模糊概念,但长度、体积、重量等在理论上都可以是精确的。然而,人们在实际判断玉米大小时,通常并不需要测定这些精确值。同样,模糊的“堆”的概念是建立在精确的“粒”的基础上,而人们在判断眼前的东西叫不叫一堆时,从来不用去数“粒”。有时,人们把模糊性看成一种物理现象。近的东西看得清,远的东西看不清,一般的说,越远越模糊。但是,也有例外的情况:站在海边,海岸线是模糊的;从高空向下眺望,海岸线却显得十分清晰。太高了,又模糊。精确与模糊,有本质区别,但又有内在联系,两者相互矛盾、相互依存也可相互转化。所以,精确性的另一半是模糊。对模糊性的讨论,可以追溯得很早。20世纪的大哲学家罗素()在1923年一篇题为《含糊性》(Vagueness)的论文里专门论述过我们今天称之为“模糊性”的问题(严格地说,两者梢有区

”模糊等价矩阵”;英文对照fuzzy equivalence matrix;”模糊等价矩阵”;在学术文献中的解释1、R满足自反性、对称性,且满足:(3)传递性min(r*k,r助)镇’称为模糊等价矩阵,根据任意指定的闭值(0耳入蕊1),将R‘载为普通等价矩阵R‘,‘人文献来源2、这一矩阵称为模糊等价矩阵.用平方自合成法可以构造出等价矩阵,方法如下:.若R=R.则R为模糊等价矩阵 基于模糊等价关系的模糊聚类分析 收藏 假设R是X上的模糊等价关系,则对任意的a,R的a-截集是X上的普通等价关系,因此,可以根据X上的模糊关系,对X进行模糊分类。当取不同的a值,则可以得到不同的分类结果,即分类是动态的。 实际操作中,一般情况下,我们所获得是一系列样本,假设有N个,每个样本可以看作是M维空间中的一个点。可以表示如下,论域: ,对第i个元素有 1.数据预处理 考虑到不同的数据可能有不同的量纲,因此,再处理之前,有必要对数据进行相当的变换。常用的变换标准差变换和极差变换: 标准差变换: 经过变换后,每个变量的均值为0,标准差为1,并可以消除量纲的影响,但值不一定在0和1之间。 极差变换: 经过变换后,消除了量纲的影响,并且值在0和1之间。 2 模糊相似矩阵的建立 由已知的数据,可以建立论域上的模糊关系矩阵,其目的是为构造模糊等价矩阵提供数据。 计算模糊关系矩阵由很多方法,如夹角余弦法,相关系数法,算术平均法,几何平均法,最大最小法,以夹角余弦为例,可用下述公式计算:3 用传递闭包法求模糊等价矩阵 由以上过程所建立的矩阵一般仅具有自反性和对称性,不满度传递性,必须进行变换转换为模糊等价矩阵。常采用传递闭包法,即从上述R矩阵出发,求R^2-->R^4-->R^8...,直到第一次出现R^k × R^k=R^k,这时表明R以具有传递性。 4 根据模糊等价矩阵和某以a得到分类结果。部分代码实现:'**********************************数据的标准差变化****************************''过 程 名: Norm_Diff'参 数: Data() - Double ,待变换的二维数组'说 明: 执行改函数后数组中了保存变换的数据'作 者:'修 改 者: laviepbt'修改日期: 2006-11-1''**********************************数据的标准差变化****************************Public Sub Norm_Diff(ByRef Data() As Double) Dim m As Integer, N As Integer, i As Integer, j As Integer Dim Ave As Double, s As Double N = UBound(Data, 1): m = UBound(Data, 2) 'n样品数,m变量数 For j = 1 To m Ave = 0 For i = 1 To N Ave = Ave + Data(i, j) Next Ave = Ave / N 'ave是平均值 s = 0 For i = 1 To N s = s + (Data(i, j) - Ave) ^ 2 's是标准差 Next s = Sqr(s / N) For i = 1 To N Data(i, j) = (Data(i, j) - Ave) / s Next NextEnd Sub'**********************************数据的极差变换****************************''过 程 名: Extre_Diff'参 数: Data() - Double ,待变换的二维数组'说 明: 执行改函数后数组中了保存变换的数据'作 者:'修 改 者: laviepbt'修改日期: 2006-11-1''**********************************数据的极差变换****************************Public Sub Extre_Diff(ByRef Data() As Double) Dim m As Integer, N As Integer, i As Integer, j As Integer Dim Max As Double, Min As Double, d As Double N = UBound(Data, 1): m = UBound(Data, 2) 'N样品数,M变量数 For j = 1 To m Max = -10000000000#: Min = 10000000000# For i = 1 To N If Data(i, j) > Max Then Max = Data(i, j) If Data(i, j) < Min Then Min = Data(i, j) Next d = Max - Min 'd是极差 For i = 1 To N Data(i, j) = (Data(i, j) - Min) / d '极差标准化变换 Next NextEnd Sub'**********************************夹角余弦法****************************''过 程 名: Angle_Cos'参 数: Data() - Double ,二维数组数据' R() - Double, 相似矩阵'说 明:'作 者:'修 改 者: laviepbt'修改日期: 2006-11-1''**********************************夹角余弦法****************************Public Sub Angle_Cos(ByRef Data() As Double, ByRef R() As Double) Dim m As Integer, N As Integer, i As Integer, j As Integer, k As Integer Dim S1 As Double, Si2 