论文投稿百科

监测系统单片机论文文献

发布时间:2024-07-07 04:54:29

监测系统单片机论文文献

参考文献1 张琳娜,刘武发.传感检测技术及应用.中国计量出版社,19992 沈德金,陈粤初.MCS-51系列单片机接口电路与应用程序实例.北京航空航天大学出版社,19903 胡汉才.单片机原理及接口技术.清华大学出版社,19964 李志全等.智能仪表设计原理及应用.国防工业出版社, 何立民.MCS-51系列单片机应用系统设计.北京航空航天大学出版社,1990.16 李建民.单片机在温度控制系统中的应用.江汉大学学报, 张毅刚、彭喜元、姜守达、乔立岩.新编MCS-51系列单片机应用设计.哈尔滨工业大学出版社, 潘其光.常用测温仪表技术问答.国防工业出版社,19899 杨世成.信号放大电路.电子工业出版社,199510 高光天.仪表放大器应用.科学出版社,199511 潘立民,王燕芳.微型计算机控制技术.人民邮电出版社,199012 邵敏权,刘刚.单片机原理实验及应用.吉林科学技术出版社, 陈汝全.实用微机与单片机控制技术.电子科技大学出版社, 王森.仪表使用数据手册.化学工业出版社, 李华. MCS-51系列单片机应用接口技术.北京航空航天大学出版,199316 何希才,虹敏.传感器应用接口电路.机械工业出版社,1997年17 杨中华、汪蕙、刘润生.模拟集成电路的自动综合方法.科学出版,199918 <美>M考夫曼、AH塞德.电子计算手册.国防工业出版社,198519刘笃仁、韩保君.传感器原理及应用技术。机械工业出版社, 于微波、林晓梅、刘俊萍.微型机算计控制系统.吉林人民出版社, 童诗白.模拟电子技术基础。高等教育出版社,200122 杨振江等.智能仪器与数据采集系统中的新器件及应用.西安电子科技大学出版社, 周航慈.单片机应用程序设计.北京航空航天大学出版社,王毅.单片机器件应用手册.人民邮电出版社,199425 <美>M考夫曼、AH塞德.电子计算手册.国防工业出版社,198526 杨振江等.智能仪器与数据采集系统中的新器件及应用.西安电子科技大学出版社,

陈国先,语音芯片与PIC单片机的应用接口[J].福建信息技术教育,2005。李海涛,关于如何提高单片机系统可靠性的探讨[J].宁夏机械,2005,(3).彭同明,杨少华,“单片机原理及应用”课程改革的分析[J].武汉电力职业技术学院学报,2004。

你看几本就够了,这么多你是看不完的

中国期刊全文数据库 共找到 4 条[1]黄家升. 基于IAP的单片机软件远程升级[J]. 舰船电子对抗, 2007,(03) . [2]杨美仙. 单片机的发展及其应用[J]. 科技信息(学术研究), 2007,(35) . [3]陈寿元. 单片机多机通信网络改进及数据通信容错技术[J]. 山东师范大学学报(自然科学版), 2006,(02) . [4]栗欣,周东辉,孙晓苗,李立. 单片机程序远程升级的设计[J]. 微计算机信息, 2006,(32) . 中国期刊全文数据库 共找到 10 条[1]张志利,张晓峰,朱力. FPGA的单片机多机串行通信网络[J]. 单片机与嵌入式系统应用, 2009,(03) . [2]姚晓光. 基于GPRS的单片机固件升级系统设计[J]. 单片机与嵌入式系统应用, 2010,(06) . [3]李辉,宁祎,邓遵义. SPCE061A单片机程序存储器的扩展技术[J]. 机电产品开发与创新, 2008,(04) . [4]向鹏,李绣峰,杜遥雪. 分布式全电动注塑机控制系统[J]. 机械与电子, 2007,(05) . [5]李俊,王金海. 基于TFTP协议的ARM软件远程更新系统[J]. 工矿自动化, 2010,(07) . [6]朱飞龙,杨鸣. 基于IAP功能单片机的远程更新系统设计[J]. 机电工程, 2010,(09) . [7]杨峰,张德跃. 一种使用双簇首的分簇路由协议的研究[J]. 山东师范大学学报(自然科学版), 2007,(03) . [8]周茂霞. 基于Windows API函数编程的PC机与单片机多机通信的实现[J]. 山东师范大学学报(自然科学版), 2007,(03) . [9]向鹏,李绣峰,杜遥雪. 全电动注射成型机控制系统设计[J]. 塑料, 2007,(02) . [10]张志利. 基于RS232协议的单片机多机通信网络研究[J]. 自动化技术与应用, 2009,(04) . 中国优秀硕士学位论文全文数据库 共找到 6 条[1]杨秀栋. SOC的存储器IP嵌入技术研究[D]. 电子科技大学, 2008 . [2]曾永龙. 冶金除尘风机状态监测与故障诊断系统研究[D]. 武汉科技大学, 2008 . [3]曹鹏. 基于M30626FJPGP芯片汽车音响系统设计[D]. 大连海事大学, 2008 . [4]程龙飞. 多参数综合可靠性加速试验环境测控系统的研究[D]. 浙江大学, 2010 . [5]任红文. 加速器高频自动频率调谐系统的设计与实现[D]. 兰州大学, 2010 . [6]季雪峰. 智能模拟信号采集卡的设计与实现[D]. 复旦大学, 2010 .

