论文投稿百科

羰氨反应研究论文

发布时间:2024-07-07 06:43:50

羰氨反应研究论文

【美拉德反应】又称为“非酶棕色化反应”,是 法国化学家在1912年提出的。所谓美拉德反应是广泛存在于食品工业的一种非酶褐变,是羰基化合物(还原糖类)和氨基化合物(氨基酸和蛋白质)间的反应,经过复杂的历程最终生成棕色甚至是黑色的大分子物质类黑精或称拟黑素,所以又称羰胺反应。【烹饪中的作用】:烹饪过程中,影响菜肴质量的物化变化有很多。美拉德反应是其中极其重要的一种。美拉德反应能使很多菜肴产生美妙的色泽和诱人的香味。但美拉德反应在有些场合是有害的。在炸、烤、煎等烹调方法中,高温长时间加热引起的美拉德反应是形成致癌物质丙烯酞胺的重要途径。

答案如下:美拉德反应中斯特克勒讲解发生是1.美拉德(Maillard)反应是指含羰基(-C=O)的化合物和含氨基(-NH2)的化合物在常温或者加热情况下,发生缩合、聚合反应,生成类黑色素、芳香化合物等多种物质的过程。该反应的产物同样会引起食物色泽和香味的变化。2.糖类即为含羰基的化合物,氨基酸为含氨基的化合物,因此将五花肉放入有白糖的油锅里,糖会和五花肉进一步发生美拉德反应,使五花肉的颜色进一步加深,并产生特殊的香气。3.由于大多数食物中都含有蛋白质和糖,因此在加热过程中都可以发生美拉德反应和焦糖化反应,比如烤红薯、烤面包、烤肉、爆米花等等。食物中氨基酸和糖的种类不同,通过美拉德反应得到的产物也不同,从而产生各种各样的风味。同样是烤着吃,鸡肉、羊肉和牛肉的风味却各不相同。氨基酸种类越多,产生的芳香化合物种类也越多,味道也更丰富。4.虽然美拉德反应在常温下也能进行,但是十分缓慢。一般情况下,美拉德反应速度随加工温度的上升而加快,香味物质也主要在较高温度下反应形成。要想通过美拉德反应改善食物的色泽和香味,必须要达到相当高的温度(一般需要达到140℃-170℃)。而且食物含水量在15%左右的时候,美拉德反应最为活跃。因此,用油煎、炸、炒,或者用烤箱烘烤出来食物,往往比煮或者蒸出来的食物更美味。5.需要特别注意的是,虽然美拉德反应给我们带来了很多美味,但是在反应过程中也会造成氨基酸和糖类一定的损失,使得食物营养价值下降。此外,美拉德反应过程中还可能会产生微量对人体有害的物质。

