论文投稿百科

液相色谱分析论文文献

发布时间:2024-07-04 23:03:15

液相色谱分析论文文献

高效液相色谱法在物分析中的应用 【摘要】HPLC是目前生物分析中应用最广泛、发展最迅速的一种分析方法,但由于生物样品组分复杂、仪器缺陷,HPLC的应用受到诸多限制。【关键词】HPLC 生物分析 【引言】 HPLC是色谱法的一个重要分支,以液体为流动相,采用高压输液系统,将具有不同极性的单一溶剂或不同比例的混合溶剂、缓冲液等流动相泵入装有固定相的色谱柱,在柱内各成分被分离后,进入检测器进行检测,从而实现对试样的分析。随着HPLC这一种分类分析技术的广泛应用,现在每天都有色谱工作者在研究使用HPLC。 【正文】 1 HPLC的发展简史 HPLC的发展始于20世纪60年代中后期,在经典液相柱色谱的基础上,引入气相色谱的理论和技术,应用于液相柱色谱系统的设计,同时机械、光学和电子等技术上的进步,也促使了HPLC的发展。20世纪70年代,微处理机技术用于液相色谱,进一步提高了仪器的自动化水平和分析精度。20世纪80年代新一代是智能色谱仪,能在12到24小时完成人们一周或一月的劳动目前HPLC已成为化学、药学、医学、生物化学、环保等科学领域中重要的分类分析技术,HPLC已广泛开展和应用,各大学、研究所和工厂的试验室中,它已作为一种常备仪器使用。 2 HPLC的分类 吸附色谱分配色谱离子色谱体积排阻色谱亲和色谱3 HPLC方法建立的步骤 了解样品的性质,明确分离目的。 是否需要特殊的HPLC步骤、样品预处理等。 选择检测器和检测器设置 选择液相色谱法;进行预实验;估计最佳分离条件 优化分离条件 检测出现的问题或所需的特殊步骤 论证方法使之进入常规实验室 4 HPLC在生物分析中的应用 HPLC在药物分析中的应用 HPLC是目前生物样品药物分析中应用广泛、发展迅速的一种分析方法,但由于生物样品组分复杂,特别是含大量蛋白质等大分子杂质,易引起柱头堵塞而升高柱压;另外试样中药物浓度较低,需进一步富集才能检出,都需要对试样进行适当的前处理,以使药物净化、富集。通常的方法是进行液液萃取,但存在诸如易产生乳化、杂质较多、回收率低、需要的样品量大等缺点。固相萃取是利用选择性吸附与选择性洗脱的液相色谱法分离原理,使液体样品通过一吸附剂,保留其中某一组分,再选用适当溶剂冲去杂质,然后用少量溶剂迅速洗脱,从而达到分离、净化与浓缩的目的作为从生物样品中提取净化微量药物或其代谢产物的新方法,己被广泛地用于生物样品的检测中,其中尤以与技术结合用于生物样品的分析引人注目。 生物检测Raggi等 报道用SPE-HPLC 同时测定人血浆中氯氮平和其活性代谢物去甲氯氮平的含量,两者的绝对回收率均高于88%,优于其他方法,检测限为1ng/mlLacroix 等 建立了SPE-HPLC荧光检测法测定人血浆中的神经肌阻滞剂Mivacurium Chloride对映异构体及其代谢物,其检测灵敏度可达 。Moriyama 等 用C18 柱,仅用20ul血浆,同时测定抗癫痫药扑米酮及其活性代谢物苯乙基丙二酰和苯巴比妥。谭力等 建立了SPE-HPLC 测定依那普利血药浓度的方法,最低检测浓度为 等用SPE-HPLC 荧光检测法测定了血浆中痕量甲氨蝶呤和羟甲氨蝶呤,甲氨蝶呤的最低检出限为。Farin等用SPE-HPLC 检测人血浆中美洛哌平的含量,其检测限为 。由于美洛哌平的pH 快速变质而要求以上,而在这样的pH 条件下将导致蛋白质的不完全沉淀,增加柱压和污染柱子,必须在制样后1h 内进行HPLC检测。而用SPE ,因没有低的 pH条件限制,可以避免制样后须快速进样分析的限制。 HPLC法在四环类抗生素质控分析中的应用据文献报道,通用的四环类抗生素的色谱分析体系为反相色谱系统,流动相可概括为碱性流动相(Ph>)和酸性流动相(Ph<)。由于反相色谱填料在偏碱性条件下硅胶颗粒易溶解;在偏酸性条件下键合相易水解。故对四环类抗生素一直未采用HPLC法进行质量控制。近年来,伴随着色谱填料的发展,键合硅胶抗酸、碱的能力大大提高,得采用HPLC法控制四环类抗生素的产品质量成为可能。经比较,碱性流动相体系较酸性流动相体系更易得到较好的分析结果。四环素类抗生素为碱性抗生素,与硅胶填料上的硅醇基的相互作用较强,色谱峰易拖尾。故对不同牌号的色谱柱,由于填料封尾情况的差异,对其色谱峰形的影响不同,采用全封尾的色谱填料,如Kromasil C18等易得到较对称的色谱峰。 【小结】高效液相色谱法具有分离效能高、分析速度快、灵敏度高、色谱柱可以反复使用、流动相可选择范围宽、流出组分容易收集、适用范围广和安全。同时随着机械、光学和电子、计算机等技术上的进步,高效液相色谱法将得到极大发展,适用范围也将越来越广。生物科学的发展也离不开HPLC。 【参考文献】高效液相色谱法在抗生素质控分析中的应用气象 北京 2001NULL 分析化学 大连理工大学出版社 2004 张玉奎等译 实用高效液相色谱法的建立 华文出版社 北京 2001 何 华 倪坤仪 主编 现代色谱分析 化学工业出版社 北京 2004 王新春 阳长明 侯世祥 李章万 中国医院药学杂志 2001年第 21卷第 12期

色谱分析技术能够实现原料分离,分析环节中同时完成多种任务,下面是我为大家精心推荐的色谱分析技术论文,希望能够对您有所帮助。

涂料检测中的现代色谱分析技术应用分析

摘 要:文章首先介绍了气相色谱法涂料检验的原理,并对检验环节中常见的问题以及解决对策进行分析。从技术的优缺点两方面进行。其次重点分析高效液相色谱法的应用原理,并对涂料检测环节的技术要点做出总结。帮助提升检测结果的准确性。

关键词:涂料检测;现代色谱;气相色谱法

1 高效液相色谱法

该种技术融合了传统工艺中的优点,同时也对存在的问题做出优化,更高效的解决检测期间的影响问题。这种技术能够实现原料分离,分析环节中同时完成多种任务,与传统方法相比较在时间上会有明显的减少,尤其是对受热程度的分析判断,更高效合理。检验环节中常见的加热问题,成为色谱分析的首要影响因素,如果不能合理的设置温度,很容易造成分析结合与实际情况不符合。大部分涂料都是液体形式的,在性质上更具有稳定性,原料选取的量也能得到控制。随着对环保和健康的日益重视,国家陆续出台了一些涂料相关的有毒有害标准,涂料的生产工艺和配方也随之调整优化。但也不乏有生产厂家使用现行标准中还未被限量的有毒有害物质来替代已被限量的物质。这就要求在检验工作中不仅要依照现行标准对涂料样品进行检验,还要积极发现还未被限量的有毒有害物质。涂料产品成分复杂多样,高效液相色谱法属于分离性分析方法,能够对绝大部分的有机物进行分析,尤其是对挥发性不强,高温易分解的物质,能获得比其他方法更好更稳定的结果。

涂料中含有的化学物质可能会对环境造成污染,因此目前的检测工作也大部分是针对生态环保来进行的,目的在于避免质量检测不达标的物质投入到使用中。因此检测工作要有明确的目标,对待检物质中可能会含有的污染物进行判断。有毒涂料防污剂有机锡的HPLC分析在船舶防污涂料抑制海洋生物污损中发挥了非常有效的作用,随着海洋监测技术的发展,有机锡的毒性和对生态系统的危害越来越多地被人类认识。海洋环境中的有机锡浓度很低(10-12~10-9),而且种类繁多,因此用传统的仪器很难满足高灵敏度、高选择性的分析要求。其中较成熟的方法是以GC(凝胶色谱)为分离手段,配以适合金属离子分析的检测器。

HPLC能对不适应GC的有机锡进行分析,适用于大多数极性及非极性有机锡化合物的直接分离。不需萃取及衍生,在常温下可直接分离样品中不同形态的锡,不但缩短了分析时间,而且还减少了分析过程中可能的损失;可通过改变固定相和流动相获得最佳分离;尤其适用于具有生物活性化合物的分离与形态分析。凝胶色谱法是液相色谱法的一种,其分离原理与其他色谱法不同,是按分子体积的大小进行分离,所以也称为体积排阻色谱法。高效凝胶渗透色谱是20世纪60年代发展起来的一种液相色谱方法,主要用途是测定高聚物的相对分子质量及其分布。

2 气相色谱法

裂解气相色谱-傅里叶变换红外光谱联用

能够用来判断树脂涂料中的组成成分,同样是针对光谱来进行,该种技术方法在所得结果上更具有全面性,融合了两种技术方法中的优点,在对色谱类型进行判断时可以直接显示结果。生产工艺不断进步后,涂料中的含有成分也在逐渐复杂化,高分子结构在普通的红外光谱下不容易分析。关于该种色谱技术,在国内的研究起步较晚,应用环节也是根据已有的研究结果来探讨的。

我国学者在研究过程中,提取涂料中的成分,将检测得到的成分含量录入到计算机设备中进行分析,更准确的定位色谱表现形式与其中涂料含量的函数关系。该种技术可以选择任意部分涂料进行检测,不需要对测试点进行选取,节省时间的同时也能够减少标样点,对未来的工作开展有很大帮助。这一特征性也是该技术能够得到应用落实的原因。

红外光照作用下,涂料发生的裂解反应是检测开展的依据,不需要再次选择分析的样本,可以直接根据反应过程来分析结果。面对比较复杂的分析对象时,仅仅依靠简单的裂解很难实现目标,简单的升高温度能够促进涂料裂解,再根据反应发生的情况来判断是否达到可以检测的点。红外光照在其中发挥着催化的作用,可以应对化合物检测。但涂料的形式并不是如此简单,还包含了聚合物形式,红外光谱检测的效果便会受到阻碍。