单片机温度监测系统毕业论文

第一章 绪论 1. 1 选题背景 防潮、防霉、防腐、防爆是仓库日常工作的重要内容,是衡量仓库管理质量的重要指标。它直接影响到储备物资的使用寿命和工作可靠性。为保证日常工作的顺利进行,首要问题是加强仓库内温度与湿度的监测工作。但传统的方法是用与湿度表、毛发湿度表、双金属式测量计和湿度试纸等测试器材,通过人工进行检测,对不符合温度和湿度要求的库房进行通风、去湿和降温等工作。这种人工测试方法费时费力、效率低,且测试的温度及湿度误差大,随机性大。因此我们需要一种造价低廉、使用方便且测量准确的温湿度测量仪。1.2 设计过程及工艺要求 一、基本功能~ 检测温度、湿度~ 显示温度、湿度~ 过限报警 二、主要技术参数 ~ 温度检测范围 : -30℃-+50℃~ 测量精度 : ℃~ 湿度检测范围 : 10%-100%RH~ 检测精度 : 1%RH~ 显示方式 : 温度:四位显示 湿度:四位显示~ 报警方式 : 三极管驱动的蜂鸣音报警 第二章 方案的比较和论证 当将单片机用作测控系统时,系统总要有被测信号懂得输入通道,由计算机拾取必要的输入信息。对于测量系统而言,如何准确获得被测信号是其核心任务;而对测控系统来讲,对被控对象状态的测试和对控制条件的监察也是不可缺少的环节。传感器是实现测量与控制的首要环节,是测控系统的关键部件,如果没有传感器对原始被测信号进行准确可靠的捕捉和转换,一切准确的测量和控制都将无法实现。工业生产过程的自动化测量和控制,几乎主要依靠各种传感器来检测和控制生产过程中的各种参量,使设备和系统正常运行在最佳状态,从而保证生产的高效率和高质量。2. 1温度传感器的选择 方案一:采用热电阻温度传感器。热电阻是利用导体的电阻随温度变化的特性制成的测温元件。现应用较多的有铂、铜、镍等热电阻。其主要的特点为精度高、测量范围大、便于远距离测量。铂的物理、化学性能极稳定,耐氧化能力强,易提纯,复制性好,工业性好,电阻率较高,因此,铂电阻用于工业检测中高精密测温和温度标准。缺点是价格贵,温度系数小,受到磁场影响大,在还原介质中易被玷污变脆。按IEC标准测温范围-200~650℃,百度电阻比W(100)=时,R0为100Ω和10Ω,其允许的测量误差A级为±(℃+ |t|),B级为±(℃+ |t|)。铜电阻的温度系数比铂电阻大,价格低,也易于提纯和加工;但其电阻率小,在腐蚀性介质中使用稳定性差。在工业中用于-50~180℃测温。 方案二:采用AD590,它的测温范围在-55℃~+150℃之间,而且精度高。M档在测温范围内非线形误差为±℃。AD590可以承受44V正向电压和20V反向电压,因而器件反接也不会损坏。使用可靠。它只需直流电源就能工作,而且,无需进行线性校正,所以使用也非常方便,借口也很简单。作为电流输出型传感器的一个特点是,和电压输出型相比,它有很强的抗外界干扰能力。AD590的测量信号可远传百余米。综合比较方案一与方案二,方案二更为适合于本设计系统对于温度传感器的选择。 2. 2 湿度传感器的选择 测量空气湿度的方式很多,其原理是根据某种物质从其周围的空气吸收水分后引起的物理或化学性质的变化,间接地获得该物质的吸水量及周围空气的湿度。电容式、电阻式和湿涨式湿敏原件分别是根据其高分子材料吸湿后的介电常数、电阻率和体积随之发生变化而进行湿度测量的。方案一:采用HOS-201湿敏传感器。HOS-201湿敏传感器为高湿度开关传感器,它的工作电压为交流1V以下,频率为50HZ~1KHZ,测量湿度范围为0~100%RH,工作温度范围为0~50℃,阻抗在75%RH(25℃)时为1MΩ。这种传感器原是用于开关的传感器,不能在宽频带范围内检测湿度,因此,主要用于判断规定值以上或以下的湿度电平。然而,这种传感器只限于一定范围内使用时具有良好的线性,可有效地利用其线性特性。方案二:采用HS1100/HS1101湿度传感器。HS1100/HS1101电容传感器,在电路构成中等效于一个电容器件,其电容量随着所测空气湿度的增大而增大。不需校准的完全互换性,高可靠性和长期稳定性,快速响应时间,专利设计的固态聚合物结构,由顶端接触(HS1100)和侧面接触(HS1101)两种封装产品,适用于线性电压输出和频率输出两种电路,适宜于制造流水线上的自动插件和自动装配过程等。相对湿度在1%---100%RH范围内;电容量由16pF变到200pF,其误差不大于±2%RH;响应时间小于5S;温度系数为 pF/℃。可见精度是较高的。综合比较方案一与方案二,方案一虽然满足精度及测量湿度范围的要求,但其只限于一定范围内使用时具有良好的线性,可有效地利用其线性特性。而且还不具备在本设计系统中对温度-30~50℃的要求,因此,我们选择方案二来作为本设计的湿度传感器。2. 3 信号采集通道的选择 在本设计系统中,温度输入信号为8路的模拟信号,这就需要多通道结构。方案一、采用多路并行模拟量输入通道。这种结构的模拟量通道特点为:(1) 可以根据各输入量测量的饿要求选择不同性能档次的器件。总体成本可以作得较低。(2) 硬件复杂,故障率高。(3) 软件简单,各通道可以独立编程。方案二、采用多路分时的模拟量输入通道。 这种结构的模拟量通道特点为:(1) 对ADC、S/H要求高。(2) 处理速度慢。(3) 硬件简单,成本低。(4) 软件比较复杂。综合比较方案一与方案二,方案二更为适合于本设计系统对于模拟量输入的要求,比较其框图,方案二更具备硬件简单的突出优点,所以选择方案二作为信号的输入通道。本文来源于:

已把我毕业论文的一部分发给你了,应该是你想要的。还需要其它的说一声

价格合理!信工毕业 就会单片机

单片机空气检测系统本科论文

看来有一款芯片很符合上述要求 DS18B20 其端口全数字化,精度°,范围-127~127 并且各芯片只要一根数据线,同时根据芯片特性可以多芯片并联,通过穿行地址识别,这样多用几个IO口,没个IO口上再并几个温度传感器,就OK了,至于显示,那可以用最简单的数码管,一是显示当前传感器号,而来是现实传感器温度,如果用液晶显示器的话,可以多路同时显示...

本设计是基于单片机的气象监测系统,主要实现以下功能:可通过LCD1602显示温湿度和空气质量;可通过按键调整温湿度阈值和空气质量最大值;可通过ADC0832将MQ-135检测到的模拟量转换成数字量;可通过蜂鸣器和LED进行声光报警。标签:51单片机、LCD1602、ADC0832、MQ-135、DHT11

智能化多路串行数据采集/传输模块的设计广州市光机电工程研究中心 行联合 广州市方统生物科技有限公司 关 强引言 随着电子技术的不断发展,目前对各种物理量的检测和控制都可得以实现。微机检测控制系统不仅运用到航天航空、机器人技术、纺织机械、食品加工等工业过程控制,而且已经成为日常各种家用电器当中的主要组成部分。其中,A/D(模拟数字转换)设备起着十分重要的作用。这样,一个系统中就会需要更多的A/D设备。一般是用扩展一块或多块A/D采集卡的方法去实现。当模拟量较少或是温度、压力等缓变信号场合,采用总线型A/D卡并不是最合适、最经济的方案。这里介绍一种以AT89C2051单片机为核心,采用TLC2543L 12位串行A/D转换器构成的采样模块,该模块的采样数据由单片机串口经电平转换后送到上位机(PC机)的串口COM1或COM2,形成一种串行数据采集串行数据传输的方式。主要元件功能介绍AT89C2051单片机AT89C2051是ATMEL公司推出的一种性能价格比极高的 8位单片机,其指令系统与MCS-51系列完全兼容。引脚排列如图1所示。TLC2543L串行A/D转换器 TLC2543L 采用SPI串行接口总线,SPI串行接口总线由Motorola公司提出,它是一种三线同步接口,分别为同步信号、输入信号和输出信号。另外芯片还有一根片选线,单片机通过片选线选通TLC2543L。其中,CLK为同步时钟脉冲,CS为片选线,DIN为单片机的数据输出和TLC2543L的数据输入线,DOUT为单片机的数据输入线和TLC2543L的数据输出线。图2为TLC2543L时序图。TLC2543L 是全双工的,即数据的发送和接收可同时进行。如果只是对TLC2543L写数据,单片机可以丢弃同时读入的数据;反之,如果只读数据,可以在命令字节后,写入任意数据。数据传送以字节为单位,并采用高位在前的格式。模块采用TI公司的TLC2543L 12位串行A/D转换器,使用开关电容逐次逼近法完成A/D转换过程。串行输入结构,能够大大节省51系列单片机I/O资源,且价格适中。其特点有: (1) 11个模拟输入通道; (2) 转换时间10 s;(3) 12位分辨率A/D转换器;(4) 3路内置自测试方式;(5) 采样率为66kbps;(6) 线性误差+1LSB(max)(7) 有转换结束(EOC)输出;(8) 具有单、双极性输出;(9) 可编程的MSB或LSB前导;(10)可编程的输出数据长度。 TLC2543L的引脚排列如图3所示。图3中AIN0~AIN10为模拟输入端; 为片选端;DIN 为串行数据输入端;DOUT为A/D转换结果的三态串行输出端;EOC为转换结束端;CLK为I/O时钟;REF+为正基准电压端;REF-为负基准电压端;VCC为电源;GND为地。电平转换器MAX232C MAX232C为RS-232收发器,简单易用,单+5V电源供电,仅需外接几个电容即可完成从TTL电平到RS-232电平的转换,引脚排列如图4所示。硬件设计 硬件电路如图5所示。单片机AT89C2051是整个系统的核心,TLC2543L对输入的模拟信号进行采集,转换结果由单片机通过(9脚)接收,AD芯片的通道选择和方式数据通过(8脚)输入到其内部的一个8位地址和控制寄存器,单片机采集的数据通过串口(3、2脚)经MAX232C转换成RS232电平向上位机传输。 单片机软件设计单片机程序主要包括串行数据采集/传输模块的系统信息、通道数、采集周期和通讯协议定义,以及数据采集和传输的标准子程序。TLC2543L的通道选择和方式数据为8位,其功能为:D7、D6、D5和D4用来选择要求转换的通道,D7D6D5D4=0000时选择0通道,D7D6D5D4=0001时选择1通道,依次类推;D3和D2用来选择输出数据长度,本程序选择输出数据长度为12位,即D3D2=00或D3D2=10;D1,D0选择输入数据的导前位,D1D0=00选择高位导前。TLC2543L在每次I/O周期读取的数据都是上次转换的结果,当前的转换结果在下一个I/O周期中被串行移出。第一次读数由于内部调整,读取的转换结果可能不准确,应丢弃。数据采集程序如下:sbit DATAIN=P1^1;sbit CLOCK=P1^0;sbit DATAOUT=P1^2;sbit CS=P1^3;bit datain_a_bit0(){ bit m=0;DATAOUT=1;m=DATAOUT;DATAIN=0;Nop();CLOCK=1;Nop();CLOCK=0;Return(m); }bit datain_a_bit1(){ bit m=0;DATAOUT=1;m=DATAOUT;DATAIN=1;Nop();CLOCK=1;Nop();CLOCK=0;Return(m); }单片机通过编程产生串行时钟,并按时序发送与接收数据位,完成通道方式/通道数据的写入和转换结果的读出,程序如下:unsigned int Tlc2543L(unsigned char ch){unsigned char i,chch=0;
unsigned int xdata xxx=0;
unsigned int xdata y=0;
