论文投稿百科

高中生会议研究量子力学论文

发布时间:2024-07-04 05:53:09

高中生会议研究量子力学论文

#01 零化域的缺失之环 #02 闭时曲线的碑文#03 双体福音的契约#04 亡失流转的孤独 #05 非点收差的孤独#06 轨道秩序的消逝#07 振电跃迁的暗蚀#08 二律背反的双重#09 永劫回归的潘多拉#10 存在证明的潘多拉 #11 存在忘却的潘多拉#12 相互再归的鹅妈妈 #13 衍射叙唱的鹅妈妈 #14 弹性界限的认知#15 渐近线的认知 #16 无限远点的牵牛星#17 双曲平面的牵牛星#18 并进对称的牵牛星#19 循环座标的牵牛星 #20 盟誓的文艺复兴#21 成像的文艺复兴#22 投企的文艺复兴#23 无限远点的弧光灯/交差座标的星辰

议论文是由论题,论点,论据,论证诸多要素组成。论题,即作者在文章中提出来要进行论述的问题,或说是论证的对像。论点,又叫论断,它是作者对所论述的问题提出的见解,主张和表示的态度。论据,是指用来说明观点的材料。论证,就是运用论据说明论点的逻辑过程和方法。

世界上有确定的东西吗?正如大家所知,1927年3月,海森堡在《量子论的运动学与动力学的知觉内容》论文中,提出了量子力学的另一种测不准关系,海森堡认为,科学研究工作宏观领域进入微观领域时,会遇到测量仪器是宏观的,而研究对象是微观的矛盾,在微观世界里,对于质量极小的粒子来说,宏观仪器对微观粒子的干扰是不可忽视的,也是无法控制点额,测量的结果也就同粒子的原来状态不完全相同。所以在微观系统中,不能使用实验手段同时准确的测出微观粒子的位置和动量,时间和能量。由数学推导,海森堡给出了一个测不准关系式: 。对于微观粒子一些成对的物理量,在这里指位置和动量,时间和能量,不能同时具有确定的数值,其中一个量愈确定,则另一个就愈不确定。所谓测不准关系,主要是普朗克常量h使量子结果与经典结果有所不同。如果h为零,则对测量没有任何根本的限制,这是经典的观点;如果h很小,在宏观情况下,仍然能以很大的精确性同时测定动量与位置或能量与时间的关系,但是在微观的场合就不能同时测定。实验表明,决定微观系统的未来行为,只能是观察结果所出现的概率,测不准关系已经被认为是微观粒子的客观特性。海森堡提出了测不准关系后,立即在哥本哈根学派中引起了强烈的反响,泡利欢呼“现在是量子力学的黎明”,玻尔试图从哲学上进行概括。1927年9月,玻尔在与意大利科摩召开的国际物理学会议上提出了著名的“互补原理”,用以解释量子现象基本特征的波粒二象性,它认为量子现象的空间和时间坐标和动量守恒定律,能量守恒定律不能同时在同一个实验中表现出来,而只能在互相排斥的实验条件下出来不能统一与统一图景中,只能用波和粒子这些互相排斥的经典概念来反映。波和粒子这两个概念虽然是互相排斥的,但两者在描写量子现象是却又是缺一不可的。因此玻尔认为他们二者是互相补充的,量子力学就是量子现象的终极理论。“互补原理”实质上是一种哲学原理,称为量子力学的“哥本哈根解释”。30年代后成为量子力学的“正统”解释,波恩称此为“现代科学哲学的顶峰。”1927年10月在布鲁塞尔第五届索尔卡物理学会议上,量子力学的哥本哈根解释为许多物理学家所接受,同时也受到爱因斯坦等一些人的强烈反对。爱因斯坦为此精心设计了一系列理想实验,企图超越不确定关系的限制来揭露量子力学理论的逻辑矛盾。玻尔和海森堡等人则把量子理论同相对论作比较,有利地驳斥了爱因斯坦。1930年10月第六届索尔卡物理学会议上,爱因斯坦又绞尽脑汁提出了一个“光子箱”的理想实验,向量子力学提出了严峻的挑战。光子箱的结构很简单,一个匣子挂在弹簧称上,一个相机快门一样的装置控制匣子内光子的射出。每次射出光子的时间由快门控制,弹簧称上可以读出整个盒子因光子出射而减少的质量,根据大名鼎鼎的爱因斯坦质能关系: 得出光子的能量,这样原则上时间和能量不存在不能同时确定的问题。 据说玻尔看到这个装置登时口吐白沫,经过紧急抢救时的输氧加上彻夜的苦思之后,玻尔终于搬来了救星,呵呵,那竟然是爱因斯坦本人的广义相对论。发射出光子后,光子箱的质量减少纵然可以精确测出,然而弹簧秤收缩,引力势能减小,根据广义相对论的引力理论,箱子中的时钟会走慢,归根到底时间又是不确定了。 这次轮到爱因斯坦吐血三天了,他费尽心思找来的实验居然成了量子力学测不准关系的绝妙证明,还被玻尔等人堂而皇之的载入他们的论文之中。 既然在微观状态下,存在测不准关系,那么在宏观状态下,还存在测不准关系吗?这个我们应该能得出结论:当然存在测不准关系。我们做实验的时候,一旦到了处理实验数据就要同时算出相应的不确定度。这是为什么呢?测量结果都具有误差,误差自始至终存在于一切科学实验和测量的过程之中。任何测量仪器、测量环境、测量方法、测量者的观察力都不可能做到绝对严密,这就使测量不可避免地伴随着有误差产生。因此,分析测量可能产生的各种误差,尽可能可消除其影响,并对测量结果中未能消除的误差做出估计,就是物理实验和许多科学实验中必不可少的工作。但是,我们只能尽力减小误差,却不能消除它。从上面可以看得出,世界上是不存在测得准的东西的,正所谓世界是辩证统一的,事物是相互影响的,既存在相对性,又存在绝对性。事物的测不准关系,就因为它既有相对性,又有绝对性,而我们通常所说的某某物重多少,高多少,等等看似绝对的数据其实是相对的。在某一个时段里,物体趋向于某个值的概率最大,因而我们就把这个值称作在这个时段里的相对准确值,它本是使不可能测准的。事物之间又存在着相互作用,因而又由于相互作用是具体的,因而是有限的,具有一定的认识意义;而本体则是抽象的,因而是无限的,并不具有任何确定的认识意义。所以,世界上并不存在确定的东西。参考文献:张三慧,《大学物理学<量子物理>》清华大学出版社2000年8月第二版34页35页李士本,张力学,王晓峰《自然科学简明教程》,浙江大学出版社2006年2月第一版,68页.72页 资料来源:

怎样才能看懂量子力学的论文?1. 首先,要了解量子力学的基本概念,包括它的历史、基本方程式以及核心思想。2. 其次,需要熟悉相关的数学表达式和物理名词。利用书籍或者在网上进行大量的阅读是一个不错的选择。3. 然后尝试理解文章中出现的具体问题:作者所使用的方法、已得到的实验结果以及对应的理论意义都是很重要内容。 4. 最后,多看看图表材料或者直方图材料能帮助你进一步了解作者所传递出来信息。

量子力学期刊

《大科技》《科技传播》是科普杂志,不是学术期刊,科学家有时也会看看,但绝不会引用。论文一般都需要数据,没有不包括数据的论文,即便量子力学论文、宇宙大爆炸论文那也是到处充满数据。可以看得出来,你的文章根本没有数据,只是一番推论,这是不行的。你需要把你的理论得出的结果与已有数据进行对比,看看是否符合(这是基础),然后再用你的理论得出其它人得不到的数据(这是验证),等待实验家去完成实验,采集数据。若别人后来做出的数据支持了你的理论,那就说明你的理论在一定范围是正确的,你才会名声大振。

从一开始,量子力学就一直以其难以理解的奇特之处让人们惊叹不已。为什么一个粒子似乎同时通过两个狭缝?为什么我们只能谈论概率的演变,而不是具体的预测呢?根据华沙大学和牛津大学的理论家的所说:量子世界最重要的特征可能来自狭义相对论,而到目前为止,狭义相对论似乎与量子力学关系不大。自从量子力学和相对论问世以来,物理学家们就因为这些概念的不相容,而不舍昼夜的思索。

科学家普遍认为,量子力学的描述是更基本的,相对论必须与之相适应。华沙大学(FUW)物理系Andrzej Dragan博士和牛津大学(UO)ArturEkert教授现在提出了他们的推理《相对论的量子原理》,得出了不同的结论,其研究成果发表在《新物理学》期刊上,证明了量子力学的特性,决定了量子力学的独特性和量子力学的非直观差异,更重要的是,作为公理,可以在狭义相对论的框架内加以解释。

阿尔伯特·爱因斯坦把狭义相对论建立在两个假设之上,第一个被称为伽利略的相对论原理(这是哥白尼原理的特例),这说明物理在每个惯性系统中都是相同的(即静止或稳定直线运动的惯性系统);第二个假设是根据著名的迈克尔逊-莫利实验结果提出的,它要求每个参考系的光速都是恒定的。爱因斯坦认为第二个假设至关重要,实际上,至关重要的是相对论原理。

早在1910年,弗拉基米尔·伊格纳托夫斯基就表明:只有基于这一原理,才有可能重建狭义相对论的所有相对论现象。1992年安德烈·西马查教授也提出了一个极其简单的推理,直接从相对论原理引出相对论。爱因斯坦认为第二个假设至关重要,实际上,关键是相对论原理。早在1910年,弗拉基米尔·伊格纳托夫斯基就表明:只有基于这个原理,才有可能重建狭义相对论的所有相对论现象。

狭义相对论是一个连贯的结构,它允许三种数学上正确的解:以亚光速运动的粒子世界,以光速运动的粒子世界,以及以超光速运动的粒子世界,然而,这第三个正解一直被认为与现实无关而被拒绝。新研究提出了一个问题:如果暂时不涉及解决方案的物理或非物理性质,认真对待的不是狭义相对论的一部分,而是它的全部,以及超光速系统,会发生什么?而且预计会出现因果悖论。

同时,我们看到的,正是构成量子力学最深核心的那些效应。最初,两位理论家都考虑了一种简化的情况:具有所有三正解的时空,但只包含一个空间维度和一个时间维度(1+1)。一种溶液体系中的静止粒子,似乎在另一种溶液体系中以超光速运动,这意味着超光速本身是相对的。在以这种方式构建的时空连续体中,非确定性事件自然发生。如果在A点的一个系统中有超光速粒子产生,甚至是完全可预测的。

向B点发射,那里根本没有关于发射原因的信息,那么从第二个系统中观察者的观点来看,事件从B点运行到A点,所以它们从一个完全不可预测的事件开始。事实证明,类似效应也出现在亚光速粒子发射的情况下。两位理论家还表明:在考虑了超光速解之后,粒子在多个轨迹上的运动同时出现是自然的,描述事件的过程需要引入表明存在状态叠加的组合概率幅度之和,到目前为止,这一现象只与量子力学有关。

