论文投稿百科

深度学习物体检测论文路线图

发布时间:2024-07-04 23:01:30

深度学习物体检测论文路线图

第一类: FCN(完全卷积网络) 简介;FCN是一种端到端的深度学习图像分割算法,让网络做像素的预测,直接得到label map 传统cnn缺点:存储开销大,效率低下,像素块的大小限制了感受区域的大小 FCN改变了什么:经典的cnn在卷积层之后时使用了全连接层得到固定长度的整个输入图像的概率向量,适合用于图像的分类和回归任务,经过 softmax后可以获得类别概率信息,但是这个概率信息是1维的,只能表示出整个图像的类别,所以这种全连接方法不适用于图像分割。FCN将Cnn的全连接层换成卷积层(1000个节点的全连接层换成1000个1*1的卷积核的卷积层),这样可以得到2维的fp,再通过softmax可以得到每个像素点的类别信息,从而解决分割问题。 FCN结构:FCN可以接受任何尺寸的输入图像,在最后得到的fp后,通过反卷积层进行上采样,使他恢复到输入图像的尺寸,从而可以对每一个像素都产生预测,保留原始图像当中的空间信息。 为啥cnn不能随便尺寸输入:因为cnn的全连接层会得到一个拉直的向量,向量中比方说有n*n个元素,这n*n个元素每个元素当作一个结点与下一层全连接,如果下一层比方说节点数是4096,权值数就是4096*n*n。神经网络结构确定,那么权值数就要确定了,上一层的输出就不能变了,然后倒着往前推,每一层输出都不能变,因此输入就必须得固定。 skip state:由于最后这个特征图太小,容易丢失很多细节,增加一个skip state这样的一个结构,最后一层的预测(局部信息)和更浅层(全局信息)预测结合起来,这样就是既局部还全局。 FCN缺点:实施推理速度不够快,对各个像素进行分类,没有考虑像素与像素之间的一个关系,不容易移植到三维图像当中。 第二类:基于CNN和完全连接的CRF的语义分割算法 FCN可能忽略了有用的场景级语义上下文,为了集成更多上下文信息 cnn+crf>cnn+softmax fcn得到粗分值图,经过双线性插值上采样恢复分辨率,然后再将它传递给全连接的crf层细化分割结果。最终实验表明:有更高的准确率来定位边界。 第三类:编码器加解码器结构(unet,vnet) 分为一般的分割跟医学图像的分割。 一个是使用从VGG 16层网络采用的卷积层的编码器,另一个是将特征向量作为输入并生成像素级类概率图的反卷积网络。 segnet SegNet的主要新颖之处在于解码器对其较低分辨率的输入特征图进行升采样。具体来说,它使用在相应编码器的最大池化步骤中计算出的合并索引来执行非线性上采样,从而消除了学习上采样的需求.与其他竞争性体系结构相比,SegNet的可训练参数数量也明显更少并且能够提升边缘刻画度。 (ex:SDN,Linknet,w-net) segnet的encoder过程中卷积起到提取特征的作用,使用的是same卷积,卷积后不改变图片的大小。同时在decoder过程中,同样是采用了same卷积,作用是upsample之后丰富变大图片的信息 u-net (医学影像分割的论文几乎都是用u-net来改良的) 在医学图像分割上,在编码器部分,类似于FCN,下采样采用conv3*3,全卷积神经网络。 上采样 conv2*2 ,插值法(不使用转置卷积,为了让特征图保持着均匀的色差) 最后有个1*1(将特征通道数降至特定的数量 ) 为了降低在压缩路径当中造成的图像细节损失,作者会将压缩路径当中的fp叠加到拓张路径的相同尺寸的fp上,再进行conv,upsample.以此整合更多更完整的图像信息。 v-net 基于FCN用于3D医学图像分析的图像分割网络。最后输出的是三维的单通道数据,代表每一个像素是前景还是背景的概率,如果概率大于是前景,概率小于是背景。 第四类:多尺度分析跟金字塔网络 尺度:分辨率 多尺度:所训练出来的成功的模型,他在换到另一个尺度下很有可能失效 提出了一个pspnet,实现利用上下文信息的能力来进行场景解析,又到了老生常谈的问题,FCN不能很好的利用全局信息(比如说,FCN非认为右边是车,但是左边就有船坞,他不能利用这种线索来进行一个判断) DM-Net (Dynamic Multi-scale Filters Network)  Context contrasted network and gated multi- scale aggregation (CCN)  Adaptive Pyramid Context Network (APC-Net)  Multi-scale context intertwining (MSCI) 第五类:实例分割当中基于r-cnn的模型 r-cnn mask r-cnn Mask RCNN使用ResNet+FPN(特征金字塔网络)进行特征提取。顶层特征(最后一层特征图),感受野最大,特征信息最丰富,但对小物体的检测效果并不好。因此,将多个阶段的特征图融合在一起(FPN),这样既有了高层的语义特征,也有了底层的轮廓特征。 RoI Align替代RoI Pooling RoI Pooling有什么问题?经过两次量化,使特征图对应位置不准。 增加Mask分支(语义分割)Mask分支只做语义分割,类型预测的任务交给另一个分支。

对于目标检测方向并不是特别熟悉,本文记录一下RCNN, fast-RCNN, faster-RCNN, mask-RCNN这4篇有关目标检测的论文笔记和学习心得。

R-CNN的意思就是Region based,主要思路就是根据一张图像,提取多个region,再将每个Region输入CNN来进行特征的提取。因此RCNN就可以分为 Region proposals , Feature extraction 两个主要部分,提取的特征就可以输入任意一个分类器来进行分类。 模型的流程图如下:

在训练的时候,首先使用的是已经训练好的CNN网络作为特征提取器,但是由于预训练是在分类数据集上,因此在应用到检测之前要做finetune。也就是说,为了将用ImageNet数据集训练的网络应用到新的任务(检测),新的数据集(region)上,作者将原来的CNN最后的1000类的fc层,更改为了 层, 代表待检测的物体的类别数。然后,对于所有的region,如果它和ground truth的重叠率大于,就认为是正类。 对于分类器的训练,作者发现选择多大的IoU来区分正类和负类非常关键。并且,对于每一类,都会训练一个分类器。

框的回归非常重要,在对每一个region proposal使用分类器进行打分评价之后,作者使用一个回归器来预测一个新的框作为结果。这个回归器使用的特征是从CNN中提取的特征。回归器的训练中,输入是 region proposal 的 和ground truth的 ,目标是学习一种变换,使得region proposal通过该变换能够接近ground truth。同时,希望这种变换拥有尺度不变性,也就是说尺度变化的话,变换不会改变。 如下图所示,每一个regressor会学习一组参数,特征输入是pool 5的特征输出,拟合的目标是 。

Fast-RCNN 主要解决的问题是在RCNN中对于每一个region proposal都进行特征提取,会产生非常多的冗余计算,因此可以先对一张图像进行特征提取,再根据region proposal在相应的特征上进行划分得到对应region的特征(映射关系)。 这样便可以实现共享计算提高速度,但是与SPPnets不同,SPPnets在一副图像得到对应的特征后,从这张图像的特征上proposal对应的部分,采用空间金字塔池化,如下图:

RoI pooling的方法很简单,类似于空间金字塔pooling,它将proposal部分对应卷积层输出的特征(称之为RoI,因为用于做pooling的特征是 region of interest,也就是我们感兴趣的区域)划分成 块,然后对每一块求最大值,最终得到了一个 的特征图。可以看出,它只是空间金字塔pooling的一部分。 但是SPP-nets的空间金字塔也是可以求导的,那么它到底不好在哪里呢?因为当每一个RoI都可能来源于不同的图像的时候(R-CNN和SPPnets的训练策略是从一个batch的不同图像中,分别挑选一个proposal region),SPPNets的训练非常地低效,这种低效来源于在SPPnets的训练中,每个RoI的感受野都非常地大,很可能对应了原图的整个图像,因此,得到的特征也几乎对应了整张图像,所以输入的图像也就很大。 为了提高效率,Fast-RCNN首先选取 个图像,再从每个图像上选择 个RoI,这样的效率就比从每个图像提取一个RoI提高了 倍。