裂解气相色谱-质谱联用

涂料由几大部分组成,树脂原料常常被应用在基料制作中。对于耐高温性质好,并且不容易分离的材料,不能再通过高温裂解的方式来检验。但检验方法在原理上都相同,遇到的难题是如何促使裂解反应发生。常见的方法是对分子结构链进行破坏,涂料中的成分自然分解,此时在对色谱表现形式进行分析,能更好的完成任务。裂变过程中会散发出能量,不同分子结构链变化期间所散发的热量也不相同,同时也与基料自身耐高温形式相关。

了解到裂变需要经过高温加热来实现分析检测时,关键技术是对温度的控制,如果加热温度超出了需求范围,很容易造成分子结构链过于零散,影响到结果的判断。不可忽略的一点是,涂料在高温状态下其中的一些物质容易发生氧化反应,分解出检测环节不需要的物质,对任务开展产生阻碍。由此可见,这种方法虽然操作过程简单,结果分析准确,但却容易受外界因素影响。

涂料在高温环境下发生反应变化需要一段融合的时间,而破坏结构链是在高温加热的瞬间完成的。检测环节中,可以在短时间内瞬间升高温度,这样能够避免物质的高温氧化反应,提升检测结果的可靠性。影响物质并不能被完全消除,只是尽可能的将生成量控制在合理范围内,不对检验分析造成影响。根据检验结果可以了解到,不同的基料材质对涂料色谱表现形式会产生影响,在检测环节需要对原料组成成分进行判断,明确高温状态下可能会发生的反应类型。任务进行期间,需要选取不同涂料的样品来测试,避免掺入其他杂质。所选取的量要均等,观察检测结果的同时将原始数据整理记录,用于后续的分析检验环节,可以更好的对比。根据反应发生的形式对检验技术进行选择,涂料色谱分析在流程上会有明显的进步。

3 结论

快速灵敏的仪器分析法在很大程度上取代了繁琐费时的化学分析法,打破了化学分析的局限,极大地提高了分析工作的效率、分析精度与可靠性,而先进的色谱技术已成为涂料成分检测不可缺少的重要手段。

参考文献

[1] 宋晓波,兰小军,丁立群.现代色谱分析技术在涂料检测中的应用[J].上海涂料,2013(03).

[2] 尹洧.色谱分析技术在食品检测中的应用[J].农业工程,2012(08).