在三个空间维度和一个时间维度(3+1)的时空的情况下,也就是对应于我们的物理现实,情况就更复杂了。最初形式的相对论原理没有保留,即亚光速系统和超光速系统是可以区分的。然而,研究人员注意到,当相对论原理被修改为这样的形式:以局部和确定性的方式,描述事件的能力不应该取决于惯性参考系的选择”时:它将解决方案限制在那些从(1+1)时空中考虑的所有结论仍然有效。

而且研究还注意到了对单个维度的作用进行有趣解释的可能性。在观察者看来超光速的系统中,一些时空维度似乎改变了它们的物理角色。只有一个维度的超光速光具有空间特征——粒子沿着这个维度移动,其他三个维度似乎是时间维度。空间维度的一个特征是,粒子可以在任何方向上运动或保持静止,而在时间维度上,它总是在一个方向上传播演变(老化)。

因此,超光速系统的三个时间维度和一个空间维度(1+3)将意味着粒子不可避免地同时老化三倍。在超光速系统(1+3)中,从亚光速系统(3+1)观察到的粒子老化过程看起来就像球面波一样运动,导致著名的惠更斯原理(波面上的每个点都可以看作是新球面波源)和波粒二象性。考虑与一个看似超光速系统有关的解决方案时,出现的所有奇怪之处,其实并不比人们普遍接受并经过实验验证的量子理论更奇怪。

相反,考虑到一个超光速系统,我们可以至少在理论上:从狭义相对论中推导出量子力学的一些假设,而这些假设通常被认为不是由其他更根本的原因造成。近一百年来,量子力学一直在等待更深层次的理论来解释其神秘现象的本质。

如果华沙大学和牛津大学物理学家提出的推理经得起时间考验,历史将残酷地嘲弄所有的物理学家。几十年来一直在寻求解释量子力学独特性的“未知”理论,将是从量子理论第一部作品中就已经知道的东西。