为了将分类和框回归结合起来,作者采用了多任务的loss,来进行联合的训练。具体来说就是将分类的loss和框回归的loss结合起来。网络的设计上非常直接,就是将RoI得到的特征接几个FC层后,分别接不同的输出层。对应于分类部分,特征会接一个softmax输出,用于分类,对于框回归部分,会接一个输出4维特征的输出层,然后分别计算loss,用于反向传播。loss的公式如下:

回归的target可以参考前面的R-CNN部分。

notes

为什么比fast还fast呢?主要原因是在这篇论文中提出了一个新的层:RPN(region proposal networks)用于替代之前的selective search。这个层还可以在GPU上运算来提高速度。 RPN的目的:

为了能够进行region proposal,作者使用了一个小的网络,在基础的卷积层输出的特征上进行滑动,这个网络输入大小为 ,输入后会映射(用 的卷积)为一个固定长度的特征向量,然后接两个并联的fc层(用 的卷积层代替),这两个fc层,一个为box-regressoin,一个为box-classification。如下图:

在每一个滑动窗口(可以参考 ),为了考虑到尽可能多的框的情况,作者设计了anchors来作为region proposal。anchors就是对于每一个滑动窗口的中心位置,在该位置对应的原图位置的基础上,按照不同的尺度,长宽比例框出 个不同的区域。然后根据这些anchors对应的原始图像位置以及区域,和ground truth,就可以给每一个滑动窗口的每一个anchor进行标记,也就是赋予label,满足一定条件标记为正类(比如和ground truth重叠大于一个值),一定条件为负类。对于正类,就可以根据ground truth和该anchor对应的原图的区域之间的变换关系(参考前面的R-CNN的框回归),得到回归器中的目标,用于训练。也就是论文中的loss function部分:

自然地,也就要求RPN的两个并联的FC层一个输出2k个值用于表示这k个anchor对应的区域的正类,负类的概率,另一个输出4k个值,用于表示框回归的变换的预测值。

对于整个网络的训练,作者采用了一种叫做 4-step Alternating Training 的方法。具体可以参考论文。

与之前的检测任务稍有不同,mask r-cnn的任务是做instance segmentation。因此,它需要对每一个像素点进行分类。 与Faster R-CNN不同,Faster R-CNN对每一个候选框产生两个输出,一个是类别,一个是bounding box的offset。Mask R-CNN新增加了一个输出,作为物体的mask。这个mask类似于ps中的蒙版。

与Faster R-CNN类似的是,Mask R-CNN同样采用RPN来进行Region Proposal。但是在之后,对于每一个RoI,mask r-cnn还输出了一个二值化的mask。

不像类别,框回归,输出都可以是一个向量,mask必须保持一定的空间信息。因此,作者采用FCN来从每个RoI中预测一个 的mask。

由于属于像素级别的预测问题,就需要RoI能够在进行特征提取的时候保持住空间信息,至少在像素级别上能够对应起来。因此,传统的取最大值的方法就显得不合适。 RoI Pooling,经历了两个量化的过程: 第一个:从roi proposal到feature map的映射过程。 第二个:从feature map划分成7*7的bin,每个bin使用max pooling。

为此,作者使用了RoIAlign。如下图

为了避免上面提到的量化过程

可以参考

作者使用ResNet作为基础的特征提取的网络。 对于预测类别,回归框,mask的网络使用如下图结构:

整体看完这几篇大佬的论文,虽说没有弄清楚每一个实现细节,但是大体上了解了算法的思路。可以看出,出发点都源于深度神经网络在特征提取上的卓越能力,因此一众大神试图将这种能力应用在检测问题中。从R-CNN中简单地用于特征提取,到为了提高速度减少计算的Fast R-CNN,再到为了将region proposal集成进入整个模型中,并且利用GPU加速的RPN,也就是Faster R-CNN。再到为了应用于instance segmentation任务中,设计的RoIAlign和mask。包括bounding box regression,pooling层的设计,训练方法的选择,loss的设计等等细节,无一不体现了大师们的思考和创造力。 可能在我们这些“拿来”者的眼中,这些方法都显得“理所应当”和巧妙,好用,但是,它们背后隐藏的选择和这些选择的思考却更值得我们学习。 以及,对待每一个问题,如何设计出合理的解决方案,以及方案的效率,通用性,更是应该我们努力的方向。