No.12.2006美拉德反应又称羰氨反应,指含有氨基的化合物和含有羰基的化合物之间经缩合、聚合而生成类黑精的反应。此反应最初是由法国化学家美拉德于1912年在将甘氨酸与葡萄糖混合共热时发现的,故称为美拉德反应。由于产物是棕色的,也被称为褐变反应。反应物中羰基化合物包括醛、酮、还原糖,氨基化合物包括氨基酸、蛋白质、胺、肽。反应的结果使食品颜色加深并赋予食品一定的风味,如:面包外皮的金黄色、红烧肉的褐色以及它们浓郁的香味。但是在反应过程也会使食品中的蛋白质和氨基酸大量损失,如果控制不当也可能产生有毒有害物质。1反应机理[1]对于美拉德反应机理,长期以来研究得还很不彻底。食品化学家Hodge在早年作出了初步的解释,认为美拉德反应可以分成3个反应阶段。目前对于美拉德反应初级、中级阶段机理已经基本明确,但是终级阶段机理还不是很明确。以下用葡萄糖与胺反应说明美拉德反应整个过程。1.1初级阶段还原糖与氨基化合物反应经历了羰氨缩合和分子重排过程。首先体系中游离氨基与游离羰基发生缩合生成不稳定的亚胺衍生物-薛夫碱,它不稳定随即环化为N-葡萄糖基胺。N-葡萄糖基胺在酸的催化下经过阿姆德瑞分子重排生成果糖基胺(1-氨基-1-脱氧-2-酮糖)。初级反应产物不会引起食品色泽和香味的变化,但其产物是不挥发性香味物质的前体成分。1.2中级阶段此阶段反应可以通过3条途径进行。第1条途径:在酸性条件下,果糖基胺进行1,2-烯醇化反应,再经过脱水、脱氨最后生成羟甲基糠醛。羟甲基糠醛的积累与褐变速度密切相关,羟甲基糠醛积累后不久就可发生褐变反应,因此可以用分光光度计测定羟甲基糠醛积累情况作为预测褐变速度的指标。第2条途径:在碱性条件下,果糖基胺进行2,3-烯醇化反应,经过脱氨后生成还原酮类和二羰基化合物。还原酮类化学性质活泼,可进一步脱水再与收稿日期:2006-05-16作者简介:付莉(1979-),女,黑龙江人,硕士,助教,研究方向为食品化学。简述美拉德反应付莉1,李铁刚2(锦州医学院畜牧兽医学院,锦州121001)摘要:综述美拉德反应的概念、反应机理、反应的影响因素、控制反应的条件及其在食品工业上的应用。关键词:美拉德反应;概念;机理;影响因素;食品工业中图分类号:TS201.2文献标识码:B文章编号:1005-9989(2006)12-0009-03ReviewsonmaillardreactionFULi1,LITie-gang2(JinzhouMedicalUniversity,InstituteofAnimalScienceandVeterinaryMedicine,Jinzhou121001)Abstract:Thearticlereviewsthechemistryofmaillardreaction,includingtheconception,theprinciple,thefac-torofinfluence,theconditionofcontrolandtheuseonfoodindustry.Keywords:maillardreaction;conception;principle;thefactorofinfluence;foodindustry专题论述9No.12.2006胺类缩合,或者本身发生裂解成较小分子如二乙酰、乙酸、丙酮醛等。第3条途径:美拉德反应风味物质产生于此途径。在二羰基化合物的存在下,氨基酸发生脱羧、脱氨作用,成为少一个碳的醛,氨基转移到二羰基化合物上,这一反应为斯特勒克降解反应。这一反应生成的羰氨类化合物经过缩合,生成吡嗪类物质。1.3终级阶段此阶段包括两类反应。即醇醛缩合:两分子醛自相缩合,进一步脱水生成更高级不饱和醛;生成类黑精的聚合反应:中级阶段生成产物[葡萄糖酮醛、3-脱氧Osulose(3-DG)、3,4-二脱氧Osulose(3,4-2DG)、HMF、还原酮类及不饱和亚胺类等]经过进一步缩合、聚合形成复杂的高分子色素[3]。2反应的影响因素[1]2.1糖从发生美拉德反应速度上看,糖的结构和种类不同导致反应发生的速度也不同。一般而言,醛的反应速度要大于酮,尤其是α、β不饱和醛反应及α-双羰基化合物;五碳糖的反应速度大于六碳糖;单糖的反应速度要大于双糖;还原糖含量和褐变速度成正比关系。2.2氨基化合物常见的几种引起美拉德反应的氨基化合物中,发生反应速度的顺序为:胺>氨基酸>蛋白质。其中氨基酸常被用于发生美拉德反应,氨基酸的种类、结构不同会导致反应速度有很大的差别,比如:氨基酸中氨基在ε-位或末位这比α-位反应速度快,碱性氨基酸比酸性氨基酸反应速度快。2.3温度温度相差10℃,褐变速度就可相差3~5倍。当温度大于30℃,褐变速度较快;小于20℃,褐变速度较慢。2.4pHpH3~9范围内,随着pH上升,褐变反应速度上升;pH≤3,褐变反应程度较轻微。在偏酸性环境中,反应速率降低。因为在酸性条件下,N-葡萄糖胺容易被水解,而N-葡萄糖胺是Maillard特征风味形成的前体物质。2.5水分含量10%~15%含水量,容易发生褐变;完全干燥的情况下,褐变难以进行。2.6金属离子铜与铁可促进褐变反应,其中三价铁的催化能力要大于二价铁。2.7亚硫酸盐在美拉德反应初期阶段就加入亚硫酸盐可有效抑制褐变反应的发生。主要原因是亚硫酸盐可以和还原糖发生加成反应后再与氨基化合物发生缩合,从而抑制了整个反应的进行。在实际生产过程中,根据产品的需要,要对美拉德反应进行控制。基于以上因素我们可以总结出控制美拉德反应程度的措施:(1)除去一种反应物:可以用相应的酶类,比如葡萄糖转化酶,也可以加入钙盐使其与氨基酸结合成不溶性化合物;(2)降低反应温度或将pH调制偏酸性;(3)控制食品在低水分含量;(4)反应初期加入亚硫酸盐也可以有效控制褐变反应的发生。3美拉德反应在食品工业上的应用3.1美拉德反应与食品色泽美拉德反应赋予食品一定的深颜色,比如面包、咖啡、红茶、啤酒、糕点、酱油,对于这些食品颜色的产生都是我们期望得到的。但有时美拉德反应的发生又是我们不期望的,比如乳品加工过程中,如果杀菌温度控制的不好,乳中的乳糖和酪蛋白发生美拉德反应会使乳呈现褐色,影响了乳品的品质。美拉德反应产生的颜色对于食品而言,深浅一定要控制好,比如酱油的生产过程中应控制好加工温度,防止颜色过深。面包表皮的金黄色的控制,在和面过程中要控制好还原糖和氨基酸的添加量及焙烤温度,防止最后反应过度生成焦黑色。3.2美拉德反应与食品风味通过控制原材料、温度及加工方法,可制备各种不同风味、香味的物质,比如:核糖分别与半胱氨酸及谷胱甘肽反应后会分别产生烤猪肉香味和烤牛肉香味。相同的反应物在不同的温度下反应后,产生的风味也不一样,比如:葡萄糖和缬氨酸分别在100 ̄150℃及180℃温度条件下反应,会分别产生烤面包香味和巧克力香味[5];木糖和酵母水解蛋白分别在90℃及160℃反应会分别产生饼干香味和酱肉香味。加工方法不同,同种食物产生的香气也不同,比如:土豆经水煮可产生125种香气,而经烘烤可产生250种香气;大麦经水煮可产生75种香气,经烘烤可产生150种香气。可见利用美拉德反应可以生产各种不同的香精。目前,主要用于生产肉类香精。肉中的还原糖主要是葡萄糖和核糖,在加工过程中它们和肉中的氨基酸、肽、蛋白质发生美拉德反应形成风味物质。这些风味物质主要是含氮、硫、专题论述10No.12.2006氧的杂环化合物以及其他的含硫化合物,其中包括呋喃、吡嗪、吡咯、噻吩、噻唑、咪唑、吡啶以及环烯硫化物。另外,在美拉德反应的中间产物中有一些二羰基化合物,它们可以进一步和脂质以及硫胺素的降解产物反应,生成具有肉香味的化合物。目前在制备肉味香味料时通常采用含硫的氨基酸如胱氨酸、半胱氨酸以及肽类,含硫氨基酸发生美拉德反应经过斯特勒克尔降解会产生硫化氢和氨,为大量杂环风味物质的形成提供前体物质。同时通过斯特勒克尔降解可产生氨基酮,2分子的氨基酮缩合会产生1分子二氢吡嗪,经过氧化生成吡嗪。烷基吡嗪是一种重要的香味呈味物质[2]。目前国内已经研究出利用美拉德反应制备牛肉、鸡肉、鱼肉香料的生产工艺。艾萍等[10]利用美拉德反应制备了牛肉香味料。宋焕禄[11]利用鸡肉酶解物/酵母抽提物进行美拉德反应来产生肉香味化合物。张彩菊等[6]利用鳙鱼的酶解产物、谷氨酸、葡萄糖、木糖、VB1进行美拉德反应制备鱼味香料。美拉德反应对于酱香型白酒的风味贡献也很大。其中风味物质主要包括呋喃酮、吡喃酮、吡咯、噻吩、吡啶、吡嗪、吡咯等含氧、氮、硫的杂环化合物[7]。3.3抗氧化作用美拉德反应的抗氧化活性是由Franzke和Iwainsky于1954年首次发现的,他们对加入甘氨酸-葡萄糖反应产物的人造奶油的氧化稳定性进行相关报道[9]。直到20世纪80年代,美拉德反应产物的抗氧化性才引起人们的重视,成为研究的热点。研究表明美拉德反应产物中的促黑激素释放素、还原酮、一些含N、S的杂环化合物具有一定的抗氧化活性,某些物质的抗氧化活性可以和合成抗氧化剂相媲美[4]。Lingnert等人的研究发现在弱碱性(pH=7~9)条件下组氨酸与木糖的美拉德反应产物表现出较高的氧化活性,beckel、朱敏等人先后报道在弱酸性(pH=5~7)条件下,精氨酸与木糖的反应产物的抗氧化活性最佳[8]。也有人研究木糖与甘氨酸、木糖与赖氨酸、木糖与色氨酸、二羟基丙酮与组氨酸、二羟基丙酮与色氨酸、壳聚糖和葡萄糖的氧化产物有很好的抗氧化作用[4]。可见美拉德反应产物可以作为一种天然的抗氧化剂。但是目前对美拉德反应产物抗氧化活性的研究还不充分,对其中的抗氧化物质和抗氧化机理还有待人们进一步研究。参考文献:[1]阚建全.食品化学.北京:中国农业大学出版社,2002[2]马相杰,谢华.美拉德反应与肉味变化.肉品工业,2002,(11):8-10[3]蔡妙颜,肖凯军,袁向华.美拉德反应与食品工业.食品工业科技,2003,(7):90-93[4]毛善友,周瑞宝,马宇翔,等.美拉德反应产物抗氧化活性.粮食与油脂,2003,(11):15-16[5]江志炜,沈蓓英,潘秋琴.蛋白质加工技术.北京:化学工业出版社,2003[6]张彩菊,等.利用美拉德反应制备鱼味香料.无锡轻工大学学报,2004,(9):11-14[7]庄名扬.再论美拉德反应产物与中国白酒的香和味.酿酒科技,2005,(5):34-38[8]万素英,侯银菊,李小六,等.美拉德反应产物的抗氧化性能研究.中国食品添加剂,2005,(6):46-49[9]FranzkeC,IwainskyH.Antioxidantcapacityofmelanoidin.DtschLebensmRundsch,1954,50:251-254[10]艾萍,张伟民.论述利用美拉德反应来制备牛肉香味料.中国调味品,2002,(7):32-35[11]宋焕禄.