CS=0;
Chch=ch<<4;
Y=chch;
Y<<=8;
I=0;
While(I<12)
{if((y&0x8000)==0)
{if(datain_a_bit0()==0) xxx&=0xfffe;
else xxx|=0x0001;
if(I!=11) xxx<<=1;
}else{if(datain_a_bit1()==0) xxx&=0xfffe;
else xxx|=0x0001;
if(I!=11) xxx<<=1;
}y<<=1;I+=1;}CS=1;Return(xxx);}串行数据传输模块包括串行口初始化子程序和数据传输子程序,各子程序分别如下。其中数据传输采用查询方式,也可以方便地改为中断方式。Void rs232init(){TMOD=0x20;
TH1=0xfd;
TR1=1;
SCON=0x50;
}void receandtran(){unsigned char da;
while(!RI)
RI=0;
Da=SBUF;
SBUF==da;
While(!TI);
TI=0;
}上位机接收数据所用C语言程序包括初始化子程序和接收子程序。各子程序分别如下:void cominit(void) {outportb(0x3fb,0x80); outportb(0x3f8,0x18); /与单片机波特率一致为9600bps*/outportb(0x3f9,0x00); outportb(0x3fb,0x03); /8位数据位,1位停止位,无奇偶校验*/outportb(0x3fc,0x03); /*Modem控制寄存器设置,使DTR和RTS输出有效*/outportb(0x3f9,0x00); /*设置中断允许寄存器,禁止一切中断*/}void data_rece(void) /*查询方式接收数据子程序*/{while(!kbhit()){while(!(inportb(0x3fd)&0x01));/*若接收寄存器为空,则等待*/printf("%x ",inportb(0x3f8)); /*读取结果并显示*/}getch();}智能化串行采集/传输模块在PCR仪中的应用在PCR仪的电路设计中,因需要检测的信号很多,包括热盖的温度检测,散热器的温度检测,腔体内部的温度检测,气流的温度检测,光信号的检测等等,为了简化电路,节约成本,减小体积,在选择A/D转换电路时选用了SPI总线的TLC2543,该芯片有多达11路的模拟信号输入端,完全满足PCR仪电路设计的需要,一个芯片既能完成检测多个信号的功能,又能节约单片机的资源,图6是其硬件原理图。结论 本文所述的智能化串行数据模块,可直接用于任何微机控制和检测系统中以取代原来的模数转换设计。经过实践检验,该模块功耗低、采样精度高、可靠性好、接口简便,有很高的实用价值。该智能模块的软件和硬件成功应用于生命科学仪器“热循环仪”的设计和实践中,使用方便,简单可行,节约成本,能够满足大多数数据采样的应用场合。资料来源:

<

基于单片机的温湿度检测系统论文

这是我自己用DS18B20做的温度检测程序,复制给你看看,我这是通过串口可以在电脑上的串口助手上显示出实时的温度:#include<>#include<>#define uint unsigned int#define uchar unsigned charsbit ds=P1^0;bit flag;uchar count_t0;float f_temp;void delay(uint z){uint x,y;for(x=z;x>0;x--)for(y=122;y>0;y--);}void init() // 串口初始化{TMOD=0x21;SCON=0x50;TH0=0x4c;TL0=0x00;TH1=0xf3;TL1=0xf3;EA=1;ET0=1;TR0=1;TR1=1;}void timer0() interrupt 1{TH0=0x4c;TL0=0x00;if(++count_t0>=20){count_t0=0;flag=1;}}void dsreset(){uint i;ds=0;i=103;while(i>0)i--;ds=1;i=4;while(i>0)i--;}bit read_bit(){uint i;bit dat;ds=0;i++;ds=1;i++;i++;dat=ds;i=8;while(i>0)i--;return dat;}uchar read_byte(){uchar i,j,dat;dat=0;for(i=1;i<=8;i++){j=read_bit();dat=(j<<7)|(dat>>1);}return dat;}void write_byte(uchar dat){uint i;uchar j;bit testb;for(j=1;j<=8;j++){testb=dat&0x01;dat=dat>>1;if(testb){ds=0;i++;i++;ds=1;i=8;while(i>0)i--;}else{ds=0;i=8;while(i>0)i--;ds=1;i++;i++;}}}void begin_change(){dsreset();delay(1);write_byte(0xcc);write_byte(0x44);}float get_temp(){uchar a,b;uint temp;float f_temp;dsreset();delay(1);write_byte(0xcc);write_byte(0xbe);a=read_byte();b=read_byte();temp=b;temp<<=8;temp=temp|a;f_temp=temp*;temp=f_temp*10+;f_temp=f_temp+;return f_temp;}void main(){init();while(1){if(flag==1){flag=0;begin_change();TI=1;printf("The tempeature is %f\n",get_temp());while(!TI);TI=0;}}}