深度学习目标检测论文

Since we combine region proposals   with CNNs, we call our method R-CNN: Regions with CNN features. 下面先介绍R-CNN和Fast R-CNN中所用到的边框回归方法。 为什么要做Bounding-box regression? 如上图所示,绿色的框为飞机的Ground Truth,红色的框是提取的Region Proposal。那么即便红色的框被分类器识别为飞机,但是由于红色的框定位不准(IoU<),那么这张图相当于没有正确的检测出飞机。如果我们能对红色的框进行微调,使得经过微调后的窗口跟Ground Truth更接近,这样岂不是定位会更准确。确实,Bounding-box regression 就是用来微调这个窗口的。 那么经过何种变换才能从图11中的窗口P变为窗口呢?比较简单的思路就是: 注意:只有当Proposal和Ground Truth比较接近时(线性问题),我们才能将其作为训练样本训练我们的线性回归模型,否则会导致训练的回归模型不work(当Proposal跟GT离得较远,就是复杂的非线性问题了,此时用线性回归建模显然不合理)。这个也是G-CNN: an Iterative Grid Based Object Detector多次迭代实现目标准确定位的关键。 PASCAL VOC为图像识别和分类提供了一整套标准化的优秀的数据集,从2005年到2012年每年都会举行一场图像识别challenge。模型详解 RCNN全程就是Regions with CNN features,从名字也可以看出,RCNN的检测算法是基于传统方法来找出一些可能是物体的区域,再把该区域的尺寸归一化成卷积网络输入的尺寸,最后判断该区域到底是不是物体,是哪个物体,以及对是物体的区域进行进一步回归的微微调整(与深度学习里的finetune去分开,我想表达的就只是对框的位置进行微微调整)学习,使得框的更加准确。        正如上面所说的,RCNN的核心思想就是把图片区域内容送给深度网络,然后提取出深度网络某层的特征,并用这个特征来判断是什么物体(文章把背景也当成一种类别,故如果是判断是不是20个物体时,实际上在实现是判断21个类。),最后再对是物体的区域进行微微调整。实际上文章内容也说过用我之前所说的方法(先学习分类器,然后sliding windows),不过论文用了更直观的方式来说明这样的消耗非常大。它说一个深度网络(alexNet)在conv5上的感受野是195×195,按照我的理解,就是195×195的区域经过五层卷积后,才变成一个点,所以想在conv5上有一个区域性的大小(7×7)则需要原图为227×227,这样的滑窗每次都要对这么大尺度的内容进行计算,消耗可想而知,故论文得下结论,不能用sliding windows的方式去做检测(消耗一次用的不恰当,望各位看官能说个更加准确的词)。不过论文也没有提为什么作者会使用先找可能区域,再进行判断这种方式,只是说他们根据09年的另一篇论文[1],而做的。这也算是大神们与常人不同的积累量吧。中间的深度网络通过ILSVRC分类问题来进行训练,即利用训练图片和训练的分类监督信号,来学习出这个网络,再根据这个网络提取的特征,来训练21个分类器和其相应的回归器,不过分类器和回归器可以放在网络中学习,R-CNN 模型如果要拟人化比喻,那 R-CNN 肯定是 Faster R-CNN 的祖父了。换句话说,R-CNN 是一切的开端。 R-CNN,或称 Region-based Convolutional Neural Network,其工作包含了三个步骤: 1.借助一个可以生成约 2000 个 region proposal 的「选择性搜索」(Selective Search)算法,R-CNN 可以对输入图像进行扫描,来获取可能出现的目标。 2.在每个 region proposal 上都运行一个卷积神经网络(CNN)。 3.将每个 CNN 的输出都输入进:a)一个支持向量机(SVM),以对上述区域进行分类。b)一个线性回归器,以收缩目标周围的边界框,前提是这样的目标存在。 下图具体描绘了上述 3 个步骤:Abstract :                  R-CNN的两个贡献:卷积层的能力很强,可以遍历候选区域达到精确的定位。2.当有标签的数据很少的时候,我们可以事前进行有标签(别的数据集上?)的预训练作为辅助任务,然后对特定的区域进行微调。Introduction:                 这篇文章最开始是在PASCAL VOC上在图像分类和目标检测方面取得了很好的效果。                为了达到很好的效果,文章主要关注了两个问题:1.用深层网络进行目标的定位。2.如何用少量的带标签的检测数据来训练模型                 对于 对一个问题目标定位 ,通常有两个思路可以走:                      1.把定位看成回归问题。效果不是很好。                      2.建立划窗检测器。                 CNN一直采用建立划窗这个方式,但是也只是局限于人脸和行人的检测问题上。               本文使用了五个卷积层(感受野食195*195),在输入时移动步长是32*32。               除此之外,对于定位问题,我们采用区域识别的策略。                在测试阶段,本文的方法产生了大约2000个类别独立的候选区域作为cnn的输入。然           后得到一个修正后的特征向量。然后对于特定的类别用线性SVM分类器分类。我们用简             单的方法(放射图像变形)来将候选区域变成固定大小。                   对于第二个缺少标签数据的问题                     目前有一个思路就是无监督的预训练,然后再加入有监督的微调。                    作为本文最大的贡献之二:在ILSVRC数据集上,我们先进行有监督的预训练。然                  后我们在PASCAL这个小数据集上我们进行特定区域的微调。在我们的实验中,微调                  可以提升8%的mAP。                     本文的贡献;效率高                      仅仅是特别类别的计算是合乎情理的矩阵运算,和非极大值抑制算法。他们共享权                值,并且都是低维特征向量。相比于直接将区域向量作为输入,维数更低。                本文方法处理能实现目标检测,还以为实现语义分割。 2.用R-CNN进行目标检测:             有3个Model:            (1)产生独立的候选区域。            (2)CNN产生固定长度的特征向量。             (3)针对特别类别的一群svm分类器。 模块的设计 候选区域:                   之前有大量的文章都提过如果产生候选区域。本文采用SS(selective search )方法。参考文献【34】+【36】 特征抽取:                 对于每个候选区域,我们采用cnn之后得到4096维向量。 测试阶段的检测               在测试阶段,我们用选择性搜素的方式在测试图片上选取了2000个候选区域,如上图所示的步骤进行。 运行时间分析: 总之当时相比很快。 训练模型 有监督的预训练: 我们使用了大量的ILSVRC的数据集来进行预训练CNN,但是这个标签是图片层的。换句话说没有带边界这样的标签。 特定区域的微调: 我们调整VOC数据集的候选区域的大小,并且我们把ImageNet上午1000类,变成了21类(20个类别+1个背景)。我们把候选区域(和真实区域重叠的)大于的标记为正数,其他的标记为负数。然后用32个正窗口和96个负窗口组成128的mini-batch。 目标类别分类器:         对于区域紧紧的包括着目标的时候,这肯定就是正样本。对于区域里面全部都是背景的,这也十分好区分就是负样本。但是某个区域里面既有目标也有背景的时候,我们不知道如歌标记。本文为了解决这个,提出了一个阈值:IoU覆盖阈值,小于这个阈值,我们标记为负样本。大于这个阈值的我们标记为正样本。我们设置为。这个是一个超参数优化问题。我们使用验证集的方法来优化这个参数。然而这个参数对于我们的最后的性能有很大的帮助。         一旦,我们得到特征向量。因为训练数据太大了。我们采用standard hard negative mining method(标准难分样本的挖掘)。这个策略也是的收敛更快。 Results on PASCAL VOC 201012 . Visualization, ablation, and modes of error . Visualizing learned features      提出了一个非参数的方法,直接展现出我们的网络学习到了什么。这个想法是将一个特定的单元(特性)放在其中使用它,就好像它自己是一个对象检测器正确的。具体方法就是:我们在大量候选区域中,计算每个单元的激励函数。按从最高到最低排序激活输出,执行非最大值抑制,然后显示得分最高的区域。我们的方法让选定的单元“为自己说话”通过显示它所触发的输入。我们避免平均为了看到不同的视觉模式和获得洞察力为单位计算的不变性。我们可以看到来着第五个maxpooling返回的区域。第五层输出的每一个单元的接受野对应输出227*227的其中的195*195的像素区域。所以中心那个点单元有全局的视觉。. Ablation studies 实际上ablation study就是为了研究模型中所提出的一些结构是否有效而设计的实验。比如你提出了某某结构,但是要想确定这个结构是否有利于最终的效果,那就要将去掉该结构的网络与加上该结构的网络所得到的结果进行对比,这就是ablation study。 Performance layer-by-layer, without fine-tuning. 我们只观察了最后三层Performance layer-by-layer, with fine-tuning. 微调之后,fc6和fc7的性能要比pool5大得多。从ImageNet中学习的pool5特性是一般的,而且大部分的提升都是从在它们之上的特定领域的非线性分类器学习中获得的。Comparison to recent feature learning methods.              见上图 . Detection error analysis           CNN的特征比HOG更加有区分。. Bounding box regression 有了对错误的分析,我们加入了一种方法来减少我们的定位错误。我们训练了一个线性的回归模型HOG和SIFT很慢。但是我们可以由此得到启发,利用有顺序等级和多阶段的处理方式,来实现特征的计算。生物启发的等级和移不变性,本文采用。但是缺少有监督学习的算法。使得卷积训练变得有效率。第一层的卷积层可以可视化。 【23】本文采用这个模型,来得到特征向量  ImageNet Large Scale Visual Recognition Competition用了非线性的激励函数,以及dropout的方法。【34】直接将区域向量作为输入,维数较高。IoU覆盖阈值=,而本文设置为,能提高5个百分点。产生候选区域的方式:selective search 也是本文所采取的方式是结合【34】+【36】。【5】产生候选区域的方式为:限制参数最小割bounding box regression HOG-based DPM文章中的对比试验。缩略图概率。[18][26][28]文章中的对比试验。

论文原文:

YOLO(you only look once)是继RCNN、faster-RCNN之后,又一里程碑式的目标检测算法。yolo在保持不错的准确度的情况下,解决了当时基于深度学习的检测中的痛点---速度问题。下图是各目标检测系统的检测性能对比:

如果说faster-RCNN是真正实现了完全基于深度学习的端到端的检测,那么yolo则是更进一步,将 目标区域预测 与 目标类别判断 整合到单个神经网络模型中。各检测算法结构见下图:

每个网格要预测B个bounding box,每个bounding box除了要回归自身的位置之外,还要附带预测一个confidence值。这个confidence代表了所预测的box中含有object的置信度和这个box预测的有多准两重信息,其值是这样计算的:

其中如果有object落在一个grid cell里,第一项取1,否则取0。第二项是预测的bounding box和实际的groundtruth之间的IoU值。

每个bounding box要预测(x, y, w, h)和confidence共5个值,每个网格还要预测一个类别信息,记为C类。即SxS个网格,每个网格除了要预测B个bounding box外,还要预测C个categories。输出就是S x S x (5*B+C)的一个tensor。(注意:class信息是针对每个网格的,即一个网格只预测一组类别而不管里面有多少个bounding box,而confidence信息是针对每个bounding box的。)

举例说明: 在PASCAL VOC中,图像输入为448x448,取S=7,B=2,一共有20个类别(C=20)。则输出就是7x7x30的一个tensor。整个网络结构如下图所示:

在test的时候,每个网格预测的class信息和bounding box预测的confidence信息相乘,就得到每个bounding box的class-specific confidence score:

等式左边第一项就是每个网格预测的类别信息,第二三项就是每个bounding box预测的confidence。这个乘积即encode了预测的box属于某一类的概率,也有该box准确度的信息。

得到每个box的class-specific confidence score以后,设置阈值,滤掉得分低的boxes,对保留的boxes进行NMS(非极大值抑制non-maximum suppresssion)处理,就得到最终的检测结果。

1、每个grid因为预测两个bounding box有30维(30=2*5+20),这30维中,8维是回归box的坐标,2维是box的confidence,还有20维是类别。其中坐标的x,y用bounding box相对grid的offset归一化到0-1之间,w,h除以图像的width和height也归一化到0-1之间。

2、对不同大小的box预测中,相比于大box预测偏一点,小box预测偏一点肯定更不能被忍受的。而sum-square error loss中对同样的偏移loss是一样。为了缓和这个问题,作者用了一个比较取巧的办法,就是将box的width和height取平方根代替原本的height和width。这个参考下面的图很容易理解,小box的横轴值较小,发生偏移时,反应到y轴上相比大box要大。其实就是让算法对小box预测的偏移更加敏感。

3、一个网格预测多个box,希望的是每个box predictor专门负责预测某个object。具体做法就是看当前预测的box与ground truth box中哪个IoU大,就负责哪个。这种做法称作box predictor的specialization。

4、损失函数公式见下图:

在实现中,最主要的就是怎么设计损失函数,坐标(x,y,w,h),confidence,classification 让这个三个方面得到很好的平衡。简单的全部采用sum-squared error loss来做这件事会有以下不足:

解决方法:

只有当某个网格中有object的时候才对classification error进行惩罚。只有当某个box predictor对某个ground truth box负责的时候,才会对box的coordinate error进行惩罚,而对哪个ground truth box负责就看其预测值和ground truth box的IoU是不是在那个cell的所有box中最大。

作者采用ImageNet 1000-class 数据集来预训练卷积层。预训练阶段,采用网络中的前20卷积层,外加average-pooling层和全连接层。模型训练了一周,获得了top-5 accuracy为(ImageNet2012 validation set),与GoogleNet模型准确率相当。

然后,将模型转换为检测模型。作者向预训练模型中加入了4个卷积层和两层全连接层,提高了模型输入分辨率(224×224->448×448)。顶层预测类别概率和bounding box协调值。bounding box的宽和高通过输入图像宽和高归一化到0-1区间。顶层采用linear activation,其它层使用 leaky rectified linear。

作者采用sum-squared error为目标函数来优化,增加bounding box loss权重,减少置信度权重,实验中,设定为\lambda _{coord} =5 and\lambda _{noobj}= 。

作者在PASCAL VOC2007和PASCAL VOC2012数据集上进行了训练和测试。训练135轮,batch size为64,动量为,学习速率延迟为。Learning schedule为:第一轮,学习速率从缓慢增加到(因为如果初始为高学习速率,会导致模型发散);保持速率到75轮;然后在后30轮中,下降到;最后30轮,学习速率为。

作者还采用了dropout和 data augmentation来预防过拟合。dropout值为;data augmentation包括:random scaling,translation,adjust exposure和saturation。

YOLO模型相对于之前的物体检测方法有多个优点:

1、 YOLO检测物体非常快

因为没有复杂的检测流程,只需要将图像输入到神经网络就可以得到检测结果,YOLO可以非常快的完成物体检测任务。标准版本的YOLO在Titan X 的 GPU 上能达到45 FPS。更快的Fast YOLO检测速度可以达到155 FPS。而且,YOLO的mAP是之前其他实时物体检测系统的两倍以上。

2、 YOLO可以很好的避免背景错误,产生false positives

不像其他物体检测系统使用了滑窗或region proposal,分类器只能得到图像的局部信息。YOLO在训练和测试时都能够看到一整张图像的信息,因此YOLO在检测物体时能很好的利用上下文信息,从而不容易在背景上预测出错误的物体信息。和Fast-R-CNN相比,YOLO的背景错误不到Fast-R-CNN的一半。

3、 YOLO可以学到物体的泛化特征

当YOLO在自然图像上做训练,在艺术作品上做测试时,YOLO表现的性能比DPM、R-CNN等之前的物体检测系统要好很多。因为YOLO可以学习到高度泛化的特征,从而迁移到其他领域。

尽管YOLO有这些优点,它也有一些缺点:

1、YOLO的物体检测精度低于其他state-of-the-art的物体检测系统。

2、YOLO容易产生物体的定位错误。

3、YOLO对小物体的检测效果不好(尤其是密集的小物体,因为一个栅格只能预测2个物体)。

论文里的目标值就是你要围绕什么目标写论文啊,要达到什么水平

最新乳癌检测深度学习论文

值得做。

这里指的乳腺癌基因检测,是指BRCA基因突变检测。BRCA是从“乳腺”和“癌症”这两个英文单词各取开头两个字母组成,可见这个基因突变跟乳腺癌关系非常密切。

不过,这个基因还与其他一些癌症有关,例如卵巢癌等。其实每个人的体内都有BRCA基因,这个基因本身不但无害,而且对我们的人体来说非常重要,因为它的主要功能是抑制肿瘤。

如果细胞分裂的速度开始变得太快,这个基因可以保护我们。当BRCA基因发生突变,就会关闭这种保护因子,这可能会大大增加某些类型癌症的风险。

即使在乳腺癌等癌症患者中,BRCA突变的比例也并不高,只有大约5%到10%的乳腺癌和15%的卵巢癌是由于BRCA突变。不过,对于高风险病史或家族史的人来说,知道自己是否有这种突变,可以有助于提前采取措施,以减少患这些类型癌症的风险。

所以这个检测是值得做的。

BRCA基因简介

1990年,抑制基因,它位于人体细胞核的第17号染色体上。1994年,研究者们在第13号染色体上又发现另外一种与乳腺癌有关的基因,称为BRCA2。

在此之后,很多情况下人们把两种基因统称BRCA1/2一起讨论。实际上,BRCA 1/2是两种具有抑制恶性肿瘤发生的优良基因(称为“抑癌基因”),损伤修复、细胞的正常生长方面有重要作用。

如果BRCA1/2基因的结构发生了某些改变(称为“突变”),那么它所具有的抑制肿瘤发生的功能就会受影响。已发现的BRCA1/2的突变有数百种之多,除了与遗传性乳腺癌和卵巢癌有关。

有人总结了BRCA1和BRCA2基因突变相关的癌症的终身风险,显示有BRCA1基因突变者,患乳腺癌和卵巢癌的风险分别是50%-85%和15%-45%,有BRCA2基因突变者,患乳腺癌和卵巢癌的风险分别是50%-85%和10%-20%。

与普通妇女相比,的确是很高的患癌几率。两种基因的突变属于“常染色体显性遗传”(也就是说不是某一性别特有),但并不是所有突变携带者都会发展成癌症,只是携带有这种突变的人有很高的癌症易感性。

美国的一份资料显示,在3亿多美国人中约250,000-500,000名携带有该突变,在德系犹太人, 冰岛人,法裔加拿大人中比例高,而亚裔中比例较低。这也是为什么北欧、美国等国家乳腺癌的发生率高于亚洲国家的原因。