利用鸡肉酶解物/酵母抽提物-美拉德反应产生肉香味化合物的研究.食品科学,2001,22(10):83-85化合物名称香气特征丙醛、乙醛等鸡皮焦香,焦糖香,肉香苯乙醚紫罗兰,玫瑰花香戊醛、氨基戊醛炸土豆,面包香异西醛果香,巧克力咖啡香西醛酸、西醛焦糖香,旧木香,鸡肉香3-甲基西醛甜巧克力香,干酪香3-硫甲基丙醛酱香,芝麻香3-硫甲基西醛酱香,雪菜味糠醛杏仁,香蕉香3-甲基糖醛焦香,辛香,坚果香3-羟基西酮馊香,略带酱香2,3-丁酮爽快的馊香,1mg/L时呈奶油香2,3-丁醇微馊香3-硫甲基丙醇肉香,酱香表1美拉德反应斯特勒克尔降解的醛、酮、醇的香气特征表2几种香型酒中美拉德反应斯特勒克尔降解的醛、酮、醇含量物质名称酱香浓香清香乙醛55058140丙醛19928异西醛17163异戊醛986815糠醛2943942,3-丁二醛1.61.41.4丁二酮250.28醋8.065.41.4专题论述11百度文库VIP已帮您省80元现在续费最低仅需元/天​​立即续费​简述美拉德反应No.12.2006美拉德反应又称羰氨反应,指含有氨基的化合物和含有羰基的化合物之间经缩合、聚合而生成类黑精的反应。此反应最初是由法国化学家美拉德于1912年在将甘氨酸与葡萄糖混合共热时发现的,故称为美拉德反应。由于产物是棕色的,也被称为褐变反应。反应物中羰基化合物包括醛、酮、还原糖,氨基化合物包括氨基酸、蛋白质、胺、肽。反应的结果使食品颜色加深并赋予食品一定的风味,如:面包外皮的金黄色、红烧肉的褐色以及它们浓郁的香味。但是在反应过程也会使食品中的蛋白质和氨基酸大量损失,如果控制不当也可能产生有毒有害物质。第 1 页1反应机理[1]对于美拉德反应机理,长期以来研究得还很不彻底。食品化学家Hodge在早年作出了初步的解释,认为美拉德反应可以分成3个反应阶段。目前对于美拉德反应初级、中级阶段机理已经基本明确,但是终级阶段机理还不是很明确。以下用葡萄糖与胺反应说明美拉德反应整个过程。1.1初级阶段还原糖与氨基化合物反应经历了羰氨缩合和分子第 2 页重排过程。首先体系中游离氨基与游离羰基发生缩合生成不稳定的亚胺衍生物-薛夫碱,它不稳定随即环化为N-葡萄糖基胺。N-葡萄糖基胺在酸的催化下经过阿姆德瑞分子重排生成果糖基胺(1-氨基-1-脱氧-2-酮糖)。初级反应产物不会引起食品色泽和香味的变化,但其产物是不挥发性香味物质的前体成分。1.2中级阶段此阶段反应可以通过3条途径进行。第1条途径:在酸性条件下,果糖基胺进行1,2-第 3 页烯醇化反应,再经过脱水、脱氨最后生成羟甲基糠醛。羟甲基糠醛的积累与褐变速度密切相关,羟甲基糠醛积累后不久就可发生褐变反应,因此可以用分光光度计测定羟甲基糠醛积累情况作为预测褐变速度的指标。第2条途径:在碱性条件下,果糖基胺进行2,3-烯醇化反应,经过脱氨后生成还原酮类和二羰基化合物。还原酮类化学性质活泼,可进一步脱水再与收稿日期:2006-05-16作者简介:付莉(1979-),女,黑龙江人,硕士,助教,研究方向为食品化学。第 4 页简述美拉德反应付莉1,李铁刚2(锦州医学院畜牧兽医学院,锦州121001)摘要:综述美拉德反应的概念、反应机理、反应的影响因素、控制反应的条件及其在食品工业上的应用。关键词:美拉德反应;概念;机理;影响因素;食品工业中图分类号:TS201.2文献标识码:B第 5 页文章编号:1005-9989(2006)12-0009-03ReviewsonmaillardreactionFULi1,LITie-gang2(JinzhouMedicalUniversity,InstituteofAnimalScienceandVeterinaryMedicine,Jinzhou121001)Abstract:Thearticlereviewsthechemistryofmaillardreaction,includingtheconception,theprinciple,thefac-torofinfluence,theconditionofcontrolandtheuseonfoodindustry.第 6 页Keywords:maillardreaction;conception;principle;thefactorofinfluence;foodindustry专题论述9No.12.2006胺类缩合,或者本身发生裂解成较小分子如二乙酰、乙酸、丙酮醛等。第 7 页第3条途径:美拉德反应风味物质产生于此途径。在二羰基化合物的存在下,氨基酸发生脱羧、脱氨作用,成为少一个碳的醛,氨基转移到二羰基化合物上,这一反应为斯特勒克降解反应。这一反应生成的羰氨类化合物经过缩合,生成吡嗪类物质。1.3终级阶段此阶段包括两类反应。即醇醛缩合:两分子醛自相缩合,进一步脱水生成更高级不饱和醛;生成类黑精的聚合反应:中级阶段生成产物[葡萄糖酮醛、第 8 页3-脱氧Osulose(3-DG)、3,4-二脱氧Osulose(3,4-2DG)、HMF、还原酮类及不饱和亚胺类等]经过进一步缩合、聚合形成复杂的高分子色素[3]。2反应的影响因素[1]2.1糖从发生美拉德反应速度上看,糖的结构和种类不同导致反应发生的速度也不同。一般而言,醛的反应速度要大于酮,尤其是α、β不饱和醛反应及α-双羰基化合物;五碳糖的反应速度大于六碳糖;单糖的反应速度要大于双糖;还原糖含量和褐变速度成正比关系。第 9 页2.2氨基化合物常见的几种引起美拉德反应的氨基化合物中,发生反应速度的顺序为:胺>氨基酸>蛋白质。其中氨基酸常被用于发生美拉德反应,氨基酸的种类、结构不同会导致反应速度有很大的差别,比如:氨基酸中氨基在ε-位或末位这比α-位反应速度快,碱性氨基酸比酸性氨基酸反应速度快。2.3温度温度相差10℃,褐变速度就可相差3~5倍。当第 10 页温度大于30℃,褐变速度较快;小于20℃,褐变速度较慢。2.4pHpH3~9范围内,随着pH上升,褐变反应速度上升;pH≤3,褐变反应程度较轻微。在偏酸性环境中,反应速率降低。因为在酸性条件下,N-葡萄糖胺容易被水解,而N-葡萄糖胺是Maillard特征风味形成的前体物质。2.5水分含量10%~15%含水量,容易发生褐变;完全干燥的情况下,褐变难以进行。第 11 页2.6金属离子铜与铁可促进褐变反应,其中三价铁的催化能力要大于二价铁。2.7亚硫酸盐在美拉德反应初期阶段就加入亚硫酸盐可有效抑制褐变反应的发生。主要原因是亚硫酸盐可以和还原糖发生加成反应后再与氨基化合物发生缩合,从而抑制了整个反应的进行。第 12 页在实际生产过程中,根据产品的需要,要对美拉德反应进行控制。基于以上因素我们可以总结出控制美拉德反应程度的措施:(1)除去一种反应物:可以用相应的酶类,比如葡萄糖转化酶,也可以加入钙盐使其与氨基酸结合成不溶性化合物;(2)降低反应温度或将pH调制偏酸性;(3)控制食品在低水分含量;(4)反应初期加入亚硫酸盐也可以有效控制褐变反应的发生。3美拉德反应在食品工业上的应用3.1美拉德反应与食品色泽第 13 页美拉德反应赋予食品一定的深颜色,比如面包、咖啡、红茶、啤酒、糕点、酱油,对于这些食品颜色的产生都是我们期望得到的。但有时美拉德反应的发生又是我们不期望的,比如乳品加工过程中,如果杀菌温度控制的不好,乳中的乳糖和酪蛋白发生美拉德反应会使乳呈现褐色,影响了乳品的品质。美拉德反应产生的颜色对于食品而言,深浅一定要控制好,比如酱油的生产过程中应控制好加工温度,防止颜色过深。面包表皮的金黄色的控制,在和面过程中要控制好还原糖和氨基酸的添加量及焙烤温度,防止最后反应过度生成焦黑色。第 14 页3.2美拉德反应与食品风味通过控制原材料、温度及加工方法,可制备各种不同风味、香味的物质,比如:核糖分别与半胱氨酸及谷胱甘肽反应后会分别产生烤猪肉香味和烤牛肉香味。相同的反应物在不同的温度下反应后,产生的风味也不一样,比如:葡萄糖和缬氨酸分别在100 ̄150℃及180℃温度条件下反应,会分别产生烤面包香味和巧克力香味[5];木糖和酵母水解蛋白分别在第 15 页90℃及160℃反应会分别产生饼干香味和酱肉香味。加工方法不同,同种食物产生的香气也不同,比如:土豆经水煮可产生125种香气,而经烘烤可产生250种香气;大麦经水煮可产生75种香气,经烘烤可产生150种香气。可见利用美拉德反应可以生产各种不同的香精。目前,主要用于生产肉类香精。肉中的还原糖主要是葡萄糖和核糖,在加工过程中它们和肉中的氨基酸、肽、蛋白质发生美拉德反应形成风味物质。这些风味物质主要是含氮、硫、第 16 页专题论述10No.12.2006氧的杂环化合物以及其他的含硫化合物,其中包括呋喃、吡嗪、吡咯、噻吩、噻唑、咪唑、吡啶以及环烯硫化物。另外,在美拉德反应的中间产物中有一些二羰基化合物,它们可以进一步和脂质以及硫胺素的降解产物反应,生成具有肉香味的化合物。目前在制备肉味香味料时通常采用含硫的氨基酸如胱氨酸、半胱氨酸以及肽类,含硫氨基酸发生美拉德反应经过斯特勒克尔降解会产生硫化氢和氨,为大量杂环风味物质的形成提供前体物质。同时通过斯特勒克尔降解可产生氨基酮,2分子的氨基酮缩合会产生1分子二氢吡嗪,经过氧化生成吡嗪。烷基吡嗪是一种重要的香味呈味物质[2]。第 17 页目前国内已经研究出利用美拉德反应制备牛肉、鸡肉、鱼肉香料的生产工艺。艾萍等[10]利用美拉德反应制备了牛肉香味料。宋焕禄[11]利用鸡肉酶解物/酵母抽提物进行美拉德反应来产生肉香味化合物。张彩菊等[6]利用鳙鱼的酶解产物、谷氨酸、葡萄糖、木糖、VB1进行美拉德反应制备鱼味香料。美拉德反应对于酱香型白酒的风味贡献也很大。其中风味物质主要包括呋喃酮、吡喃酮、吡咯、噻吩、吡啶、吡嗪、吡咯等含氧、氮、硫的杂环化合物[7]。3.3抗氧化作用美拉德反应的抗氧化活性是由Franzke和Iwainsky于1954年首次发现的,他们对加入甘氨酸-葡萄糖反应产物的人造奶油的氧化稳定性进行相关报道[9]。直到20世纪80年代,美拉德反应产物的抗氧化性才引起人们的重视,成为研究的热点。研究表明美拉德反应产物中的促黑激素释放素、还原酮、一些含N、S的杂环化合物具有一定的抗氧化活性,某些物质的抗氧化活性可以和合成抗氧化剂相媲美[4]。Lingnert等人的研究发现在弱碱性(pH=7~9)条件下组氨酸与木糖的美拉德反应产物表现出较高的氧化活性,beckel、朱敏等人先后报道在弱酸性(pH=5~7)条件下,精氨酸与木糖的反应产物的抗氧化活性最佳[8]。也有人研究木糖与甘氨酸、木糖与赖氨酸、木糖与色氨酸、二羟基丙酮与组氨酸、二羟基丙酮与色氨酸、壳聚糖和葡萄糖的氧化产物有很好的抗氧化作用[4]。可见美拉德反应产物可以作为一种天然的抗氧化剂。但是目前对美拉德反应产物抗氧化活性的研究还不充分,对其中的抗氧化物质和抗氧化机理还有待人们进一步研究