1、相对论 1905年,20世纪最伟大的科学天才爱因斯坦在他26岁时创立了狭义相对论,提出了不同于经典物理学的崭新的时空观和质(m)能(E)相当关系式E=mc2(此处光速C=3×108米/秒),在理论上为原子能的应用开辟了道路。 关于E=mc2,即物体贮藏的能量等于该物体的质量乘以光速的平方,这个数量大到令人难以想象的程度。我们不妨打个比方说,1克物质全部转化成的能量,相当于常规状态下燃烧36000吨煤所释放的全部热能;或者说,1克质量相当于2500万度的电能。 1915年,爱因斯坦又创立了广义相对论,深刻揭示了时间、空间和物质、运动之间的内在联系——空间和时间是随着物质分布和运动速度的变化而变化的。它成为了现代物理学的基础理论之一。 从1923年开始,爱因斯坦用他的后半生致力于统一场论的探索,企图建立一个既包括引力场又包括电磁场的统一场理论,虽然他没有取得成功,但是杨振宁和米尔斯于50年代创立了“杨—米尔斯场方程”,发展了所谓“规范场”的理论,使爱因斯坦梦寐以求的统一场论可望在规范场的基础上得以实现。2、量子力学 1900年,普朗克创立了量子论,提出能量并非无限可分、能量的变化是不连续的新观念。1905年,爱因斯坦提出了光量子论,揭示了光的“波粒二象性”。1913年,玻尔把量子化概念引进原子结构理论。1923年,德布罗意提出物质波理论。1925年,海森伯和薛定谔分别建立矩阵力学和波动力学。1928年,26岁的狄拉克提出电磁场中相对论性电子运动方程和最初形式的量子场论,使包括矩阵力和波动力学在内的量子力学取得了重大的进展。 20代末量子力学的建立,是继1905-1915年相对论建立之后对经典物理学的又一次革命性的突破,它成功地揭示了微观物质世界的基本规律,加速了原子物理学和固态物理学的发展,为核物理学和粒子物理学准备了理论基础,同时也促进了化学键理论和分子生物学等的产生。因此,量子力学可以说是20世纪最多产的科学理论,迄今仍具有强大的生命力。3、混沌理论 混沌理论 :是系统从有序突然变为无序状态的一种演化理论,是对确定性系统中出现的内在“随机过程”形成的途径、机制的研讨。 “相对论消除了关于绝对空间和时间的幻想;量子力学则消除了关于可控测量过程的牛顿式的梦;而混沌则消除了拉普拉斯关于决定论式可预测的幻想。” 一点就是未来无法确定。如果你某一天确定了,那是你撞上了。 第二事物的发展是通过自我相似的秩序来实现的。看见云彩,知道他是云彩,看见一座山,就知道是一座山,凭什么?就是自我相似。这是混沌理论两个基本的概念。 混沌理论还有一个是发展人格,他有三个原则,一个是事物的发展总是向他阻力最小的方向运动。第二个原则当事物改变方向的时候,他存在一些结构。一 混沌理论(Chaos theory)是一种兼具质性思考与量化分析的方法,用以探讨动态系统中(如:人口移动、化学反应、气象变化、社会行为等)无法用单一的数据关系,而必须用整体、连续的数据关系才能加以解释及预测之行为。二 混沌一词原指宇宙未形成之前的混乱状态,我国及古希腊哲学家对于宇宙之源起即持混沌论,主张宇宙是由混沌之初逐渐形成现今有条不紊的世界。在井然有序的宇宙中,西方自然科学家经过长期的探讨,逐一发现众多自然界中的规律,如大家耳熟能详的地心引力、杠杆原理、相对论等。这些自然规律都能用单一的数学公式加以描述,并可以依据此公式准确预测物体的行三 近半世纪以来,科学家发现许多自然现象即使可化为单纯的数学公式,但是其行径却无法加以预测。如气象学家Edward Lorenz发现,简单的热对流现象居然能引起令人无法想象的气象变化,产生所谓的「蝴蝶效应」,亦即某地下大雪,经追根究底却发现是受到几个月前远在异地的蝴蝶拍打翅膀产生气流所造成的。一九六○年代,美国数学家Stephen Smale 发现,某些物体的行径经过某种规则性的变化之后,随后的发展并无一定的轨迹可寻,呈现失序的混沌状态。四 混沌现象起因于物体不断以某种规则复制前一阶段的运动状态,而产生无法预测的随机效果。所谓「差之毫厘,失之千里」正是此一现象的最佳批注。具体而言,混沌现象发生于易变动的物体或系统,该物体在行动之初极为单纯,但经过一定规则的连续变动之后,却产生始料所未及的后果,也就是混沌状态。但是此种混沌状态不同于一般杂乱无章的的混乱状况,此一混沌现象经过长期及完整分析之后,可以从中理出某种规则出来。混沌现象虽然最先用于解释自然界,但是在人文及社会领域中因为事物之间相互牵引,混沌现象尤为多见。如股票市场的起伏、人生的平坦曲折、教育的复杂过程。五 混沌理论在教育行政、课程与教学、教育研究、教育测验等方面已经有些许应用的例子。由于教育的对象是人,人是随时变动起伏的个体,而教育的过程基本上依循一定的准则,并历经长期的互动,因此,相当符合混沌理论的架构。也因此,依据混沌理论,教育系统容易产生无法预期的结果。此一结果可能是正面的,也有可能是负面的。不论是正面或是负面的,重要的是,教育的成效或教育的研究除了短期的观察之外,更应该累积长期数据,从中分析出可能的脉络出来,以增加教育效果的可预测性,并运用其扩大教育效果。六 过去决策基础的三个主要假定和三个新的现实 根据混沌理论,格拉斯提出,过去作为决策基础的三个主要假定已经不再成立。这些假定是: 假定1:企业是一个“说到做到”的封闭系统。外界对企业决定采取的行动没有多大干扰。 假定2:经营环境是稳定的。管理者能够充分把握经营环境,从而制定出详尽具体的战略。 假定3:管理者对事件的因果关系有着足够的认识。他们能够顺藤摸瓜,找出每一事件将会导致的变化。 在格拉斯看来,这些旧的假定已经被三个新的现实所代替: 现实1:企业是复杂的“开放”系统,既影响着其所处的环境,又在很大程度上受环境的影响。这意味着,企业的行动可能无法达到它所预期的结果。 现实2:环境是瞬息万变的(不断创造着机会和威胁)。高层管理者不能指望制定出在付诸实施时仍完全有效的详尽战略。 现实3:作为传统决策理论基础的简单线性因果关系模型已经失灵。因此,各种事件的后果是无法预料的。关于混沌学说的哲学意义 zhengzi先生在他的“混沌哲学”发帖中提出三个重要观点: 1、 理性混沌------留意悖论和思维困境的现实存在.这是当今世界的一种逻辑悬念. 2、进化混沌-------留意生态危机和人类种群的扩展.它将有可能揭示生命历史的真实背景和未来动向. 3、社会混沌--------留意人类社会内部矛盾的滞留. 对此我把它剖解为人类社会发展中三种基本矛盾形态: 1、理性混沌------ 这是否是说:悖论是一种内含在逻辑局限当中的困局,而思维则陷入了与存在抽象思辨的另一种困局?这两者均是根植我们认知方式之中的混乱之源? 2、进化混沌------- 生态危机是自然界向整个人类敲响的警钟,人类却依然在自由市场经济给定的利益单元中处理人和自然的关系。其乱源是:人们自以为个人利益、个人人权和由此派生的国家利益仍然是市场经济围之运转的不可动摇的神话。人们就根据这种神话处理他们各自为战的人与自然关系的。 目前人类种群的划分,大致有两种:一是历史上和现实中均作为一个发展连续统的法定单元——民族国家。二是以一定的宗教、文化、信仰为核心,尚不具有构成国家性质的松散政治团体,和业已具有构成国家性质、尚未被国际社会肯定的社会发展单元。可悲的是,在属于后者的两者情况中,都想挤入国际社会。于是这两者均成为世界大国玩弄全球战略利益的牺牲品——于是恐怖主义不可遏制的在全球泛滥开来。 以上两种情况,显然是由人类认知主体的狭隘盲目、自以为是、违背人类社会发展规律所致。 3、社会混沌-------- 由于人类在推动社会政治、经济、文化变革方面,特别是在与对象世界对等认知的主体性划分方面,仍然滞留在工业社会早期和后期的发展水平上,导致人们的人权观、自然观(宇宙观)和社会发展观的严重滞后,以致在新的历史条件之下,促使社会的内部各种矛盾交织一起、不断恶化。这是社会内部各种矛盾“无解”、滞留乃至恶化的根本原因。 它象人们表明 ,“混沌不是一种现象,而是一种结构”(zhengzi先生语)。它的哲学意义在于:它从理性混沌、进化混沌和社会混沌的不同角度陈明了目前人类社会混沌的大致状况。说到底,这也是人类社会发展进程中内在秩序的混沌,是本体论意义上的混沌。 那么,如何使这种状况的历史改变成为可能呢?是凭籍个体认知的智慧哲学吗?是某种形而上的哲学可以挽救的吗?回答当然是否定的!因为这类哲学,毕竟是体认文化的产物(见认知哲学与本体论哲学:),它的终极关怀的对象只能是无以诉说其本质的抽象之人! 体认文化及其哲学一个最大的特点是:人们在投身社会生产生活的活动中,只是从当时社会生产力发展的水平上评价人和周围世界的关系及事物,只是把这类关系和事物类属于人的有用性方面,作为分析人类(个体)本性的尺度。以致于任何以生命个体为认知原点的(唯物主义或唯心主义)哲学均无法超脱这个尺度!所以,我们需要一种新的观照视野:即把现实发展植根在人类全部历史与文化进程的物在基础之上,从中寻找和厘定把人类现实为一个物在主体的文化根源与关系框架,进而由此引申出它对现实走向的历史制约和对未来发展的本体观照。 这样,我们就需要一种具有动在生命特质的、以整个人类作为终极关怀对象的新历史唯物主义哲学——人化哲学。 zhengzi先生说得好,所谓混沌,就是“是一种对称,一种潜在,或暗藏的对称,是一种运动着的秩序”。它引导我们超越哲学认知的常态,从一种大跨度的、历史纵深的思维理性中重新审视人类社会的过去、现在和将来!混《混沌 :开创新科学》或者《混沌学》。沌理论,是系统从有序突然变为无序状态的一种演化理论,是对确定性系统中出现的内在“随机过程”形成的途径、机制的研讨。美国数学家约克与他的研究生李天岩在1975年的论文“周期3则乱七八糟(Chaos)”中首先引入了“混沌”这个名称。美国气象学家洛伦茨在2O世纪6O年代初研究天气预报中大气流动问题时,揭示出混沌现象具有不可预言性和对初始条件的极端敏感依赖性这两个基本特点,同时他还发现表面上看起来杂乱无章的混沌,仍然有某种条理性。1971年法国科学家罗尔和托根斯从数学观点提出纳维-斯托克司方程出现湍流解的机制,揭示了准周期进入湍流的道路,首次揭示了相空间中存在奇异吸引子,这是现代科学最有力的发现之一。1976年美国生物学家梅在对季节性繁殖的昆虫的年虫口的模拟研究中首次揭示了通过倍周期分岔达到混沌这一途径。1978年,美国物理学家费根鲍姆重新对梅的虫口模型进行计算机数值实验时,发现了称之为费根鲍姆常数的两个常数。这就引起了数学物理界的广泛关注。与此同时,曼德尔布罗特用分形几何来描述一大类复杂无规则的几何对象,使奇异吸引子具有分数维,推进了混沌理论的研究。20世纪70年代后期科学家们在许多确定性系统中发现混沌现象。作为一门学科的混沌学目前正处在研讨之中,未形成一个完整的成熟理论。但有的科学家对混沌理论评价很高,认为“混沌学是物理学发生的第二次革命”。但有的人认为这似乎有些夸张。对于它的应用前景有待进一步揭示。但混沌理论研究同协同学、耗散结构理论紧密相关。它们在从无序向有序和由有序向无序转化这一研究主题有共同任务,因而混沌理论也是自组织系统理论的一个组成部分。近几年来,科学家们在研究混沌控制方面已取得重要进展,实现了第一类混沌,即时间序列混沌的控制实验。英、日科学家还在试验用混沌信号隐藏机密信息的信号传输方法。混沌出现,古典科学便终止了。由於长久以来世界各地的物理学家都在探求自然的秩序,而面对无秩序的现象如大气、骚动的海洋、野生动物数目的突然增减及心脏跳动和脑部的变化,却都显得相当无知。这些大自然中不规则的部份,既不连续且无规律,在科学上一直是个谜。但是在七零年代,美国和欧洲有少数的科学家开始穿越混乱来开辟一条出路。包括数学家、物理学家、生物学家及化学家等等,所有的人都在找寻各种不规则间的共相。生理学家从造成神秘猝死的主要原因--人类心脏所产生的混沌中,找到令人讶异不已的秩序。生态学家研究数量的起伏,经济学家挖出股票价格资料去尝试新的分析方式。这些洞察力开始显现出来引导我们走向自然世界--云朵的形状、闪电路径、血管微观的纠结交错、星族聚集。从研究者互不相识到世界疯狂加入新科学的风行。十年之后,混沌已经变成一项代表重新塑造科学体系的狂飙运动,四处充斥了为混沌理论而举行的会议和印行的期刊,政府在预算中将更多的军队、中央情报局和能源部门研究经费投入探索混沌现象,同时成立特别部门来处理经费的收支。在每一所大学和联合研究中心里,理论家视混沌为共同志业,其次才是他们的专长。在罗沙拉摩斯,一个统合混沌和其他相关问题的非线性研究中心已经成立,类似机构也出现在全国各处校园里。混沌创造了使用电脑与处理特殊图形、在复杂表相下捕捉奇幻与细腻结构图案的等殊技巧。这支新的科学衍生出它自己的语言,独具风格的专业用语---分形、分歧、间歇、周期、摺巾(folded-towel)、微分同相(diffeomorphisms)、以及平滑面条映象(smooth noodle maps)。这些运动的新元素,就像传统物理学中的夸克、gluons是物质的新元素一般,对有些物理学家而言,混沌是一门进展中的科学而不是成品,是形成而非存在。混沌现象似乎是俯拾皆是:袅绕上升的香菸烟束爆裂成狂乱的烟涡、风中来回摆动的旗帜、水龙头由稳定的滴漏变成零乱。混沌也出现在天气变化中、飞机的航道高速公路上车群的壅塞、地下油管的传输流动;不论以什麼做为介质,所有的行为都遵循这条新发现的法则。这种体会也开始改变企业家对保险的决策、天文学家观测太阳系及政治学者讨论武冲突压力的方式。混沌夸越了不同科学学门的界线,因为它是各种系统的宏观共相,它将天南地北各学门的思想家聚集一堂,一位管理科学预算的海军官员,曾经对一群数学家、生物学家、物理学家和医生的听众陈述:『十五年前,科学正迈入钻牛角尖的危机,但这种细密的分工,又戏剧化地因混沌理论而整合起来了』。对新科学最热烈的拥护者认为,二十世纪的科学中传世之作只有三件:相对论、量子力学、和混沌理论。他们主张混沌已经成为这世纪中物理科学发生的第三次大革命,像前两次革命一样,混沌理论撕下了牛顿物理中奉为圭臬的信条。就像一位物理学家所表示的:相对论否定了牛顿对绝对空间与时间的描述;量子理论否定了牛顿对於控制下测量过程的梦想;而混沌理论则粉粹了拉普拉斯( Laplace )对因果决定论可预测度所存的幻影。混沌理论的革命适用於我们可以看到、接触到的世界,在属於人类的尺度里产生作用,世界上日常生活的经验和个人及真实景象已经变成了研究的合适目标,长久以来有种不常公开表达出来的感觉--理论物理学似乎已远离了人类对世界的直觉(例如:你真的相信羽毛和石头掉落的速度是一样的吗?伽利略从比萨斜塔抛下球体的故事简直是神话!)没有人知道某个新学说会成为结实累累的异端或仅仅是平凡的异端,但是对有些逼入墙角的物理学家而言,混沌理论则是他们的新出路。混沌理论的研究从原本物理学范畴中落后的部份突显了出来。粒子物理学主宰二十世纪的全盛时期已然过去,使用粒子物理的术语来解释自然法则所受到的限制,除了最简单的系统外,这些法则对大部分问题几乎束手无策。以可预测度来说,在云雾实验室里让两颗粒子绕著加速器赛跑而在尽头碰撞是一回事,至於在简单导管里慢慢移动的流体、地球天气或者人类脑袋则完全不是同一回事。当混沌革命继续进展时,顶尖物理学家发现自己心安理得的回归到属於人类尺度的某些现象,他们不只研究星云,也开始研究云。他们不只在克雷超级电脑执行大有斩获的电脑研究,同时也在麦金塔个人电脑上进行。一流期刊上刊载有关一粒球在桌上跳跃的奇异动力,和量子力学的文章平起平坐,最简单的系统也能够制造出让人手忙脚乱的可预测度问题。尽管如此,秩序依旧从这些系统中突然绽现--秩序与混沌共存。只有一种新的科学可以连接微观:例如一颗水分子、一粒心脏组织的细胞、一支中子;和宏观上百万的物体集体行为之间的深深鸿沟。观察瀑布底端两块紧邻的泡沫,你能猜想到它们原来在瀑布顶端时的距离如何?事实上无迹可寻,就像标准的物理学所认为的一样,彷佛上帝秘密地将所有的水分子放在黑盒子里搅动。通常当物理学家看到这麼复杂的结果,他们便去寻找复杂的原因,当看到进出系统的种种事物之间混乱的关系,他们会认为必须用人为加入扰动或误差,而在任何现实可行的理论里加入随机因素。开始於六零年代的混沌理论的近代研究逐渐地领悟到,相当简单的数学方程式可以形容像瀑布一样粗暴难料的系统,只要在开头输入小小差异,很快就会造成南辕北辙的结果,这个现象称为『对初始条件的敏感依赖』。例如在天气现象里,这可以半开玩笑地解释为众所皆知的蝴蝶效应--今天北京一支蝴蝶展翅翩跹对空气造成扰动,可能触发下个月纽约的暴风雨。当混沌理论的探险者开始回想新科学的发展源流时,追溯到许多过去知识领域的褴褛小径。但是其中之一格外清晰,对於革命旅程的年轻物理学家和数学家而言,蝴蝶效应是他们的共同起点。

科学的理论知识需要经过实践的验证,理论需要联系实际,脱离实际的理论不可靠。

量子力学论文的主要研究方向

量子信息量子计算

量子力学的发展方向二十世纪初,物理学取得了两大突破:一个是普朗克提出了作用量子的概念;一个是爱因斯坦提出的狭义相对论的时空观。 100年前的1900年,德国科学家普朗克提出量子概念,1925年到1926年,海森伯和薛定谔最终建立了量子力学,解决了原子物理、光谱等基本问题,取得了巨大成功。之后,量子力学朝两个重要方向发展:一是向更小(如原子以下的)尺度的应用,原子核物理学就是在量子力学指引下发展的,进而发展为目前的基本粒子物理学。量子力学使人类对物质世界的认识从宏观层次跨进了微观层次。 量子力学的另一个发展方向,就是把量子力学用于处理更大尺度上的问题,比如分子的问题(即量子化学问题)和固体物理或凝聚态物理的问题。从研究对象的尺度看,从固体物理到地球物理、行星物理,再到天体物理和宇宙物理,其研究范围越来越大。 从1925年之后,几乎所有的二十世纪的物质文明都是从相对论和量子力学这两个物理基础科学的发展衍生的。原子构造、分子构造、核能、激光、半导体、超导体、X光、超级计算机……假如没有狭义相对论和量子力学,这一切都不会有。相对论和量子力学作为物理学的基础,已成为现代精密科学的两大柱石。二者的结合,不仅使物理学本身日新月异,而且也使物理学以外的其他自然科学改变了面貌。(新华社北京12月14日电) 新华社 2000年12月14日