与原发性乳腺癌相似,卵巢癌中也有启动子高甲基化引起的BRCA 1基因静默现象,尤其是在LOH存在和特殊组织病理学亚型的情况下。同时BRCA 1突变能够增加卵巢癌的危险性。

—项试验发现221例肿瘤中有51例(23.1%)BRCA 1的功能不良,包括18例有胚系突变,15例有机体的突变,18例有单等位基因或双等位基因的高甲基化的启动子。

在大量人群队列研究中检测卵巢癌患者的BRCA l启动子的高甲基化情况发现,在98例卵巢癌中观察到12例有BRCA 1的高甲基化。在短暂化疗的6例再发肿瘤中发现仍然存在原发肿瘤的BRCA 1甲基化状况。

免疫组化发现有BRCA l甲基化的12例肿瘤没有BRCAl蛋白表达。BRCA l甲基化只在没有家族史的卵巢癌中发现。因此BRCA 1启动子高甲基化可能是散发性卵巢癌中引起BRCAl失活的一个重要原因。

以上内容参考 百度百科——BRCA1基因

基因检测目前在实际的应用还是集中在病人,特别是对于肿瘤病人而言,这几乎已经是诊断和治疗前的必备项目了。在精准医学时代,即使是化疗,也可以从基因水平找到适合或者不敏感的依据,从而减少病人盲目治疗的风险。对于一部分已知有高危因素的人群,比如有家族遗传史或明确的致癌因素,如果经济状况许可,也可以选择尝试。比如2013年新闻中出现的安吉丽娜·朱莉,就是因为基因检测BRCA突变阳性,有明确的乳腺癌发病高危,才预防性地切除了双侧乳腺。有高危因素,有钱,有壮士断腕的决心,这样的 健康 人才有检测的必要。那么对于乳腺癌患者不论是刚刚确诊,还是经过治疗,又或者遭遇疾病进展或复发,需不需要做基因检测?基因检测到底是怎么回事?

乳腺癌相关的基因有很多,对于乳腺癌患者而言,一般的保乳手术可以帮助许多早期患者度过难关,然而大家容易忽略一个重要的问题,复发。即使在被诊断为雌激素受体呈阳性的乳腺癌20年后,癌症复发的风险仍然很大。所以,准确预测术后的复发风险,对制定适合乳腺癌患者的治疗方案十分重要。传统的临床病理指标,包括免疫组化结果等,往往不能准确评估患者个体化的复发风险。随着基因组学技术的发展,通过多基因检测的方法可以客观、精准的筛选和分辨出患者的复发风险,这对患者的远期保障是有非常重大意义的!

对于早期乳腺癌患者而言,除了进行局部手术切除以外,还需要进行腋窝淋巴结分期以及对肿瘤组织的激素受体(ER、HR)、生长因子受体(HER2)进行评估,才能进一步制定药物全身治疗的具体方案。研究表明,激素受体阳性而HER2阴性的患者,实际上还可以通过多基因检测的方式具体的分为低复发风险、中复发风险、高复发风险三类人群。而针对三类人群的治疗方案实际上是有很大不同的:对于低复发风险的患者,术后可以仅使用内分泌治疗,不再需要辅助化疗,中复发风险的患者在使用内分泌治疗后可以考虑加用辅助化疗,高复发风险的患者则必须联合辅助化疗方能降低后期复发的风险,而这一风险评估的完成有赖于多基因检测。目前, 已有多个较为成熟的基因检测方法上市,用于评估患者个体化的复发风险,比如MammaPrint(70基因),Oncotype DX(21基因),BCI,PAM 50,EndoPredict等。

总之,对于疾病发生进展的晚期或复发患者而言,在保障生活质量的前提下,获得更多的治疗机会成为患者的基本诉求,基因检测则在一定程度可以满足这个需求。

21基因检测是目前国外推荐预测乳腺癌复发指数以及接受化疗后是否获益的一项检测,目的是为医生提供预测,为患者时候需要化疗等提供依据。作为一种新方法新方式,很多患者觉得比较神秘,导致盲目的追从。其实这是没有必要的,医学上一般不会体检做基因检测,或需要根据患者病情而定。

一、什么是21基因检测?

随着基因组学的发展,已有数个基因系列的检测结果被证实可以用于乳腺癌预后的预测,从而判断患者从化疗中的获益,避免过度治疗。

21基因Oncotype Dx检测就是其中之一,其有效性及准确性已经在各种临床研究中得到了证实。

21基因检测的复发分数分级可作为ER阳性乳腺癌患者复发预测的量化指标,在判断辅助化疗的临床获益程度方面也较传统方法更有优势。

但是,我们还要认识到21基因检测在我国的推广有一定的限制性,比如价格高昂,而且21基因检测只适用于经典化疗方案,对新的化疗方案的适用性尚未明确。

二、什么情况下可以使用21基因检测?

首先要明确一点,不是任何人或每一个乳腺癌患者都适合进行21基因检测的,所以建议大家不要对这种新的方式盲目追从。

其次,是否需要或是否合适进行21基因检测,建议患者及家属咨询主治医师意见,因为他们对患者的病情是最为了解的。

再有,有乳腺癌家族史的,可以尝试进行基因检测。

当然,最终还是需要医生的判断。

三、基因检测值得推荐吗?

按照目前的基因检测发展来讲,不推荐采用。

但是如果患者意愿性较强或医生判断的确有必要的,可以使用。

很多媒体把基因检测“神化”过度,导致患者把基因检测当作救命稻草,其实这是一种不好的宣传和误导;基因检测不是治疗方式,对于乳腺癌来讲也不是救命神药。希望大家理性的看待,正确的使用。

欢迎与我一起共同关注女性 健康 ,共同关注乳腺科普!

不常规推荐做基因检测,但部分患者根据情况需要做。

1、指导治疗

在乳腺癌里,癌细胞增殖和雌孕激素受体以及Her-2基因密切相关,这两种驱动因子一般常规的免疫组化检查就能确定,从而制定出相应的内分泌治疗计划和抗Her-2靶向治疗方案,不需要做基因检测。只有在免疫组化不能确定Her-2状况时,才考虑做FISH检测进一步明确是否有Her-2基因扩增。

2、评估预后

21基因检测是目前国外推荐预测乳腺癌复发指数以及接受化疗是否获益的一项检测,目的是为临床医生提供个体化治疗效果及复发风险的预测,从而做出(雌激素受体阳性、淋巴结阴性的乳腺癌)患者术后是否需要化疗的决定。

但这一检测国内并没有作为常规推荐。

3、除外是否为遗传

乳腺癌大多属于散发型,也就是说没有明确的家族或遗传因素,只是个体发生的乳腺细胞癌变,所以没有特殊家族史的患者,也不常规推荐做遗传基因检测。

如果确系具有特殊家族史,可以考虑做遗传基因检测,如:家族中直系亲属里有多位乳腺癌或子宫内膜癌患者,或者是发病年龄偏小且病理分型差的这部分患者,应该考虑做基因检测明确是否为家族遗传性。

一般来讲,家族性乳癌占所有乳腺癌的5-10%。其中的10-15%已经明确和BRCA1/2基因突变有关,在父母双亲中,如果有一方为突变基因携带者,该突变基因遗传给子代的概率高达50%。

综上,乳腺癌大多数不需要做基因检测,只有少部分患者需要通过基因检测明确是否有Her-2基因扩增或是否为家族遗传而来。

以下回答摘自上海同济大学附属东方医院肿瘤内科 李群 副主任医师《 乳腺癌复发风险知多少?患者要不要做基因检测?》

得了乳腺癌,该做基因检测,原因如下,

乳腺癌是发生在乳腺腺上皮组织的恶性肿瘤,近年我国乳腺癌发病率呈逐年上升趋势,严重威胁女性身心 健康 。早期乳腺癌一般没有症状,有一部分病人可能会有隐约的疼痛,40岁以上人群应该要警惕,及时到医院做进一步检查。