200元 你贱卖啊?我还是比较相信一分钱一分货的

本科生有啥钱啊,楼上的,这点钱也想赚。。。既然是本科毕业设计,那还是老老实实自己做吧,也算对自己有个交代

“温度控制系统”应该是一个可以恒温的系统,或者根据一定的情况(时间等)实时的进行调整,那么这肯定就需要一个温度检测器件(一般温度要求不高的话可以考虑用18B20芯片或者精度高点的AD590),然后是温度增减的执行部分(比如空调的制冷和制热控制,最简单的是电风扇的风速控制),这是一个闭环控制,如果需要控制的量比较少,而且想省钱的话就用普通的51系列单片机就OK了,祝你成功!

最新基于单片机空气检测系统论文

摘要本设计的温度测量计加热控制系统以AT89S52单片机为核心部件,外加温度采集电路、键盘显示电路、加热控制电路和越限报警等电路。采用单总线型数字式的温度传感器DSI8B20,及行列式键盘和动态显示的方式,以容易控制的固态继电器作加热控制的开关器件。本作品既可以对当前温度进行实时显示又可以对温度进行控制,以使达到用户需要的温度,并使其恒定再这一温度。人性化的行列式键盘设计使设置温度简单快速,两位整数一位小数的显示方式具有更高的显示精度。建立在模糊控制理论控制上的控制算法,是控制精度完全能满足一般社会生产的要求。通过对系统软件和硬件设计的合理规划,发挥单片机自身集成众多系统及功能单元的优势,再不减少功能的前提下有效的降低了硬件的成本,系统操控更简便。实验证明该温控系统能达到℃的静态误差,℃的控制精度,以及只有%的超调量,因本设计具有很高的可靠性和稳定性。关键词:单片机 恒温控制 模糊控制引言温度是工业控制中主要的被控参数之一,特别是在冶金、化工、建材、食品、机械、石油等工业中,具有举足重轻的作用。随着电子技术和微型计算机的迅速发展,微机测量和控制技术得到了迅速的发展和广泛的应用。 采用单片机来对温度进行控制,不仅具有控制方便、组态简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标,从而能够大大提高产品的质量和数量。MSP430系列单片机具有处理能强、运行速度快、功耗低等优点,应用在温度测量与控制方面,控制简单方便,测量范围广,精度较高。温度传感器将温度信息变换为模拟电压信号后,将电压信号放大到单片机可以处理的范围内,经过低通滤波,滤掉干扰信号送入单片机。在单片机中对信号进行采样,为进一步提高测量精度,采样后对信号再进行数字滤波。单片机将检测到的温度信息与设定值进行比较,如果不相符,数字调节程序根据给定值与测得值的差值按PID控制算法设计控制量,触发程序根据控制量控制执行单元。如果检测值高于设定值,则启动制冷系统,降低环境温度;如果检测值低于设定值,则启动加热系统,提高环境温度,达到控制温度的目的。图形点阵式液晶可显示用户自定义的任意符号和图形,并可卷动显示,它作为便携式单片机系统人机交互界面的重要组成部分被广泛应用于实时检测和显示的仪器仪表中。支持汉字显示的图形点阵液晶在现代单片机应用系统中是一种十分常用的显示设备,汉字BP机、手机上的显示屏就是图形点阵液晶。它与行列式小键盘组成了现代单片机应用系统中最常用的人机交互界面。本文设计了一种基于MSP430单片机的温度测量和控制装置,能对环境温度进行测量,并能根据温度给定值给出调节量,控制执行机构,实现调节环境温度的目的。━、硬件设计1:MSP430系列单片机简介及选型单片机即微控制器,自其开发以来,取得了飞速的发展。单片机控制系统在工业、交通、医疗等领域的应用越来越广泛,在单片机未开发之前,电子产品只能由复杂的模拟电路来实现,不仅体积大,成本高,长期使用后元件老化,控制精度大大降低,单片机开发以后,控制系统变为智能化了,只需要在单片机外围接一点简单的接口电路,核心部分只是由人为的写入程序来完成。这样产品体积变小了,成本也降低了,长期使用也不会担心精度达不到了。特别是嵌入式技术的发展,必将为单片机的发展提供更广阔的发展空间,近年来,由于超低功耗技术的开发,又出现了低功耗单片机,如MSP430系列、ZK系列等,其中的MSP430系列单片机是美国德州仪器(TI)的一种16位超低功耗单片机,该单片机