点击下页还有更多>>>色谱分析技术论文

这是一篇综述性关于化学痕量分析的论文。如果没有自己做试验,那综述性论文是很好的选择,因为不需要做试验,查一些资料,就可以自己整理出来。气相色谱有机痕量分析进展摘要对气相色谱有机痕量分析的进展进行了评述,共引用文献63篇。关键词气相色谱;有机痕量分析;前处理;综述前言 痕量分析是指样品中低含量物质的测定,这些低含量物质通常被称为痕量组分。所谓痕量分析这个概念是一个动态的概念,是随着科学技术的发展而变化的。梁汉昌[1]认为,现代痕量分析是指检测纯物质或混合物中所含浓度为10-9-100×10-6,或者更低的组分。朱明华[2]认为,含量在100 ppm以下的组分的分析,称为痕量分析(TraceAnalysis)。 随着国民经济的发展和高新技术的不断出现,各行业各领域对物质纯度和质量的要求越来越高,环境及生命体中的痕量组分也会对自然界及生物体造成很大影响,从而促进和推动了痕量分析技术的发展。因此,研究并建立更加灵敏、更加准确的痕量分析方法具有重要的现实意义。 诸多分析方法,如气相色谱法[3]、液相色谱法[4],质谱法、红外光谱法、拉曼光谱法[5],毛细管电泳法[6],电化学法[7]、毛细管电色谱法一电喷雾质谱测定法[8]、导数分光光度法[9]等都可以用于有机痕量分析。气相色谱法由于具有分离效率高,选择性好,灵敏度高,分析速度快,直接进样样品用量少,一次进样可以同时分析多种组分等突出优点,特别适用于有机痕量物质的分析。但是有机痕量分析是一项面大、面广、难度大、要求高的工作,不仅包括仪器本需要解决的检测灵敏度和分离的问题,还包括极为关键的内容,如样品采集、运输、存储、制备等。气相色谱有机痕量分析样品预处理 环境中有机污染物(包括环境激素),食品中某些成分,药物中的杂质等的分析大都涉及痕量水平的检测,必须适应不同基体和大量共存物等复杂因素,是一项系统的痕量分析工作。在早期,人们把注意力集中于发展高灵敏和高选择性的色谱分析方法上。通过二十年来的实践,人们认识到在这些分析中,样品的前处理是整体分析方法中不可忽略的一个环节,而且往往还是影响分析成败的关键。我国在样品前处理技术方面已有一定的发展,但不平衡。现就近年来国内外对样品前处理技术的进展作一简要介绍。溶剂萃取 溶剂萃取是各类样品最常用的处理技术之一。液-固萃取(LSE)和液-液萃取(LLE)一直是应用最为广泛的样品前处理方法,如索氏提取,兼有富集和排除基体干扰的效果,过去美国EPA500,600,800系列方法大都采用这个方案,其缺点是要耗用较大量的有机溶剂(数10 mL)并易引入新的干扰(溶剂中的杂质等),还需要费时的浓缩步骤,易导致被测物的损失,造成空气污染,效率也较低。 微量溶剂萃取和连续萃取在方法和设备上均作了改进,前者每次萃取只需耗用100-1000μL的溶剂,灵敏度有所提高;连续萃取法结合气相色谱测定海水中的痕量有机物,检测限可达10 ppt水平(辛烷)[10]。 快速溶剂萃取(ASE)是由Bruce等自1995年以来介绍的一种萃取技术[11],适用于固体和半固体样品的前处理技术是在加压(7-12 MPa,最高可达20 MPa)和加热(50-200℃)条件下进行萃取,适用于固体样品(10-30 g),溶剂用量15-45mL,全程约15 min。ASE在飘尘、底泥、食品和鱼肉中的除草剂、含磷农药,多氯二苯呋喃和多氯联苯的监测中已得到广泛应用,回收率和相对标准偏差(RSD)均优于一般萃取法12]。微波萃取 微波萃取是指在微波能的作用下,用有机溶剂将样品基体中的待测组分萃取出来的过程。以往微波处理仅用于无机分析,自20世纪80年代末期逐渐扩展到有机分析。微波萃取的萃取速度快,溶剂用量少,回收率高,可以同时处理多个样品。主要适用于固体或半固体样品。微波萃取的原理是:利用极性分子吸收微波能量来加热具有极性的溶剂,如:甲醇、乙醇、丙酮和水等等。由于萃取过程是在密封罐中进行,内部压力可达1 MPa以上,因此,溶剂沸点比常压下的溶剂沸点提高了许多。这样用微波萃取可以达到常压下使用同样的溶剂所达不到的萃取温度,可以提高萃取效率。对有机氯农药的微波萃取试验表明,萃取温度120℃时可获得最好的回收率。微波萃取技术已应用于土壤、沉积物、海洋生物、食品和蔬菜中的多环芳烃、农药残留、有机金属化合物、重金属及有毒元素的萃取测定,回收率一般优于索氏提取和超声波萃取法[13],该法易于实现自动化[14]。但微波萃取技术在应用时可能出现微波泄露的问题,作为一种新兴技术,有待进一步研究。液相微萃取 液相微萃取或溶剂微萃取是1996年发展起来的一种新型的样品前处理技术,最初是由Jeannot和Cantwell提出的[15]。此技术是将有机液滴挂在气相色谱(GC)微量进样器针头上对物质进行萃取。微量进样器,既用作GC进样器,又用作微量分液漏斗。LPME分动态和静态两种,静态LPME,用10μL微量进样器抽取1μL溶剂,浸入到水样中,水样中有机物通过扩散作用分配到有机溶剂中,一定时间后,将溶剂抽回进样器中,进GC分析。与静态LPME操作不同,动态LPME用微量进样器抽取1μL溶剂,将微量进样器浸入到样品中,抽取3μL样品进入进样器中,停留一定时间,推出3μL样品,如此反复,取有机溶剂进行GC分析。该技术是在液-液萃取的基础上发展起来的,与液-液萃取相比,LPME可以提供与之相媲美的灵敏度,甚至更佳的富集效果,同时,该技术集采样、萃取和浓缩于一体,灵敏度高,操作简单,而且还具有快捷,廉价等特点。另外,它所需要的有机溶剂也是非常少的(几至几十μL),是一项环境友好的样品前处理新技术,特别适合于环境样品中痕量、超痕量污染物的测定。另外,LPME技术在处理样品时只需一个搅拌器、一支普通的微量进样器或多孔性的中空纤维,这些特点使液相微萃取与便携式的气相色谱仪很容易联用,可望对环境污染物进行简单、快捷的现场分析,因此更具有较广泛的应用前景[16]。微蒸馏 蒸馏包括简单蒸馏,分馏,减压蒸馏、水蒸气蒸馏等。蒸馏技术是挥发性和半挥发性有机物样品精制的第一选择。但是在进行色谱分析样品制备时,蒸馏通常不是第一选择技术。具有蒸馏时间短,能够制备多种样品、可进行小体积样品蒸馏等优点的微蒸馏技术可以成功的用于色谱分析前样品的精制或者混合样品的预分离。Tim Mansfeldt曾用微蒸馏技术测定了土壤中的氰化物[17],得到了很好的效果。固相萃取(SPE) 固相萃取是70年代初发展起来的样品前处理技术,固相萃取主要用于复杂样品中微量或痕量目标化合物的分离和富集。例如,生物体液中(如血液,尿等)药物及其代谢产物的分析,食品中有效成分或有害成分的分析,环境水样中各种污染物的分析都可使用SPE进行样品预处理。该技术利用固体吸附剂将液体样品中的目标化合物吸附,与样品的基体和干扰化合物分离,然后再用洗脱液洗脱或加热解吸附,达到分离和富集目标化合物的目的。据统计,现在将近有50%的环境样品采用这个方法。固相萃取是净化和富集相结合的方法,特别适用于水样样品,样品量不受限制,少到几毫升多至几十升都可适应。从实验技术上讲,SPE接近于一般的顶替色谱,样品藉重力或加压通过萃取床层,除去基体,富集待测物,然后用少量(若干毫升)适当的溶剂洗脱回收待测物。 SPE所用固定相主要有硅胶、反相C18固定相(RP-C18)、石墨化碳黑、苯乙烯-二乙烯基苯系列聚合物、聚二甲基硅氧烷(PDMS)等。这些固定相对不同有机物的选择性不同,SPE可利用固定相的选择性来萃取样品中各种有机物,从而提高目标物的分析灵敏度。固相萃取的萃取床层有两种形式,一是柱状,商品预装柱的装填量约100~500 mg,另一是以较细的颗粒混于聚四氟乙烯纤维中形成状(disc),装填量约30 mg-10 g,其优点是层薄而紧,不易发生渗漏,样品通过速度可较快(~1 L/min)。当用气相色谱一电子捕获检测器(GC-ECD)测定有机氯等非极性农药残留时,一般采用氧化铝一银盐吸附柱,硅胶吸附柱的净化分离效果不如氧化铝柱。 SPE主要用于痕量分析中,其最大优点是减少了高纯溶剂的使用,易于自动化,当它与热脱附装置联用时可避免使用溶剂,降低实验成本及溶剂后处理费用。SPE与LLE相比,避免了LLE中易出现的乳化问题。但对有些样品,SPE空白值较高,灵敏度比LLE方法差,极性化合物的萃取也存在一些问题。后来逐渐发展了SPE-GC/GC-MS18]在线分析方法。在线方法的优点是自动化分析,分析物损失少,外来污染少,方法精密度高,适于大批量样品的分析,但缺点是顺序操作,程序不灵活,导致不同步骤的优化较复杂,甚至不能优化。固相微萃取 近年来,在SPE的基础上发展出了固相微萃取(SPME)样品前处理技术,但它不是把待测物全部分离出来,而是通过样品(例如水样)与萃取剂(固相)之间的平衡分配来实现分离。该法的基本技术是将一附着有适当涂层的弹性石英丝(丝径100-150μm)浸入样品(浸入方式)或置于样品上部空间(顶空方式),待平衡一段时间(2-30 min)后,样品中的待测物即被吸附于涂层上,吸附量与样品中待测物的原始浓度成正比,并与待测物的物化性质和平衡条件有关,然后将石英丝导入气相色谱进样室,待测物受热挥发进入色谱系统。SPME保留了SPE的优点,避免了SPME中样品高空白的缺点,完全避免使用溶剂。该法对水中挥发性有机物的测定取得了较好的效果,以聚硅氧烷为涂层,达到了饮用水中挥发性有机物的检测要求(法)。此法也已成功地应用于排放水中氯苯、PCB、PCDD、除草剂、农药、酚等的监测,数据与液液萃取法基本平行,RSD稍低[19]。应用聚丙烯酸涂层,结合GC-MS,对水中氯酚用SPME方法进行预处理,效果也令人满意[20]。 把涂层石英丝悬置于水样的顶端空间中,藉气相中的待测物与涂层平衡分配,开发了顶端空间的SPME技术。适当提高平衡温度或缩小顶端(气相)空间的体积,此法甚至可适用于水中沸点稍高物质的分析,缩短了样品萃取时间,易于测定各种介质中挥发性有机物[21]。顶空-固相微萃取(HS-SPME)在重现性上可与静态顶空方法相比,在灵敏度上可以与动态顶空方法相比,是目前应用最为广泛的顶空分析方法。顶空样品制备技术 顶空气相色谱不是一种新技术,此技术从气相色谱出现初期就一直在应用着。顶空分离技术广泛用于把挥发性物质从液体或固体样品中的基体中分离出来[22]。它的原理是:在恒温的条件下,样品中挥发性物质在气-液(或气-固)两相间分配,达到平衡时,取液上蒸气相进行GC分析。因此,平衡温度和平衡时间是影响分析灵敏度的主要因素。而分析的准确度主要取决于良好的恒温状态和分析环境,另外要注意样品瓶和瓶密封塞不能对样品有吸附效应。顶空分离有以下特点:(1)可用于测定不能直接汽化的试样(液体、固体)中的微量挥发性组分,不需对样品进行特殊处理;(2)色谱柱不会由于直接注入水样或高沸点物质或非挥发性组分而污染;(3)由于在气相中,挥发性组分的浓度比其它组分的浓度高,因此,可以提高挥发性组分的检测灵敏度。(4)不使用试剂,操作简单,可与气相色谱联用。吹扫-捕集法(动态顶空法) 吹扫-捕集法可看作是一个连续的顶空技术,主要用于样品中挥发性物质的分析,该方法在理论上可测定水中全部挥发性有机物。吹扫-捕集的原理是依据许多有机化合物具有挥发性的特点,利用气体将挥发性物质从样品中吹扫出来,吹扫出来的组分被捕吸附的化合物吹脱出来,直接用色谱仪进行分析。这样可以将水体中的痕量有机物富集到足以用色谱能够检测的浓度。此法不但克服了色谱分离中溶剂主峰掩盖其它峰的问题,而且比静态顶空有更高的检测灵敏度,更适于痕量和超痕量分析,美国环保局实验室应用吹扫-捕集技术测定公共饮用水和各种环境样品中挥发性有机物。利用吹扫捕集-气相色谱分析法时,最好使用大口径( mm)毛细管色谱柱;如用填充柱时,应选择冷柱头进样方式,以便使各组分得到很好的分离。另外吹扫流量、吹扫和捕集时间是影响分析灵敏度的主要因素,最好用标准样品在已知的条件下通过实验获得。国内已开展了一些气提法富集水中痕量有机物研究,但挥发性有机物回收率低,不够稳定,其应用面亦窄。许丽娟[23]等人改进了气提装置,深入、系统地研究了气提法的实验条件对挥发性有机物收率的影响,并确定了最佳富集条件。在进行了合成样品实验的基础上以气提法富集GC-MS联用方法对多个水样进行定性定量分析,取得了令人满意的结果。超临界流体萃取(SFE) 超临界流体萃取(SFE)是近几年出现的一种特殊分离技术。SFE主要使用超临界状态的C02作萃取剂,兼有气体的渗透能力和液体的分配作用。超临界流体对物质的溶解能力接近于液体,但其粘度接近于气体,扩散系数介于液体和气体之间,即它既有良好的溶解能力,又有高效的传输能力。目前最常用的流体CO2,临界温度℃,临界压力 MPa)。流出液中的C02在常压下挥发,待测物用溶剂溶解后进行分析。与传统的溶剂提取方法相比,SFE有很多优点。首先可以避免使用大量溶剂,提高萃取效率,减少了分析时间,降低对样品污染的可能性,特别适合于环境、生物等方面的组成复杂、组分易变的样品[24],而且可以自动化。SFE是近几年才发展起来的,很多实验参数和条件还有待进一步优化和明确。萃取液的压力、温度已能很好的控制,但其它一些问题,如细胞组织的萃取、萃取液通过细胞时的速度、滞留时间、样品物质的干扰等还需要进一步的研究[25]。膜分离技术 膜分离是近年来新发展起来的可用于分析化学领域中的新技术之一。利用待测物与溶剂或待测物与大分子物质(如蛋白质或其他高聚物)的传递速度的差异而使彼此得以分离。膜萃取是用膜将目标分析物从样品溶液(给体)萃取到萃取剂(受体)中。如果系统保持较长时间,相间可建立平衡。在样品处理过程中,尽可能将目标分析物从给体转到受体上。膜萃取可与反相-液相色谱(RP-HPLC)[26]、GC[27,28]和毛细管电泳(CE)等在线联用。膜萃取克服了水本身的干扰、选择性较高,然而低极性膜不适合极性有机污染物分析。膜萃取成功地测定了水样中许多有机污染物[29],有些膜对水中低浓度物质有较高的富集倍数。超声悬浮技术 超声悬浮技术是利用声辐射力将物体悬浮在超声驻波场声压结点处的无容器处理技术,该技术能够以非接触的方式处理体积为几μL甚至几十pL的样品,避免因容器壁的不确定性吸附、记忆效应和污染而引起的分析物的损失,排除由于容器壁与样品间的相互作用对细胞反应的干扰以及容器壁引起的光学干扰,且对被悬浮物体的物理化学性质无特殊要求,是基于单颗粒或小液滴研究的强有力工具,特别适合于材料的深过冷(远离凝固平衡状态)研究和小体积痕量分析,可使检测极限降低1-3个数量级。超声悬浮技术在生物科学与生物技术中的应用越来越引人注目,展示了诱人的前景。尽管如此,它还处于初始阶段,国内基本是一个空白。 回顾样品前处理技术已取得相当的成就,但有机痕量分析的科学家们仍在不断努力发展更有效、更合理、更简便可靠的新技术和新方法。由于各种样品来源和存在形式比较复杂,待测物也多种多样,不太可能找到一个统一的或“万能”的前处理方法,要根据检测要求和样品情况,因地制宜地制订出适当的方案。在所有已知的方法中,固相萃取法、固相微萃取法将继续发展,应用面将更广,方法将更趋于自动化。在固体样品方面,除改进的液固萃取(快速、微波协助等)外,超临界流体萃取将随着对其机理认识的深化,得到更好的选择性和处理效果。膜技术,特别是微透析和支持液膜的应用是值得注意的发展动向。色谱技术的联用,如GC/GC,LC/GC以及LC/CE(毛细管电泳)将为样品分析,特别是有机痕量分析提供更为广阔的应用领域。样品中的挥发性有机物将仍以顶端空间法(包括吹扫-捕集)为主要的前处理方式。其他的样品前处理技术,如电化学富集,免疫化学色谱也是值得注意的发展内容。借助于计算机技术的智能化的样品前处理方案也将是一个研究方向。