二十世纪初,物理学取得了两大突破:一个是普朗克提出了作用量子的概念;一个是爱因斯坦提出的狭义相对论的时空观。 100年前的1900年,德国科学家普朗克提出量子概念,1925年到1926年,海森伯和薛定谔最终建立了量子力学,解决了原子物理、光谱等基本问题,取得了巨大成功。之后,量子力学朝两个重要方向发展:一是向更小(如原子以下的)尺度的应用,原子核物理学就是在量子力学指引下发展的,进而发展为目前的基本粒子物理学。量子力学使人类对物质世界的认识从宏观层次跨进了微观层次。 量子力学的另一个发展方向,就是把量子力学用于处理更大尺度上的问题,比如分子的问题(即量子化学问题)和固体物理或凝聚态物理的问题。从研究对象的尺度看,从固体物理到地球物理、行星物理,再到天体物理和宇宙物理,其研究范围越来越大。 从1925年之后,几乎所有的二十世纪的物质文明都是从相对论和量子力学这两个物理基础科学的发展衍生的。原子构造、分子构造、核能、激光、半导体、超导体、X光、超级计算机……假如没有狭义相对论和量子力学,这一切都不会有。相对论和量子力学作为物理学的基础,已成为现代精密科学的两大柱石。二者的结合,不仅使物理学本身日新月异,而且也使物理学以外的其他自然科学改变了面貌。

量子力学的研究发展现状论文

曾经有一位著名的科学家在1893年宣告,他相信曾经能够做出伟大发现的时代已经离我们而去了,因为几乎一切都已被发现,将来的科学家除了更加精确地重复19世纪做过的实验,使原子量在小数位上有所添加以外,不可能有更多的作为。

但事实证明这位科学家错了。因为,即使拥有19世纪所取得的全部知识,也无法说明X射线和铀的放射性这两种现象。这是新生事物,它好像完全不合乎自然规律,背离了人类关于原子的认识。X射线和放射性像两个雪球,一旦滚动起来,必将如同雪崩一样引出一系列科学发现。

古人对物质元素的认识,是人类探究微观世界的起源。远古时代的人类在长期的生活实践中,发明了制陶,掌握了炼铜、炼铁等技艺,他们看到了物质可以重新组合并发生质的变化,于是就开始思考有关物质的构成与变化的原因。比如在我们这个神奇的大自然中,冬天水结成冰,夏天冰又化成水,而且在地热泉中,水又蒸发为气体。人们还看见万物在大地上生长,又消失在大地之中,对于天地万物和人类的本源,人们一直怀有强烈的好奇心,试图从本质上理解和认识事物本身。最原始的元素学说就这样萌生了,开始了人类最初的对微观世界的认识。

经过人类不断努力地探索研究,今天我们知道物质世界是由一些很小的粒子——原子组成的,各种原子按照本身的规律相互连接,形成了分子,各种各样的分子聚集在一起就是我们丰富多彩的世界。可是,原子是怎样相互连接的呢?这就不能不提及到原子内部的结构。原子是由一个位于中心的原子核和核外的电子组成的,原子核带正电,而电子带的是负电,这样整个原子对外就不显电性。电子在原子中并不是静止的,而是绕着原子核做高速的运动,电子的高速运动在原子的周围形成像云一样的外衣,也叫电子云。不同的原子内电子的数目不同,电子运动的模式也不同。举一个例子来说,就像一个班的同学,大家都穿上形状各异的外壳,由于外壳的形状不同,使得有些人靠在一起会比较舒服,而有些人很难靠到一起。当然实际情况还要复杂得多,上面只是一个简单化的比喻。我们如果真的想理解原子等一些基本粒子的行为,就必须引入量子力学。

1900年,德国物理学家普朗克发表了一篇论文,导致了量子理论的出现。普朝克提出“量子论”,吹响了20世纪物理学革命的进军号。在同一年,孟德尔遗传学说被确认,成为生物科学上划时代的一年。在同一年,德兰斯特纳发现了血型,拯救了无数人的生命。到2000年,人类在量子论、相对论、基因论、信息论等方面都取得了以前难以想象的飞跃发展。人类一直在研究我们生活的地球和宇宙。现在,人类的观察范围不仅已达150多亿光年之遥,而且可以深入到原子核中去观察“夸克”等基本粒子的特征。

量子力学是20世纪人类在物理学领域的最伟大最重要的发明之一。量子力学和狭义相对论被认为是近代物理学的两大基础理论。量子力学主要研究微观粒子运动规律。20世纪初大量实验事实和量子论的发展,表明微观粒子同时具有粒子性和波动性,它们的运动不能用通常的宏观物体运动规律来描述。量子力学的建立大大促进了原子物理学、固体物理学和原子核物理学等学科的发展,并标志着人们对客观规律的认识从宏观世界已经开始向微观世界深入发展。

量子力学的奠基人玻尔曾经说过:“谁如果在量子面前不感到震惊,他就不懂得现代物理学;同样如果谁不为此理论感到困惑,他也不可能是一个好的物理学家。”的确,量子力学确实很难理解,原因之一就是在微观世界里的很多事情,同我们所能看到的宏观世界存在很大的差别,有些可能是我们难以想象的。就像隧道效应令人绞尽脑汁的例子一样。如下图所示,在经典力学控制下,狮子不可能越过障碍吃到你,可是在量子力学控制下,狮子却可以直接穿过那个堡垒,好像挖了一个隧道跑出来一样,看起来有些像“崂山道士”里面的穿墙术吧!在这里只是做了个比方,现实生活中你无需担心狮子会从笼子里直接钻出来。因为我们的宏观世界是不会发生这样的事情的。可是在微观世界里,电子等微观粒子却经常能够“穿墙而过”。

