论文投稿百科

塞曼效应实验研究论文

发布时间:2024-07-04 16:06:02

塞曼效应实验研究论文

一切磁现象都是由于运动电荷所产生的,磁现象的本质就是电荷的运动。磁场对电荷,一磁场对另一磁场,都会产生作用力。磁场对运动电荷产生劳伦兹力

通译洛伦兹力洛伦兹力 Lorentzforce 磁场对运动点电荷的作用力。1895年荷兰物理学家.洛伦兹建立经典电子论时,作为基本假设提出来的,现已为大量实验证实。洛伦兹力的公式是f=q·v×B。式中q、v分别是点电荷的电量和速度;B是点电荷所在处的磁感应强度。洛伦兹力的大小是f=|q|vBsinθ,其中θ是v和B的夹角。洛伦兹力的方向循右手螺旋定则垂直于v和B构成的平面,为由v转向B的右手螺旋的前进方向(若q为负电荷,则反向)。由于洛伦兹力始终垂直于电荷的运动方向,所以它对电荷不作功,不改变运动电荷的速率和动能,只能改变电荷的运动方向使之偏转。 洛伦兹力既适用于宏观电荷,也适用于微观荷电粒子。电流元在磁场中所受安培力就是其中运动电荷所受洛伦兹力的宏观表现。导体回路在恒定磁场中运动,使其中磁通量变化而产生的动生电动势也是洛伦兹力的结果,洛伦兹力是产生动生电动势的非静电力。 如果电场E和磁场B并存,则运动点电荷受力为电场力和磁场力之和,为f=q(E+v×B),左式一般也称为洛伦兹力公式。 洛伦兹力公式和麦克斯韦方程组以及介质方程一起构成了经典电动力学的基础。在许多科学仪器和工业设备,例如β谱仪,质谱仪,粒子加速器,电子显微镜,磁镜装置,霍耳器件中,洛伦兹力都有广泛应用。 值得指出的是,既然安培力是洛伦兹力的宏观表现,洛伦兹力对运动电荷不作功,何以安培力能对载流导线作功呢?实际上洛伦兹力起了传递能量的作用,它的一部分阻碍电荷运动作负功,另一部分构成安培力对载流导线作正功,结果仍是由维持电流的电源提供了能量。

泡利不相容原理(Pauli exclusion principle)又称泡利原理、不相容原理,是微观粒子运动的基本规律之一。它指出:在费米子组成的系统中,不能有两个或两个以上的粒子处于完全相同的状态。在原子中完全确定一个电子的状态需要四个量子数,所以泡利不相容原理在原子中就表现为:不能有两个或两个以上的电子具有完全相同的四个量子数,或者说在轨道量子数m,l,n确定的一个原子轨道上最多可容纳两个电子,而这两个电子的自旋方向必须相反。这成为电子在核外排布形成周期性从而解释元素周期表的准则之一。

19世纪以前,人们一直认为电、磁、光是毫不相关的自然现象。

步入19世纪,科学家法拉第、麦克斯韦把电、磁、光现象放在一起解释;赫兹则用实验证明了电磁波的存在,电、磁与光效应从此结合起来。

发现阴极射线后,西方物理学家全力研究它的本质。到19世纪70年代,对阴极射线的本质认识,他们之中存在两种截然不同的看法:英国科学家克鲁克斯等认为它是带负电的粒子流,德国物理学家赫兹等认为它不过是电磁波产生的辐射物。

两派之间发生过激烈的讨论。

荷兰物理学家 亨得里克·安顿·洛伦兹 也加入到这场讨论中。经过深入研究,他得出如下结论: 阴极射线是由比原子更小的微粒振动产生的,这种微粒存在于任何物体的原子之中,而发光现象即与这种微粒振动相关,这种微粒进行振动后会产生电场和磁场,只要改变电场或磁场的方向,光线也会发生偏移。

可是,这些先进的理论在当时完全站不住脚。一则,著名科学家法拉第生前研究过磁场对光源的影响,但以失败告终,后来几乎无人研究;二则西方科学界一直认为,物体是由原子构成的,原子就像一个小得不能再小的玻璃实心球,无法打开。

洛伦兹偏不信邪。他决心用自己的强项——理论研究,来证明原子是可分的。 他于1870年进入莱顿大学,受天文学教授弗雷德里克·凯瑟影响,对理论物理学产生浓厚的兴趣。

1878年1月25日,他就任莱顿大学理论物理学教授。此后近20年时间,他的理论研究包括阴极射线的本质,解释电、磁、光的关系等,紧跟时代潮流。

经过理论研究,洛伦兹发现物体的原子里有带负电的微粒,这些微粒由于围绕原子核运动产生电场。根据法拉第的实验推断,运动的微粒也会产生磁场。原子核自转产生电场和磁场,与负电微粒相互制衡形成了原子磁场。

“当光源经过原子磁场时,它原子里的微粒振动将发生改变,光源的谱线一定会加宽或分裂。” 洛伦兹经过反复推理,得出这样的结论。

物理学的发展,离不开理论与实践的结合。尽管洛伦兹从“虚”的理论方面证实原子里有带负电的微粒,那 怎么才能通过“实”的实验方面来证明理论呢?