研究论文二抗反应

二抗是指在治疗某种疾病时,第二类药物治疗方案中使用的抗生素或其他抗菌药物。这些药物通常被用于治疗由多种细菌引起的感染病例,或者是治疗原发性治疗失败的情况。如果患者在使用第一种治疗方案后仍然未能得到有效的治疗效果,医生会考虑选择二抗来进行治疗。 查询二抗的方法有很多种。首先可以通过专业的药品查询网站或APP,输入相关药品名称、作用机制、剂量等信息进行检索。国内常用的药品查询网站有“百度药品查询”、“药品明细查询”等。其次,也可以直接询问医生或药师,他们会提供详细的药物信息和使用说明。另外,还可以通过阅读相关疾病的治疗指南和研究论文来获取二抗的相关信息。总之,在查询二抗时,需要确保信息来源的可靠性和准确性,以便为患者提供最优质的医疗服务。

近期,苏州大学材料与化学化工学部的汪胜教授在国际重量级学术期刊Advanced Materials上发表了题为“Ultrastrong and Tough Graphene Aerogel Fibers with Hierarchical Architecture”的论文。该论文报道了一种新型石墨烯气凝胶纤维,该纤维具有超强和韧性的特点,并且具有分层结构。这种新型石墨烯气凝胶纤维的制备方法简单易行,所得纤维具有超高的拉伸强度和韧性,并且具有显著的储能能力和超高的导电性能,因此在柔性电子、高强度材料和先进能源储存等领域有着广泛的应用前景。这项研究成果的发表不仅提高了我国在新型高性能材料领域中的国际影响力,而且也为石墨烯气凝胶纤维的制备和应用提供了新的思路。

会和样本反应。所以当将鼠的这种蛋白质注入羊体内的时候羊就会产生针对该抗原的抗体,当然抗体可能有好几种。

二抗通常是指抗生素的第二选择,主要用于治疗因细菌感染引起的疾病。查询二抗的方法很多,可以通过以下几种途径进行:1.咨询医生:如果您有感染症状,建议尽快就诊,医生会根据病情和细菌培养结果等信息来判断是否需要使用二抗。2.检查药品说明书:药品说明书中通常会列出该药品的适应症、用法、剂量、服用时注意事项等信息,其中包括可能的二抗药品推荐。3.查阅相关资料:如医学专业书籍、期刊论文、医药网站等,了解具体的二抗药物及其作用机制、适用范围、不良反应等信息。综合各种途径获取信息,应更加全面和准确地了解二抗药物的相关知识。但需注意二抗药物使用上的种种限制以及潜在风险,应在医生指导下正确使用。