对于乳腺癌患者而言,一般的手术可以帮其度过难关,但又不得不面对术后复发问题。准确预测术后的复发风险,对制定适合乳腺癌患者的治疗方案十分重要。乳腺癌患者要不要做基因检测呢?答案很简单——有必要。

BRCA1和BRCA2基因与乳腺癌和卵巢癌关系比较大,如果这两个基因有突变,那么女性发生乳腺癌或者卵巢癌的风险大大增加。美国影星朱莉就因为BRCA1基因突变,选择了预防性的乳腺切除。

建议有高危因素的人群检测BRCA1/2基因,比如有明显的乳腺癌家族史的,比如患者得过一次乳腺癌又比较年轻,或者三阴性的乳腺癌患者。

NCCN在制定复发或转移性乳腺癌的化疗方案时,对BRCA1/2种系变异的患者,特别接纳了PARP抑制剂——奥拉帕利,作为HER-2阴性肿瘤患者的一线治疗。

快速深度学习人脸检测论文

大数据人脸分析案例

大数据人脸分析案例,随着社会科技的不断发展,人工技能,人脸识别技术也不断普及到各个领域。人脸识别技术可以在大数据的环境下,极大发挥其强大的作用。下文分享有关大数据人脸分析的内容。

基于特征的方法和基于图像的方法

1、基于特征的方法

技术:基于特征的方法试图找到人脸的不变特征进行检测。其基本思想是基于人类视觉可以毫不费力地检测不同姿势和光照条件下的人脸的观察,因此必须有尽管存在这些变化的属性或特征是一致的。当前已经提出了广泛的方法来检测面部特征,然后推断面部的存在。

示例:边缘检测器通常会提取人脸特征,例如眼睛、鼻子、嘴巴、眉毛、肤色和发际线。基于提取的特征,建立统计模型来描述它们之间的关系并验证人脸在图像中的存在。

优点:易于实施,传统方法

缺点:基于特征的算法的一个主要问题是图像特征可能会由于光照、噪声和遮挡而严重损坏。此外,人脸的特征边界会被弱化,阴影会导致强边缘,这使得感知分组算法无用。

2、基于图像的方法

技术:基于图像的方法尝试从图像中的示例中学习模板。因此,基于外观的方法依靠机器学习和统计分析技术来找到“人脸”和“非人脸”图像的相关特征。学习的特征是以分布模型或判别函数的形式应用于人脸检测任务。

示例:基于图像的方法包括神经网络 (CNN)、支持向量机 (SVMi) 或 Adaboost。

优点:性能好,效率更高

缺点:难以实施。 为了计算效率和检测效率,通常需要降维。这意味着通过获得一组主要特征来考虑降低特征空间的维数,保留原始数据的有意义的属性。

人脸检测方法

已经引入了多种人脸检测技术。

1、开始阶段:人脸检测自 90 年代出现以来一直是一个具有挑战性的研究领域。

2000 年之前,尽管有很多研究,但直到 Viola 和 Jones 提出里程碑式的工作,人脸识别的实际性能还远不能令人满意。 从 Viola—Jones 的开创性工作(Viola and Jones 2004)开始,人脸检测取得了长足的进步。

Viola and Jones 开创性地使用 Haar 特征和 AdaBoost 来训练一个有希望的准确度和效率的人脸检测器(Viola and Jones 2004),这启发了之后有几种不同的方法。 然而,它有几个严重的缺点。首先,它的特征尺寸比较大。另外,它不能有效地处理非正面人脸和框外人脸。

2、早期阶段——机器学习:早期的方法主要集中在与计算机视觉领域的专家一起提取不同类型的手工特征,并训练有效的分类器以使用传统的机器学习算法进行检测。

这些方法的局限性在于它们通常需要计算机视觉专家来制作有效的特征,并且每个单独的组件都单独优化,使得整个检测流程往往不是最佳的。

为了解决第一个问题,人们付出了很多努力来提出更复杂的特征,如 HOG(定向梯度直方图)、SIFT(尺度不变特征变换)、sURF(加速鲁棒特征)和 ACF(聚合通道特征)。检测的鲁棒性,已经开发了针对不同视图或姿势分别训练的多个检测器的组合。然而,此类模型的训练和测试通常更耗时,并且检测性能的提升相对有限。3

3、最新技术 — 深度学习:近年来,使用深度学习方法,尤其是深度卷积神经网络 (CNN) 的人脸识别取得了显着进展,在各种计算机视觉任务中取得了显显著的成功。

与传统的计算机视觉方法相比,深度学习方法避免了手工设计的不足,并主导了许多著名的基准评估,例如 lmageNet大规模视觉识别挑战 (ILSVRC)。

最近,研究人员应用了 Faster R—CNN,这是最先进的通用对象检测器之一,并取得了可喜的成果。此外,CNN 级联、区域提议网络(RPN)和 Faster R—CNN 联合训练实现了端到端的优化,以及人脸检测基准,如 FDDB(人脸数据库)等。

主要挑战

人脸检测面临的困难是降低人脸识别准确率和检测率的原因。

这些挑战是复杂的背景、图像中的人脸过多、奇怪的表情、光照、分辨率较低、人脸遮挡、肤色、距离和方向等。

不寻常的面部表情:图像中的人脸可能会显示出意外或奇怪的面部表情。

照明度:某些图像部分可能具有非常高或非常低的照明度或阴影。

皮肤类型:检测不同人脸颜色的人脸检测具有挑战性,需要更广泛的训练图像多样性。

距离:如果到相机的距离太远,物体尺寸(人脸尺寸)可能太小。

朝向:人脸方向和相机的角度会影响人脸检测率。

复杂的背景: 场景中的大量对象会降低检测的准确性和速度。

一张图像中有很多人脸:一张包含大量人脸的图像对于准确检测率来说非常具有挑战性。

人脸遮挡:人脸可能会被眼镜、围巾、手、头发、帽子等物体部分遮挡,影响检测率。

低分辨率:低分辨率图像或图像噪声会对检测率产生负面影响。

人脸检测应用场景

人群监控:人脸检测用于检测经常光顾的公共或私人区域的人群。

人机交互: 多个基于人机交互的系统使用面部识别来检测人类的存在。

摄影:最近的一些数码相机使用面部检测进行自动对焦等等。

面部特征提取:可以从图像中提取鼻子、眼睛、嘴巴、肤色等面部特征。 、

性别分类: 通过人脸检测方法检测性别信息。

人脸识别:从数字图像或视频帧中识别和验证一个人。

营销:人脸检测对于营销、分析客户行为或定向广告变得越来越重要。

出勤:面部识别用于检测人类的出勤情况, 它通常与生物识别检测结合用于访问管理,如智能门禁。

2014年前后,随着大数据和深度学习的发展,神经网络备受瞩目,深度学习的出现使人脸识别技术取得了突破性进展。深度学习是机器学习的一种,其概念源于人工神经网络的研究,通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。

区别于传统的浅层学习,深度学习的不同在于一方面通常有5层以上的'多层隐层节点,模型结构深度大;另一方面利用大数据来学习特征,明确了特征学习的重要性。

随着深度卷积神经网络和大规模数据集的最新发展,深度人脸识别取得了显著进展,基于深度学习的人脸识别技术可以通过网络自动学习人脸面部特征,从而提高人脸检测效率。

从人脸表达模型来看,可细分为2D人脸识别和3D人脸识别。基于2D的人脸识别通过2D摄像头拍摄平面成像,研究时间相对较长,在多个领域都有使用,但由于2D信息存在深度数据丢失的局限性,收集的信息有限,安全级别不够高,在实际应用中存在不足。