正当他为此苦恼不堪时,他的学生—— 彼得•塞曼 出现了。

塞曼也是荷兰人。1865年5月24日深夜,荷兰泽兰小岛上的拦海大坝决堤。一条无舵无桨的小木船上,一位中年产妇在撞击中,痛苦地生下塞曼。

塞曼小学时成绩平平,中学毕业考试物理成绩居然没有及格。 母亲用塞曼出生的故事对其进行感化,他于是刻苦攻读,进入代尔夫特中学。

在这里,塞曼遇到了比他大12岁的海克·卡末林·昂内斯。后来获诺贝尔物理学奖的昂内斯聪明好学,给塞曼留下极深的印象。

塞曼通过不懈努力终于考上了莱顿大学。 他1890年大学毕业后留校,并有幸成为物理学教授洛伦兹的学生兼助手。

作为洛伦兹的助手,塞曼最高兴的事儿莫过于可以继续研究 磁光克尔效应 。 磁光克尔效应是指光线射入磁体会发生偏转的现象 ,因1877年由英国科学家约翰·克尔发现而得名。

研究3年后,塞曼完成了关于磁光克尔效应的博士论文。后来,他受聘为莱顿大学的讲师,暂时离开了洛伦兹的实验室。

1896年,塞曼被开除了,起因是他不听莱顿大学实验室主管的安排,悄悄进行光谱线磁场分裂的实验。 他把光源放在很强的磁场里,结果发光体的光谱发生变化,谱线一分为三。 塞曼平静地把实验过程和结果写成论文提交给荷兰皇家艺术与科学院,然后离开莱顿大学。

当年10月31日,洛伦兹在皇家艺术与科学院开会时偶然间发现塞曼关于光谱研究的论文,大为震惊。

两天后的星期一早上,他把塞曼请到办公室。 塞曼详细叙述了关于光谱实验的过程,洛伦兹仔细聆听后表示,磁场中光谱发生变化的根本原因是原子中带负电的微粒振动。

由于洛伦兹的强力推荐,塞曼的实验引起西方科学界的重视。

他的实验首先证明了原子内部具有细致的结构,并非“不可再分”,这是对洛伦兹关于“原子里有带电微粒”的最好支持。

其次,实验证实了洛伦兹关于 “磁场中发出的光会发生偏振” 的理论。这也意味着电、磁、光可以相互影响。后世科学家把 磁场分裂光谱的现象称为 塞曼效应 。

作为著名的磁光效应,塞曼效应使世人对物质的原子、光谱等有了更多了解,被誉为继X射线之后物理学最重要的发现之一。 为了表示对塞曼的纪念,科学界把月球背面的一座环形山命名为“塞曼”。

塞曼效应可用于测量星球的磁场,海尔等美国天文学家在威尔逊山天文台用塞曼效应首次测量到了太阳黑子的磁场。物理学家汤姆逊则用塞曼效应来测量谱线分裂的频率间隔,把原子中带负电的微粒称为电子,还用数据证实了电子的存在。汤姆逊因此获1906年诺贝尔物理学奖。

1902年12月10日下午16:30,瑞典斯德哥尔摩皇家音乐学院大礼堂里座无虚席。第二届诺贝尔奖颁奖典礼在此举行。

在严肃的乐曲中,各国获奖者分别领取了奖牌、证书和奖金。轮到塞曼上台时,只见他胸前没有戴花,而是挂着一个五六寸大的金制相框,相片上是他去世的母亲。他每次领奖都会挂着这个相框,以示对母亲的尊重。这已成为诺贝尔奖史上的一段佳话。

从诺贝尔物理学奖颁奖典礼回来的洛伦兹,也因此受到世人的尊敬和爱戴。由于他提出原子中存在电子的理论,所以 被尊称 为经典电子论的创立者 。

后来,他的名字在物理学上被用作学术名词,比如 洛伦兹-洛伦兹公式、洛伦兹力、洛伦兹分布、洛伦兹变换 等。

爱因斯坦在科学研究中,把洛伦兹变换用于力学关系式,这才有著名的狭义相对论。

1928年2月4日,洛伦兹在荷兰的哈勒姆市逝世。葬礼当天,荷兰全国电话中止3分钟,以示哀悼。公认的新一代物理学领袖、著名科学家爱因斯坦发来悼词,称洛伦兹是“我们时代最伟大、最高尚的人”。

再后来,为纪念洛伦兹的巨大贡献,荷兰政府从1945年起把他的生日(7月18日)定为一年一度的“洛伦兹节”。

洛伦兹从理论上创立经典电子论,塞曼则用实验证明了电子的存在,师生两人共同分享了1902年度诺贝尔物理学奖。

END

封图 |

原标题:没有这个理论做基础,我们可能看不到爱因斯坦的相对论......

塞曼效应论文题目

正常塞曼效应的条件是,S=0,即2S+1=1是独态,也即电子为偶数并形成独态的原子,才能有正常的塞曼效应. 依据条件,氦、铍、镁、钙会出现正常塞曼效应。

电磁场与光的相互作用一直是物理学家研究的重要课题。1845年法拉第 (Michael Faraday,1791-1867)发现了磁场能改变偏振光的偏振方向,即磁致旋光效应。1875年克尔()发现各向同性的介质如玻璃等,在强电场作用下会表现出各向异性的光学性质,出现双折射现象,即电光效应。1896年荷兰塞曼(Pieter Zeeman,1865~1943)研究电磁场对光的影响,他把钠光源置于强磁场中,发现钠的谱线出现了加宽现象,即谱线发生了分裂,后称为正常塞曼效应。著名物理学家洛仑兹(Hendrik Antoon Lorentz,1853~1928)用经典电子论对这种现象进行了解释。他认为电子存在轨道磁矩,并且磁矩在空间的取向是量子化的,因此在磁场作用下能级发生分裂,谱线分裂成间隔相等的3条谱线。用正常塞曼效应测出电子荷质比,与1897年汤姆逊(Joseph John Thomson 1856-1940) 测量阴极射线的结果相同。由于塞曼效应的发现,塞曼和洛仑兹分享了1902年诺贝尔物理学奖。1897年英国普雷斯顿(Preston) ,美国的迈克耳孙(1897) ,德国的龙格(Runge,1902)和帕邢(Friedrich Paschen,1912) 都观察到光谱线有时分裂多于3条,称为反常塞曼效应。反常塞曼效应在很长时间里一直没能得到很好的解释。1921年,德国朗德(Landé)发表《论反常塞曼效应》的论文,引进朗德因子g表示原子能级在磁场作用下的能量改变比值,这一因子只与能级的量子数有关。 1925年,荷兰乌仑贝克()和古德斯米特()提出了电子自旋假设,很好地解释了反常塞曼效应。塞曼效应证实了原子具有磁矩和空间取向量子化。根据光谱线分裂的数目可知总角动量量子数J ,根据光谱线分裂的间隔可以测量g 因子,近而确定原子总轨道角动量量子数L和总自旋量子数S的数值,因此,塞曼效应是研究原子结构的重要方法之一。另外由塞曼效应可分析物质的元素组成,在科研和生产中有重要应用。