液相色谱的毕业论文

在撰写药学 毕业 论文过程中,一个好的论文题目除了给整篇 文章 画龙点睛外,还直接决定着论文的内容、范围、框架结构以及选用的参考资料。下面我将为你推荐药学毕业论文题目,希望能够帮到你! 药学毕业论文题目(一) 1. 抗生素滥用举例 2. 抗菌药合理使用 3. 处方药和非处方药管理现状研究 4. 药品的 广告 管理 5. 药品销售中存在的问题 6. 药物不良反应 7. 药物相互作用 8. 中西药合用的优缺点 9. 给药时间与人体生物节律 10. 药物依赖性 11. 药物代谢酶在药物合用中的作用 12. 给药方式与药物疗效 13. 影响药物作用的因素 14. 谈谈你对中药毒性的认识 15. 药代动力学参数及其意义 16. 解热镇痛抗炎药的不良反应调查 17. 抗高血压药物的合理应用 18. 糖皮质激素类药物的合理应用 19. 细菌对抗菌药物的耐药性 药学毕业论文题目(二) 1. GAP在中药发展中的应用。 2. 中药的质量控制(可以具体到某个药材或者某一种中药制剂) 3. 中药临床不良反应监控及分析(可以具体到某个药材或者某一种中药制剂) 4. 中药新药研究与开发的现状及思考 5. 请结合临床实践谈谈你对中药现代化的理解 6. 中药新制剂研制工艺研究(可以针对某一医院制剂) 7. 我国制药工业的研究现状和发展趋势 8. 制药工艺学教学模式及 学习 方法 的探讨 9. 药物(写一具体名字)的工艺优化方法的探讨 10. 药物(写一具体名字)的合成研究 11. 相转移催化剂的研究进展 12. 酶催化剂的研究进展 13. 新药研发中药品质量控制的探讨 14. 新药研发中对溶剂的选择原则 15. 药厂“三废”处理方法的探讨 16. 药厂污水处理方法的现状和发展趋势。 17. 高效液相色谱应用新进展 18. 固相萃取技术在药物分析中的应用 19. “设计性”实验在药物分析实验教学中的应用探讨 20. 高效液相色谱整体柱在药物分离分析中的应用进展 药学毕业论文题目(三) 1. 常用抗肿瘤药物的不良反应 2. 急性脑卒中患者凝血、抗凝和纤溶指标的测定及临床意义 3. 抗血小板治疗药物的临床应用 4. 溶栓药物的临床应用进展 5. 脑血管病治疗药物进展 6. 血栓形成机制及其治疗进展 7. 缺血性脑卒中单元规范化溶栓绿色通道的应用与管理 8. 支气管哮喘治疗药物研究进展 9. 肺结核的药物治疗进展 10. 糖尿病治疗药物研究进展 11. 降血脂药物研究进展 12. 抗艾滋病药物研究进展 13. 帕金森病的药物治疗进展 14. 恶性肿瘤防治现状 15. 原发性高血压病的药物治疗 16. 慢性阻塞性肺病的药物治疗 17. 国内植物药研究的新进展。 18. 国外植物药研究的新进展。 19. 2010年版药典(一部)在中药质量监控中的变化。 20. 植物资源在中药研究中的应用。 药学毕业论文题目(四) 1. ****药品的 市场营销 策划方案 2. ****药品 市场调查 报告 3. ****医药企业营销实务中的4PS组合运用 4. ****医药企业产品策略分析 5. ****医药企业价格策略分析 6. ****医药企业 渠道 策略分析 7. ****医药企业广告策略分析 8. ****医药企业公共关系营销策略分析 9. ******医药新产品市场定位分析 10. ******公司医药代表的管理 11. ****新医改背景下医药市场的特点及营销策略 12. ****农村医药市场的特点及营销策略 13. ****传统医药保健品企业的直销分析 14. ******医药商品的“绿色营销”。 15. ****医药企业物流运行中存在的问题分析 16. ****药品零售连锁企业探析 17. ****平价药店的价格策略分析 18. ****药品品牌管理 19. ****地区医药企业营销人员现状调查 20. ****医药企业的营销战略选择 猜你喜欢: 1. 药学专业毕业论文 2. 药学论文题目大全 3. 药学类毕业论文题目 4. 药学毕业论文选题 5. 药学系毕业论文题目

1、 [药学]托烷司琼预防化疗呕吐的有效性和安全性Meta分析 摘 要目的:运用Meta分析综合评价托烷司琼预防化疗呕吐的有效性和安全性差异。方法:通过CNKI全文数据库,检索出有关本主题随机对照研究的全部文献,遴选出符合入选标准的文献5篇,应用Meta分析研究托... 类别:毕业论文 大小:73 KB 日期:2008-07-20 2、 [药学]抗菌药物临床分级使用情况调查 摘 要目的: 了解医院门诊处方中抗菌药物的临床分级使用情况。 方法: 随机抽取广州市某医院2006年12月-2007年1月的门诊处方样本共9172份进行回顾性调查,利用Excel软件进行数据统计,... 类别:毕业论文 大小:73 KB 日期:2008-07-20 3、 [药学]干扰素微球(INF-a-2b-MS)在大鼠体内的药代动力学研究 摘 要重组人干扰素a-2b(rhIFN-a-2b)具有广谱抗病毒、抗肿瘤和提高免疫功能等作用,但是其体内半衰期较短、口服易失活,在临床应用中往往需要频繁、大剂量、长期注射给药,从而给患者带来了许多不... 类别:毕业论文 大小:89 KB 日期:2008-07-17 4、 [药学]关于药品说明书项目的调查分析 摘要 药品说明书必须符合真实、简要和一致的原则。通过对药品说明书中各项目的标注率及内容进行调查分析,找出我国化学药品与中成药品各自的优点与不足之处。随机抽取药品说明书257份,其中化学药品说明书177... 类别:毕业论文 大小:69 KB 日期:2008-07-17 5、 [药学]微波辅助提取/HPLC测定氧化苦参碱的含量 摘 要本文采用微波辅助提取(MAE)技术结合阳离子交树脂(CER)法,利用高效液相色谱法(HPLC)检测,研究了微波辅助提取苦参生物碱的最佳工艺条件。采用正交实验方法对微波辅助提取的实验条件进行了... 类别:毕业论文 大小: MB 日期:2008-07-16 6、 [药学]贯叶连翘总黄酮提取工艺的研究 摘要本文采用正交设计实验,对影响贯叶连翘总黄酮提取工艺的因素进行了系统考察。结果发现,以总黄酮含量作为考察指标,影响贯叶连翘总黄酮提取的主次因素为溶媒用量>提取时间>提取方法>溶媒浓度,其中溶媒用量跟... 类别:毕业论文 大小: MB 日期:2008-07-15

色谱图,其实简单地讲,是一个横坐标是时间,纵坐标是电信号的二维图谱。

你这张是色谱图的坐标,但是并没有出图。

这个才是图谱。

和实验相关的参数:

1、保留时间

如果使用同样的色谱柱,同样的流动相,分析同样的样品,那么这个样品的保留时间,应该是固定的。不同保留时间的色谱峰,应该表现出的是不同的物质。如果你跑的是反相色谱,那么色谱峰越靠后,它对应物质的极性也就越小。

比如这一针,样品中一共有八个峰,那么对应的应该是八个物质。比如说,你手上有正十六烷的试剂,进样分析是左右,那么,你的实验条件下,左右的色谱峰就应该是正十六烷。或者说,正十六烷在该实验条件下的保留时间是。

2、峰面积

这是你在色谱图中可以读出来的参数,你的液相色谱工作站应该是岛津的软件,上面应该有保留时间、峰高、峰面积的参数。在同一个色谱条件下,同一个物质的浓度和峰面积是成正比的。也就是说,如果你配制的正十六烷,进样后峰面积是10000,那么,你配制的正十六烷,进样后峰面积差不多就是5000。

3、波长

同一样品,同一方法,同一色谱柱,在不同波长的峰面积是不同的。一个物质指在某些特殊波长下有吸收。比如一个物质在210nm和254nm处有吸收。那么波长在280nm处可能无法检出该物质。所以一个实验方法开始时要进行波长扫描。

这个是因为液相配置的检测器大多都是紫外检测器的缘故。

基本情况就是这样,具体的东西,你要根据你的实验数据以及研究课题自己来写。

气相色谱仪器分析论文

中科院大连化物所主办的 《色谱》杂志广州分析测试中心主办的《分析测试学报》 两个都是国内行业顶尖的期刊《色谱》目前已被美国《医学索引》(Medline)、美国《化学文摘》(CA)、美国《剑桥科学文摘》(CSA)、俄罗斯《文摘杂志》(AJ)、波兰《哥白尼索引》(IC)、《日本科学技术文献数据库》(JICST)和英国皇家化学学会系列数据库中的《分析化学文摘》(AA)、《工业化学灾害》(CHI)、《质谱学通报(增补)》(MSB-S)等收录,是中文核心期刊、中国科技核心期刊、中国科技精品期刊、中国科协精品科技期刊示范项目中的化学类精品科技期刊。《分析测试学报》被美国化学文摘CA、日本科技文献速报、俄罗斯文摘、英国分析文摘(AA)、英国《质谱公报》、中国学术期刊综合评价数据库(CAJCED)、中国科技论文统计源期刊(中国科技核心期刊)、《中国科学引文数据库》、中国期刊全文数据库(CJFD)等国内外二十几种数据库收录

色谱分析技术能够实现原料分离,分析环节中同时完成多种任务,下面是我为大家精心推荐的色谱分析技术论文,希望能够对您有所帮助。

涂料检测中的现代色谱分析技术应用分析

摘 要:文章首先介绍了气相色谱法涂料检验的原理,并对检验环节中常见的问题以及解决对策进行分析。从技术的优缺点两方面进行。其次重点分析高效液相色谱法的应用原理,并对涂料检测环节的技术要点做出总结。帮助提升检测结果的准确性。

关键词:涂料检测;现代色谱;气相色谱法

1 高效液相色谱法

该种技术融合了传统工艺中的优点,同时也对存在的问题做出优化,更高效的解决检测期间的影响问题。这种技术能够实现原料分离,分析环节中同时完成多种任务,与传统方法相比较在时间上会有明显的减少,尤其是对受热程度的分析判断,更高效合理。检验环节中常见的加热问题,成为色谱分析的首要影响因素,如果不能合理的设置温度,很容易造成分析结合与实际情况不符合。大部分涂料都是液体形式的,在性质上更具有稳定性,原料选取的量也能得到控制。随着对环保和健康的日益重视,国家陆续出台了一些涂料相关的有毒有害标准,涂料的生产工艺和配方也随之调整优化。但也不乏有生产厂家使用现行标准中还未被限量的有毒有害物质来替代已被限量的物质。这就要求在检验工作中不仅要依照现行标准对涂料样品进行检验,还要积极发现还未被限量的有毒有害物质。涂料产品成分复杂多样,高效液相色谱法属于分离性分析方法,能够对绝大部分的有机物进行分析,尤其是对挥发性不强,高温易分解的物质,能获得比其他方法更好更稳定的结果。

涂料中含有的化学物质可能会对环境造成污染,因此目前的检测工作也大部分是针对生态环保来进行的,目的在于避免质量检测不达标的物质投入到使用中。因此检测工作要有明确的目标,对待检物质中可能会含有的污染物进行判断。有毒涂料防污剂有机锡的HPLC分析在船舶防污涂料抑制海洋生物污损中发挥了非常有效的作用,随着海洋监测技术的发展,有机锡的毒性和对生态系统的危害越来越多地被人类认识。海洋环境中的有机锡浓度很低(10-12~10-9),而且种类繁多,因此用传统的仪器很难满足高灵敏度、高选择性的分析要求。其中较成熟的方法是以GC(凝胶色谱)为分离手段,配以适合金属离子分析的检测器。