聚氨酯涂料的研究与应用论文

我有详细 资料 怎么联系 人生试题一共有四道题目:学业、事业、婚姻、家庭。平均分高才能及格,切莫花太多的时间和精力在任一题目上。

有没有关于绿色化学的论奎尼丁我

塑料涂料的研究现状与展望摘要:从塑料涂料的成膜基料、涂料性能、施工应用等方面,阐述了国内外塑料涂料的研究现状,并提出了塑料涂料研究存在的问题与发展要求。关键词:塑料涂料;涂料性能;涂料应用;现状与展望0引言随着石油化工与煤化工的发展,高分子材料的合成技术与新材料的推广应用不断延伸,塑料作为新型非金属材料,在抗张强度、韧性、尺寸稳定性等方面取得一系列进展。传统的塑料制品表面抗老化、抗静电、耐划伤、颜填料印痕等问题与新型塑料制品的功能化、装饰性、安全性等问题共同成为塑料涂料与涂装的中心内容。塑料的一个重要发展课题就是合金化。所谓合金化,实际上是多种高分子材料的物理混合,利用各种高分子材料的优点,互相补充。然而合金化给涂装带来了新的问题———涂层材料的成膜物树脂与塑料底材之间的匹配性,正因为如此,目前塑料涂料采用的成膜树脂将日趋多组分、多官能团化,同时塑料涂料的环境影响也日益受到关注,加之新型功能性颜填料与助剂的采用,塑料涂料已以全新的面貌呈现在人们面前。1成膜基料的官能化趋势鉴于塑料底材结构的复合化,与传统的塑料相比,单纯从氢键值、溶解度参数等角度考察单一树脂与塑料底材之间的相容性已十分困难。作者在塑料涂装厂对ABS塑料进行涂装过程中发现,厂方声称的ABS基料耐溶剂性能极差,当涂料中含有一定的芳烃溶剂时,涂膜干燥过程中出现细细的“银纹”。经了解,塑料本身掺入大量高抗冲聚苯乙烯改性,而这种情况目前在塑料涂装市场上非常多见,现在能遵循的规律是表面张力与结构相似程度,只有成膜物的表面张力比底材低,且成膜树脂与底材相比具有一定的相容性,涂膜才能附着在塑料表面。因此,具有低极性的聚丁二烯、聚丙烯酸酯与醇酸改性氯代烃聚合物等对很多塑料乃至塑料合金都具有极佳的亲合性。对于聚乙烯与聚丙烯塑料,氯化聚烯烃的改性仍是目前较佳的选择。Muenster等[1]用混有高密度聚乙烯的聚亚乙烯基氯化物作为成膜基料对聚乙烯复合塑料具有极好的粘附性。Lami等[2]直接采用氯化聚乙烯涂敷在聚乙烯表面,然后与聚氨酯配套。Menovcik等[3]利用羟基官能化烯烃聚合物与可与羟基反应的化合物反应制得对烯烃具有良好附着的附着力促进树脂。巴斯夫公司则利用对聚烯烃进行聚氨酯改性,在确保对聚烯烃底材附着力的同时,与其他树脂的配套相容性也得到保证[4]。上述改性树脂从某种意义上说,解决附着力的根本原因在于结构的相似相亲。Eaztman公司的cp343系列产品、中海油常州涂料化工研究院的P-18系列等产品均为氯化烯烃的接枝改性物。目前氯化聚烯烃的丙烯酸酯、马来酸酐等改性极其活跃,而王小逸等[5]以双戊烯烃聚合物为母体,丙烯酸单体在引发剂作用下接枝形成苯乙烯-双戊烯烃共聚物,实际上是利用聚戊二烯在结构上与聚烯烃塑料的相似性和低表面能状态,所以说,成膜物主体结构与塑料基体结构的相似性仍是塑料涂料成膜树脂合成追寻的重要手段。在研究中曾发现,某些羟基丙烯酸树脂作为基料的涂料,利用脂肪族异氰酸酯作为交联剂在特定的ABS塑料表面涂覆(目前市场多为合金)几乎没有附着力,而当交联剂改为芳香族异氰酸酯时,附着力却十分优异。笔者认为,根本原因在于交联剂转变为芳香族异氰酸酯时,由于成膜后树脂中苯环结构增多,结构的相似性(多体现在溶解度参数与氢键值上的相近)增强,所以附着牢度增大。同样作为结构的相似相亲,环氧-聚酰胺在尼龙底材上的润湿就是利用涂膜中的聚酰胺与尼龙结构的相似性而产生强附着[6]。而各种聚氨酯成膜物(丙烯酸聚氨酯、聚酯聚氨酯等)在聚氨酯塑料上的附着同样与结构相似相关联[7-8]。除传统的溶剂型合成方法外,等离子聚合[8]、乳液聚合也成为塑料涂料成膜树脂合成的新方法,而乳液聚合技术是伴随水性化技术的发展而发展的,在塑料涂料水性化方面起了相当大的作用。作为与光固化配套的底漆,塑料涂料用基体树脂除传统的羟基丙烯酸类外,高软化点、耐溶剂侵蚀的热塑性丙烯酸树脂成为人们关注的焦点之一。为了提高热塑性树脂的耐溶剂性,—CN基或微交联特征的硅氧烷的存在是必要的,有时为了解决配套性,可能在树脂中掺入纤维素类树脂。总之,塑料涂料用成膜树脂如同塑料本身的复合化一样,基料组分从单一结构向多组分结构拓展,甚至采用不同软化点的同类型树脂复合体。依靠单一成膜树脂已很难满足现代塑料涂料的发展要求,而通过合成技术一次性将同一树脂中掺入多组官能团且在同一种树脂中实现软、硬段的高度分离都极其困难,不同结构、不同属性的基料通过物理混合的方法要简单得多,但是物理混合往往出现相容性问题,这是在塑料涂料的配方设计过程中需高度关注的。2环保型塑料涂料2·1粉末涂料一般来说,粉末涂料由于采用静电涂装,且需高温烘烤交联成膜,所以在通常情况下塑料并不适合采用粉末涂料涂覆。然而由于粉末涂料高交联特征,在耐介质等许多方面具有特定的优势,所以近年来,在如冰箱、空调、小家电等众多领域,粉末涂料成了新宠。为了实现静电涂装,一般在塑料中注入导电纤维,比较常见的如尼龙、聚丙烯、玻璃纤维增强塑料等,涂料品种主要涉及氨基丙烯酸、氨基聚酯等。2·2水性涂料在玩具领域,出于健康、安全方面的考虑,水性化是大势所趋。Patil等[9]利用亲水性淀粉、水性环氧树脂、蜡乳液、三聚氰胺-甲醛树脂及氟化表面活性剂等混匀涂覆于聚乙烯膜表面, 80℃加热24 h后,由于热交联的缘故,涂膜强度、耐水性及附着力均显著提升。Park等[10]通过氯化聚丙烯与丙烯酰胺在引发剂作用下接枝共聚,得到的共聚物在聚丙烯表面具有很好的附着力。利用VeoVa 10 (叔碳酸乙烯酯)与丙烯酸酯共聚,内、外乳化并存,亲水性的二丙二醇丁醚作成膜助剂,所得涂料涂覆于聚丙烯板上,涂膜附着力、耐水性均十分优异[11]。利用磷酸酯与丙烯酸酯反应,用碱中和的方法得到的聚合物配制铝粉漆,不仅铝粉漆分散、贮存稳定性好,而且对塑料底材的润湿性好[12-13]。在研究过程中发现,利用二双键或三双键的丙烯酸酯与其他柔性丙烯酸单体进行乳液共聚,得到弹性的丙烯酸共聚物,不仅强度与普通乳液对比明显增强,而且耐水性十分突出,甚至在PC表面涂覆干燥后在去离子水中煮沸2 h仍不起泡,而一般的溶剂型聚丙烯酸酯均难达到这种要求。笔者认为,这些亲水型聚合物表面均含有一定量的亲水性官能团,水分子可以借助于这些亲水性官能团,十分容易地在膜两边自由进出,而高聚物本身与塑料底材之间的作用远大于高聚物与水及塑料底材与水之间的作用,所以即使在煮沸状态下,水分子对高聚物与塑料底材之间的破坏作用仍比较缓慢,以致耐水煮时间较长。而一般溶剂型树脂多有一定的耐水性,但涂层中的缝隙仍能让水分子缓慢进出,随着水温的升高,水分子运动的动能加大,水分子通过涂膜向底材表面扩散加快,但在加热状态下水分子向涂膜外表面扩散时,由于缺乏亲水性官能团的水合化转移,水分子不断向涂膜冲撞,致使涂膜易于被冲撞而剥落形成气泡。当然水性高分子涂膜的耐水性也仅局限于不被锈蚀的非金属塑料或玻璃表面,而金属材料由于易被氧化产生锈蚀而引起涂层疏松导致起泡。目前,见诸于报导的用于改性水性聚合物成膜后耐水性的研究主要集中在对聚合物进行疏水性改性(降低表面张力)、聚合物内交联、立体结构(如二丙烯酸酯与多丙烯酸酯)、聚合物成膜后自交联(有机硅、酰胺等改性)等[14-15]。为了改善涂膜成膜后的耐溶剂性,在树脂结构中引入耐溶剂的官能团如腈基(—CN)等,或采用交联单体。Kosugi和陈伟林等[16-17]利用苯乙烯与丙烯腈、丙烯酸酯共聚,涂膜的耐水、耐酸性均得到提高。而王玉香等[18]则利用水分散型的多异氰酸酯与水性羟基丙烯酸树脂外交联用于ABS及PC、PVC等塑料的涂装,涂膜的力学性能、耐水性、耐化学性十分理想。Zie-gler等[19]则在水性双组分体系中引入亲水性的助溶剂辅助成膜,由于树脂本身的水溶性相对下降,树脂在硬度等方面调节的空间非常大,以致得到的涂膜综合性能优异,可适应各种塑料底材涂装要求。目前水性塑料用涂料的研究十分活跃,但真正进入工业化生产的规模尚很小,笔者只在汽车、玩具、家电等少数领域发现有使用水性塑料涂料的情况,而且品种主要集中在聚氨酯水分散体、丙烯酸乳液与水性双组分丙烯酸酯涂料,究其原因在于涂料水性化后涂膜综合性能与溶剂型涂料相比尚存在一定的差距,然而无论从环境方面考虑,还是从节能、节约成本角度出发,水性体系是关注的重点,随着新的合成技术、新原材料的拓展,水性塑料涂料的发展空间会相应增大。2. 3光固化涂料相比于粉末涂料和水性化塑料涂料,光固化涂料在塑料涂装领域的发展显得异常迅捷。目前在摩托车、电动车与家电等领域,光固化塑料涂料已得到了广泛的推广,相应地推动了光固化涂料技术本身的进步,包括从单体到助剂与合成技术的进步。Hamada等[20]利用甲基丙烯酸甲酯的均聚物与氨基丙烯酸酯、甲基丙烯酸氧基酯等在光敏剂的引发作用下,得到在ABS表面涂覆的快干涂层。Yaji等[21]采用含三环癸烷结构的光敏剂引发聚丙烯酸酯配制丙烯酸涂料,涂覆在聚苯乙烯底材上,涂层的透光性与表面流平性均非常突出。在聚碳酸酯表面,采用热与光同时激发固化的双重固化模式,涂膜耐紫外光性能得到显著改善[22]。而降冰片烯烃聚合物薄膜表面采用UV固化的聚氨酯改性的氨基丙烯酸酯,在膜中引入二氧化硅不会影响涂层的透明性,且涂层的耐划伤性优异[23]。在树脂中引入弹性链段可提高涂膜的附着力与耐冲击性[24];分子链段中引入含氟的硅氧烷与A-174(γ-甲基丙烯酰氧基丙基三甲氧基硅烷)及胶体二氧化硅,涂膜的透明性、流平性、防污性、耐磨性均因交联和表面张力的降低而得到明显改善[25]。UV固化涂料目前在聚碳酸酯、ABS、聚苯乙烯、聚丙烯等塑料表面应用较为普遍,但仍存在一些问题:(1)涂料与底漆(本色漆或金属漆)之间的附着力问题;(2)罩光漆涂膜放置一段时间易出现雾影,耐湿热性能较差;(3)与聚氨酯等体系相比,涂层耐水性往往显得不够; (4)涂料目前主要用于清漆,通过颜料着色对光固化过程影响较大。光固化残留的自由基影响涂膜的耐黄变性等。3功能化涂料塑料涂料除对塑料制品具有保护功能外,近年来在装饰及功能化领域取得了一系列进展。利用硅氧烷与环氧-硅酸酯共聚物与叔胺作用,得到的涂层在聚酯切片上不仅附着力好,而且耐磨性突出[26-28]。同样对于聚酯片,用丙烯酸-β-羟乙酯酯化二苯基四羧酸二酐,再与甲基丙烯酸缩水甘油酯和邻苯基苯基缩水甘油醚反应,涂膜不仅折光指数高,而且耐磨性好[29]。而利用增滑剂如石蜡或润滑剂,对于含氨基甲酸酯改性聚亚烷基二醇聚(甲基)丙烯酸酯与氨基甲酯改性的聚(甲基)丙烯酸酯混合物在光敏剂存在时,利用UV光照射,得到的涂膜不仅耐划伤、耐候,而且防雾性能好[30]。同样,为了改善防雾性能,Konno等[31]则利用外乳化法,得到的聚丙烯酸酯与胶体二氧化硅、具有阴离子特征的碳酸酯-聚氨酯复合,得到的涂膜对聚烯烃不仅润湿性好,而且具有优良的防雾性。Brand等[32]发现用低氧透过性的聚硅氧烷涂覆在PET膜上,氧透过值只有14 mL/(dm2bar);Yamazaki等[33]发现部分锌中和的聚丙烯酸具有对氧的阻隔性。而Miyasaka[34]则发现聚乙烯醇和浮型二氧化硅混合物制成的涂膜(涂覆于双轴取向的聚丙烯膜)水蒸气与氧的渗透性极低,在20℃, 60%相对湿度及40℃, 90%相对湿度下,分别只有1·5 mL/(m2·24 h·atm)和4·9 mL/(m2·24 h·atm)(1 atm=101·325 Pa)。利用橡胶的减震性,将橡胶与聚硅氧烷、可固化聚氨酯等复合,成膜后由于物件与涂覆底材接触或移动产生的噪音,在一段时间内保持起始静态摩擦系数,具有减震性[35]。热固性或紫外光固化的树脂与含氟聚合物通过热固化或紫外光引发聚合,在聚酯膜上涂覆,具有防反射功能[36]。硅氧烷聚合物等具有低反射指数的涂料,同样具有防反射功能[37]。研究发现,氢氧化铝粒子与低玻璃化转变温度的树脂(Tg: -50~50℃)混合涂覆在聚酯膜表面,具有热辐射功能。4特种塑料涂料塑料涂料除了涂料与塑料之间的作用外,往往还可能存在与其他介质之间的作用,真空镀膜涂料即是如此,它除了与塑料接触外,还与金属镀膜层发生作用,这些涂料在金属膜与塑料底材之间起到桥梁作用。目前真空镀膜底漆主要涉及丙烯酸、氨酯油及改性聚丁二烯等,主要涉及灯具、塑料镀铬装饰,有时具有辅助塑料导电、导热之功能。而面漆则主要为丙烯酸、聚氨酯及聚乙烯醇缩丁醛。孙永泰[38]利用HDI与水作用形成的多羟基型聚氨酯涂覆在塑料镀铬件的外表面,涂膜丰满、坚韧,具有良好的耐磨性、耐冲击、耐化学品与耐湿热性。而氨基丙烯酸涂料、叔碳酸缩水甘油酯改性丙烯酸涂料、含氟丙烯酸酯聚合物等应用于真空镀膜涂料得到的涂膜往往具有高硬度、丰满、耐污染等特征[39-41]。近年来,紫外光固化涂料在真空镀膜领域中取得了较好的应用效果,为了降低涂膜表面的缺陷,改善涂膜的性能,通常在涂料中加入少量惰性溶剂。与此同时,热固化与光固化同时存在于真空镀膜涂料中,涂膜的交联密度、硬度与耐磨性均能得到改善,而且涂膜外观更好。环氧改性对塑料镀银附着力的提升十分有效,Ozu等利用四甲氧基硅烷部分缩合物(Me Silicate51)与缩水甘油(EpiolOH)酯交换反应,再与2-羟乙基乙烯二胺-异佛尔酮二胺-异佛尔酮二异氰酸酯-聚碳酸酯二醇(PlaccelCD220)共聚物反应,得到的底漆喷涂于ABS板上,在80℃干燥10 min,对ABS和镀银镜面附着力高[42]。5塑料涂料研究存在的问题到目前为止,塑料涂料研究大多数停留在配方性能测试阶段,由于塑料对溶剂的敏感性不同,对于溶剂型涂料,涂料中的溶剂或多或少对塑料底材存在侵蚀性,塑料与涂料界面之间容易发生互相渗透、扩散,导致物理与化学作用共存,加上多数塑料本身的使用寿命较短,塑料涂料的时效性和涂料对塑料本身应用改变的影响程度常被忽视,而这些对塑料制品的应用往往十分重要。一些高结晶度的工程塑料,如聚甲醛、聚砜等在没有对塑料进行表面处理时,直接涂覆涂料一般比较困难,有必要寻找到与这些材料之间亲和性较好的化合物,开发出能直接在塑料表面涂装的涂料,减少表面处理带来的环境与成本问题。