量子物理学是关于自然界的最基本的理论,人类在20世纪20年代发现了它,然而至今却仍然无法理解这个理论的真谛。大多数人根本没听说过量子,而初学者无不感到困惑不解,实际上,所有20世纪最伟大的科学家都没有真正理解它,并一直为之争论不休。然而,越困难、越具有挑战性的问题就越让人类的好奇心无法割舍,人类志在理解自然的本性,并最终理解自己。 今天,对于每一个仍然对自然充满好奇的现代人来说,不理解量子,就无法理解我们身边的世界,就不能真正成为一个有理性的、思想健全的人。同时,让我们所有人感到幸运的是,现在想真正理解神秘的量子却是一件容易的事情,这会让那些逝去的伟人们感到羡慕和由衷的欣慰。 发现量子 人们将量子的发现称为人类科学和思想领域中的一场伟大的革命,因为它会让所有第一次试图接近她的人感到从未有过的心灵震撼。现代人所缺少的正是这种真正的心灵震撼,他们太沉迷于感性的快乐,而忽视了理性的清新魅力。 1900年,普朗克在对热辐射的研究中第一个窥见了量子。这一年的12月14日,普朗克在德国物理学会会议上宣布了他的伟大发现---能量量子化假说,根据这一假说,在光波的发射和吸收过程中,发射体和吸收体的能量变化是不连续的,能量值只能取某个最小能量元的整数倍,这一最小能量元被称为“能量子”。普朗克的能量子概念第一次向人们揭示了微观自然过程的非连续本性,或量子本性。 1905年,爱因斯坦提出了光量子假说,进一步发展了量子概念。爱因斯坦认为,能量子概念不只是在光波的发射和吸收时才有意义,光波本身就是由一个个不连续的、不可分割的能量量子所组成的。利用这一假说,爱因斯坦成功地解释了光电效应等实验现象。光量子概念首次揭示了光的量子特性或波粒二象性,即光不仅具有波动性,同时也具有粒子性。 继普朗克和爱因斯坦之后,玻尔进一步发现了原子系统的量子特性。1913年,玻尔把量子概念成功地应用于氢原子系统,并根据卢瑟福的核型原子模型创立了玻尔原子理论。这一理论指出,原子中的电子只能存在于具有分立能量的定态上,并且电子在不同能量定态之间的跃迁是本质上非连续的。 1924年,在爱因斯坦光量子概念的启发下,德布罗意提出了物质波假说,最终将光所具有的波粒二象性赋予了所有物质粒子,从而指出了自然界中的所有物质都具有波粒二象性,或量子特性。德布罗意的物质波概念为人们发现量子的规律提供了最重要的理论基础。 最初的理论 终于在1925-26年间,定量描述物质量子特性的最初理论---量子力学诞生了,并且是以两种不同的面孔---矩阵力学和波动力学接连出现的。1925年7月,海森伯在玻尔原子理论的基础上,发现了将物理量(如位置、动量等)及其运算以一种新的形式和规则表述时,物质的量子特性,如原子谱线的频率和强度可以被一致地说明,这是关于量子规律的一种奇妙想法。之后,玻恩和约丹进一步在数学上严格地表述了海森伯的思想,他们指出了海森伯所发现的用于表述物理量的新形式正是数学中的矩阵,而物理量之间的运算就是矩阵之间的运算。同时,玻恩和约丹还发现了用于表达粒子位置和动量的矩阵之间满足一个普遍的不对易关系,即[p,q]=ih。基于这一表达量子本性的对易关系,玻恩、约丹和海森伯终于建立了一个全新的量子理论体系---矩阵力学,这一理论只涉及测量结果,而并不涉及原子系统的量子状态和测量过程。 在矩阵力学建立的同时,另一种基于德布罗意物质波概念的新力学正在孕育。1925年末,在爱因斯坦的建议下,薛定谔仔细研究了德布罗意的论文,并产生了物质波需要一个演化方程的想法。1926年初,经过反复尝试和努力之后,薛定谔终于发现了物质波的非相对论演化方程,即今天人们熟知的薛定谔方程。薛定谔方程的发现标志了量子力学的另一种形式体系---波动力学的建立。 波动力学为物质的量子表现提供了进一步的直观图像(即波函数)说明,同时,在波动力学中,位置与动量之间的对易关系成为了波动方程的一个自然结果,而不是如矩阵力学那样,只能假设它的存在。在此意义上,波动力学优于矩阵力学。 1926年下旬,看上去非常不同的矩阵力学和波动力学很快被证明在数学上是等价的。薛定谔首先证明了波动力学与矩阵力学的等价性,之后,狄拉克进一步通过变换理论把矩阵力学和波动力学统一起来。至此,量子力学的理论体系被创建完成。 从此,人类开始进入量子时代。越来越多的人投入到量子力学的应用研究中,基于量子规律的新技术也不断涌现,这些量子技术深深地改变了人类的生活,其中最引人注目的成就就是激光技术和电子计算机的出现。 反对者们 人类完全有理由为这些辉煌的量子成就而骄傲,然而在这些成就背后却隐藏着一个令人不安的事实,那就是我们至今仍然不理解量子,而其根源在于量子力学并不完善。 1926年,玻恩在量子力学建立后不久即提出了量子力学的几率波解释,之后这一解释又进一步为海森伯的不确定关系和玻尔的互补性原理所补充,它们共同形成了量子力学的正统解释。在1927年的第五届索尔维会议之后,这一解释渐渐为更多的物理学家所接受。 然而,反对者们依然存在,其中主要包括量子力学的奠基者和创立者---爱因斯坦和薛定谔,他们分别以EPR悖论和薛定谔猫来对量子力学的正统解释进行反驳。20世纪50年代,当新一代物理学家们成长起来之后,正统解释开始受到越来越多的怀疑和攻击,并且人们也开始寻求对量子的新的理解。玻姆的隐变量解释和埃弗雷特的多世界解释就是其中最有生命力的两种解释,它们至今仍为很多物理学家所信奉和讨论。 不相容危机 爱因斯坦最早注意到量子力学与相对论的不相容性。在1927年的第五届索尔维会议上,爱因斯坦对刚刚建立的量子力学理论表示了不满,他在反对意见中指出,如果量子力学是描述单次微观物理过程的理论,则量子力学将违反相对论。1935年,在论证量子力学不完备性的EPR文章中,爱因斯坦再一次揭示了量子力学的完备性同相对论的定域性假设之间存在矛盾。在爱因斯坦看来,相对论无疑是正确的,而量子力学由于违反相对论必然是不正确的,或者至少是不完备的。 1964年,在爱因斯坦的EPR论证的基础上,贝尔提出了著名的贝尔不等式,这一不等式进一步显示了相对论所要求的定域性与量子力学之间的深刻矛盾,并提供了利用实验来进行判决的可能性。根据贝尔的分析,如果量子力学是正确的,它必定是非定域的。利用贝尔不等式,人们进行了大量实验来检验量子力学的正确性,其中最有说服力的是阿斯派克特等人于1982年所做的实验,他们的实验结果证实了量子力学的预言,并显示了量子非定域性的客观存在。 尽管量子非定域性的存在已经为实验所证实,然而,量子力学与相对论的不相容问题至今仍然没有得到满意的解决。根本原因在于,一方面,量子力学的理论基础仍没有坚实地建立起来,另一方面,量子力学所蕴含的非定域性又暗示了相对论的普适性将同样受到怀疑。 松散的基础 费因曼于60年代曾经说过,没有人理解量子力学。今天,情形依然如旧。即使量子力学已出现并被广泛应用近四分之三个世纪,即使它的大多数创立者已乐观地认为它是一个完善的理论,即使今天量子理论的正统解释已为人们普遍接受,但事实仍然是:量子力学甚至还不能称为一种理论。 首先,量子力学没有解决理论所描述的物理对象问题,人们对于理论中所出现的波函数还没有找到一个满意的物理解释,甚至不清楚波函数究竟是描述什么的。人们放弃了经典运动图像,却没有给出微观粒子真实的客观运动图像。 其次,量子力学本身没有解决测量问题,它没有描述理论与经验的连接纽带---测量过程,人们至今还不清楚波函数的测量投影过程是客观的还是主观的,亦或是一种虚幻。在量子力学中,测量过程被简单地当作是一种瞬时的、非连续的波函数投影过程,然而对于这一过程为何发生及如何发生它却说不清楚,因此,目前的量子理论对测量过程的描述是不完备的。另一方面,一旦将测量投影过程解释为一种客观的物理过程,它的存在将明显与相对论不相容,这导致了人们一直在投影过程的客观性和相对论的有效性之间摇摆不定,从而在很大程度上阻碍了对量子测量问题的解决,并进而阻碍了人们对波函数的物理含义的探求。 目前,越来越多的物理学家已认识到量子测量问题是目前量子理论中最重要,也是最棘手的物理问题,它的最终解决将不仅使现有量子理论更加完善,同时也将为量子理论与相对论的结合铺平道路。 引力也来“捣乱” 量子理论与引力的结合,即量子引力理论同样遇到了前所未有的困难。困难的根源来自于这两个理论的概念体系之间存在着固有的不相容性,这种不相容性更加基本,也更加深刻,它可能危及整个理论大厦。 一方面,根据量子理论,粒子波函数的一致定义需要预先给定的确定的时空结构,另一方面,根据目前的引力理论---广义相对论,时空结构将由粒子的波函数动态地决定,而粒子波函数所决定的时空结构一般却是不确定的。量子理论与广义相对论的这种不相容性暗示了量子理论中满足线性叠加定律的粒子波函数可能本质上已无法严格定义,于是量子理论中波函数的线性演化规律也将失效。这一结论的一个直接后果是,它将为波函数投影过程的存在提供一个自然的客观解释,从而可彻底解决量子测量问题,因此量子理论本身所存在的问题似乎需要广义相对论的帮助才能最终得以解决。 另一方面,量子理论也将对广义相对论所依赖的连续时空观念产生根本影响。人们已经证明,量子理论和广义相对论的适当结合将导致实验上所能测量到的最小的时间尺度和空间尺度不再是任意小,而是有限的普朗克时间和普朗克长度;同时,量子引力理论中恼人的时间问题也从理论上暗示了时间的连续性假设是不适当的。因此可以预计,只有放弃时空的连续性假设,我们才能从根本上解决量子理论与广义相对论的相容性问题,进而为量子引力理论提供一个一致的理论框架,而这无疑将再一次大大加深我们对时间、空间和运动的理解。 混乱的现状 人们关于量子力学看法的不一致可以通过下述事实最明显地说明,即量子理论的两位奠基人---爱因斯坦和玻尔竟为此进行了长达近30年的争论,并且最终也没有获得一致的意见。对于量子理论,谁还能比他们更有发言权呢?在这两位科学巨人离开我们近半个世纪后的今天,情况变得更糟,新的看法和解释不断涌现,不同的物理学家对量子理论几乎都持有不同的看法。 1997年8月,在UMBC(马里兰大学)举行的量子力学讨论会上,物理学家们对他们最喜欢的量子力学解释进行了投票表决,下表是投票结果: 量子力学的解释 投票数 哥本哈根解释 13 多世界解释 8 隐变量解释 4 一致历史 4 修正的量子动力学(GRM/DRM) 1 其他解释(包括未决定者) 18 图1 量子力学解释排名 实际上,更多的物理学家是实用型的,他们只专注于量子理论的应用,而根本不顾及它的基础是否坚实可靠。 拨开迷雾 如果你觉得量子力学难以理解甚至不可理喻,这并不奇怪,因为你生活在经典世界中,你看到的和经历的都是经典物体和它们的连续运动,并且从一开始你所受的科学教育也都是牛顿的经典力学。然而,这一切对于量子世界中的粒子和运动都已不再适用,每个人都会有一种脚下的地面突然被抽去的感觉。是的,你正在进入一个完全陌生的世界,通常的感觉和经验不再能帮助你,你需要利用理性的光辉来照亮前进的道路。不必担心,跟随我们,保持开放的思维,并乐于去理解,你会渐渐认识这个新的量子世界,并真正窥见它的神秘和美丽。 这里我们从一个最典型的例子---双缝实验讲起,这个例子“包含了量子力学的唯一神秘”(费因曼语)。通过这个例子,我们将让你最终熟悉并理解自然最神秘的量子本性。 自20世纪20年代量子力学建立以来,关于微观粒子(如电子,光子等)是如何通过双缝的问题一直未被真正客观地解决。尽管正统观点认为它已给出了满意的答案,但由于答案中并未给出粒子通过双缝的客观运动图像,实际上,这一图像的存在已为正统观点所否定,因此喜欢客观实在性观念的人们一直在问:“但是,粒子究竟是如何通过双缝的呢?”。 图1 双缝实验示意图 上图是双缝实验的示意图。我们以光子为例来讨论,假设单个光子可以相继从光源S发出,然后通过光阑A的两条狭缝到达光敏屏B。这样,当有大量光子到达光敏屏后将形成双缝干涉图样,在干涉峰处光子到达的数目最多。 首先,我们看一看利用连续运动图像是否可以解释光子通过双缝所形成的干涉图样。根据粒子的连续运动图像,在双缝实验中光子每次只能穿过两条狭缝中的一条,并且不受另一条狭缝的影响。于是很显然,双缝干涉图样应该和分别打开每条缝时所产生的单缝干涉图样的混合图样一致,因为双缝实验中每次单个光子通过的情形将同样出现在单缝实验中。但是,至今关于光子的双缝实验都否定了这个结论,这两种情况下所产生的干涉图样并不一样,这就是利用连续运动来理解双缝实验所导致的困惑。实际上,我们可以通过下述事实更容易地看出困惑所在,即当一条狭缝关闭时,光子会到达屏上的某一位置,然而当这条狭缝打开时,它将阻止并不通过这条狭缝的光子到达屏上的上述位置。 我们没有出路,只有放弃粒子的连续运动图像。量子力学的正统解释也同样放弃了这一图像,然而它却同时放弃了所有可能的粒子运动图像,并证明这种放弃竟是理论的必然。于是,正统解释不仅没有给出粒子通过双缝的客观运动图像,并且还惊人地宣称这不是它的无能,而是因为这一图像根本就不存在。下面我们看一看正统解释是如何“瞒天过海”的,又是在哪里“露出马脚”的。 正统解释首先隐含地假定了连续运动是唯一可以存在的客观运动形式,然后它通过类似于上面的论证证明了连续运动无法解释量子力学所预测的双缝干涉图样。于是,正统解释抛弃了连续运动这一可能的客观运动形式,而由于连续运动的唯一性,正统解释便得到下述结论:不存在客观的运动形式,或者说,不存在独立于观察的客观实在,当你谈论微观粒子的某种性质时,你必须测量这种性质。进一步地,正统解释在测量的意义上解释了双缝实验的怪异,并认为这是唯一可能的客观解释。这一解释可简单叙述如下:如果想知道光子如何通过双缝形成双缝干涉图样,你就必须利用位置测量直接观察光子究竟通过哪条狭缝,而根据量子力学,这一位置测量无疑将破坏掉双缝干涉图样,因此在双缝干涉图样不被破坏的前提下,我们无法测定光子究竟通过哪条狭缝,从而也就无法知道光子如何通过双缝形成双缝干涉图样。于是正统解释认为,光子通过双缝的客观运动图像在本质上是不存在的。 正统解释的上述论证看似天衣无缝,的确,它几乎欺瞒了20世纪的所有伟大人物,然而,上述证明中却存在两个致命的缺陷。其一是正统解释隐含地假设了连续运动是唯一可以存在的客观运动形式,但并未给出充分的证明或说明。实际上,这一隐含的假设从没有人认真怀疑过,甚至可以说,从没有人指出它是一个假设,因为几乎所有人,包括反对正统解释的人们,如爱因斯坦,都如此深信它,并认为它的正确性是显然的。然而,它却是根深蒂固的偏见,它被成功的经验和伟人的教诲喂养长大,但最后它却禁锢了人们的思想,并试图去抹煞经验背后的实在。的确,导致人们深信上述假设的原因有很多,其中来自经验和历史的原因可能起了决定性的作用,但人们很少去考虑这一假设自身的合理性,也从没认真想过还存在其它可能的、甚至是更为基本的运动形式,即使他们面对量子力学不得不抛弃连续运动时也依然如此。人们为什么如此笃信呢?一个有趣的原因可能是,在量子力学出现以前,人们没有必要怀疑这一假设,而在量子力学出现以后,正统解释又禁止了人们去怀疑这一假设。 上述证明中的第二个缺陷是一个技术性缺陷,即在测量上它只考虑(利用位置测量)去观察光子究竟通过哪条狭缝。这一缺陷实际上由第一个缺陷所导致,因为在正统解释对双缝实验进行测量意义上的解释时,它仍假设客观运动形式,如果存在,只能是连续运动。因此,正统解释只考察了利用位置测量去观察光子究竟通过哪条狭缝,而丝毫没有想过光子的客观运动形式可以是不同于连续运动的其它形式,从而可能以某种方式“同时”通过两条狭缝,而我们的测量也必须设计得可以适应这种运动形式。于是,正统解释始终执拗地在某条缝处进行位置测量,殊不知这正中了量子力学的计谋,它因此可以轻易地用测量投影过程来对付正统解释的这种测量探求,并成功地隐藏了量子的真实面目。根据量子力学,这种测量将破坏光子的真实运动状态,并导致光子投影到单条缝处,从而不仅破坏了双缝干涉图样,同时也无法使我们看到光子真实的客观运动形式。可以看出,正统解释论证中的第一个缺陷从根本上阻碍了人们提出不同于连续运动的客观运动形式,而第二个缺陷则进一步阻碍了人们发现这种运动的具体形式。 一旦意识到正统解释的上述技术性缺陷,我们就可以尝试采用新的测量方式,它可以对付光子以某种方式“同时”通过两条狭缝的可能情况,并且不引发量子力学的投影过程,从而可以帮助我们窥见量子的真实面目。实际上,人们已经发现了这种测量方式,它就是由阿哈朗诺夫等人于1993年所提出的保护性测量。由于在双缝实验中我们预先知道光子的量子态,从而原则上可以采取相应的保护性措施,使我们既可以测量出光子真实的量子态或客观运动状态,又可以不破坏光子的量子态,从而也不破坏双缝干涉图样。因此,我们利用保护性测量就可以在不破坏双缝干涉图样的前提下,发现光子真实的客观运动形式。 非连续的运动 双缝实验清晰地告诉我们,微观粒子的运动是非连续的,非连续运动是自然留给我们的唯一选择。下面我们将给出光子通过双缝的量子运动图像,但是在此之前,我们还必须再驱除人们思想中所固有的关于“同时”的偏见,因为它也一直在阻止人们去发现光子通过双缝的客观运动图像。 我们要指出,一直被认为是正确的粒子不能同时通过双缝的结论是经不起深究的,人们对此结论中“同时”的理解只是局限在“同一时刻”这个框架内,并且将粒子不能于同一时刻处于两个不同的空间位置这一看法等效于不存在半个微观粒子这一正确事实,从而否证了连续运动之外的其他运动形式的存在,这最终导致了没有量子的正统量子观点。实际上,我们应该抛弃关于“同时”的狭隘理解,由于双缝的缝长是有限的,而不是零,双缝论证中的“同时”应指极短的有限时隙,而不是同一时刻。 现在,我们终于可以发现光子通过双缝的客观运动图像,即光子的量子运动图像了,它就是:进行量子运动的光子于极短的有限时隙内非连续地“同时”经过双缝,尽管它于此时隙内的某个时刻只能位于一条缝中,但是在不同时刻它可以处于不同的缝中,从而在很短的时间内通过两条缝。由于光子的运动是这种非连续的量子运动,我们将很容易解释光子双缝干涉图样的怪异,因为在每次实验中光子都非连续地通过了两条缝,从而到达屏上的光子同时含有了两条缝的信息,而不只是一条缝的信息,因此双缝干涉图样自然不会是两个单缝图样的简单混合。 新的曙光 最近,随着《量子运动与超光速通信》一书的出版,一种基于非连续量子运动的更完备的量子理论被提出来。在这本书中,作者通过对宏观连续运动的深刻分析,利用清晰严谨的逻辑论证和有力的实验证实提出了物质的基本运动形式---非连续量子运动及其规律,并令人信服地论证了微观运动与宏观运动都是量子运动的表现。这不仅解决了量子力学中波函数的物理含义问题,为波函数的测量投影过程提供了客观的物理解释,并且将人们对微观世界与宏观世界的描述有机地统一起来。在此基础上,作者进一步分析了量子运动所蕴含的奇妙的量子非定域性,给出了将量子力学与相对论相融合的途径,并对基于量子非定域性的超光速通讯进行了大胆的探索。 量子是什么? 现在,人们终于明白了量子是什么,并可以解开所有的量子困惑了。量子就是物质粒子的非连续运动,而所有的量子困惑都起源于这种非连续运动。 正是这种非连续运动导致了原子系统分立能级的存在,这种能量分立性最早为普朗克于1900年所发现,它的发现标志了量子时代的开端;正是这种非连续运动导致了光波的粒子性表现,这使年轻的爱因斯坦于1905年试探性地假设了光量子的存在,并用它成功地解释了光电效应。这种非连续运动还导致了原子系统的稳定存在,这种稳定存在表现为玻尔于1913年所大胆假设的原子定态,而原子的稳定性在当时仍是一个谜,连续运动无法解释这一现象。 正是这种非连续运动导致了物质的波粒二象性,爱因斯坦于1909年最早注意到了光具有这种神秘性质,而德布罗意在1923年最终将这种性质赋予了所有物质粒子;正是这种非连续运动导致了量子跃迁的存在和非连续性的出现,爱因斯坦最早认识到普朗克量子假说隐含着这种非连续性,以及它可能给物理学所带来的革命性变革,玻尔于1913年进一步假设了定态之间存在本质上非连续的量子跃迁,并一直主张所有原子过程都包含非连续性。 正是这种非连续运动导致了粒子运动方程的类波动形式,薛定谔于1926年最早发现了这一方程的近似形式,建立了量子力学的形式体系之一---波动力学;也正是这种非连续运动导致了波函数投影过程的存在,冯诺依曼最早严格地表述了这一过程的瞬时形式,并将它作为波函数的一种特殊演化过程。这种投影过程进一步导致了宏观物体的连续运动表现,因此,我们熟悉的连续运动只是非连续运动的一种特殊的理想化形式。 正是这种非连续运动导致了量子非定域性的存在,爱因斯坦于1927年最早注意到了量子的这一神秘特性,并指出了它与相对论的不相容性,然而爱因斯坦却嘲讽地称之为“幽灵般的超距作用”,同样,玻尔也利用互补性来避开它的真实存在,但实验却严格证明了量子非定域性的客观存在;也正是这种非连续运动导致了量子以太---特殊惯性参照系的存在,从而导致相对论必须被修正。 当然,正是这种非连续运动导致了今天诸多量子新技术的出现,如量子通信,量子计算等等。最终,正是这种非连续运动导致了微观世界的存在,从而允许宏观世界和我们自身的存在。 如果物质的运动不是连续运动,那它就是非连续运动,这是一个简单而直接的逻辑推理。如果你理解了这一点,你也就理解了量子,并知道了量子是什么。