HPLC能对不适应GC的有机锡进行分析,适用于大多数极性及非极性有机锡化合物的直接分离。不需萃取及衍生,在常温下可直接分离样品中不同形态的锡,不但缩短了分析时间,而且还减少了分析过程中可能的损失;可通过改变固定相和流动相获得最佳分离;尤其适用于具有生物活性化合物的分离与形态分析。凝胶色谱法是液相色谱法的一种,其分离原理与其他色谱法不同,是按分子体积的大小进行分离,所以也称为体积排阻色谱法。高效凝胶渗透色谱是20世纪60年代发展起来的一种液相色谱方法,主要用途是测定高聚物的相对分子质量及其分布。

2 气相色谱法

裂解气相色谱-傅里叶变换红外光谱联用

能够用来判断树脂涂料中的组成成分,同样是针对光谱来进行,该种技术方法在所得结果上更具有全面性,融合了两种技术方法中的优点,在对色谱类型进行判断时可以直接显示结果。生产工艺不断进步后,涂料中的含有成分也在逐渐复杂化,高分子结构在普通的红外光谱下不容易分析。关于该种色谱技术,在国内的研究起步较晚,应用环节也是根据已有的研究结果来探讨的。

我国学者在研究过程中,提取涂料中的成分,将检测得到的成分含量录入到计算机设备中进行分析,更准确的定位色谱表现形式与其中涂料含量的函数关系。该种技术可以选择任意部分涂料进行检测,不需要对测试点进行选取,节省时间的同时也能够减少标样点,对未来的工作开展有很大帮助。这一特征性也是该技术能够得到应用落实的原因。

红外光照作用下,涂料发生的裂解反应是检测开展的依据,不需要再次选择分析的样本,可以直接根据反应过程来分析结果。面对比较复杂的分析对象时,仅仅依靠简单的裂解很难实现目标,简单的升高温度能够促进涂料裂解,再根据反应发生的情况来判断是否达到可以检测的点。红外光照在其中发挥着催化的作用,可以应对化合物检测。但涂料的形式并不是如此简单,还包含了聚合物形式,红外光谱检测的效果便会受到阻碍。

裂解气相色谱-质谱联用

涂料由几大部分组成,树脂原料常常被应用在基料制作中。对于耐高温性质好,并且不容易分离的材料,不能再通过高温裂解的方式来检验。但检验方法在原理上都相同,遇到的难题是如何促使裂解反应发生。常见的方法是对分子结构链进行破坏,涂料中的成分自然分解,此时在对色谱表现形式进行分析,能更好的完成任务。裂变过程中会散发出能量,不同分子结构链变化期间所散发的热量也不相同,同时也与基料自身耐高温形式相关。

了解到裂变需要经过高温加热来实现分析检测时,关键技术是对温度的控制,如果加热温度超出了需求范围,很容易造成分子结构链过于零散,影响到结果的判断。不可忽略的一点是,涂料在高温状态下其中的一些物质容易发生氧化反应,分解出检测环节不需要的物质,对任务开展产生阻碍。由此可见,这种方法虽然操作过程简单,结果分析准确,但却容易受外界因素影响。

涂料在高温环境下发生反应变化需要一段融合的时间,而破坏结构链是在高温加热的瞬间完成的。检测环节中,可以在短时间内瞬间升高温度,这样能够避免物质的高温氧化反应,提升检测结果的可靠性。影响物质并不能被完全消除,只是尽可能的将生成量控制在合理范围内,不对检验分析造成影响。根据检验结果可以了解到,不同的基料材质对涂料色谱表现形式会产生影响,在检测环节需要对原料组成成分进行判断,明确高温状态下可能会发生的反应类型。任务进行期间,需要选取不同涂料的样品来测试,避免掺入其他杂质。所选取的量要均等,观察检测结果的同时将原始数据整理记录,用于后续的分析检验环节,可以更好的对比。根据反应发生的形式对检验技术进行选择,涂料色谱分析在流程上会有明显的进步。

3 结论

快速灵敏的仪器分析法在很大程度上取代了繁琐费时的化学分析法,打破了化学分析的局限,极大地提高了分析工作的效率、分析精度与可靠性,而先进的色谱技术已成为涂料成分检测不可缺少的重要手段。

参考文献

[1] 宋晓波,兰小军,丁立群.现代色谱分析技术在涂料检测中的应用[J].上海涂料,2013(03).

[2] 尹洧.色谱分析技术在食品检测中的应用[J].农业工程,2012(08).

点击下页还有更多>>>色谱分析技术论文

我有一篇自己写好了的,是气相色谱关于生物工程领域的应用。

高效液相色谱法研究论文

目的采用高效液相色谱法建立注射用灰树花倍他葡聚糖的指纹图谱。方法采用Shodex OH pak SB-804HQ色谱柱,以0.2mol/L磷酸二氢钠溶液为流动相,流速0.5mL/min,柱温35℃,以示差折光检测器(RID)进行检测,建立反映药材、中间体和注射剂多糖活性成分的指纹图谱(1);采用Agilent Eclipse XDB-C18色谱柱,以乙腈为流动相A,水(含0.05%磷酸)为流动相B,进行梯度洗脱,流速1.0mL/min,柱温30℃,以二极管阵列检测器(DAD)在波长254nm处进行检测,建立反映药材其它成分指纹特性的指纹图谱(2)。结果10批灰树花发酵菌丝体药材、中间体和注射荆的相似度均在95%以上,多糖活性成分在药材、中间体和注射剂之间表现出良好的相关性,方法学考察结果也符合要求。结论建立的指纹图谱既体现了多糖活性成分的相关性,又体现了药材其它组分的指纹特征,可用于灰树花药材鉴定和注射剂的质量控制。提供色谱柱