通译洛伦兹力洛伦兹力Lorentzforce磁场运点电荷作用力1895荷兰物理家.洛伦兹建立经典电论作基本假设提现已量实验证实洛伦兹力公式f=q·v×B式q、v别点电荷电量速度;B点电荷所处磁应强度洛伦兹力f=|q|vBsinθ其θvB夹角洛伦兹力向循右手螺旋定则垂直于vB构平面由v转向B右手螺旋前进向(若q负电荷则反向)由于洛伦兹力始终垂直于电荷运向所电荷作功改变运电荷速率能能改变电荷运向使偏转洛伦兹力既适用于宏观电荷适用于微观荷电粒电流元磁场所受安培力其运电荷所受洛伦兹力宏观表现导体路恒定磁场运使其磁通量变化产电势洛伦兹力结洛伦兹力产电势非静电力电场E磁场B并存则运点电荷受力电场力磁场力f=q(E+v×B)左式般称洛伦兹力公式洛伦兹力公式麦克斯韦程组及介质程起构经典电力基础许科仪器工业设备例β谱仪质谱仪粒加速器电显微镜磁镜装置霍耳器件洛伦兹力都广泛应用值指既安培力洛伦兹力宏观表现洛伦兹力运电荷作功何安培力能载流导线作功呢实际洛伦兹力起传递能量作用部阻碍电荷运作负功另部构安培力载流导线作功结仍由维持电流电源提供能量