量子测量动力学学位论文

物理力学是力学的一个新分支,它从物质的微观结构及其运动规律出发,运用近代物理学、物理化学和量子化学等学科的成就,通过分析研究和数值计算,阐明介质和材料的宏观性质,并对介质和材料的宏观现象及其运动规律作出微观解释。主要包括静力学、动力学、流体力学、分析力学、运动学、固体力学、材料力学、复合材料力学、流变学、结构力学、弹性力学、塑性力学、爆炸力学、磁流体力学、空气动力学、理性力学、物理力学、天体力学、生物力学、计算力学 物理力学主要研究平衡现象,如气体、液体、固体的状态方程,各种热力学平衡性质和化学平衡的研究等。对于这类问题,物理力学主要借助统计力学的方法。 物理力学对非平衡现象的研究包括四个方面:一是趋向于平衡的过程,如各种化学反应和弛豫现象的研究;二是偏离平衡状态较小的、稳定的非平衡过程,如物质的扩散、热传导、粘性以及热辐射等的研究;三是远离于衡态的问题,如开放系统中所遇到的各种能量耗散过程的研究;四是平衡和非平衡状态下所发生的突变过程,如相变等。解决这些问题要借助于非平衡统计力学和不可逆过程热力学理论。 物理力学的研究工作,目前主要集中三个方面:高温气体性质,研究气体在高温下的热力学平衡性质(包括状态方程)、输运性质、辐射性质以及与各种动力学过程有关的弛豫现象;稠密流体性质,主要研究高压气体和各种液体的热力学平衡性质(包括状态方程)、输运性质以及相变行为等;固体材料性质,利用微观理论研究材料的弹性、塑性、强度以及本构关系等。 物质的性质及其随状态参量变化规律的知识,无论对科学研究还是工程应用都极为重要,力学本身的发展就一直离不开物性和对物性的研究。 近代工程技术和尖端科学技术迅猛发展,特别需要深入研究各种宏观状态下物体内部原子、分子所处的微观状态和相互作用过程,从而认识宏观状态参量扩大后物体的宏观性质和变化规律。因此,物理力学的建立和发展,不但可直接为工程技术提供所需介质和材科的物性,也将为力学和其他学科的发展创造条件。

电磁学是物理学的一个分支。电学与磁学领域有著紧密关系,广义的电磁学可以说是包含电学和磁学,但狭义来说是一门探讨电性与磁性交互关系的学科。 主要研究电磁波,电磁场以及有关电荷,带电物体的动力学等等。电磁学或称电动力学或经典电动力学。之所以称为经典,是因为它不包括现代的量子电动力学的内容。电动力学这样一个术语使用并不是非常严格,有时它也用来指电磁学中去除了静电学、静磁学后剩下的部分,是指电磁学与力学结合的部分。这个部分处理电磁场对带电粒子的力学影响。电磁学的基本理论由19世纪的许多物理学家发展起来,麦克斯韦方程组通过一组方程统一了所有的这些工作,并且揭示出了光作为电磁波的本质。电磁学的基本方程式为麦克斯韦方程组,此方程组在经典力学的相对运动转换(伽利略变换)下形式会变,在伽里略变换下,光速在不同惯性座标下会不同。保持麦克斯韦方程组形式不变的变换为洛伦兹变换,在此变换下,不同惯性座标下光速恒定。二十世纪初迈克耳孙-莫雷实验支持光速不变,光速不变亦成为爱因斯坦的狭义相对论的基石。取而代之,洛伦兹变换亦成为较伽利略变换更精密的惯性座标转换方式。静磁现象和静电现象很早就受到人类注意。中国远古黄帝时候就已经发现了磁石吸铁、磁石指南以及摩擦生电等现象。系统地对这些现象进行研究则始於16世纪。1600年英国医生威廉·吉尔伯特(William Gilbert,1544~1603)发表了<论磁、磁饱和地球作为一个巨大的磁体>(Demagnete,magneticisque corporibus et de magnomagnete tellure)。他总结了前人对磁的研究,周密地讨论了地磁的性质,记载了大量实验,使磁学从经验转变为科学。书中他也记载了电学方面的研究。