高效液相色谱法是在经典色谱法的基础上,引用了气相色谱的理论,在技术上,流动相改为高压输送(最高输送压力可达);色谱柱是以特殊的方法用小粒径的填料填充而成,从而使柱效大大高于经典液相色谱(每米塔板数可达几万或几十万);同时柱后连有高灵敏度的检测器,可对流出物进行连续检测。 特点 1.高压:液相色谱法以液体为流动相(称为载液),液体流经色谱柱,受到阻力较大,为了迅速地通过色谱柱,必须对载液施加高压。一般可达150~350×105Pa。 2. 高速:流动相在柱内的流速较经典色谱快得多,一般可达1~10ml/min。高效液相色谱法所需的分析时间较之经典液相色谱法少得多,一般少于 1h 。 3. 高效:近来研究出许多新型固定相,使分离效率大大提高。 4.高灵敏度:高效液相色谱已广泛采用高灵敏度的检测器,进一步提高了分析的灵敏度。如荧光检测器灵敏度可达10-11g。另外,用样量小,一般几个微升。 5.适应范围宽:气相色谱法与高效液相色谱法的比较:气相色谱法虽具有分离能力好,灵敏度高,分析速度快,操作方便等优点,但是受技术条件的限制,沸点太高的物质或热稳定性差的物质都难于应用气相色谱法进行分析。而高效液相色谱法,只要求试样能制成溶液,而不需要气化,因此不受试样挥发性的限制。对于高沸点、热稳定性差、相对分子量大(大于 400 以上)的有机物(这些物质几乎占有机物总数的 75% ~ 80% )原则上都可应用高效液相色谱法来进行分离、分析。 据统计,在已知化合物中,能用气相色谱分析的约占20%,而能用液相色谱分析的约占70~80%。 高效液相色谱按其固定相的性质可分为高效凝胶色谱、疏水性高效液相色谱、反相高效液相色谱、高效离子交换液相色谱、高效亲和液相色谱以及高效聚焦液相色谱等类型。用不同类型的高效液相色谱分离或分析各种化合物的原理基本上与相对应的普通液相层析的原理相似。其不同之处是高效液相色谱灵敏、快速、分辨率高、重复性好,且须在色谱仪中进行。 高效液相色谱法的主要类型及其分离原理 根据分离机制的不同,高效液相色谱法可分为下述几种主要类型: 1 .液 — 液分配色谱法(Liquid-liquid Partition Chromatography)及化学键合相色谱(Chemically Bonded Phase Chromatography) 流动相和固定相都是液体。流动相与固定相之间应互不相溶(极性不同,避免固定液流失),有一个明显的分界面。当试样进入色谱柱,溶质在两相间进行分配。达到平衡时,服从于下式: 式中,cs—溶质在固定相中浓度;cm--溶质在流动相中的浓度; Vs—固定相的体积;Vm—流动相的体积。LLPC与GPC有相似之处,即分离的顺序取决于K,K大的组分保留值大;但也有不同之处,GPC中,流动相对K影响不大,LLPC流动相对K影响较大。 a. 正相液 — 液分配色谱法(Normal Phase liquid Chromatography): 流动相的极性小于固定液的极性。 b. 反相液 — 液分配色谱法(Reverse Phase liquid Chromatography): 流动相的极性大于固定液的极性。 c. 液 — 液分配色谱法的缺点:尽管流动相与固定相的极性要求完全不同,但固定液在流动相中仍有微量溶解;流动相通过色谱柱时的机械冲击力,会造成固定液流失。上世纪70年代末发展的化学键合固定相(见后),可克服上述缺点。现在应用很广泛(70~80%)。 2 .液 — 固色谱法 流动相为液体,固定相为吸附剂(如硅胶、氧化铝等)。这是根据物质吸附作用的不同来进行分离的。其作用机制是:当试样进入色谱柱时,溶质分子 (X) 和溶剂分子(S)对吸附剂表面活性中心发生竞争吸附(未进样时,所有的吸附剂活性中心吸附的是S),可表示如下: Xm + nSa ====== Xa + nSm 式中:Xm--流动相中的溶质分子;Sa--固定相中的溶剂分子;Xa--固定相中的溶质分子;Sm--流动相中的溶剂分子。 当吸附竞争反应达平衡时: K=[Xa][Sm]/[Xm][Sa] 式中:K为吸附平衡常数。[讨论:K越大,保留值越大。] 3 .离子交换色谱法(Ion-exchange Chromatography) IEC是以离子交换剂作为固定相。IEC是基于离子交换树脂上可电离的离子与流动相中具有相同电荷的溶质离子进行可逆交换,依据这些离子以交换剂具有不同的亲和力而将它们分离。 以阴离子交换剂为例,其交换过程可表示如下: X-(溶剂中) + (树脂-R4N+Cl-)=== (树脂-R4N+ X-) + Cl- (溶剂中) 当交换达平衡时: KX=[-R4N+ X-][ Cl-]/[-R4N+Cl-][ X-] 分配系数为: DX=[-R4N+ X-]/[X-]= KX [-R4N+Cl-]/[Cl-] [讨论:DX与保留值的关系] 凡是在溶剂中能够电离的物质通常都可以用离子交换色谱法来进行分离。 4 .离子对色谱法(Ion Pair Chromatography) 离子对色谱法是将一种 ( 或多种 ) 与溶质分子电荷相反的离子 ( 称为对离子或反离子 ) 加到流动相或固定相中,使其与溶质离子结合形成疏水型离子对化合物,从而控制溶质离子的保留行为。其原理可用下式表示: X+水相 + Y-水相 === X+Y-有机相 式中:X+水相--流动相中待分离的有机离子(也可是阳离子);Y-水相--流动相中带相反电荷的离子对(如氢氧化四丁基铵、氢氧化十六烷基三甲铵等);X+Y---形成的离子对化合物。 当达平衡时: KXY = [X+Y-]有机相/[ X+]水相[Y-]水相 根据定义,分配系数为: DX= [X+Y-]有机相/[ X+]水相= KXY [Y-]水相 [讨论:DX与保留值的关系] 离子对色谱法(特别是反相)发解决了以往难以分离的混合物的分离问题,诸如酸、碱和离子、非离子混合物,特别是一些生化试样如核酸、核苷、生物碱以及药物等分离。 5 .离子色谱法(Ion Chromatography) 用离子交换树脂为固定相,电解质溶液为流动相。以电导检测器为通用检测器,为消除流动相中强电解质背景离子对电导检测器的干扰,设置了抑制柱。试样组分在分离柱和抑制柱上的反应原理与离子交换色谱法相同。 以阴离子交换树脂(R-OH)作固定相,分离阴离子(如Br-)为例。当待测阴离子Br-随流动相(NaOH)进入色谱柱时,发生如下交换反应(洗脱反应为交换反应的逆过程): 抑制柱上发生的反应: R-H+ + Na+OH- === R-Na+ + H2O R-H+ + Na+Br- === R-Na+ + H+Br- 可见,通过抑制柱将洗脱液转变成了电导值很小的水,消除了本底电导的影响;试样阴离子Br-则被转化成了相应的酸H+Br-,可用电导法灵敏的检测。 离子色谱法是溶液中阴离子分析的最佳方法。也可用于阳离子分析。 6 .空间排阻色谱法(Steric Exclusion Chromatography) 空间排阻色谱法以凝胶 (gel) 为固定相。它类似于分子筛的作用,但凝胶的孔径比分子筛要大得多,一般为数纳米到数百纳米。溶质在两相之间不是靠其相互作用力的不同来进行分离,而是按分子大小进行分离。分离只与凝胶的孔径分布和溶质的流动力学体积或分子大小有关。试样进入色谱柱后,随流动相在凝胶外部间隙以及孔穴旁流过。在试样中一些太大的分子不能进入胶孔而受到排阻,因此就直接通过柱子,首先在色谱图上出现,一些很小的分子可以进入所有胶孔并渗透到颗粒中,这些组分在柱上的保留值最大,在色谱图上最后出现。气相色谱法(gas chromatography 简称GC)是色谱法的一种。色谱法中有两个相,一个相是流动相,另一个相是固定相。如果用液体作流动相,就叫液相色谱,用气体作流动相,就叫气相色谱。气相色谱法由于所用的固定相不同,可以分为两种,用固体吸附剂作固定相的叫气固色谱,用涂有固定液的担体作固定相的叫气液色谱。按色谱分离原理来分,气相色谱法亦可分为吸附色谱和分配色谱两类,在气固色谱中,固定相为吸附剂,气固色谱属于吸附色谱,气液色谱属于分配色谱。按色谱操作形式来分,气相色谱属于柱色谱,根据所使用的色谱柱粗细不同,可分为一般填充柱和毛细管柱两类。一般填充柱是将固定相装在一根玻璃或金属的管中,管内径为2~6mm。毛细管柱则又可分为空心毛细管柱和填充毛细管柱两种。空心毛细管柱是将固定液直接涂在内径只有~的玻璃或金属毛细管的内壁上,填充毛细管柱是近几年才发展起来的,它是将某些多孔性固体颗粒装入厚壁玻管中,然后加热拉制成毛细管,一般内径为~。