我给你发了一篇有关纳米技术在生物医学中应用的文章,你看看合适不合适。

有机反应条件研究论文

浅谈金属催化有机反应中的碱效应论文

碱, 包括有机碱和无机碱, 在许多催化和计量有机反应中扮演极其重要的角色. 碱的存在不仅可以促进化学反应, 而且可以改变反应途径. 但化学家们对碱的作用的认识仍然不够明确, 缺乏系统的理解. 最近, 北京大学席振峰课题组对近年来涉及到碱的许多催化反应进行了系统分析, 概括出了影响碱作用的诸多因素, 其中包括碱性、溶解度、电离度、聚集度、溶剂、金属离子大小、金属离子Lewis 酸性、金属离子的“软硬”度、阴离子的大小、阴离子的配位作用等. 本文将对该文及相关文章中有关金属催化有机反应中碱的效应进行介绍.碱的强度可用不同的标准来衡量, 如夺取质子的能力及亲核性, 亲核性又与底物的性质相关. 目前, 大部分的研究认为碱在化学反应中的主要作用是去质子化和中和体系中的质子或酸.

有机碱的强度与取代基和结构有很大关系, 如常用的有机胺的碱性强度在许多文献中都有报道. 在有机溶剂中有很好溶解度的碱金属和碱土金属胺基化合物、烷氧基化合物以及其它金属有机化合物也常被看作有机碱, 例如叔丁醇钠, LDA 及M[N(SiMe3)2] (M=Li, Na,K). 典型的无机碱由金属离子和具有碱性或亲核性的负离子构成, 许多无机碱在有机溶剂中的溶解度较小, 常常需要使用极性大的有机溶剂来提高其溶解度. 无机碱的强度与很多因素有关, 其中最重要的因素是配对离子之间的静电作用及负离子的化学组成和结构. 在去质子化反应中, 影响反应效率的因素除了碱的去质子能力之外, 底物去质子后形成的碳负离子或其它负离子的稳定性也对反应产物收率有极大影响, 而后者的稳定性与金属离子密切相关, 因此无论是正离子和负离子的性质对反应的效率及其选择性的影响都是非常明显的. 例如,Kobayashi 等在2012 年报道了叔丁醇锂作用下的吲哚3-位羧基化反应该反应最初使用的是钯催化的体系, 反应中选择不同碱会使得反应收率有明显变化.当使用弱碱K2CO3 时能得到痕量的羧基化产物, 而当使用较强的Cs2CO3时, 反应收率有了显著提高. 碱性强弱的影响同样体现在叔丁醇类碱中——使用碱性较弱的叔丁醇锂能得到好的反应收率但碱性相对较强的叔丁醇钠则不能得到预期产物, 这很有可能与形成的碳负离子的稳定性相关. 由此可见, 无机碱中的正负离子的性质是影响反应的核心因素之一.

无机碱中的阴离子种类很多, 在有机合成中常用的阴离子包括碳酸根, 磷酸根, 烷氧基和胺基, 卤素及其他类卤素负离子等. 阴离子对反应的影响不仅体现在对反应速度和产率的影响上, 同时也有可能对反应的选择性产生影响 实验结果表明不同阴离子对反应结果的影响很大, 同时需要维持较低的碱阴离子浓度反应才能正常进行. 在这个特殊的反应中, 阴离子的种类对反应有很大影响, 而阳离子影响很小. Doucet等报道过对于相同的底物, 当使用不同的碱时, 会得到不同的产物.ClCF3[Pd] TBABbase, DMAcF3CNaOAc: 64%; KOAc: 61%; Na2CO3: 61%; Cs2CO3: 25%;CaO: 67%; t-BuONa: 3%; NEt3: 12%+ (2)阴离子也可作为配体与催化剂中的金属配位, 从而影响金属中心的反应性. 在许多Pd 催化的偶联反应中碱的作用很有可能是多方面的, 除了传统的促进转金属化, 其与催化剂作用从而提高活性中心的氧化加成能力也不可忽视, 同时金属中心与无机碱中的阴离子的作用, 也有可能提高阴离子的碱性. Fagnou 等[4]在研究Pd催化偶联反应中提出的.协同的“金属化/去质子化”(concerted metalation/deprotonation, 简称“CMD”)来解释碱的作用: 碱与金属中心Pd 配位, 使碱的去质子化能力提高, 从而可活化C—H 键.

催化剂金属中心和碱的匹配才能产生协同作用, 从而有效促进催化过程. 2014 年Norrby 等报道了碱在Buchwald-Hartwig Amination 反应中的作用. 他们研究了t-BuO-和DBU 在不同溶剂中对反应过程的影响, 并通过Eq. 3 所示反应进一步验证了理论计算结果. 在非极性溶剂中, t-BuO-可以有效地拔除和钯配位的吗啉上胺氢, 进而进行有效的C-N 偶联. 而中性碱DBU 效果不好, 需要在高温和微波下才能促进反应进行. 在极性溶剂中, 尽管计算表明相对非极性溶剂中DBU 参与的反应能垒变小了, 但是和t-BuO-相比效果仍然较差.阳离子在过渡金属催化的反应所起到的作用同样不可忽视. 在偶联反应中, 转金属化的速率与碱中的阳离子种类有很大关系[6]. 阳离子的大小、软硬度以及Lewis 酸性等[6]都有可能对反应结果造成影响. 阳离子也有可能影响反应活性中间体的结构及稳定性. Shibasaki等[8]在2009 年报道了不对称催化合成手性有机硼酯的反应, 叔丁醇锂、钠、钾都能促进这一反应的进行,但反应的收率和ee 值对应的碱都是t-BuOLi>t-BuONa>t-BuOK, 表明锂离子对该反应的特殊效应. 2010 年,Hayashi 等也提及t-BuOM (M=Li, Na, K)中阳离子会影响反应途径, t-BuO-是一个单电子供体, 配对阳离子如是Na 和K 离子时, 反应会涉及单电子转移(singleelectron transfer, 简称SET)过程.

总之, 碱在催化反应中的作用极其复杂, 在催化循环中的任何一步都有可能对反应结果造成影响, 碱的不同甚至会影响基元反应的本质, 这主要体现在碱对催化剂、配体以及底物和基元反应的影响都不可忽视, 从而使其效应更加复杂. 但碱在许多催化反应中的核心功能会逐渐更加清晰. 席振峰教授课题组通过对文献的分析, 提出了碱对反应影响的诸多因素, 使化学家对碱在催化过程中的复杂性有了新的认识, 这是一个极其重要的科学问题, 有待于化学家进行更加系统全面的研究.。