1976年诺贝尔物理学奖授予美国加利福尼亚州斯坦福直线加速器中心的里克特(Burton Richter,1931—)和美国马萨诸塞州坎伯利基麻省理工学院的丁肇中(,1936—),以表彰他们在发现一种新型的重的基本粒子中所作的先驱性工作。粒子物理学的发端可以从1932年正电子的发现说起,到了50年代,陆续发现了反质子、π介子、反Λ粒子等等三十多种新粒子,其中稳定的有七种。寿命大多长于10-16秒。后来又发现了许多寿命更短的粒子,这些粒子也叫做强子共振态,是通过强相互作用衰变的。盖尔曼的夸克模型理论,解释了这些强子共振态,其预言的Ω-粒子又被实验证实。这时粒子物理学似乎已经达到了顶峰,没有什么事情可做了。然而,正是在这一短暂的沉静时期,1974年同时有两个实验小组,宣布发现了一种寿命特别长,质量特别大的粒子。这项发现的宣布,打破了沉闷的空气,使物理学家大为惊讶,推动粒子物理学迈向新的台阶。这项新的发现就是由里克特领导的SLAC-LBL合作组所发现的ψ粒子和由丁肇中领导的MIT小组所发现的J粒子。人们统称之为J/ψ粒子。SLAC是斯坦福直线加速器中心的简称,LBL是劳伦斯伯克利实验室的简称。两家共同组成一个合作组,为SLAC正负电子对撞机(SPEAR)配制了一台取名为MarkI的磁探测器,目的是探测4GeV的正负电子束对撞后生成的新粒子,探测范围可从直到。这是当时能量最高的电子对撞机。1974年初,里克特小组发现在处截面比反常,比邻近约高30%,当时并未引起注意。同年10月,又发现在处有一反常。后来还陆续有高出3~5倍的截面。这促使他们下决心把机器调回到附近进行精确测量,11月9日终于取得了在处存在狭共振的确切证据,并命名为ψ粒子。接着,又在处发现了ψ粒子的姐妹态,ψ'粒子。里克特1931年3月22日出生于纽约。1948年进入麻省理工学院,大三时曾参加正电子素实验,开始接触到电子-正电子系统。大学的毕业论文题为“氢的二次塞曼效应”,成绩优异。研究生期间,里克特测量了水银同位素位移及其超精细结构。他在工作中要用到回旋加速器,让短寿命的Hg197同位素和氚核束轰击金。因此更加激发了对核物理和粒子物理以及所使用的加速器的兴趣。他的博士论文题目是“由氢光生π介子”。然后他在斯坦福高能物理实验室找到工作。他在这里和同事们合作,建造了一台碰撞束机器,并于1965年开始实验,结果使量子电动力学的适用性延展至小于10~11cm。在这之前,里克特就在考虑高能电子-正电子碰撞束机器能用来做些什么。他特别想研究强相互作用粒子的结构。1963年里克特来到SLAC,在SLAC主任潘诺夫斯基的鼓励下,里克特组织了一个小组制定高能电子-正电子机器的最后设计。1964年完成了初步设计,1965年向美国原子能委员会提交了一份经费申请报告,当然这只是申请经费的漫长过程的第一步,以后还为之作过多次奋斗,直到1970年才得到经费。在这期间,他和小组成员又做了其它实验,设计并制造了大型磁谱仪的整套装置的一部分,并利用它进行了一系列π介子和K介子的光生实验。里克特为了以后制作存储环作准备,下了很大力气以求保住已经成立的小组。有了经费之后,工程立即上马,着手制作大型磁探测器。1973年开始做实验,终于得到了满意的成果。如果说里克特和他的小组是以他们的执著追求精神取得了引人注目的成绩,那么,丁肇中和他的小组更是以其严谨踏实、一丝不苟的作风得到了科学上的回报。丁肇中是华裔美籍科学家,1936年1月27日出生于美国密执安州安亚柏市,父亲丁观海是工程学教授,母亲王隽英是心理学教授,他们在访美期间,生下了丁肇中,于是丁肇中从小就成了美国公民。出生后两个月,与母亲一起回到中国。由于战争的原因,直到十二岁才受到传统的教育。1956年丁肇中得奖学金入美国密执安大学,三年后获得了数学和物理学位,1962年获得物理博士学位。关于丁肇中的经历,请读他的自述:“当我20岁时,我决定到美国去接受较好的教育,我父母的朋友、密执安大学工程学院的院长.布朗,告诉我父母他很欢迎我去那儿,并到他家住宿。当时我只懂一点儿英语,而且对在美国的生活费用毫不了解,在中国,我通过看书了解到美国许多学生是通过自己劳动挣钱进入大学的,于是,我对父母说我也要这么做。1956年9月6日,我到达了美国底特律机场,身边带了100美元,当时好像已很富裕了。我感到有些害怕,因我不认识任何人,而且通信也很困难。”“由于我是靠得奖学金入学的,故我不得不努力学习以继续取得奖学金。我在三年内使自己在密执安大学获得了数学和物理学位,在1962年,在琼斯和泊尔博士指导下获得物理学博士学位。”“我作为一个福特基金会的研究员到了欧洲核子研究中心(CERN)。在那儿我很荣幸能跟柯可尼教授一起搞质子同步加速器,从他那儿学到许多物理知识。他能以简单的方法对待一个复杂的问题,做实验相当仔细,这些都给我留下了深刻的印象。”“1965年春天,我回到美国,在哥伦比亚大学任教。在那些年月里,哥伦比亚大学的物理系是一个很有刺激性的地方,我有机会观察到如:莱德曼、李政道、拉比、施瓦茨、斯坦博格、吴健雄以及其他教授的工作。他们在物理学上都具有各自的风格和相当突出的鉴别力。我在哥伦比亚短暂的几年,收益很大。”“在我到达哥伦比亚大学的第二年,在坎伯利基电子加速器上进行一项由光子同核靶碰撞产生电子正电子对的实验。看来好像有点违反量子电动力学。于是我仔细地研究了该项实验,决定重做一次。我与搞西德电子同步加速器的韦伯教授和杰茨凯商量是否可在汉堡进行正负电子对产生的实验。他们都很热情地鼓励我马上就开始实验,1966年3月,我离开了哥伦比亚大学到汉堡去进行这个实验。自那时起,我以全部精力投入到电子对及μ介子对物理、研究量子电动力学和类光粒子的产生和衰变、寻找能衰变成电子对或μ介子对的新粒子。这类实验的特点是需要高强度入射通量,需要绝对排除大量不需要的背景条件,同时又需要质量分辨率高的探测器。”“为了寻找较大质量的新粒子,我于1972年带了实验小组回到了美国,在布鲁克海文国立实验室进行实验。1974年秋,我们发现了一种新的、完全出乎意料的重粒子——J粒子的证据。自那以后,找到了整族新粒子。”关于电子-正电子实验的缘起,丁肇中在领诺贝尔奖的演说词中作了如下说明:“1957年夏天,我是纽约暑期班的学生,偶然得到了赫兹堡的经典著作《原子光谱和原子结构》(1937年),从书中我第一次了解到光量子的概念和它在原子物理学中的作用,大学毕业前夕,我收到父亲送给我的圣诞礼物:阿希耶泽和贝律茨基合著的《量子电动力学》(1957年)一书的英译本。在密执安大学学习期间,我仔细读了这本书,并自己推导了书中的某些公式,后来我在哥伦比亚大学任教的年代,很有兴趣地读了特雷尔1958年的一篇论文。他指出用高能电子加速器在短距离上对量子电动力学(QED)所做的各种检验的含义。对于怎样把某一类费因曼图从3μ介子的μ介子产生中分离出来,我同布洛茨基合作进行了理论计算。”为此丁肇中和布洛茨基联名于1966年发表了一篇论文。1965年10月,丁肇中受德国汉堡德意志电子同步加速器研究中心(DESY)主任詹希克的邀请,做了e+e-对产生的第一个实验。他和他的小组使用的探测器具有如下特性:1.能利用负载循环2%~3%的10-11/s的入射光子流;2.接受度很大,不被磁铁的边缘或屏蔽物所限制,仅受闪烁计数器决定;3.所有的计数器并不直接面对靶体;4.为了排除强子对,切连科夫计数器为磁铁所分隔,使π介子与第一对计数器中的气体辐射源相互作用而放出的电子被磁铁排除,不进入第二对计数器。从第二对计数器放出的低能电子则被簇射计数器排除。这个实验的结果表示出量子电动力学正确地描述了粒子对产生过程直到10-14cm。然后,丁肇中小组转动谱仪的磁铁,使最大的粒子对质量接受区的中心在750MeV附近,他们观察到e+e-对的数量有很大的上升,明显地破坏QED。这种对QED的偏离,事实上是由强作用对e+e-产生的贡献增加而引起的。这时入射的光子产生重的类光粒子ρ介子,它再衰变为e+e-。它的衰变几率为α2的量级,为了证明情况确实是这样,他们做了另外一个实验,增加e+e-的张角,发现与QED的偏离更大。这是可以预计到的,因为当增加e+e-的张角时,QED过程比强作用过程减少得更快。约为5MeV,因此丁肇中小组研制了一个质量分辨率约为5MeV的探测器。丁肇中小组的成员们面对的是极其单调的测量工作,可是这不是一般的测量,请继续听丁肇中教授的回忆:“在有些测量中,事件率低,特别在研究大于ρ和ω介子质量范围的e+e-质谱的实验里,当加速器全负载时,e+e-对的产额约为每天一个事件。这就是说,整个实验室大约有半年光景一直专门只做这个实验,每天一个事件的事件率还意味着,往往2、3天没有事件,而在另外的日子里我们却得到2、3个事件。正是在这个实验的过程中,我们形成了每30分钟把全部电压检查一遍和每24小时通过测量QED产额来校准一次谱仪的传统。为了确保探测器工作稳定,我们还建立了物理学家跟班的惯例,甚至当加速器关机维修时也跟班,我们还从不切断电源。这样做的最终效果是,我们的计数室多年来有着与实验室的其它部分不同的基础体制。”“我们经过多年的工作后,学会了怎样操纵具有负载循环2%~3%,每秒约1011γ的高强度粒子束。同时采用具有大的质量接受度和好的质量分辨率△M≈5MeV的探测器,它能以>>108的倍数将ππ从e+e-中辨别出来。”“我们现在可以提出一个简单的问题:有多少重光子存在?它们的性质怎样?对我来说,不能想像只有三种重光子,而且它们的质量都是1GeV左右,为了解答这些问题,我同小组成员反复讨论了怎样进行实验。最后我决定1971年在布洛克海文国立实验室的30GeV质子加速器上首先做一个大型实验,把探测质量提高到5GeV,探测重光子的e+e-衰变来寻找更多的重光子。”在诺贝尔奖演说词中,丁肇中这样形容准备阶段的工作:“在建造我们的谱仪过程,及整个实验过程中,我受到很多的批评。问题在于为了达到良好的分辨率,必须要造一个非常昂贵的谱仪。一位有名望的物理学家批评说:这种谱仪只适用于寻找窄共振——但并不存在窄共振。尽管这样,我还是决定按我们原来的设计创造,因为我一般不太相信理论论证。”“1974年4月我们完成了实验的布置工作,并开始引入强大的质子束流到实验区。我们立刻发现,我们计数室里的辐射强度达每小时伦琴。这就是说,我们的物理学家24小时内将要受到最大允许的辐射年剂量。我们花了二、三个星期艰苦地寻找原因,大家为能否继续进行这项实验而担忧。”“一天,自1966年以来一直同我共事的贝克尔博士带着盖革计数器在踱步时,突然发现,辐射的大部分来自屏蔽区的一个特定的地方。经过仔细研究后,发现即使我们已经用了10000吨混凝土屏蔽块,但最重要的区域——束流制动器的顶部——却仍然根本没有被屏蔽!经此纠正之后,辐射强度降到了一个安全值,这样我们就可以进行实验了。“从4月到8月,我们做了例行的调节工作,探测器工作性能符合设计要求。我们能够利用每秒1012个质子,小型电子对谱仪也工作正常,这使我们能用纯电子束来校正探测器。”经过严格认真的反复核对,奇迹终于出现了。丁肇中回忆说:“1974年初夏,我们在4Gev~5GeV的大质量区域里测定了一些数据。然而,对这些数据所做的分析表明,只存在极少的电子-正电子对。”“在8月底,我们调整了磁铁使它能接受~4GeV的有效质量。我们立即看到了干净的、真正的电子对。”“最令人惊奇的是,大部分e+e-对在处形成一个狭峰。更详细的分析表明,它的宽度小于5MeV。”经过多方核对后,丁肇中小组确认他们发现了一个当时质量最大的新粒子。后来得知,里克特小组也发现了这一粒子。他们的实验各有特点。里克特小组是让e+e-对湮没以形成矢量介子,是一种形成实验,而丁肇中小组是利用质子束轰击铍靶,产生矢量介子,然后测量矢量介子的衰变产物,则是一种产生实验。里克特小组和丁肇中小组用不同的设备、经不同的反应过程几乎同时地发现了同一粒子,使物理学界大为惊喜。他们的发现把高能物理学带到了新的境界,因此,两年后里克特和丁肇中就分获诺贝尔物理学奖。