色谱分析英文文献论文

Synthesis of optically pure ethyl (S)-4-chloro-3-hydroxybutanoateby Escherichia coli transformant cells coexpressingthe carbonyl reductase and glucose dehydrogenase genes由共表达碳酰还原酶和葡萄糖脱氢酶的大肠杆菌转化细胞合成纯光学(S)-4-氯-3-羟基丁酸乙酯Abstract The asymmetric reduction of ethyl 4-chloro-3-oxobutanoate (COBE) to ethyl (S)-4-chloro-3-hydroxybutanoate((S)-CHBE) was investigated. Escherichia coli cells expressing both the carbonyl reductase (S1) gene from Candida magnoliae and the glucose dehydrogenase (GDH) gene from Bacillus megaterium were used as thecatalyst. In an organic-solvent-water two-phase system,(S)-CHBE formed in the organic phase amounted to M (430 g/l), the molar yield being 85%. E. coli transformant cells coproducing S1 and GDH accumulated M (208 g/l) (S)-CHBE in an aqueous monophase system by continuously feeding on COBE, which is unstable in an aqueous solution. In this case, the calculated turnover of NADP+ (the oxidized form of nicotinamide adenine dinucleotide phosphate) to CHBE was 21,600 mol/mol. The optical purity of the (S)-CHBE formed was 100% enantiomeric excess in both systems. The aqueous system used for the reduction reaction involving E. coli HB101 cells carrying a plasmid containing the S1 and GDH genes as a catalyst is simple. Furthermore, the system does not require the addition of commercially available GDH or an organic solvent. Therefore this system is highly advantageous for the practical synthesis of optically pure (S)-CHBE.本本篇文献研究了利用COBE不对称合成(S)-4-氯-3-羟基丁酸乙酯(CHBE)。大肠杆菌细胞作为催化剂同时表达了来自念珠菌属magnoliae的碳酰还原酶和来自巨大芽孢杆菌的葡萄糖脱氢酶基因。在水/有机溶剂两相体系中,(S)-CHBE在有机相中的浓度可以达到(430g/l),摩尔产率达到85%。大肠杆菌的副产物S1和GDH也达到了(208g/l),COBE在水相中不稳定,所以(S)-CHBE可以在水单相中不停的生成。在这种情况下,适当的从NADP+到CHBE的转变达到了21,600 mol/mol。所形成的CHBE的旋光度在这种体系中100%对映体过量。在水相中用携带含有S1和GDH基因质粒的E. coli HB101作为催化剂不对称还原是比较简单的。并且,这种体系并不额外需要商业GDH或者有机溶剂。因此,这种体系对于实际合成纯光学活性的(S)-CHBE是非常方便的。Optically active 4-chloro-3-hydroxybutanoic acid esters are useful chiral building blocks for the synthesis of pharmaceuticals. The (R)-enantiomer is a precursor of L-carnitine (Zhou et al. 1983), and (S)-enantiomer is an important starting material for hydroxymethylglutaryl- CoA (HMG-CoA) reductase inhibitors (Karanewsky et al. 1990). Many studies have described the microbial or enzymatic asymmetric reduction of 4-chloro-3-oxobutanoic acid esters (Aragozzini and Valenti 1992; Bare et ; Hallinan et al. 1995; Patel et al. 1992; Shimizu et al. 1990; Wong et al. 1985) based on the reduction by baker’s yeast (Zhou et al. 1983).We have previously showed that Candida magnoliae AKU4643 cells reduced ethyl 4-chloro-3-oxobutanoate (COBE) to (S)-CHBE with an optical purity of 96% enantiomeric excess (.) (Yasohara et al. 1999). As this yeast has at least three different stereoselective reductases (Wada et al. 1998, 1999a, b), the (S)-CHBE produced by this yeast was not optically pure. From among these three enzymes, an NADPH-dependent carbonyl reductase, designated as S1, was purified and characterized in some detail (Wada et al. 1998). We cloned and sequenced the gene encoding S1 and overexpressed it in Escherichia coli cells. This E. coli transformant reduced COBE to optically pure (S)-CHBE in the presence of glucose, NADP+, and commercially available glucose dehydrogenase (GDH) as a cofactor generator (Yasoharaet al. 2000). Here, we describe the construction of three E. coli transformants coexpressing the S1 from C. magnoliae and GDH from Bacillus megaterium genes and analyze the reduction of COBE catalyzed by these strains. Previous reports on the enzymatic reduction of COBE to (R)-CHBE with an optical purity of 92% . (Kataoka et al. 1999; Shimizu et al. 1990) recommended an organic- solvent two-phase system reaction for an enzymatic or microbial reduction, because the substrate (COBE) is unstable in an aqueous solvent and inactivates enzymes. We examined the reduction of COBE to optically pure (S)-CHBE by E. coli transformants in a water monophase system reaction and discuss the possible use of this type of reaction system in industrial applications。具有旋光性的(S)-4-氯-3-羟基丁酸乙酯在药物制剂的合成中是重要的手性化合物。其右旋体是L-卡尼汀的前体,其左旋体是羟甲基戊二酰辅酶A还原酶抑制剂的起始材料。许多研究描述了以面包酵母为基础微生物或者酶的COBE的不对称还原。我们先前已经知道利用来自念珠菌属magnoliae AKU4643 细胞催化COBE生成光学纯度96%的CHBE。这种酵母至少有三种立体选择性的还原酶,这种酵母产生的CHBE并非纯光学的,在这三种酶之中,NADPH-依赖碳酰还原酶,我们克隆并测序编码S1的基因,并在大肠杆菌中过表达。大肠杆菌转化细胞在葡萄糖,NADP+和商业化的葡萄糖脱氢酶作为辅酶因子的启动子催化COBE生成纯光学的CHBE。我们构建这三种大肠杆菌转化细胞共表达来自的S1和来自巨大芽孢杆菌的GDH,并分析COBE被这几种菌株催化还原的反应机理。先前的报道表明,利用酶催化还原COBE生成CHBE光学纯度可达92%,也提到了因为底物(COBE)在水相中不稳定,并且酶容易钝化,所以利用酶或者微生物在有机溶剂/水两相体系中催化反应。我们研究了在水单相体系中由COBE还原生成纯光学的CHBE,还讨论了这种反应体系在工业应用中可能的用途。Materials and methodsBacterial strain and plasmids The E. coli strains used in this study were JM109 and pGDA2, in which the GDH gene from B. megaterium is inserted into pKK223-3, was kindly provided by Professor I. Urabe, Osaka University (Makino et al. 1989). Plasmids pSL301 and pTrc99A were purchased from Invitrogen (USA), and Amersham Pharmacia Biotech (UK), respectively. Plasmids pUC19 and pSTV28 (Homma et al. 1995; Takahashi et al. 1995) were purchased from Takara Shuzo (Japan).材料和方法菌株和质粒本次实验中使用的大肠杆菌是JM109 and HB101。来自B. megaterium的GDH基因插入到Pkk233-3质粒中,而带有GDH基因片段的pGDA2质粒由到由大阪大学的urabe教授提供。质粒pSL301和 pTrc99A是由美国的Invitrogen公司和英国的公司分别购买的。质粒pUC19和pST28是由日本takara公司购买的。The recombinant plasmid used in this study was constructed as follows (Fig. 1): Plasmid pGDA2 was double-digested with EcoRI and PstI to isolate a DNA fragment of about kilobase pairs (kb) including the GDH gene. This fragment was inserted into the EcoRI-PstI site of plasmid pSL301 to construct plasmid pSLG. Plasmid pSLG was double-digested with EcoRI and XhoI to isolate a DNA fragment of about kb including the GDH gene.这次实验使用的重组质粒构建如下:质粒pGDA2 被EcoRI 和 PstI双酶切从而分离出一个大小约为的包含有GDH基因的DNA片段。这个片段被插入到质粒Psl301的EcoRI-PstI酶切位点从而构建出质粒pSLG。质粒pSLG被EcoRI和XhoI To construct plasmid pNTS1G, this fragment was inserted into the EcoRI-SalI site of pNTS1, which was constructed to overproduce S1 as described previously (Yasohara et al. 2000). To construct plasmid pNTGS1, plasmid pNTG was first generated. Two synthetic primers (primer 1, TAGTCCATATGTATAAAGATTTAG,and primer 2 TCTGAGAATTCTTATCCGCGTCCT) were prepared for polymerase chain reaction (PCR) using pGDA2 as the template. The PCR-generated fragment was double- digested with NdeI and EcoRI and then inserted into the NdeI EcoRI site of plasmid pUCNT, which was constructed from pUC19 and pTrc99A, as reported (Nanba et al. 1999), to obtain pNTG. To construct plasmid pNTGS1, two synthetic primers (primer 3, GCCGAATTCTAAGGAGGTTAATAATGGCTAAGAACTTCTCCAACG, and primer 4, GCGGTCGACTTAGGGAAGCGTGTAGCCACCGTC) were prepared using pUCHE, which contains the S1 gene as the template. The PCR-generated fragment was double-digested with EcoRI and SalI and then inserted into the EcoRI-SalI site of pNTG to obtain pNTGS1. Plasmid pNTS1G, pNTGS1 or pNTG was transformed into E. coli HB101.构建pNTS1是为了过表达前文所提到的S1,这个大小的片段被插入到pNTS1的EcoRI-SalI酶切位点从而构建pNTS1G。为了构建质粒pNTGS1,首先需要构建pNTG。两个合成引物(引物1,TAGTCCATATGTATAAAGATTTAG和引物2,TCTGAGAATTCTTATCCGCGTCCT)和作为模板的pGDA2是PCR反应需要的。PCR得到的片段是由NdeI 和EcoRI双酶切和并插入到质粒pUCNT的NdeI EcoRI酶切位点来得到pNTG。根据报道,pUCNT是由pUC19和 pTrc99A构建而来。为了构建质粒pNTGS1,两个合成引物(引物 3, GCCGAATTCTAAGGAGGTTAATAATGGCTAAGAACTTCTCCAACG, and 引物 4, GCGGTCGACTTAGGGAAGCGTGTAGCCACCGTC),包括了S1基因作为模板。Pcr产物片段被EcoRI和SalI双酶切然后被插入到pntg的EcoRI-SalI酶切位点得到pntg1.质粒pNTS1G, pNTGS1或者 pNTG都是导入大肠杆菌 pGDA2 was double-digested with EcoRI and PstI to isolate a DNA fragment of about kb including the GDH gene. To construct plasmid pSTVG, this fragment was inserted into the EcoRI-PstI site of plasmid pSTV28. Plasmid pSTVG was transformed into E. coli HB101. 质粒pGDA2被EcoRI 和 PstI双酶切得到包含GDH基因的大小的DNA片段。为了构建pSTVG质粒,这个片段被插入到pSTV28质粒的EcoRI-PstI的酶切位点。pSTVG质粒被导入到E. coli HB101。Medium and cultivationThe 2×YT medium comprised Bacto-tryptone, yeastextract, and NaCl, pH . E. coli HB 101 carrying pNTS1,pNTG, pNTS1G, or pNTGS1 was inoculated into a test tube containing2 ml 2×YT medium supplemented with mg/ml ampicillin,followed by incubation at 37 °C for 15 h with reciprocal preculture ( ml) was transferred to a 500-ml shakingflask containing 100 ml 2×YT medium. The cells were cultivatedat 37 °C for 13 h with reciprocal shaking. E. coli HB101 carryingpNTS1 and pSTVG was similarly cultivated in 2×YT mediumsupplemented with mg/ml ampicillin and mg/ml chloramphenicol.培养基和培菌2*YT培养基 包含有细菌用胰蛋白胨,酵母提取物, NaCl,.携带有pNTS1,pNTG, pNTS1G, 或 pNTGS1的大肠杆菌HB101被接种到有氨苄青霉素的2ml的2*YT培养基,37°C摇床15小时。将菌液接种到100ml2*YT培养基的500ml烧瓶中。在37°C摇床培养13小时。携带有pNTS1 和 pSTVG质粒的大肠杆菌HB101在2*YT培养基中培养方法相似,只是培养基中要加入 mg/ml的氨苄青霉素和 mg/ml的氯霉素。Preparation of cell-free extracts and the enzyme assay Cells were harvested from 100 ml of culture broth by centrifugation, suspended in 50 ml of 100 mM potassium phosphate buffer (pH ), and then disrupted by ultrasonication. The cell debris was removed by centrifugation; the supernatant was recovered as the cell-free extract. Carbonyl reductase S1 activity (COBE-reducing activity) was determined spectrophotometically as follows: The assay mixture consisted of 100 mM potassium phosphate buffer (pH ), mM NADPH, and 1 mM COBE. The reactions were incubated at 30 °C and monitored for the decrease in absorbance at 340 nm. The assay mixture for GDH activity consisted of 1 M Tris-HCl buffer (pH ), 100 mM glucose, and 2 mM NADP+. The reactions were incubated at 25 °C and monitored for the increase in absorbance at 340 nm. One unit of S1 or GDH was defined as the amount catalyzing the reduction of 1 μmol NADP+ or oxidation of 1 μmol NADPH per minute, respectively. Protein concentrations were measured with a proteinassay kit containing Coomassie brilliant blue (Nacalai Tesque, Japan),using bovine serum albumin as the standard (Bradford 1976).无细胞抽提液和酶鉴定将100ml培养液离心收获菌体,用为的磷酸缓冲液悬浮,然后超声粉碎。细胞碎片通过离心可以去除,收集上层清液就是无细胞抽提物。碳酰还原酶S1的活性由分光光度计测量如下:测定的混合物包括:的磷酸二氢钾缓冲液,和1mMCOBE。反应在30°C条件下反应,并且随时监测其在340nm处的吸光值。测GDH混合物包括:1M pH 的Tris-HCl的缓冲液,100mM的葡萄糖,2mM的NADP+。反应在25°C下进行,监测其在340nm处的吸光值。一个单位S1或GDH被定义为每分钟催化还原1μmol NADP+或氧化1 μmol NADPH的量。蛋白质的测定通过含有考马斯亮蓝的蛋白质测定试剂利用牛血清白蛋白作为标准进行测定。Study of enzyme stabilityOne milliliter of 100 mM potassium phosphate buffer (pH ) containing the cell-free extracts of E. coli HB101 carrying pNTS1 (S1: 20 U/ml) was mixed with an equal volume of each test organic solvent in a closed vessel. After the mixture was shaken at 30 °C for 48 h, the remaining enzyme activities in an aqueous phase were assayed as described above. The mixture, containing 100 mM potassium phosphate buffer (pH ), S1 (20 U/ml), and various concentrations of CHBE, was incubated at 30 °C for 24 h in order to study the enzyme’s stability in the presence of remaining enzyme activities were assayed as described above.酶稳定性的研究一毫升含有含有pNTS1质粒的E. coli HB101的无细胞抽提液的100mM磷酸氢二钾缓冲液()与等体积的有机溶剂混合。混合物在30 °C震摇48小时后,水相中残留的酶活力即是上述的酶活力。COBE reduction with E. coli cells expressing the S1 gene and E. coli cells expressing GDH genes in a two-phase system reaction The reaction mixture comprised 15 ml culture broth of E. coli HB101 carrying pNTG, 17 ml culture broth of E. coli HB101 carrying pNTS1, mg NADP+, 4 g glucose, g COBE, 25 ml n-butyl acetate, and about 25 mg Triton X-100. The pH of the reaction mixture was controlled at with 5 M sodium hydroxide. At 2 h, g COBE and g glucose were added to the reaction mixture. To compare the reaction by E. coli transformant coexpressing the GDH and S1 genes, 30 ml culture broth of E. coliHB101 carrying pNTS1G was used instead of culture broth of E. coli HB101 carrying pNTG and E. coli HB101 carrying pNTS1. Other components and the procedure were the same as described above.表达S1基因和GDH基因的大肠杆菌细胞在两相反应体系中的还原反应混合物包含有带有pNTG质粒的大肠杆菌HB101的菌液15ml,pNTS1质粒的大肠杆菌HB101的菌液17ml, mg NADP+,4 g葡萄糖,的COBE,25ml的n-butyl acetate丁酰醋酸盐和大约25mg的聚乙二醇辛基苯基醚Triton X-100。用5M的NaOH溶液将pH控制在。在反应两小时后,加入和葡萄糖到该混合物中。比较大肠杆菌转化细胞共表达GDH和S1基因,携带有pNTS1G质粒的大肠杆菌HB10130ml菌液取代了携带有pNTG和pNTS1质粒的大肠杆菌HB101菌液。其他的成分和步骤和上述的方法相似。 COBE reduction to (S)-CHBE in a two-phase system reaction The reaction mixture contained 50 ml of culture broth of an E. coli HB101 transformant, mg NADP+, 11 g glucose, 10 g COBE, 50 ml n-butyl acetate, and about 50 mg Triton X-100. The reaction mixture was stirred at 30 °C, and the pH was controlled at with 5 M sodium hydroxide. Five grams of COBE/ g glucose and 10 g COBE/11 g glucose were added to the reaction mixture at 3 h and 7 h, respectively; mg NADP+ was added at 26 在两相系统中还原生成(S)-CHBE反应混合物包含50ml E. coli HB101转化细胞的培养液,葡萄糖,10gCOBE,50ml丁酰醋酸,和大概50mg聚乙二醇辛基苯基醚Triton X-100.在30°C温度下将其混合均匀,并用5M的NaOH溶液将pH控制在。在第3小时加入5gCOBE和葡萄糖或者在第7小时加入10gCOBE和11g葡萄糖,分别在第26小时加入。 COBE reduction to (S)-CHBE in an aqueous system reaction The reaction mixture was made up of 50 ml of culture broth of an E. coli HB101 transformant, mg NADP+, 11 g glucose, and about 50 mg Triton X-100. The reaction mixture was stirred at 30 °C. Fifteen grams of COBE was fed continuously by means of a micro-feeding machine at a rate of about g/min for about 12 h. The pH of the reaction mixture was controlled at with 5 M sodium hydroxide. The reaction mixture was extracted with 100 ml ethyl acetate. The organic layer was dried over anhydrous sodium sulfate and then evaporated in vacuo. COBE在水相中还原成(S)-CHBE的反应反应的体系是由50ml大肠杆菌HB101转化细胞的菌液,,11g葡萄糖和大约50mg聚乙二醇辛基苯基醚Triton X-100。反应混合物在30°C15mg的COBE通过微量添加机器以 g/min的速率连续12小时恒定的加入到体系中。用5M的NaOH溶液将pH控制在。反应混合物用100ml乙酸乙酯萃取。有机层用无水硫酸钠吸干,并在真空中脱水。Analysis The organic layer was obtained on centrifugation of the reaction mixture and was assayed for CHBE and COBE by gas chromatography. Optical purity of CHBE was analyzed by high-performance liquid chromatography (HPLC), as described previously (Yasohara et al. 1999).Enzymes and chemicals Restriction enzymes and DNA polymerase were purchased fromTakara Shuzo (Japan). COBE (molecular weight: ) was purchasedfrom Tokyo Kasei Kogyo (Japan). Racemic CHBE (molecularweight: ) was synthesized by reduction of COBE withNaBH4. All other chemicals used were of analytical grade andcommercially available.分析离心反应混合物得到的有机层通过气相色谱法测定其CHBE和COBE。COBE的光学纯度如前所述通过高效液相色谱法进行分析。酶和化学试剂限制性内切酶和DNA聚合酶由takara公司购得,COBE(分子量:)由东京Tokyo Kasei Kogyo公司购得,消旋体CHBE(分子量)通过COBE及NaBH4合成。所有其他化学试剂都是分析等级和商业化的试剂。Construction of E. coli transformants overproducing S1 and GDHTo express the carbonyl reductase S1 and GDH genes in the same E. coli cells, four expression vectors were constructed (Fig. 1). Plasmids pNTS1G and pNTGS1 contain the S1 gene from C. magnoliae, the GDH gene from B. megaterium, the lac promoter derived from pUC19, and the terminator derived from pTrc99A. Plasmid pNTS1 contains the S1 gene, the lac promoter derived from pUC19, and the terminator derived from pTrc99A. The enzyme activities in cell-free extracts of the E. coli transformants are shown in Table 1. E. coli HB101 cells carrying the vector plasmid pUCNT had no detectable S1 or GDH activity. E. coli HB101 carrying either pNTS1G or pNTGS1 showed S1 and GDH activity without isopropyl-β-D-thiogalactopyranoside (IPTG) induction. The S1 activities of these two transformants were lower than the GDH activities. To obtain a transformant whose S1 activity was equal to or greater than the level of GDH activity, we used a lower copy vector, pSTV28 (Homma et al. 1995; Takahashi et al. 1995), to express the GDH gene. It may be possible to raise the S1 activity by lowering the GDH activity. Plasmid pSTVG contains the GDH gene, the lac promoter, the chloramphenicol resistance gene, and the replicative origin derived from pACYC184 for compatibility with the plasmid pNTS1. In E. coli HB101 carrying pNTS1 and pSTVG, the S1 activity was higher than the GDH activity, but this GDHlevel may be too low to regenerate in a COBE reduction reaction as described below.过产生S1和GDH的大肠杆菌转化细胞的构建为了在同一大肠杆菌细胞中表达碳酰还原酶S1和GDH基因,要构建四个表达型载体。质粒pNTS1G 和 pNTGS1包含有来自C. magnoliae的S1基因,来自B. megaterium的GDH基因,来自pUC19的LAC启动子,从pTrc99A的来的终止子,质粒pNTS1包含有S1基因,来自pUC19的LAC启动子,从pTrc99A的来的终止子。在大肠杆菌转化细胞的无细胞抽提物的酶活力如表一所示。携带有运输质粒pUCNT的大肠杆菌细胞无法检测到其S1和GDH活性。携带有pNTS1G 或 pNTGS1质粒在没有IPTG的诱导下有S1和GDH的活性。在这两个转化菌种中,S1的活力小于GDH的活力。为了得到S1活性等于或者大于GDH的大肠杆菌转化菌株,我们使用低拷贝的载体pSTV28,来表达GDH基因。它可能可以通过降低GDH的活性从而提高S1的活性。质粒pSTVG包含有GDH基因,lac启动子,和氯霉素抗性基因,以及与pNTS1具有相容性的从pACYC184得来的复制起始位点。在携带有pNTS1和pSTVG的大肠杆菌转化细胞中,S1的活性要高于GDH的活性,但是GDH的活性可能会太低而在COBE还原反应中不能再生。 太长了,字数有限制,所以不能发完。分数我无所谓啦,我很少登录的。这应该算是基因工程的吧,是我以前自己翻的,不是很好。如果你要的话可以联系我的邮箱。