一个利用量子纠缠在远方用户之间建立密切联系的量子网络正在形成。

撰文 | Gabriel Popkin

译者 | 潘佳栋

审校 | 刘培源、晏丽

当一束优雅的蓝色激光进入一个特殊的晶体中时,在晶体里其变成红色,这表明每个光子都分裂成一对能量较低的光子,并且产生了一种神秘的联系。这些粒子“纠缠”在一起,就像同卵双胞胎一样相互联系。尽管住在遥远的城市,它们却知道彼此的想法。光子穿过一团乱麻,然后轻轻地将它们编码的信息存入等待的原子云 (clouds of atoms) 中。

“这种变换有一点像魔法”,石溪大学的物理学家伊登·菲格罗亚 (Eden Figueroa) 欣喜若狂。他和同事们在几个实验室长凳上炮制了这个装置,上面堆满了镜头和镜子。但是他们心中有一个更大的想法。

图1:伊登·菲格罗亚 (Eden Figueroa) 正试图将微妙的量子信息从实验室引入互联世界

到年底,美国最大的都会区,包括纽约市郊区的司机可能会在不知不觉中为一个新的、可能具有革命性意义的网络的薄弱环节而努力:一个通过像菲格罗亚实验室那样的纠缠光子联系在一起的“量子互联网” 。

数十亿美元已经被投入到量子计算机和传感器的研究中,但许多专家表示,这些设备只有在远距离相互连接时才会迅速发展。就像网络将个人计算机从美化的打字机和 游戏 机转变为不可或缺的电信设备一样,这一愿景和网络的这一方式相似。

纠缠是一种奇怪的量子力学性质,尽管它曾被阿尔伯特·爱因斯坦嘲笑为“幽灵般的超距作用”,但是研究人员仍希望能够在远距离建立紧密的、瞬时的联系。量子互联网可以将望远镜连接成超高分辨率的阵列、精确地同步时钟、为金融和选举建立安全的通信网络、并使得从任何地方进行量子计算成为可能。它还可能催生出没有人想象过的应用程序。

然而,将这些脆弱的联系放入温暖、嗡嗡作响的世界并非易事。如今存在的大多数传输链只能将纠缠的光子发送到相距仅几十公里的接收器。同时,量子连接是短暂的,它会随着光子的接收和测量而被破坏。研究人员希望可以无限期地维持纠缠,利用光子流在全球范围内编织持久的量子连接。

为此,他们将需要光中继器在量子通信网络中的等价物。光中继器是当今电信网络的组件,可在数千公里的光纤中保持强光信号。几个团队已经展示了量子中继器的关键组成部分,并表示他们在构建扩展网络的道路上进展顺利。“我们已经解决了所有的科学问题,”哈佛大学的物理学家米哈伊尔·卢金 (Mikhail Lukin) 说,“我非常乐观地认为,在5到10年内……我们将拥有大陆级别的量子网络原型。”

1969年10月29日晚 (即Woodstock音乐节刚结束2个月,越战正在爆发) ,加利福尼亚大学洛杉矶分校的学生查理·克莱恩 (Charley Kline) 向位于加利福尼亚州门洛帕克的斯坦福研究所中500多公里外的计算机发送了一条消息。这标志着美国高等研究计划署网络 (the Advanced Research Projects Agency Network,ARPANET) 开始建立。从那个不稳定的双节点开始——克莱恩的预期信息是“login”,但在系统崩溃之前只有“lo”通过——互联网已经扩展到今天的全球网络。大约 20 年前,物理学家开始猜测相同的基础设施是否可以穿梭于更奇特的东西:量子信息。

1994年是一个激动人心的时刻。一位名叫彼得·肖尔 (Peter Shor) 的数学家设计了一种量子代码,可以破解当时领先的加密算法,这是经典计算机无法做到的。肖尔的算法表明,量子计算机具有使非常小的或冷的物体同时以多种“叠加”状态存在的能力,这可能具有爆炸级的应用——破解密码。他们花费了长达数十年的努力来构建量子计算机。一些研究人员想知道量子互联网是否会极大地增强这些机器的能力。

但是建造一台量子计算机已经足够令人却步了。就像纠缠一样,对纠缠至关重要的叠加状态是脆弱的,在被外界测量或以其他方式干扰时会崩溃。由于该领域专注于通用量子计算机,将这些计算机连接起来的想法大多被规划到遥远的未来。菲格罗亚打趣说,量子互联网变得“就像量子计算机的时髦版本”。

第一个能够传输单个纠缠光子的量子网络已经初具规模。2017年中国的一份报告是最引人注目的:一颗名为“墨子号”的量子卫星将纠缠粒子对发送到相距 1200 公里的地面站 ( Science , 16 June 2017, p. 1110) 。这一成就在华盛顿特区引发了担忧,最终导致了 2018 年《国家量子倡议》法案 ( National Quantum Initiative Act ) 的通过,该法案由当时的总统唐纳德·特朗普 (Donald Trump) 签署成为法律,旨在推动美国的量子技术的进步。美国能源部 (The Department of Energy,DOE) 在 4 月份提出了进一步推进美国量子互联网发展的设想,宣布斥资2500万美元用于量子互联网的研发,以连接国家实验室和大学。“让我们将我们的科学设施连接起来,证明量子网络是有效的,并为该国其他地区提供一个框架,让其继续并扩大规模。”最近才开始领导美国能源部科学办公室的克里斯·法尔 (Chris Fall) 说。

由中国科学技术大学物理学家潘建伟领导的中国小组继续发展其量子网络。根据1月份 Nature 的一篇论文,纠缠粒子现在可以跨越 4600 多公里,使用光纤和非量子中继。其他国家也已经证明了更短距离的量子连接。

量子通信行业和政府开始通过一种称为量子密钥分发 (Quantum Key Distribution,QKD) 的方法,将最初的链接用于安全通信。QKD使双方能够通过对纠缠光子对进行同时测量来共享密钥。量子连接可以防止密钥被篡改或窃听,因为任何干预测量都会破坏纠缠,用密钥加密的信息可以通过普通渠道传递。QKD 被用于确保瑞士选举的安全,并且银行已经对其进行了测试。但许多专家质疑其重要性,因为更简单的加密技术也不受已知攻击的影响,包括Shor算法。此外,QKD不能保证发送和接收节点的安全,这些节点仍然容易受到攻击。

成熟的量子网络的目标更高。“它不仅会传输纠缠粒子”,美国国家标准与技术研究所的物理学家尼尔·齐默曼 (Neil Zimmerman) 说,“它将纠缠作为一种资源进行分配”,使设备能够长时间纠缠,从而共享和利用量子信息。 ( Science , 19 October 2018, )

在量子网络的发展中,科学可能是首先受益的。量子网络的一种可能的用途是超长基线干涉测量。该方法将全球的射电望远镜连接起来,有效地创造了一个强大的单一、巨大的天线,足以对遥远星系中心的黑洞进行成像。将远距离的光学望远镜收集到的光组合起来更具挑战性。但是物理学家提出了一些方案,可以在量子存储器中捕获望远镜收集的光,并使用纠缠光子提取和合并其相位信息,这是超高分辨率的关键。分布式纠缠量子传感器还可以为暗物质和引力波带来更灵敏的探测器网络。

量子网络更实际的应用包括超安全选举和防黑客通信,这使得信息本身,而不仅仅是用于解码它的密钥,能够像在QKD中密钥一样在纠缠节点之间共享。纠缠也可以同步原子钟,并防止在它们之间积累信息的延迟和错误。除此之外,量子网络还可以提供一种连接量子计算机的方法,增强量子计算机的能力。在未来一定的时间里,每个量子计算机可能会被限制在几百个量子比特,但如果纠缠在一起,它们可能能够处理更复杂的计算。

进一步考虑这个想法,一些人还设想了一种云计算的模拟,即所谓的盲量子计算 (Blind quantum computing) 。人们的想法是,有朝一日,最强大的量子计算机将位于国家实验室、大学和公司,就像今天的超级计算机一样。药物和材料设计师或股票交易员可能希望在不泄露程序内容的情况下从远处运行量子算法。理论上,用户可以在与远程量子计算机纠缠在一起的本地设备上对问题进行编码——利用远程计算机的能力,但同时不泄漏该问题的信息。

“作为一名物理学家,我认为盲量子计算非常漂亮。”因斯布鲁克大学的特蕾西·诺瑟普 (Tracy Northup) 说。

研究人员对完全纠缠网络 (fully entangled networks) 进行了早期研究。2015 年,魏纳 (Wehner) 及其同事将光子与氮原子中的电子自旋纠缠在一起,它们被包裹在代尔夫特理工大学校园内相距公里的两颗小钻石中。然后光子被发送到一个中间站,在那里它们相互作用以纠缠钻石节点。该实验创造了“调制”纠缠的距离记录,这意味着研究人员可以确认并使用它,并且这种联系持续了长达几微秒。

然而,更广泛的网络可能需要量子中继器来复制、校正、放大和重新广播几乎每个信号。尽管中继器是经典互联网中相对简单的技术,但量子中继器必须避开“不可克隆”定理——即从本质上讲,量子态不能被复制。

图2:量子网络将由纠缠的光子编织在一起,这意味着它们共享一个量子态。但是这需要量子中继器在遥远的用户之间中继脆弱的光子。

一种流行的量子中继器设计从两个相同的、不同来源的纠缠光子对开始,每对中的一个光子飞向遥远的端点,这些端点可能是量子计算机、传感器或其他中继器。让我们称它们为Alice和Bob,因为量子物理学家习惯这样做。

每对光子的另一半向内拉,朝向中继器的中心。该设备必须捕获先到达的光子,将其信息导入量子存储器 (可能是钻石或原子云) ,纠正在传输过程中积累的错误,并对其进行处理,直到另一个光子到达。然后中继器需要以纠缠遥远的光子双胞胎的方式将两者联系起来。这个过程被称为纠缠交换 (entanglement swapping) ,在遥远的端点Alice和Bob之间创建了一个链接。其他的中继器可以将Alice连接到Carol,将Bob连接到Dave,最终跨越很远的距离。

菲格罗亚将他建造这种设备的动力追溯到他2008年在卡尔加里大学的博士学位论文答辩。这位出生于墨西哥的年轻物理学家描述了他如何将原子与光纠缠在一起之后,一位理论学家问他要如何处理这个装置。“当时我真丢脸,我没有答案。对我来说,这是一个我可以玩的玩具。”菲格罗亚回忆道。“他告诉我:‘量子中继器就是你要做的。’”

受到启发,菲格罗亚在来到石溪之前就在马克思·普朗克量子光学研究所研究了该系统。他很早就确认商用的量子中继器应该在室温下运行——这与大多数量子实验室的实验不同,后者在非常冷的温度下进行,以最大限度地减少可能扰乱脆弱量子态的热振动。