200元 你贱卖啊?我还是比较相信一分钱一分货的

我做的课程设计,用的数码管,也做了protues仿真,你有需要的话,我邮箱是。希望对你有帮助,#include<>sbit P11=P1^1;sbit P12=P1^2;sbit P13=P1^3;sbit P14=P1^4;/////数码管1断码控制///////////////sbit P15=P1^5;sbit P16=P1^6;sbit P17=P1^7;sbit P32=P3^2;/////数码管2段码控制////////////////sbit up=P3^7;sbit down=P3^6; ////按键操作端口//////////////////sbit P35=P3^5; ////////控制晶闸管端口/////////sbit DQ =P3^3; ///////温度传感器端口///////// #define THCO 0xee#define THLO 0x00unsigned char code duan[]={ 0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0XD8,0x80,0x90,0x88,}; //////////////////////////////////////////int b=0;char pwm=0;int k;char r=0,q=0;static char wendu_1;char hao=20;//////////////////////////////////////////////void delay(unsigned int i){while(i--);}//////////////////////////////////////////Init_DS18B20(void){unsigned char x=0;DQ = 1; //DQ复位delay(8); //稍做延时DQ = 0; //单片机将DQ拉低delay(80); //精确延时 大于 480usDQ = 1; //拉高总线delay(14);x=DQ; //稍做延时后 如果x=0则初始化成功 x=1则初始化失败delay(20);}////////////////////////////////////////////ReadOneChar(void){unsigned char i=0;unsigned char dat = 0;for (i=8;i>0;i--){DQ = 0; // 给脉冲信号dat>>=1;DQ = 1; // 给脉冲信号if(DQ)dat|=0x80;delay(4);}return(dat);}////////////////////////////////////////////////WriteOneChar(unsigned char dat){unsigned char i=0;for (i=8; i>0; i--){DQ = 0;DQ = dat&0x01;delay(5);DQ = 1;dat>>=1;}//delay(4);}/////////////////////////////////////////////////DS18B20程序读取温度ReadTemperature(void){unsigned char a=0;unsigned char b=0;unsigned int t=0;float tt=0;Init_DS18B20();WriteOneChar(0xCC); // 跳过读序号列号的操作WriteOneChar(0x44); // 启动温度转换Init_DS18B20();WriteOneChar(0xCC); //跳过读序号列号的操作WriteOneChar(0xBE); //读取温度寄存器等(共可读9个寄存器) 前两个就是温度a=ReadOneChar();b=ReadOneChar();t=b;t<<=8;t=t|a;tt=t*;return(t);}xianshi(){/////////////////当前温度显示///////////////////////////// P11=1; P0=duan[wendu_1/1000]; for(k=0;k<1000;k++); P1=0;P12=1; P0=duan[wendu_1/100%10]; for(k=0;k<1000;k++); P1=0;P13=1; P0=duan[wendu_1%100/10]; for(k=0;k<1000;k++); P1=0;P14=1; P0=duan[wendu_1%10]; for(k=0;k<1000;k++); P1=0; ///////////////////////////目标电压显示/////////////// P15=1; P2=duan[hao/1000]; for(k=0;k<1000;k++); P1=0;P16=1; P2=duan[hao/100%10]; for(k=0;k<1000;k++); P1=0;P17=1; P2=duan[hao%100/10]; for(k=0;k<1000;k++); P1=0;P32=1; P2=duan[hao%10]; for(k=0;k<1000;k++); P32=0;////////////////////////////////////////////////////////// }/////////////////////////////////////////////////////////// main(void){ P11=0; P12=0; P13=0; P14=0; P15=0; P16=0; P17=0; P32=0; P35=0; /////////////////////////////////////////////////////////// while(1){ wendu_1=ReadTemperature()/16;//读温度 xianshi(); ///显示系统数据/////////////////////////////////////操作函数//////////////////////////////////// if(down==0) {hao--;} if(up==0){hao++;} ///////////////////////////////////////////////////////////////////hao为理想温度/////wendu_1为实际环境温度/////////////////////////////////////////////////////////////////P35为高时 led灯工作///////////////////////////////////// P35=0; pwm=hao-wendu_1; if(pwm>0) {P35=1;} if(pwm<0) {P35=0;} if(pwm==0) {P35=0;}///////////////////////////////////////////////////////////////// }}