有机化学发展介绍及前景一.发展介绍1806年首次由瑞典的贝采里乌斯(—1848)提出,当时是作为无机化学的对立物而命名的。19世纪初,许多化学家都相信,由于在生物体内存在着所谓的“生命力”,因此,只有在生物体内才能存在有机物,而有机物是不可能在实验室内用无机物来合成的。1824年,德国化学家维勒(�hler,1800—1882)用氰经水解制得了草酸;1828年,他在无意中用加热的方法又使氰酸铵转化成了尿素。氰和氰酸铵都是无机物,而草酸和尿素都是有机物。维勒的实验给予“生命力”学说以第一次冲击。在此以后,乙酸等有机物的相继合成,使得“生命力”学说逐渐被化学家们所否定。 有机化学的历史大致可以分为三个时期。 一是萌芽时期,由19世纪初到提出价键概念之前。 在这一时期,已经分离出了许多的有机物,也制备出了一些衍生物,并对它们作了某些定性的描述。当时的主要问题是如何表示有机物分子中各原子间的关系,以及建立有机化学的体系。法国化学家拉瓦锡(—1794)发现,有机物燃烧后生成二氧化碳和水。他的工作为有机物的定量分析奠定了基础。在1830年,德国化学家李比希( Liebig,1803—1873)发展了碳氢分析法;1883年,法国化学家杜马(—1884)建立了氮分析法。这些有机物定量分析方法的建立,使化学家们能够得出一种有机化合物的实验式。 二是经典有机化学时期,由1858年价键学说的建立到1916年价键的电子理论的引入。 1858年,德国化学家凯库勒(—1896)等提出了碳是四价的概念,并第一次用一条短线“—”表示“键”。凯库勒还提出了在一个分子中碳原子可以相互结合,且碳原子之间不仅可以单键结合,还可以双键或三键结合。此外,凯库勒还提出了苯的结构。 早在1848年法国科学家巴斯德(—1895)发现了酒石酸的旋光异构现象。1874年荷兰化学家范霍夫('t Hoff, 1852—1911)和法国化学家列别尔( Bel,1847—1930)分别独立地提出了碳价四面体学说,即碳原子占据四面体的中心,它的4个价键指向四面体的4个顶点。这一学说揭示了有机物旋光异构现象的原因,也奠定了有机立体化学的基础,推动了有机化学的发展。 在这个时期,有机物结构的测定,以及在反应和分类方面都取得了很大的进展。但价键还只是化学家在实践中得出的一种概念,有关价键的本质问题还没有得到解决。 三是现代有机化学时期。 1916年路易斯(—1946)等人在物理学家发现电子、并阐明了原子结构的基础上,提出了价键的电子理论。他们认为,各原子外层电子的相互作用是使原子结合在一起的原因。相互作用的外层电子如果从一个原子转移到另一个原子中,则形成离子键;两个原子如共用外层电子,则形成共价键。通过电子的转移或共用,使相互作用原子的外层电子都获得稀有气体的电子构型。这样,价键图像中用于表示价键的“—”,实际上就是两个原子共用的一对电子。价键的电子理论的运用,赋予经典的价键图像表示法以明确的物理意义。 1927年以后,海特勒(—)等人用量子力学的方法处理分子结构的问题,建立了价键理论,为化学键提出了一个数学模型。后来,米利肯(—1986)用分子轨道理论处理分子结构,其结果与价键的电子理论所得的结果大体上是一致的,由于计算比较简便,解决了许多此前不能解决的问题。对于复杂的有机物分子,要得到波函数的精确解是很困难的,休克尔(ückel,1896—)创立了一种近似解法,为有机化学家们广泛采用。在20世纪60年代,在大量有机合成反应经验的基础上,伍德沃德(—1979)和霍夫曼(—)认识到化学反应与分子轨道的关系,他们研究了电环化反应、σ键迁移重排和环加成反应等一系列反应,提出了分子轨道对称守恒原理。日本科学家福井谦一(1918—1998)也提出了前线轨道理论。 在这个时期的主要成就还有取代基效应、线性自由能关系、构象分析,等等。二.21世纪有机化学的发展在21世纪,有机化学面临新的发展机遇。一方面,随着有机化学本身的发展及新的分析技术、物理方法以及生物学方法的不断涌现,人类在了解有机化合物的性能、反应以及合成方面将有更新的认识和研究手段;另一方面,材料科学和生命科学的发展,以及人类对于环境和能源的新的要求,都给有机化学提出新的课题和挑战。有机化学将在物理有机学、有机合成学、天然产物学、金属有机学、化学生物学、有机分析和计算学、农药化学、药物化学、有机材料化学等各个方面得到发展。 物理有机化学 物理有机化学是用物理化学的方法研究有机化学的科学。主要的研究发展方向有: 1.运用现代光谱、波谱和显微技术表征分子结构,探索其与性能(物理、化学、生理、材料……)的关系;新分子和新材料的设计和理论研究。 2. 反应机理(协同、离子、自由基、卡宾、激发态、电子转移……) 和活泼中间体。 3. 主—客体化学;分子间弱相互作用和超分子化学;分子组装和识别;功能大分子和小分子相互作用及信息传递。 4. 新的计算化学方法、分子力学和动力学、分子设计软件包的开发;与实验的互补与指导。有机合成化学研究从较简单的前体小分子到目标分子的过程和结果的科学。有机合成化学是有机化学的主要内容。70年代以来,有机合成步入了一个新的高涨发展时期。 有机合成的基础是各种各样的基元合成反应,发现新的反应或用新的试剂或技术改善提高已有的反应的效率和选择性是发展有机合成的主要途径。 合成反应方法学上的一个重大进展是大量的合成新试剂的出现,特别是元素有机和金属有机试剂。利用光、电、声等物理因素的有机合成反应也要给以适当的重视。 高选择性试剂和反应是有机合成化学中最主要的研究课题之一,其中包括化学和区域选择控制,立体选择性控制和不对称合成等。后者是近年来发展得较快的领域,包括了反应底物中手性诱导的不对称反应,化学计量手性试剂的不对称反应,手性催化剂不对称反应,利用生物的不对称合成反应和新的拆分方法等。反映过渡态反应部位的构象是反应选择性的关键因素 复杂有机分子的全合成一直是最受关注的领域,体现合成化学的水平,与生物科学相结合,重视分子的功能则是合成化学家的新热点。有机合成化学的发展方向有: Z n& V& a+ 1.合成方法学 新概念、试剂、方法、反应的运用,实用的在温和条件下经过较简单的步骤高选择性高产率地转化为目标分子。 2. 具独特性能(生理、材料、理论兴趣)的分子的(全)合成。 3. 资源可持续利用的无害原料、原子经济和环境友好的反应介质、过程和工艺路线、绿色安全的产品。 4. 学科新生长点、交叉点的扩展和手性、仿生等新技术的运用。化学生物学在分子水平上研究生物机体的代谢产物及其变化规律性;利用有机化学的方法研究调控生命体系过程的科学。化学生物学是顺应20世纪后半叶生物学日新月异的发展,在化学学科的原有的几个分支——生物有机学、生物无机化学,生物分析化学、生物结构化学以及天然产物化学的基础上提出的新兴学科。化学生物学研究目前大致包括以下几个部分:1.从天然化合物和化学合成的分子中发现对生物体的生理过程具有调控作用的物质,并以这些生物活性小分子作为探针和工具,研究它们与生物靶分子的相互识别和信息传递的机理。2.发现自然界中生物合成的基本规律,从而为合成更多样性的分子提供新的理论和技术。3.作用于新的生物靶点的新一代的治疗药物的前期基础研究。4.发展提供结构多样性分子的组合化学。5.对于复杂生物体系进行静态和动态分析的新技术等。金属有机化学研究金属有机化合物[各种不同类型的C—M(杂原子)]的结构、合成、反应及其应用的科学。主要的研究发展方向有:1. 金属有机化学基元反应及其机理;各种不同类型的C—H(C、杂原子)的选择性形成、切断。2. 导向合成化学和聚合反应的金属有机化学;金属有机化合物的新型高效催化作用及其应用。药物化学和农药化学药物化学是有机化学的一个重要分支,与生命科学密切相关。它是研究与人类疾病和健康、植物保护等生命现象有关的创新药物研制的科学。药物化学的发展领域:1. 高通量生物活性筛选;药物作用靶点和基于构效关系指导下的分子设计和组合化学学库设计。2. 生化信息学的应用和创新、仿生及先导药物的发现、开发。3. 非传统机制的药物合成、分析和功能测试。有机新材料化学有机材料化学是研究以有机化合物为基础的新型分子材料的开发的科学。现代科学技术突飞猛进的发展,尤其是信息技术的发展,对材料科学提出了更高的要求,迫切需要研究新材料。相对于其他功能材料,以有机化学为基础的分子材料具有以下的特点:1.化学结构种类繁多,给人们提供了很多发现新材料的机遇;2.运用现代合成化学的理论和方法,能够有目的的改变分子的结构,进行功能组合和集成;3.运用组装和质组装的原理,能够在分子层次上组装功能分子,调控材料的性能。有机材料化学的发展方向有以下:1. 有机固体、半导体、超导体、光导体、非线性光学、铁磁体、聚合物材料。2. 具有特殊和潜在光、电、磁功能分子的合成和器件有序组装。3. 功能分子的结构、排列、组合和物化性能、机制的关系,新分子材料的设计和应用。有机分离分析化学研究有机物的分离、定性定量分析和结构解析的科学。研究方向:1. 基于近代光谱、波谱、色谱技术的进步对微(痕)量有机物的高效分析鉴定。2. 复杂的生物活性大分子和混合物中的有效组份及环境样品的分离分析方法的建立。绿色化学面对环境保护的重大压力,绿色化学提出来一些新的观念,起基本点是,通过研究和改进化学化工反应以及相关的工艺,从根本上减少以至消除副产物的生成,从源头上解决环境污染的问题。以此为目的的研究所带来的新的高效化工工艺也会大大提高经济效益。可以看出,绿色化学是对世纪化学化工研究的重要发展方向,是实现可持续发展的重要保障。本领域的发展和研究:1.发展高效、高选择性的“原子经济性”反应其中,催化的不对称合成反应仍是获得单一性分子的方法之一,应加强有关的新反应、新技术、新配体及催化剂的研究,加强开发和改进与绿色有关的生物催化的有机反应的研究。2.开发符合绿色化学要求的新反应以及相关的工艺降低或者避免使用对环境有害的原料,减少副产物的排放,直至实现零排放。3. 环境友好的反应介质的开发和利用其中可包括水、超临界流体、近临界流体、离子液体等,以替代传统反应介质的研究。4.可重复使用材料、可降解材料和生物质的利用以及生活中废弃物的再利用。在我们的生活中,有机化学的身影无处不在。能否好好的利用和发展有机化学也将在一定程度上影响着我们生活水平的高低。相信随着科学理论的发展,更多的基础学科相互交融,将在更多的领域发挥更大的作用。