巨磁阻效应及实验研究论文

巨磁阻现象是指样品的电阻在很弱的外加磁场下会具有很大的变化。法国的Albert Fert及德国的Peter Grünberg在1980年代分别独立利用铁铬多层膜技术来产生巨磁阻效应,分别产生了50%及10%的磁阻变化。到了1988年,由M. N. Baibich等人在铁铬多层膜系统中使这个系统的的电阻在2T的磁场下变为两倍,取得了重大突破。巨磁阻现象可以利用下面的模型来帮助了解。假设我们有两层磁性物质中间夹着一层非磁性物质。如果两层磁性物质的磁化方向相同,当通过一束电子自旋方向跟磁性物质相同平行的电流时,基本上电子可以容易的通过。但是如果两层磁性物质的磁化方向相反,自旋与跟第一层磁化方向平行的电子可以顺利通过第一层,却会被第二层相反磁性方向的磁性物质所散射,因此通过的电流便会减少,也就是电阻会上升。因此利用电流的升降,可以定义逻辑讯号的0与1,进而发展各式各样的磁记录系统。 MR读磁头的构造这个现象用来读取磁性记录装置特别有用,当记录数据所需的扇区随着技术的发达而越来越小而能够在单位面积下容纳更多的数据,相对的读写头也要随之缩小才能增加读取效率。但是缩小的扇区同时也表示磁场的讯号会减弱,这时便显出巨磁阻物质的重要性。因为巨磁阻物质可以将磁性方法记录的讯号,以不同的电流大小输出。尽管磁场很小,但是还是可以产生足够的电流变化。因此可以大幅提高数据储存的密度。