近几年单片机得到了飞速的发展,单片机最明显的优势就是可以嵌入到各种仪器、设备中。下面是我精心推荐的一些单片机技术论文题目,希望你能有所感触! 单片机技术论文题目 1. 智能压力传感器系统设计 2. 智能定时器 3. 液位控制系统设计 4. 液晶控制模块的制作 5. 嵌入式激光打标机运动控制卡软件系统设计 6. 嵌入式激光打标机运动控制卡硬件系统设计 7. 基于单片机控制的数字气压计的设计与实现 8. 基于MSC1211的温度智能温度传感器 9. 机器视觉系统 10. 防盗与恒温系统的设计与制作 11. 防盗报警器 12. AT89S52单片机实验系统的开发与应用 13. 在单片机系统中实现SCR(可控硅)过零控制 14. 微电阻测量系统 15. 基于单片机的电子式转速里程表的设计 16. 基于GSM短信模块的家庭防盗报警系统 17. 公交车汉字显示系统 18. 基于单片机的智能火灾报警系统 19. WIN32环境下对PC机通用串行口通信的研究及实现 20. FIR数字滤波器的MATLAB设计与实现方法研究 21. 无刷直流电机数字控制系统的研究与设计 22. 直线电机方式的地铁模拟地铁系统制作 23. 稳压电源的设计与制作 24. 线性直流稳压电源的设计 25. 基于CPLD的步进电机控制器 26. 全自动汽车模型的设计制作 27. 单片机数字电压表的设计 28. 数字电压表的设计 29. 计算机比值控制系统研究与设计 30. 模拟量转换成为数字量的红外传输系统 31. 液位控制系统研究与设计 32. 基于89C2051 IC卡读/写器的设计 33. 基于单片机的居室安全报警系统设计 34. 模拟量转换成为数字量红外数据发射与接收系统 35. 有源功率因数校正及有源滤波技术的研究 36. 全自动立体停车场模拟系统的制作 37. 基于I2C总线气体检测系统的设计 38. 模拟量处理为数字量红外语音传输接收系统的设计 39. 精密VF转换器与MCS-51单片机的接口技术 40. 电话远程监控系统的研究与制作 41. 基于UCC3802的开关电源设计 42. 串级控制系统设计 43. 分立式生活环境表的研究与制作(多功能电子万年历) 44. 高效智能汽车调节器 45. 变速恒频风力发电控制系统的设计 46. 全自动汽车模型的制作 47. 信号源的设计与制作 48. 智能红外遥控暖风机设计 49. 基于单片控制的交流调速设计 50. 基于单片机的多点无线温度监控系统 51. 蔬菜公司恒温库微机监控系统 52. 数字触发提升机控制系统 53. 农业大棚温湿度自动检测 54. 无人监守点滴自动监控系统的设计 55. 积分式数字电压表设计 56. 智能豆浆机的设计 57. 采用单片机技术的脉冲频率测量设计 58. 基于DSP的FIR滤波器设计 59. 基于单片机实现汽车报警电路的设计 单片机技术论文 单片机应用技术探究 摘要:近几年单片机得到了飞速的发展,单片机最明显的优势就是可以嵌入到各种仪器、设备中。目前大量的嵌入式系统均采用单片机,本文分析了单片机的形成及发展过程以及当前的技术进展,同时分析了影响单片机系统可靠性的原因,并论述提高单片机可靠性的措施。 关键词:单片机;可靠性技术;发展趋势 中图分类号: C35 文献标识码: A 引言 单片机,亦称单片微电脑或单片微型计算机。它是把中央处理器(CPU)、随机存取存储器(RAM)、只读存储器(ROM)、输入/输出端口(I/0)等主要计算机功能部件都集成在一块集成电路芯片上的微型计算机。现在可以说单片机是百花齐放的时期,世界上各大芯片制造公司都推出了自己的单片机,从8位、16位到32位,数不胜数,应有尽有,它们各具特色,互成互补,为单片机的应用提供广阔的天地。纵观单片机的发展过程,可以预示单片机的发展趋势 。 一 、单片机的应用场合 智能仪器仪表。单片机用于各种仪器仪表,一方面提高了仪器仪表的使用功能和精度,使仪器仪表智能化,同时还简化了仪器仪表的硬件结构,从而可以方便地完成仪器仪表产品的升级换代。如各种智能电气测量仪表、智能传感器等。 机电一体化产品。机电一体化产品是集机械技术、微电子技术、自动化技术和计算机技术于一体,具有智能化特征的各种机电产品。单片机在机电一体化产品的开发中可以发挥巨大的作用。典型产品如机器人、数控机床、自动包装机、点钞机、医疗设备、打印机、传真机、复印机等。 实时工业控制。单片机还可以用于各种物理量的采集与控制。电流、电压、温度、液位、流量等物理参数的采集和控制均可以利用单片机方便地实现。在这类系统中,利用单片机作为系统控制器,可以根据被控对象的不同特征采用不同的智能算法,实现期望的控制指标,从而提高生产效率和产品质量。典型应用如电机转速控制、温度控制、自动生产线等。 家用电器。家用电器是单片机的又一重要应用领域,前景十分广阔。如空调器、电冰箱、洗衣机、电饭煲、高档洗浴设备、高档玩具等。另外,在交通领域中,汽车、火车、飞机、航天器等均有单片机的广泛应用。如汽车自动驾驶系统、航天测控系统、黑匣子还有分布式系统的前端模块等等。 二、分析单片机可靠性限制原因及应对措施 目前,大量的嵌入式系统均采用了单片机,并且这样的应用正在更进一步扩展;但是多年以来人们一直为单片机系统的可靠性问题所困惑。在一些要求高可靠性的控制系统中,这往往成为限制其应用的主要原因。 1.单片机系统的失效分析 一个单片机系统的可靠性是其自身软硬件与其所处工作环境综合作用的结果,因此系统的可靠性也应从这两个方面去分析与设计。