早在2019年,就有小学生手举照片“攻破”了快递柜的人脸识别系统。基于3D的人脸识别系统通过3D摄像头立体成像,由两个摄像头、一个红外线补光探头和一个可见光探头相互配合形成3D图像,能够准确分辨出照片、视频、面具等逼真的攻击手段。

根据使用摄像头成像原理,目前3D人脸识别主要有三种主流方案,分别是3D结构光方案(Structured Light)、时差测距技术3D方案(Time Of Flight,TOF)和双目立体成像方案(Stereo System)。基于3D结构光的人脸识别已在一些智能手机上实际应用,比如HUAWEI Mate 20 Pro、iPhone X。

2009年微软推出的Kinect(Xbox 360体感周边外设)则采用了TOF方式获取3D数据,颠覆了游戏的单一操作,为人机体感交互提供了有益探索。双目立体成像方案基于视差原理,通过多幅图像恢复物体的三维信息,由于对相机焦距、两个摄像头平面位置等要求较高,应用范围相对于3D结构光和TOF方案较窄。

除了能够准确识人,精准判断捕捉到的人脸是真实的也至关重要。活体检测技术能够在系统摄像头正确识别人脸的同时,验证用户是本人而不是照片、视频等常见攻击手段。目前活体检测分为三种,分别是配合式活体检测、静默活体检测和双目活体防伪检测。

其中,配合式活体检测最为常见,比如在银行“刷脸”办理业务、在手机端完成身份认证等应用场景,通常需要根据文字提示完成左看右看、点头、眨眨眼等动作,通过人脸关键点定位和人脸追踪等技术,验证用户是否为真实活体本人。

人脸与人体的其他生物特征(如指纹、虹膜等)一样与生俱来,它的唯一性和不易被复制的良好特性为身份鉴别提供了必要的前提。随着大数据和深度学习的不断发展,人脸识别效率显著提升,为远程办理业务的身份认证环节提供了可靠保障。

但与此同时,人脸信息保护、隐私安全等问题也应引起重视。随着《个人信息保护法》《数据安全法》及相关司法解释的出台,国家相关部门以及各种机构对个人信息安全问题的重视,有利于引导人脸识别技术的发展方向,为促进行业高质量发展、创造高品质数字生活提供有力支撑。

人脸识别的应用场景在大范围扩展:

金融领域:远程银行开户、身份核验、保险理赔和刷脸支付等。人脸识别技术的接入,能有效提高资金交易安全的保障,也提高了金融业务中的便捷性。

智慧安防领域则是为了视频结构化、人物检索、人脸布控、人群统计等软硬件一体形态产品提供基础支撑,重点应用于犯罪人员的识别追踪、失踪儿童寻找、反恐行动助力等场景。实现重点人员的识别及跟踪,在公安应用场景中达到事前预警、事中跟踪、事后快速处置的目的。

交通领域主要包括1:1人脸验证和1:N人脸辨识,目前利用人脸核验验证技术的刷脸安检已进入普遍应用阶段,在高铁站、普通火车站和机场皆已大面积推广。

而应用1:N人脸比对技术的刷脸支付主要落地在地铁公交等市内交通,这种技术能够极大提高通勤人员的出行效率,释放大量的人力资源,提升出行体验。同时,人脸识别可以对交通站点进行人流监测,根据人员出行规律预测人流高峰,提前做好疏导预案。

民生政务方面,人脸识别在政务系统的落地,提升了民众的办事效率,公民可以不用窗口排队,实现自助办事,节省了因人工效率低下产生的耗时。部分政务还可以通过在线人脸识别验证,在移动端线上办理,减轻了“办事来回跑、办事地点远、办事点分散”的困扰。

智能家居方面,主要应用在安全解锁和个性化家居服务两个场景。

在线教育领域则是通过人脸识别查验学员身份,避免一账号多个人使用,给网校造成损失,另一用途是帮助在线课堂老师了解学生学习状态,弥补网络授课相较于传统授课在师生交流环节上的不足。

商业领域,利用人脸识别功能实现各种极具创意的互动营销活动。

凡事都有两面。即便拥有以上优势,因人脸暴露度较高,相比对其他生物特征数据更容易实现被动采集,这也意味着人脸信息的数据更容易被窃取,不仅可能侵犯个人隐私,还会带来财产损失。大规模的数据库泄露还会对一个族群或国家带来安全风险。

在南方都市报个人信息保护研究中心发布的《人脸识别应用公众调研报告(2020)》中,其对两万份调研报告进行统计,问卷中就“便捷性”与“安全性”设置了量表题,请受访者分别依据前述10大类场景中的使用感受进行打分。

1分为最低分,5分为最高分。结果显示,在安全性感受方面,受访者给出的分数则明显偏低,体现出他们对安全风险的忧虑态度。

使用ai软件提取不到人脸你的这个图被你移动过,链接进AI的图是不能随便移动的,不然AI就找着了!修复的方法就只能找到这个文件然后放回原来的地方,否则只能重做!建议你以后做这样的图,考虑直接用AI打开,然后复制进去使用,不要链接,否则链接一丢失就很麻烦了

确实,不知道是不是水军呀。具体回答你这个问题,至少要几千个子才能说明白。

深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据。卷积神经网络(CNN)局部连接传统的神经网络是全连接,即一层的神经元与上一层的所有神经元都建立连接,这样导致参数非常多,计算量非常大,而CNN是局部连接,一层的神经元只与上一层的部分神经元建立连接,这样可以减少参数和计算量。Technology-MachineLearning-FaceRegonition-CNN-LocalConnected权值共享给一张输入图片,用一个filter去扫时,filter里面的数就叫权重。用该filter对整个图片进行了某个特征的扫描,例如Edge detection,这个过程就是权值共享,因为权重不变。Technology-MachineLearning-FaceRegonition-CNN-WeightSharing人脸识别多个CNN加其他层,遍历而成的人脸识别处理结构:Technology-MachineLearning-FaceRegonition-CNN-Example层提取到的信息的演进:Technology-MachineLearning-FaceRegonition-CNN-Example2人脸检测传统算法识别:滑动窗口+分类器用一个固定大小的窗口去滑动扫描图像,并通过分类器去分辨是否是人脸。有时候人脸在图片中过小,所以还要通过放大图片来扫描。Technology-MachineLearning-FaceRegonition-Window&Classifier训练:特征+Adaboost传统特征:LBP/HOG/Harr图片原始的RGB信息,维度太高,计算量过大,且不具备鲁棒性,即光照和旋转,对RGB信息影响非常大。利用LBP得到二进制值,再转换成十进制:Technology-MachineLearning-FaceRegonition-LBP效果图:Technology-MachineLearning-FaceRegonition-LBP-ExampleAdaboost由于移动设备对计算速度有一定要求,所以用多个弱分类器加权叠加来完成一个强分类器,从而保证速度。Technology-MachineLearning-FaceRegonition-Adaboost深度学习特征的选取是比较复杂的,可能需要大量的统计学和生物学知识积累,而深度学习不需要选择特征,这是其很大优势,另外通过GPU代替CPU等方式,可以得到一个更好的效果。Technology-MachineLearning-FaceRegonition-DeepLeaning-Example关键点检测、跟踪传统算法Cascade regression/ESR/SDM传统算法步骤:根据人脸检测的框位置,先初始化初始脸部轮廓位置;进行上一步位置和图形特征检测下一步位置(一般是迭代残差);进行迭代,最终得到相对准确的轮廓位置。Technology-MachineLearning-FaceRegonition-KeyPoints深度学习深度学习算法步骤:对图像进行轮廓定位态校正;全局粗定位;局部精细定位。