巨磁阻效应自从被发现以来就被用于开发研制用于硬磁盘的体积小而灵敏的数据读出头(Read Head)。这使得存储单字节数据所需的磁性材料尺寸大为减少,从而使得磁盘的存储能力得到大幅度的提高。第一个商业化生产的数据读取探头是由IBM公司于1997年投放市场的,到目前为止,巨磁阻技术已经成为全世界几乎所有电脑、数码相机、MP3播放器的标准技术。在Grünberg最初的工作中他和他领导的小组只是研究了由铁、铬(Chromium)、铁三层材料组成的样品,实验结果显示电阻下降了。而Fert及其同事则研究了由铁和铬组成的多层材料样品,使得电阻下降了50%。阿尔贝·费尔和彼得·格林贝格尔所发现的巨磁阻效应造就了计算机硬盘存储密度提高50倍的奇迹。单以读出磁头为例,1994年,IBM公司研制成功了巨磁阻效应的读出磁头,将磁盘记录密度提高了17倍。1995年,宣布制成每平方英寸3Gb硬盘面密度所用的读出头,创下了世界记录。硬盘的容量从4GB提升到了600GB或更高。

旁观者效应的研究与实验论文

在1964年的美国纽约发生过一起凶杀案,称为吉诺维斯案件。案发那天的凌晨三点,一位名叫吉诺维斯(Kitty Genovese)的姑娘返回她的公寓,被一歹徒劫持杀害。遇害者的38个邻居在整个案发的30多分钟内听到了呼救声,其中许多人还走到了窗前看了很长时间。甚至在引起一位邻居的注意后,杀人犯逃离现场,十分钟后重回现场并继续捅这位小姐直到她死亡。然而,没有一个人去实施救援,甚至没有人行举手之劳,打电话及时报警。一对夫妇(他们说他们认为已经有人报了警)把两把椅子移到窗前去观看这一暴力事件。杀害吉诺维斯的人温斯顿.莫斯利(Winston Moseley)最终死在了监狱里,呆了五十多年,历经十八次假释被拒,最终没见到阳光。从整个作案手法来看,这场谋杀的手段很普通甚至有些拙劣,但却因为38个目击者的冷漠,成为了美国最有名的社会事件之一,,甚至美国前总统克林顿也曾就此事发表演说: “这件事传递了一个令人毛骨悚然的信息,我们每个人不仅仅是处于危险之中,而且还是孤立无援的。” 这个案件在当时也引起了心理学家的关注,社会心理学家拉特纳(Latane)和达利(Darley)。作为科学家,他们并不打算谴责谁,而是试图揭开为什么没有人对受害者伸出援手的心理因素。在案件发生后,也就是上世纪60年代后期,他们进行了一系列实验研究,他们假设,吉诺维斯案件中的多人在场,导致了社会责任的分散。当目击者看到其他窗户上也有人用闪现时,他们会感到自己没有必要行动,或者认为既然别人也看到了事情发生,别人可能已经通知了警察。他们提出的理论是:正是由于观看事件的目击证人太多而降低了任何一个个体提供帮助的意愿。这就是“旁观者效应”(BystanderEffect),即危机现场中人数越多,救助行为出现的可能反而越少。 2011年,在广东佛山发生的“小悦悦”事件(两岁的小女孩小悦悦在路上相继被两车碾压,7分钟内,18名路人路过但都视而不见,漠然而去)以及前些天发生的“地铁骂人事件”,全程都没有人挺身而出,间接的证明了“旁观者效应”的正确性和普适性。 王小波写过一本书叫做《沉默的大多数》,可能叫“大多数的沉默”更贴切一些。(在这里还推荐大家去看一部纪录片,根据吉诺维斯的事件拍摄的,《沉默的证人》(The Witness)) 那么,是因为我们经历的突发事件太少,所以我们不知道该怎么做,还是因为人性本身就是自私冷漠的? 常识可能告诉我们,在一件突发事件发生时,在场的旁观者数量越多,他们干预的可能性就越大。拉特纳和达利却提出了相反的假设,也就是说,在突发事件中,旁观者越多,人们心里的某种想法就越强烈“在场这么多人,肯定会有人伸出援手,我何必出这个风头,又何必趟这趟浑水”。这样的想法降低了旁观者的道德负担,提供帮助的动力也大大减弱。最坏的情况,是没有一个人挺身而出,这种现象,也被他们称之为“责任扩散(Diffusion of Responsibility)”现象。 为了验证责任分散的假设,达利和拉特纳设计了一系列的实验研究。研究的结果一致表明,在各种应急情境中,被试相信在场的其他人越多,实施帮助的比例也越小,该研究真正的目的,是考察被试在肚子一人时的主人倾向是否与他相信还有其他人存在时不同。其中90%的研究都表明,独自一人时帮助别人的可能性更大。达利和拉特纳相信,公众目睹别人身临危难却不去救援的原因,不是人性的丧失,而是由于其他人在场所产生的相互影响,抑制了人们援助的动机。 还有一种解释是心理学家称之为“评价恐惧”的现象。达利和拉特纳认为,当别人在场时,我们没有去帮助当事人的部分原因是我们害怕难堪或被嘲笑。设想一下,如果你有帮助别人的愿望,而别人并不需要或者不想让你帮助时,你将感到多么的尴尬,感觉自己像个小丑一样,我们许多人都有过这样的经历,问题及时,这些经历告诉我们一种错误的东西:帮助他人的行为看上去很蠢。 而在后续的研究中又发现,仅仅是设想自己是群体的一员就会改变帮助行为,当我们设想自己是群体一员的时候,大脑会立即把握机会,认为自己的个人责任变少。 这一系列的研究确是让人觉得对帮助他人的内在动机有些悲观,因为我们大多数时候时处在群体之中,然而生活还是每天在发生帮助他人,利他甚至是英雄主义的行为。这项研究的意义就在于,让人醍醐灌顶,不仅解释了使人困惑的人类行为,而且还有助改变这种行为,当人们更多的认识带这种效应的机制的时候,他们会更愿意向危难中的人伸出援手, 关键在于,我们应该永远像自己是唯一的旁观者一样去行动! 写到这里终于松了一口气啊,至少人性是可以相信的,查资料的过程,简直就是“性恶论”和“性善论”在打架啊,感觉要分裂的样子。想象一下,如果人性不值得信任,社会还有什么存在的意义?