As Double, Sj2 As Double N = UBound(Data, 1): m = UBound(Data, 2) 'N样品数,M变量数 For i = 1 To N For j = 1 To N If i = j Then R(i, j) = 1 Else S1 = 0: Si2 = 0: Sj2 = 0 For k = 1 To m S1 = S1 + Data(i, k) * Data(j, k) Si2 = Si2 + Data(i, k) ^ 2 Sj2 = Sj2 + Data(j, k) ^ 2 Next R(i, j) = Int((S1 / Sqr(Si2 * Sj2)) * 1000 + ) / 1000 End If Next NextEnd Sub'**********************************相关系数法****************************''过 程 名: Correlation'参 数: Data() - Double ,二维数组数据' R() - Double, 相似矩阵'说 明:'作 者:'修 改 者: laviepbt'修改日期: 2006-11-1''**********************************相关系数法****************************Public Sub Correlation(ByRef Data() As Double, ByRef R() As Double) Dim m As Integer, N As Integer, i As Integer, j As Integer, k As Integer Dim Xia As Double, Xja As Double Dim S1 As Double, Si2 As Double, Sj2 As Double N = UBound(Data, 1): m = UBound(Data, 2) 'N样品数,M变量数 For i = 1 To N For j = 1 To N If i = j Then R(i, j) = 1 Else Xia = 0: Xja = 0 For k = 1 To m Xia = Xia + Data(i, k) Xja = Xja + Data(j, k) Next Xia = Xia / m Xja = Xja / m S1 = 0: Si2 = 0: Sj2 = 0 For k = 1 To m S1 = S1 + Abs((Data(i, k) - Xia) * (Data(j, k) - Xja)) Si2 = Si2 + (Data(i, k) - Xia) ^ 2 Sj2 = Sj2 + (Data(j, k) - Xja) ^ 2 Next R(i, j) = Int((S1 / Sqr(Si2 * Sj2)) * 1000 + ) / 1000 End If Next NextEnd Sub'**********************************传递闭包法****************************''过 程 名: TR'参 数: R() - Double ,相似矩阵' RR() - Double, 模糊乘积矩阵'说 明:'作 者:'修 改 者: laviepbt'修改日期: 2006-11-1''**********************************传递闭包法****************************Public Sub TR(ByRef R() As Double, ByRef RR() As Double) Dim N As Integer, l As Integer Dim i As Integer, j As Integer, k As Integer Dim i1 As Integer, j1 As Integer Dim dMax As Double N = UBound(R, 1) ReDim dMin(1 To N) As Double l = 0100: l = l + 1 If l > 100 Then MsgBox "已进行100次自乘,仍然没有获得传递性", vbCritical, "错误" Exit Sub End If For i = 1 To N For j = 1 To N For k = 1 To N If R(i, k) <= R(k, j) Then dMin(k) = R(i, k) Else dMin(k) = R(k, j) End If Next dMax = dMin(1) '模糊矩阵的乘法,取小取大 For k = 1 To N If dMin(k) > dMax Then dMax = dMin(k) Next RR(i, j) = dMax Next Next For i = 1 To N For j = 1 To N '判断是否式模糊等价矩阵,若非则继续做 If R(i, j) <> RR(i, j) Then For i1 = 1 To N For j1 = 1 To N R(i1, j1) = RR(i1, j1) Next Next GoTo 100 End If Next NextEnd Sub全部代码可参考《模糊数学基础及实用算法》一书。 处理结果:以一下数据为例:选用极差法预处理数据,夹角余弦法计算相似矩阵数据 模糊等价矩阵部分分析结果:********************************入值:第1类:U1 U2 U3 U4 第2类:U5 U6 第3类:U7 U8 F效验值: 显著性为.2的临界值:显著性为.1的临界值:结论:在给定的临界值下,该分类效果特别显著.^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^********************************入值:第1类:U1 U2 U3 U4 第2类:U5 U6 U7 U8 F效验值: 显著性为.2的临界值:显著性为.1的临界值:结论:在给定的临界值下,该分类效果特别显著.^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^********************************入值:第1类:U1 U2 U3 U4 U5 U6 U7 U8 F效验值: ********显著性为.2的临界值:********显著性为.1的临界值:********结论:在给定的临界值下,该分类效果不显著.********************************显然对于不同lamda值,由不同得聚集效果,可以考虑使用F检验方法刷掉一些不合理得分类。详见《模糊数学基础及实用算法》一书。

相关百科
热门百科
首页
发表服务