用深度学习做黑烟检测的论文

一般来说,在提交深度学习相关的论文时,需要提供实验数据来支持你的研究成果。这些实验数据可以是你在进行实验时所使用的数据集,也可以是你手动构建的数据集。这些数据通常被用来验证你的算法是否有效,并且可以被其他研究人员复现你的实验结果。因此,在提交深度学习相关论文时,需要准备足够的实验数据来支持你的研究成果。

论文名称:Rich feature hierarchies for accurate object detection and semantic segmentation 提出时间:2014年 论文地址: 针对问题: 从Alexnet提出后,作者等人思考如何利用卷积网络来完成检测任务,即输入一张图,实现图上目标的定位(目标在哪)和分类(目标是什么)两个目标,并最终完成了RCNN网络模型。 创新点: RCNN提出时,检测网络的执行思路还是脱胎于分类网络。也就是深度学习部分仅完成输入图像块的分类工作。那么对检测任务来说如何完成目标的定位呢,作者采用的是Selective Search候选区域提取算法,来获得当前输入图上可能包含目标的不同图像块,再将图像块裁剪到固定的尺寸输入CNN网络来进行当前图像块类别的判断。 参考博客: 。 论文题目:OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks 提出时间:2014年 论文地址: 针对问题: 该论文讨论了,CNN提取到的特征能够同时用于定位和分类两个任务。也就是在CNN提取到特征以后,在网络后端组织两组卷积或全连接层,一组用于实现定位,输出当前图像上目标的最小外接矩形框坐标,一组用于分类,输出当前图像上目标的类别信息。也是以此为起点,检测网络出现基础主干网络(backbone)+分类头或回归头(定位头)的网络设计模式雏形。 创新点: 在这篇论文中还有两个比较有意思的点,一是作者认为全连接层其实质实现的操作和1x1的卷积是类似的,而且用1x1的卷积核还可以避免FC对输入特征尺寸的限制,那用1x1卷积来替换FC层,是否可行呢?作者在测试时通过将全连接层替换为1x1卷积核证明是可行的;二是提出了offset max-pooling,也就是对池化层输入特征不能整除的情况,通过进行滑动池化并将不同的池化层传递给后续网络层来提高效果。另外作者在论文里提到他的用法是先基于主干网络+分类头训练,然后切换分类头为回归头,再训练回归头的参数,最终完成整个网络的训练。图像的输入作者采用的是直接在输入图上利用卷积核划窗。然后在指定的每个网络层上回归目标的尺度和空间位置。 参考博客: 论文题目:Scalable Object Detection using Deep Neural Networks 提出时间:2014年 论文地址: 针对问题: 既然CNN网络提取的特征可以直接用于检测任务(定位+分类),作者就尝试将目标框(可能包含目标的最小外包矩形框)提取任务放到CNN中进行。也就是直接通过网络完成输入图像上目标的定位工作。 创新点: 本文作者通过将物体检测问题定义为输出多个bounding box的回归问题. 同时每个bounding box会输出关于是否包含目标物体的置信度, 使得模型更加紧凑和高效。先通过聚类获得图像中可能有目标的位置聚类中心,(800个anchor box)然后学习预测不考虑目标类别的二分类网络,背景or前景。用到了多尺度下的检测。 参考博客: 论文题目:DeepBox: Learning Objectness with Convolutional Networks 提出时间:2015年ICCV 论文地址: 主要针对的问题: 本文完成的工作与第三篇类似,都是对目标框提取算法的优化方案,区别是本文首先采用自底而上的方案来提取图像上的疑似目标框,然后再利用CNN网络提取特征对目标框进行是否为前景区域的排序;而第三篇为直接利用CNN网络来回归图像上可能的目标位置。创新点: 本文作者想通过CNN学习输入图像的特征,从而实现对输入网络目标框是否为真实目标的情况进行计算,量化每个输入框的包含目标的可能性值。 参考博客: 论文题目:AttentionNet: AggregatingWeak Directions for Accurate Object Detection 提出时间:2015年ICCV 论文地址: 主要针对的问题: 对检测网络的实现方案进行思考,之前的执行策略是,先确定输入图像中可能包含目标位置的矩形框,再对每个矩形框进行分类和回归从而确定目标的准确位置,参考RCNN。那么能否直接利用回归的思路从图像的四个角点,逐渐得到目标的最小外接矩形框和类别呢? 创新点: 通过从图像的四个角点,逐步迭代的方式,每次计算一个缩小的方向,并缩小指定的距离来使得逐渐逼近目标。作者还提出了针对多目标情况的处理方式。 参考博客: 论文题目:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition 提出时间:2014年 论文地址: 针对问题: 如RCNN会将输入的目标图像块处理到同一尺寸再输入进CNN网络,在处理过程中就造成了图像块信息的损失。在实际的场景中,输入网络的目标尺寸很难统一,而网络最后的全连接层又要求输入的特征信息为统一维度的向量。作者就尝试进行不同尺寸CNN网络提取到的特征维度进行统一。创新点: 作者提出的SPPnet中,通过使用特征金字塔池化来使得最后的卷积层输出结果可以统一到全连接层需要的尺寸,在训练的时候,池化的操作还是通过滑动窗口完成的,池化的核宽高及步长通过当前层的特征图的宽高计算得到。原论文中的特征金字塔池化操作图示如下。 参考博客 : 论文题目:Object detection via a multi-region & semantic segmentation-aware CNN model 提出时间:2015年 论文地址: 针对问题: 既然第三篇论文multibox算法提出了可以用CNN来实现输入图像中待检测目标的定位,本文作者就尝试增加一些训练时的方法技巧来提高CNN网络最终的定位精度。创新点: 作者通过对输入网络的region进行一定的处理(通过数据增强,使得网络利用目标周围的上下文信息得到更精准的目标框)来增加网络对目标回归框的精度。具体的处理方式包括:扩大输入目标的标签包围框、取输入目标的标签中包围框的一部分等并对不同区域分别回归位置,使得网络对目标的边界更加敏感。这种操作丰富了输入目标的多样性,从而提高了回归框的精度。 参考博客 : 论文题目:Fast-RCNN 提出时间:2015年 论文地址: 针对问题: RCNN中的CNN每输入一个图像块就要执行一次前向计算,这显然是非常耗时的,那么如何优化这部分呢? 创新点: 作者参考了SPPNet(第六篇论文),在网络中实现了ROIpooling来使得输入的图像块不用裁剪到统一尺寸,从而避免了输入的信息丢失。其次是将整张图输入网络得到特征图,再将原图上用Selective Search算法得到的目标框映射到特征图上,避免了特征的重复提取。 参考博客 : 论文题目:DeepProposal: Hunting Objects by Cascading Deep Convolutional Layers 提出时间:2015年 论文地址: 主要针对的问题: 本文的作者观察到CNN可以提取到很棒的对输入图像进行表征的论文,作者尝试通过实验来对CNN网络不同层所产生的特征的作用和情况进行讨论和解析。 创新点: 作者在不同的激活层上以滑动窗口的方式生成了假设,并表明最终的卷积层可以以较高的查全率找到感兴趣的对象,但是由于特征图的粗糙性,定位性很差。相反,网络的第一层可以更好地定位感兴趣的对象,但召回率降低。 论文题目:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 提出时间:2015年NIPS 论文地址: 主要针对的问题: 由multibox(第三篇)和DeepBox(第四篇)等论文,我们知道,用CNN可以生成目标待检测框,并判定当前框为目标的概率,那能否将该模型整合到目标检测的模型中,从而实现真正输入端为图像,输出为最终检测结果的,全部依赖CNN完成的检测系统呢? 创新点: 将当前输入图目标框提取整合到了检测网络中,依赖一个小的目标框提取网络RPN来替代Selective Search算法,从而实现真正的端到端检测算法。 参考博客 :

相关百科
热门百科
首页
发表服务