社会心理学家拉塔尼和达利(1970)发现当有其他的旁观者在场时,会显著的降低人们介入紧急情况的可能性。自1980年以来,有60多个实验研究比较了独自一人或与他人在一起时的亲社会行为表现,结果发现,大约有90%的实验都证明独自一人时更可能提供帮助。研究还发现,在场人数越多,受害者得到帮助的可能性越小。拉塔尼和罗丁(1969)进行了一项实验研究。让参加实验的被试听到隔壁办公室里以为女士从椅子上重重摔下来的声音并大声呻吟:“哎呀,我的天呐!我的脚……我……我……不能动……它。哎呀,我的裸骨。我……拿不开……这个……东西。”事情的全部过程大约持续两分钟。观察被试在不同情境中的反应。第一种情境下,被试单独在场,结果又70%的被试去帮助受害者;第二种情境下,事情发生时有两个陌生人在场,结果又40%的被试去帮助受害者;第三种情境下,被试与一位消极的实验者助手在场,他对被试说不用帮忙,结果只有7%的被试去帮助受害者。那些在这个过程中什么也没做的人,显然认为这件事并不是紧急情况。“只是轻微的扭伤”,有人说。“我不想让她觉得尴尬”,另一些人解释到。这证明了旁观者效应,当了解到注意到紧急情况的人增加时,人们施予帮助的可能性变小,所以对于受害者来说,处于人群中也许是不安全的。在做了这个实验后,拉塔尼和达利都询问被试,在场的他人是否会影响他们?虽然我们已经看到了在场的人所产生的奇妙影响,但被试却总是否认这样的影响。他们只是回答说:“我知道有其他人,但我的所作所为与他们不在时是一样的。”这些答案强化了一个我们熟悉的观点,我们通常其实并不知道自己所作所为的原因。

在我们的现实生活中,大家对于小悦悦事件是否还有丝毫的印象?2011年的某天,只有2岁的小月月先后被两辆车碾压,路过的人就只是路过的人,谁也没有报警、没有呼叫救护车,也没有挽救这条幼稚的生命,反而是一个拾荒阿姨实施救援,这在网络上引起非议。导致事件发生的原因是什么呢?还不是所谓的旁观者效应,难道就说这些人是道德沦丧吗?让我们一起来看看今天的文章吧。那么旁观者效应到底是怎么回事呢?1、现代生活中常见的一种社会心理效应。在我们当代社会中,每一个人都会有不同的心理作用,而在普遍认知里面,救死扶伤是天经地义的事情,可是不救死扶伤就是一种社会沦陷了。而旁观者效应就是加大社会冷漠感的心理效应,让人汗颜,又让人无奈。2、集体冷漠。当一个人发生一件事情,比如我们所举的小悦悦例子来说,因为路过的人很多,他们不是没有看见,只是看见的人很多,大家都产生着一种“我不去救肯定有别人去救”的心理,结果这种责任感开始平分,平分到后来就无人愿意去救了。要如何避免旁观者效应带来的社会道德沦丧1、培养责任感。相信每一个人从小上学开始,就接触课本知识上的助人为乐吧,所以想要避免旁观效应带来的社会道德沦丧,一定要培养一个人的责任感,即使是少数的人存在着这份责任感,也会为这个社会带来一丝光亮的。2、学会帮助别人。其实当别人有困难的时候,很多人肯定是想要去帮助他们的,但是由于自己不好意思或者是害怕别人讹自己,所以现代很多人就算是想要帮助别人都开始思前顾后了,所以要学会理性、正确的帮助别人,这样才能让这个社会的整体风气蒸蒸日上,这个世界才会变得越来越美好。3、学会保护自己。不管是帮助别人还是为了帮助自己,一个人一定要学会保护好自己,对于很小的孩子而言,父母也一定要学会严加看管,不要因为一时疏忽酿成大错,想要社会的整体风气变好,这个世界上每个人都很好的话这个社会也就会变好的。虽然我们的现实生活的确存在着利用别人的善良坑蒙拐的坏人,但是我们也应该始终相信这个世界上还是好人多,所以争取自己也成为其中的一个吧。(责编:钟吉怡 )

每天学点心理学,带你探寻人性深处的秘密

绩效管理的研究与实验论文

摘要: 伴随着信息网络技术高速发展,大数据应用已经成为现如今时代发展的主要特征,通过对大数据应用可以对员工潜力发掘,优化企业组织架构,实现企业人力资源绩效管理的互联网化,提高人力资源管理工作效率。本文针对大数据时代企业人力资源绩效管理创新进行分析,在此基础上提出下文内容,希望能够给与同行业工作人员提供一定的价值参考。