去中国知网去找吧,网址是,里面有很多相关东西,论文什么都都能找到。

高中英语整体性教学复述法的实践和体会为了使高中英语教学达到新大纲的要求,我在教学实践中作了些尝试,把课 堂教学由注重语言知识的讲授 课转变成注重语言能力的训练课,把培养和训练 学生的语感、语言习惯当作英语教学的中心任务。我在教学中 利用现行高中精 读课文,采用整体性教学复述法,努力把传授新知识和训练运用语言能力结合起 来,使课文教 学成为教师、教材、学生相互作用的积极过程,在培养学生语言 能力方面收到了良好的效果。在此谨从实践的 角度谈谈我的具体做法。复述是口头表达课文内容的言语过程,是给学生提供施展运用语言能力的机 会。这一训练不仅能提高学生 的听力、语感、改进语音语调,还能促进学生的 记忆、思维和自学能力。在实际教学中它已成为语言知识转化 为言语能力,培 养听、说、读、写能力的重要途径。为了获得有效的复述效果,我始终遵循记忆 规律,重视各 教学环节的密切配合,利用行之有效的方法,使学生积极参与到 这个有纲可循,有词可用,有话可说的四步教 学活动中来。第一步:(不要求预习课文)由教师将课文复述一遍,在复述过程中出现部 分生词短语,并用简明英语释 义。(可用板书、幻灯、投影等伴随教师复述。)第二步:根据教师复述的内容要求学生回答问题,目的在于检查学生是否理 解课文大概内容。在提问题时 要简略、清楚、易懂,注意调动所有学生的积极 性,可多用些"yes"、"No"questions。第三步:学生在阅读课文后回答一些比第二步复杂些的问题。(在回答问题 的过程中学生会自然地使用第 一步中所出现的生词短语。)然后再引导他们将这 些问题的答案串成复述内容。下面是高中英语第二册《体育运动》一课复述法三步的具体设计。 Presentation Retell the text with the following words and expressions onthe blackboard:joyful and relaxing;have a game of;be of great value;popularform of relaxation;amusement;go all about;build our Presentation According to what the teacher says answer the following:(1)Is it joyful and relaxing to have sports and games?(2)Do many people take part in different kinds of sports?(3)Some people seem to think that sports and games are unimportant things,don't they?(4)Do people have different ideas about sports and games?Step3,Learner Presentation Read the text again and try to pick out a topic sentence foreach the text paragraph by first paragraph:Sports and games are perhaps the most popular forms of can learn that from. Swimming in a river in summer Having a game of table tennis almost all can enjoy Watching a close game of … … …The second paragraph:They should not be treated only as amusements.(We can learnthatfrom the third and the fourth paragraph.)The third:Sports and games build our bodies(We can learn that fromplaying table tennis).The fourth:Sports and games are also very useful for character-training.(We can compare the lessons at school with activities on thesports fields.) 以上三步如下简示:teacher retelling→students answering"yes"or"NO" reading the passage questions→students answering further questions retelling it paragraph by paragraph它以递进的方式给学生提供了从内容到语言材料理解和掌握的渐进过程,为 第四步复述全篇课文创造了条 件。第四步:复述全篇课文,这一环节是对前三步所做大量训练工作效果的检测, 也是对学生大面积进行能力 训练的时机。利用板书、表格、表演以及主题画来 组织学生复述课文,周密组织好这一环节才能最后达到预期 教学目的。我在《体育运动》一课在第四步的板书是这样设计的:(以正中sports and games为中心,先由上至下, 再从左至右进行复述)。板书必须做到重点突出,具有概括性和条理性,并且简明生动,这样诱导学 生复述全篇课文不仅能达到对 课文内容及语言特点的理解,还能培养学生口头 造句和作文的能力。 复述法的实施过程也就是利用内容设置情景引导学生进行交际的过程。针对 不同的教材,不同的教学对象 和不同的时机灵活利用各种行之有效的方法,使 复述发挥更大的效用,以提高实际运用语言的能力,这是我在 课程设计中的首 要原则。

相关百科
热门百科
首页
发表服务