菲格罗亚希望将铷蒸气作为中继器的一个组件,即量子存储器。铷原子是锂和钠的同族元素,对科学家很有吸引力,因为它们的内部量子态可以通过光来设置和控制。在菲格罗亚的实验室中,来自分频晶体的纠缠光子进入每个包含 1 万亿个左右铷原子的塑料细胞 (cells) 。在那里,每个光子的信息被编码为原子之间的叠加,在那里它持续几分之一毫秒——这对于量子实验来说非常好。

菲格罗亚仍在开发第二阶段的中继器:使用计算机控制的激光脉冲来纠正错误并维持云的量子态。然后,额外的激光脉冲会将携带纠缠的光子从存储器发送到测量设备,以与最终用户发生纠缠。

卢金使用不同的介质构建量子中继器:包裹在钻石中的硅原子。传入的光子可以调整硅电子的量子自旋,从而产生潜在的稳定记忆。论文中,他的团队报告捕获和存储量子态的时间超过五分之一秒,远远长于铷存储器。2020年一篇发表在 Nature 上的文章中指出,尽管必须将钻石冷却到绝对零上几分之一度的范围内,但卢金表示制冷器正在变得紧凑和高效, “现在这是我最不担心的。”

在代尔夫特理工大学,魏纳和她的同事也在推动钻石方法,但使用氮原子而不是硅。上个月在 Science 杂志上,该团队报道了在实验室中纠缠三颗钻石,创建了一个微型量子网络。首先,研究人员使用光子纠缠了两种不同的钻石:Alice和Bob。在Bob中,纠缠从氮转移到碳核中的自旋:一种长寿命的量子存储器。然后在Bob的氮原子和第三颗钻石Charlie之间重复纠缠过程。研究人员对 Bob的氮原子和碳核进行联合测量然后将纠缠转移到第三颗钻石,即Alice到Charlie。

实验负责人、代尔夫特理工大学物理学家罗纳德·汉森 (Ronald Hanson) 说,尽管该实验距离比现实世界的量子网络需要的距离短得多、效率也低得多,但可控的纠缠交换证明了量子中继器的工作原理,这是“从未被做过的事情”。

潘建伟的团队还展示了一个部分中继器,其中原子云作为量子存储器。但在2019年发表在 Nature Photonics 上的一项研究中,他的团队展示了一个完全不同的早期原型:通过平行光纤发送大量的纠缠光子,至少有一个可能在旅途中幸存下来。潘建伟说,虽然这可能避免对中继器的需求,但该网络需要能够纠缠至少数百个光子,而他目前的记录是12个光子。使用卫星产生纠缠是潘建伟正在开发的另一项技术,也可以减少对中继器的需求,因为光子在太空中的存在时间比通过光纤长得多。

大多数专家都认为,真正的量子中继器还需要数年时间,最终可能会使用当今量子计算机中常见的技术,例如超导体或俘获离子,而不是钻石或原子云。这样的设备需要捕获几乎所有击中它的光子,并且可能需要至少几百个量子比特的量子计算机来校正和处理信号。从某种意义上说,更好的量子计算机可以推动量子互联网的发展——这反过来又可以增强量子计算。

在物理学家努力打造完美中继器的同时,他们正在将单个大都市区内的站点连接起来,因为它们不需要中继器。在2月发布到 arXiv 的一项研究中,菲格罗亚将他的实验室中两个原子云存储器中的光子通过79公里的商业光纤发送到布鲁克海文国家实验室,在那里光子被合并——代尔夫特理工大学的小组朝着这种端到端类型的纠缠迈出了一步。到明年,他计划在他的大学和他的创业公司Qunnect的纽约办公室之间部署两个量子存储器,并把它们压缩到一个微型冰箱的大小,看看它们是否能提高光子在旅途中幸存下来的几率。

波士顿、洛杉矶和华盛顿特区也正在建设量子网络,两个网络将把伊利诺伊州的阿贡国家实验室和费米国家加速器实验室与芝加哥地区的几所大学连接起来。代尔夫特理工大学的研究人员希望很快将他们创纪录的长期纠缠扩展到荷兰海牙的商业电信设施,而其他新兴网络正在欧洲和亚洲不断发展。

这些量子网络最终目标是使用中继器将这些小型网络连接到洲际互联网。但首先,研究人员面临着更简单的挑战,包括建造更好的光子源和探测器、最大限度地减少光纤连接处的损耗,以及在特定量子系统 (例如原子云或钻石) 的固有频率和电信光纤传导的红外波长之间有效地转换光子。“那些现实世界的问题,”齐默曼说,“实际上可能比光纤衰减的问题更大。”

图3:微小钻石中的杂质原子(如该芯片的核心)可以存储和传递量子信息。

有些人怀疑这项技术是否是在炒作。“纠缠是一种非常奇怪、非常特殊的性质”,陆军研究实验室的物理学家库尔特·雅各布斯说, “它不一定适用于所有类型的应用程序。” 例如,对于时钟同步,与经典方法相比量子网络的优势仅体现在纠缠设备数量的平方根上,量子网络需要连接9个设备才能获得经典网络3倍的收益。三倍增益需要连接九个时钟——可能会遇到高于它的价值的问题。“拥有功能性量子网络总是比经典网络更难。”雅各布斯说。

对于这种怀疑,芝加哥大学的物理学家大卫·奥沙洛姆 (David Awschalom) 反驳说,“我们正处于量子技术的晶体管阶段。” 晶体管于1947年被发明出来,几年之后,公司才发现它在收音机、助听器和其他设备中的用途。如今,每一台新电脑、智能手机和 汽车 的芯片中,都蚀刻了数以亿计的晶体管.

未来几代人可能会像我们怀念阿帕网 (ARPANET) 一样回望此刻——作为互联网的纯婴儿版本,阿帕网的巨大潜力当时没有得到认可和商业化。“你可以肯定,我们还没有想到这项技术将做的一些最重要的事情”,奥沙洛姆说:“如果你相信已经做了最重要的事情,那说明你太傲慢了。”

本文经授权转载自微信公众号“集智俱乐部”。

原文地址:

双峰二中创建八十年,培养人才三万余人。在教育、科技、军政、工农、艺术各界出现了众多有成就的人物。据1996年建校七十周年时的不完全统计:教育战线大学的正副教授、中学的特级教师,科技战线高级工程师以上,军政界地师级以上,工农战线的企业家、养殖家以及艺术、技能方面有突出成就或有著作问世者,总数在五百人以上。以下仅为部分之简单介绍。 (转自《双峰二中七十周年校庆纪念册》) 欧阳崇一 又名欧阳祜,青树坪人,起陆高小一班毕业。湖南和平解放前夕,任国min党第一兵团司令部第四处上校处长,主管后勤业务。积极趋向弃暗投明,抗拒执行白崇禧对长沙的破坏命令,促使司令员陈明仁和平起义。和平解放后,任兵团军需处长、省政府参事、省政协委员等职。他对母校感情甚深,曾来信说:“我1949年能走向光明,是与母校的教育分不开的,堪可告慰。” 匡燕鸣 双峰人,起陆高小四班毕业。1960年及1979年两次回校任党支书、校长。工作刻苦实干,文化大革命后拨乱反正,恢复学校元气,备著辛劳。荣膺全国教育战线劳动模范称号。后调任双峰一中党支书、校长。 戴鸿仪 青树坪人,起陆高小十一班毕业。四十年代曾回起陆初中任教,是有名数理老师。中国矿业大学北京研究生部教授,其与人合作发明的“矿用强力运输带横向断裂预报装置”获国家专利。享受国家特殊津贴。 欧阳谦叔 又名欧阳熙,青树坪人,起陆高小十六班毕业。曾任湖北歌剧团编剧、作曲。是著名歌剧《洪湖赤卫队》的主要作曲者。国家一级作曲家。其论文《歌剧探索三十年》曾发表于北京《音乐理论》杂志及《中国歌剧艺术文集》。1990年,他与爱人一同回到母校与师生们联欢,后又为母校校歌作曲。 欧阳骅 青树坪人,起陆初中十二班毕业。空军航空医学研究所研究员、教授、硕士和博士论文评审委员。编写了《中国航空百科词典》、《中国医学检验全书》及论文40余篇。所发明“管式液冷防暑降温背心”获国家专利。对母校怀有深厚感情,为庆祝母校七十周年校庆与爱人曾月英捐出多年积蓄设希望奖,要求奖励家庭困难而品学兼优的学生,以报答国家和母校对他们的培育之恩。 王文介 双峰县花门镇人,起陆初中十三班毕业。中国科学院南海海洋研究员、国际海洋研究委员会中国工作组委员、硕士研究生导师、国家特殊津贴获得者。获得过中国科学院科技进步二等奖,广东省科技进步特等奖、国家海洋局科技成果三等奖。主持和参与专门著作16本。有论文和译文60余篇在国内有关学报刊物发表。 曾月英(女) 青树坪人,起陆初中十五班毕业。1956年考入空军第二飞行学院,毕业后,分配空军专机师任飞行员,担任过中央首长专机机长。1987年被授予空军上校,一级飞行员。其机组获“英雄机组”称号,个人曾荣立二等功一次,三等功二次。三十年飞行近五千个小时,行程达200万公里,飞过四十多次专机,参加过常年的战备值班,执行过临时的抢险救灾,均安全而出色地完成了任务。 王影 原名李醒辰,永丰镇人,二中初五班毕业。1963年大学毕业后分配在林业部湖南农林工业设计研究院工作,并任该院副总工程师。他主持、设计的工程,多次获部、省奖励及先进称号。由于他的突出贡献,1993年起,享受政府特殊津贴。系民盟湖南省委副主委,第六届省政协委员,省八届人大常委。 李希特 双峰人,二中初十五班毕业。现为县文化局干部,中国剪纸学会会员、农工民主党县委常委、政协双峰常委。1995年,联合国教科文组织和中国民间文艺家协会联合授予他“民间工艺美术家”称号。有作品百余幅在报刊发表,并多次在展出中获奖。其《凤朝阳》《凤凰戏牡丹》经选送日本、瑞典展出。其三分钟人像剪影,以快、准、美受到中外好评,誉为“湘中一绝”。 欧阳梦轲 青树坪人,二中初二十一班毕业。1985年临池学书,兼学装裱。1988年获全省农民书法大奖赛三等奖,1990年获全省国土杯书法大赛二等奖,1993年获国际和平杯书法赛三等奖。其作品编入《中国国际艺术大观》。《人民日报》及《人事与人才》报道了其自学成才的事迹。 王振华 青树坪人,二中高一、二班毕业。乘改革开放东风,在农村发展养殖事业。全国养猪协会副理事长、湖南省动物人参系列产品开发公司总经理。荣获全国农村科普工作先进个人、全国科技致富能手、湖南省优秀科技工作者等称号。 谢和平 双峰县甘棠镇人,二中高三十一班毕业。现任四川大学校长、教授、博士生导师。中国科学院国际材料物理中心成员。他在岩石损伤力学和分形几何结合方面取得了开创性的成果,从而推动岩石力学的发展,他的学术成果在国内外产生了较大的影响。1992年被评为中国青年科学家。被聘至美、英、波兰、德国各大学讲学。共发表论文40余篇,英文著作3部,中文著作2部。

相关百科
热门百科
首页
发表服务