关键词: 大数据;企业;人力资源;管理创新;分析

目前社会已经处于大数据时代,人们生活各个方面也受到大数据影响,尤其是在企业中,人力资源绩效管理也是处于大数据时代,通过实际出现的数据进行绩效分析,对人力资源进行精确控制,绩效不仅关系到企业自身的经济效益,同时也直接关系员工自身实际收益。

一、大数据时代对于人力资源绩效管理的影响分析

1.对于员工自身的潜力发掘分析。对于人力绩效管理而言,在大数据时代背景下最为典型以及突出的作用便是能充分对员工价值进行发掘,这也是企业发展关键所在,然而针对员工潜力发掘工作来说,主要是对数据信息进行相应分析研究,对其内在的联系分析,对员工做出相应分析,对员工基本需求进行了解,充分调动员工积极性性,最终可以制定完善的绩效评估方法,将员工自身潜力充分发掘,对工作效率进行提高。2.对组织架构进行优化。企业人力资源管理的核心内容是要求企业具有完善合理的组织架构,所以通过对组织架构进行优化已经成为了企业人力资源管理的重要内容。在对组织架构优化的同时,大数据时代下也出现一些积极的变化,比较好的针对组织架构做出完善,表现出较为理想扁平化管理方式,提高管理效率。在整个过程中,对各种信息数据资源使用已经成为重要环节,在一定程度上也是大数据时代发展的重要体现。3.提高人才规划水平。对企业人力资源绩效管理工作来说,较为重要的一个目标便是充分对企业内部人才进行利用,发挥出自身积极作用。所以做好人才规划管理显得十分重要。大数据时代背景下的企业发展中,人才规划对企业管理也发挥着重要作用,对企业进行人才规划,能保证企业人才进行科学合理的配置,根据人员不同特点进行有针对性的培养,在一定程度上提高人才在企业发挥的效率,这也是大数据技术为企业人才资源提供的重要服务。4.大数据应用构建合理的人才数据管理方式。对于企业而言,进行人力资源的测评中,通过对数据信息进行使用分析,有效的替代了传统管理人员自身的主观判断,提高考评的合理性以及公正性。通过采取云技术以及移动互联网的支持,企业可以通过探寻数据之间存在的潜在关系,便可以快速的找到以及实现一个有效的人力资源绩效管理方式,保证人力资源管理部门可以有效的摆脱一些繁琐的日常工作事物,根据战略的角度去对绩效管理方案进行改善,对企业人力资源效率进行提高,这样也有利于企业能够形成一个根据绩效作为导向的企业发展文化,并且也可以实现人力资源绩效的持续健康发展。

二、大数据时代背景下企业人力资源绩效管理创新的对策分析

1.必须要提高数据分析。针对于大数据时代下的企业而言去,人力资源绩效管理工作为了能够最大程度上提高应用的价值,不仅仅需要针对具体的管理方式进行相应的研究,同时也是需要根据具体的数据信息进行分析,不断的提高数据信息的内容。通常情况下,企业人力资源绩效管理所涉及到的信息资源主要是包括了以下的几个方面:一是客观的基础数据。主要是针对目前企业运转中所涉及到的人力资源情况,需要根据不同人做好相应的记录工作,最好能够形成一个较为详细的个人简历,为后续相关人力资源管理人员提供使用。二是人力资源存在的变动前情况。主要是涉及到了企业人力资源招聘或者是重新分配等各个对于企业人力资源出现变化的`内容做出相应调节,从而提高管理人员对企业岗位以及人员的了解,对管理效果进行提高。三是人力资源质量情况。企业中各个人力资源对于企业的贡献做出相应的分析,企业管理人员对人力资源的满意程度进行分析,此外也需要对数据调查给与重点关注。

2.创新人力资源绩效措施分析。一是需要创新绩效考评方法。传统企业在进行绩效考评过程中,通常情况下将会采取导向或者是结果导向等方式,对于这些方式而言,虽然是可以发挥出考评的作用,但是并不是完善的,所以在大数据的背景下,绩效考评工作必须要能够做到创新,采取综合性的绩效考评方法,具有着比较高的全面性以及可靠性。二是需要规范绩效考评指标。针对于绩效考评工作而言,在进行实施过程中具体指标体系也是较为重要的,一个完善的指标体系可以在最大程度上去提高考评合理性,这一点对于个各项数据信息的收集是存在着较为重要作用。三是需要合理的采用360度的考评方法。在企业人力资源绩效考评的过程中,可以采取360度考评的方法,这种方法为一种全视角方法,通过这种方法利用可以提高其测评全面性以及系统性。此外这种绩效考评方法也是具有着较为突出便捷性以及同步性,借助于互联网进行分析,有效降低任务量。

三、总结

通过对上述的内容进行分析研究后可以得出,企业人力资源绩效管理工作在大数据时代的背景下,所表现出的新发展趋势以及增长点,特别是对于绩效的考评以及人力资源管理创新而言,都是体现出十分重要的意义以及价值,是值得相关管理人员对其给予高度的重视,逐渐的去提高大数据应用的整体深度。

参考文献:

[1]王佳仁.基于“互联网+”和大数据时代现代企业人力资源管理的创新[J].黑龙江科学,2016,(05):152~153.

[2]高亚超.大数据时代安徽省中小企业人力资源管理的创新模式研究[J].湖北文理学院学报,2016,(11):75~80.

[3]贾建锋,唐贵瑶,李俊鹏,王文娟,单翔.高管胜任特征与战略导向的匹配对企业绩效的影响[J].管理世界,2015,(02):120~132.

相关百科
热门百科
首页
发表服务