对于系统自身而言,能不能在保证系统各项功能实现的同时,对系统自身运行过程中出现的各种干扰信号及直接来自于系统外部的干扰信号进行有效的抑制,是决定系统可靠性的关键。有缺陷的系统往往只从逻辑上去保证系统功能的实现,而对于系统运行过程中可能出现的潜在的问题考虑欠缺,采取的措施不足,在干扰信号真正袭来的时候,系统就可能会陷入困境。 2. 提高可靠性的措施 减少引起系统不可靠或影响系统可靠的外界因素: 1) EFT (Electrical Fast Transient)技术。EFT技术是一种抗干扰技术,它是指在振荡电路的正弦信号受到外界干扰时,其波形上会迭加各种毛刺信号,如果使用施密特电路对其整形,则毛刺会成为触发信号干扰正常的时钟,在交替使用施密特电路和RC滤波电路时, 就可以消除这些毛否则令其作用失效,从而保证系统的时钟信号正常工作。 2) 低噪声布线技术及驱动技术。在传统的单片机中,电源及地线是在集成电路外壳的对称引脚上,一般是在左上、右下或右上、左下的两对对称点上。这样,就使电源噪声穿过整块芯片,对单片机的内部电路造成干扰。现在,很多单片机都把地和电源引脚安排在两条相邻的引脚上。这样,不仅降低了穿过整个芯片的电流,而且在印制电路板上容易布置去耦电容,从而降低系统的噪声。现在为了适应各种应用的需要,很多单片机采用"跳变沿软化技术",从而消除大电流瞬变时产生的噪声。 3) 采用低频时钟。高频外时钟是噪声源之一,不仅能对单片机应用系统产生干扰,而且还会对外界电路产生干扰,令电磁兼容性不能满足要求。对于要求可靠性较高的系统,低频外时钟有利于降低系统的噪声。在一些单片机中采用内部锁相环技术,则在外部时钟较低时,也能产生较高的内部总线速度,从而保证了速度又降低了噪声。 三、单片机的发展趋势 1单片机技术的发展前景及趋势 由于通用型IC的仿冒现象比较严重,因此定制化IC将是未来单片机发展的主要方向。此外,尽管16位、32位单片机市场有所增加,但8位在未来三五年内仍将占主流,只是成长幅度会趋缓。从应用角度讲,盛扬看好消费类电子和家电产品,尤其是中小型家电产品,它属于比较成熟的单片机应用领域;其次是高端领域的车用产品。目前,盛扬已针对汽车周边领域推出系列产品,主要用于汽车防盗、车载电子、信息娱乐、胎压监测、里程表的面板等。 单片机拥有良好的应用前景,但厂商之间的竞争愈演愈烈。因此,对本土企业而言,要想脱颖而出,质量一定要好,同时还要注重产品的环保和可靠性,因为家电和汽车等产品对安全性的要求越来越高;其次,充分发挥本土厂商在特定应用领域的性价比优势。不过,这种性价比必须建立在性能过关、可靠度过关的基础上。 制作工艺CMO化。更小的光刻工艺提高了集成度,从而使芯片更小、成本更低、工作电压更低、功耗更低。CPU的改进。同时,采用双CPU结构,增加数据总线的宽度,提高数据处理的速度和能力;采用流水线结构,提高处理和运算速度,以适应实时控制和处理的需要。增大存储容量,片内EPROM的E2PROM化,程序的保密化,提高并行口驱动能力,以减少外围驱动芯片,增加外围?I/O?口的逻辑功能和控制的灵活性。最后,以串行方式为主的外围扩展;外围电路的内装化;和互联网连接已是一种明显的走向,可靠性及应用水平越来越高。 2微型单片化 现在常规的单片机普遍都是将中央处理器(CPU)、随机存取数据存储(RAM)、只读程序存储器(ROM)、并行和串行通信接口,中断系统、定时电路、时钟电路集成在一块单一的芯片上,增强型的单片机集成了如A/D转换器、PMW(脉宽调制电路)、WDT(看门狗)、有些单片机将LCD(液晶)驱动电路都集成在单一的芯片上,这样单片机包含的单元电路就更多,功能就越强大。甚至单片机厂商还可以根据用户的要求量身定做,制造出具有自己特色的单片机芯片。 此外,现在的产品普遍要求体积小、重量轻,这就要求单片机除了功能强和功耗低外,还要求其体积要小。现在的许多单片机都具有多种封装形式,其中SMD(表面封装)越来越受欢迎,使得由单片机构成的系统正朝微型化方向发展。 3串行扩展技术 在很长一段时间里,通用型单片机通过三总线结构扩展外围器件成为单片机应用的主流结构。随着低价位OTP(One-Time Password)及各种特殊类型片内程序存储器的发展,加之处围接口不断进入片内,推动了单片机“单片”应用结构的发展。特别是I2C、SPI 等串行总线的引入,可以使单片机的引脚设计得更少,单片机系统结构更加简化及规范化。 4、结语 单片机改变了我们生活,纵观我们现在生活的各个领域,从导弹的导航装置,到飞机上各种仪表的控制,从计算机的网络通讯与数据传输,到工业自动化过程的实时控制和数据处理,以及我们生活中广泛使用的各种智能IC卡、电子宠物等,这些都离不开单片机, 单片机有着广阔的应用前景。 参考文献 [1] 张志良; 单片机原理与控制技术; 北京,机械工业出版社,2008 [2] 李广第,朱月秀,王秀山.单片机基础.北京:北京航空航天大学出版社,2002. [3] 胡汉才.单片机原理及系统设计.北京:清华大学出版社,2002. 看了“单片机技术论文题目”的人还看: 1. 电子应用技术论文题目 2. 计算机应用专业毕业论文题目大全 3. 单片机开题报告范文 4. 毕业设计科技论文题目 5. 电子信息工程技术论文题目 6. 大专计算机毕业论文题目

相关百科
热门百科
首页
发表服务