有机化学的发展简史“有机化学”这一名词于1806年首次由贝采里乌斯提出。当时是作为“无机化学”的对立物而命名的。由于科学条件限制,有机化学研究的对象只能是从天然动植物有机体中提取的有机物。因而许多化学家都认为,在生物体内由于存在所谓“生命力”,才能产生有机化合物,而在实验室里是不能由无机化合物合成的。1824年,德国化学家维勒从氰经水解制得草酸;1828年他无意中用加热的方法又使氰酸铵转化为尿素。氰和氰酸铵都是无机化合物,而草酸和尿素都是有机化合物。维勒的实验结果给予“生命力”学说第一次冲击。此后,乙酸等有机化合物相继由碳、氢等元素合成,“生命力”学说才逐渐被人们抛弃。由于合成方法的改进和发展,越来越多的有机化合物不断地在实验室中合成出来,其中,绝大部分是在与生物体内迥然不同的条件下合成出来的。“生命力”学说渐渐被抛弃了,“有机化学”这一名词却沿用至今。从19世纪初到1858年提出价键概念之前是有机化学的萌芽时期。在这个时期,已经分离出许多有机化合物,制备了一些衍生物,并对它们作了定性描述,认识了一些有机化合物的性质。法国化学家拉瓦锡发现,有机化合物燃烧后,产生二氧化碳和水。他的研究工作为有机化合物元素定量分析奠定了基础。1830年,德国化学家李比希发展了碳、氢分析法,1833年法国化学家杜马建立了氮的分析法。这些有机定量分析法的建立使化学家能够求得一个化合物的实验式。当时在解决有机化合物分子中各原子是如何排列和结合的问题上,遇到了很大的困难。最初,有机化学用二元说来解决有机化合物的结构问题。二元说认为一个化合物的分子可分为带正电荷的部分和带负电荷的部分,二者靠静电力结合在一起。早期的化学家根据某些化学反应认为,有机化合物分子由在反应中保持不变的基团和在反应中起变化的基团按异性电荷的静电力结合。但这个学说本身有很大的矛盾。类型说由法国化学家热拉尔和洛朗建立。此说否认有机化合物是由带正电荷和带负电荷的基团组成,而认为有机化合物是由一些可以发生取代的母体化合物衍生的,因而可以按这些母体化合物来分类。类型说把众多有机化合物按不同类型分类,根据它们的类型不仅可以解释化合物的一些性质,而且能够预言一些新化合物。但类型说未能回答有机化合物的结构问题。这个问题成为困扰人们多年的谜团。从1858年价键学说的建立,到1916年价键的电子理论的引入,才解开了这个不解的谜团,这一时期是经典有机化学时期。1858年,德国化学家凯库勒和英国化学家库珀等提出价键的概念,并第一次用短划“—”表示“键”。他们认为有机化合物分子是由其组成的原子通过键结合而成的。由于在所有已知的化合物中,一个氢原子只能与一个别的元素的原子结合,氢就选作价的单位。一种元素的价数就是能够与这种元素的一个原子结合的氢原子的个数。凯库勒还提出,在一个分子中碳原子之间可以互相结合这一重要的概念。1848年巴斯德分离到两种酒石酸结晶,一种半面晶向左,一种半面晶向右。前者能使平面偏振光向左旋转,后者则使之向右旋转,角度相同。在对乳酸的研究中也遇到类似现象。为此,1874年法国化学家勒贝尔和荷兰化学家范托夫分别提出一个新的概念:同分异构体,圆满地解释了这种异构现象。他们认为:分子是个三维实体,碳的四个价键在空间是对称的,分别指向一个正四面体的四个顶点,碳原子则位于正四面体的中心。当碳原子与四个不同的原子或基团连接时,就产生一对异构体,它们互为实物和镜像,或左手和右手的手性关系,这一对化合物互为旋光异构体。勒贝尔和范托夫的学说,是有机化学中立体化学的基础。1900年第一个自由基,三苯甲基自由基被发现,这是个长寿命的自由基。不稳定自由基的存在也于1929年得到了证实。在这个时期,有机化合物在结构测定以及反应和分类方面都取得很大进展。但价键只是化学家从实践经验得出的一种概念,价键的本质尚未解决。现代有机化学时期 在物理学家发现电子,并阐明原子结构的基础上,美国物理化学家路易斯等人于1916年提出价键的电子理论。他们认为:各原子外层电子的相互作用是使各原子结合在一起的原因。相互作用的外层电子如从—个原了转移到另一个原子,则形成离子键;两个原子如果共用外层电子,则形成共价键。通过电子的转移或共用,使相互作用的原子的外层电子都获得惰性气体的电子构型。这样,价键的图象表示法中用来表示价键的短划“—”,实际上是两个原子共用的一对电子。1927年以后,海特勒和伦敦等用量子力学,处理分子结构问题,建立了价键理论,为化学键提出了一个数学模型。后来马利肯用分子轨道理论处理分子结构,其结果与价键的电子理论所得的大体一致,由于计算简便,解决了许多当时不能回答的问题。

环化反应相关研究论文

-艾拉莫德是一种新型抗炎药,可用于治疗风湿性关节炎。 以4-氯-3-硝基苯甲醚(化合物2)为原料,在叔丁醇钾的催化下,与苯酚发生醚化反应生成4-苯氧基-3-硝基苯甲醚(化合物3);化合物3经硝基还原,生成4-苯氧基-3-氨基苯甲醚(化合物4);化合物4在吡啶中与甲磺酰氯发生甲磺酰化反应,生成4-苯氧基-3-甲磺酰胺基苯甲醚(化合物5);然后将三氯化铝与氨基乙腈盐酸盐溶于硝基苯中,再加入化合物5,持续不断通入饱和的氯化氢气体进行盖特曼-科赫反应,生成α-氨基-2-甲氧基-4-甲磺酰胺基-5-苯氧基苯乙酮盐酸盐(化合物6);化合物6经甲氧基水解得α-甲酰胺基-2-甲氧基-4-甲磺酰胺基-5-苯氧基苯乙酮(化合物7);最后化合物7与N,N-二甲基甲酰胺二甲缩醛发生环化反应得到目标产物艾拉莫德(化合物1)。本课题研究了醚化反应中投料比、反应时间;还原反应中铁粉的用量、盐酸的用量;甲磺酰化反应中甲磺酰氯的用量、吡啶的用量等因素对产物得率的影响;探讨了盖特曼-科赫反应、氨基酰化反应、甲氧基水解和环化反应的合成方法和机理等。确定了较佳工艺条件:醚化反应中,4-氯-3-硝基苯甲醚/苯酚/叔丁醇钾的摩尔量为 ,在110℃下反应5h,收率为;还原反应中,每4g化合物3与3g还原铁粉和的4mol·L~(-1)的盐酸,在70℃下反应1h,收率为;在50mL吡啶中,每化合物4与甲磺酰氯,0℃~5℃下反应1h,收率为;目标产物艾拉莫德(化合物1)的总得率为。

2021年12月29日,中国科学技术大学朱俊发教授团队与西班牙Donostia国际物理研究中心、美国华盛顿大学和捷克科学院的研究人员合作,在J. Am. Chem. Soc.上发表了题为Chemisorption-Induced Formation of Biphenylene Dimer on Ag(111)的论文。 该论文报道了表面分子吸附构型对表面反应路径的影响和调控。同时系统地研究了产物联苯撑二聚体的化学结构和电子性质,证实了产物中四环和八环的反芳香性。 该论文的通讯作者是朱俊发(中国科学技术大学)、王涛(中国科学技术大学西班牙Donostia国际物理研究中心)、Jean-Sabin McEwen(美国华盛顿大学);第一作者是曾志雯(中国科学技术大学)、郭德洲(美国华盛顿大学)。 自下而上的表面合成是表面科学领域近年的研究热点之一,它在合成功能分子和纳米结构方面展现出了巨大的潜力。然而,由于表面反应通常需要在超高真空的条件下进行,这使得在表面合成中催化剂的使用受到了很大的限制。因此该领域的一大重要挑战是如何有效地调控反应的路径以获得预期的产物。表面化学反应区别于溶液化学反应的一个重要因素是分子在表面的吸附,而活化的分子在金属表面的吸附行为可能会影响化学反应路径。 该工作中,研究人员发现具有相同骨架但不同官能团数目的两种前驱体分子2,2 -二溴联苯(DBBP)以及2,2 ,6,6 -四溴-1,1-联苯(TBBP)在Ag(111)表面表现出完全不同的反应路径,并分别高选择性生成了菱形的二苯并[e,l]芘多环芳烃和四八环掺杂的石墨烯纳米片,即联苯撑二聚体(图1)。文章结合低温扫描隧道显微镜,同步辐射光电子能谱和密度泛函理论计算,解释了其潜在的反应机理:分子在表面脱溴后,双自由基的DBBP分子可以被表面Ag增原子所稳定,形成金属有机二聚体。而四自由基的TBBP分子因其在Ag(111)表面的极度不稳定的吸附构型而自发发生分子内环化反应形成竖立吸附在表面的四环产物,并在进一步退火后最终形成联苯撑二聚体。该工作证明了可以通过调节分子在表面的化学吸附构型来调控表面反应的选择性。 此外,研究人员还结合化学键分辨的扫描隧道显微镜(BR-STM)、扫描隧道谱(STS)、以及芳香性计算(HOMA,NICS和ACID)对包含4n个电子的四元环和八元环的反芳香性提供了全面的分析。四元环具有明显的单键性质,因此降低了产物的共轭性,致使其能带隙较宽。同时,由于四元环的键约束,苯环的电子离域性即芳香性显著降低。这种键限制效应可以期望被应用在其他石墨烯和非苯类碳纳米结构中,以调节这些材料的电学、磁学性质和化学反应活性。 文章主要分为四个部分: 1. 在表面合成含四六八环的联苯撑二聚体 250K时,TBBP分子在Ag(111)表面保持完整。退火到300K,大部分分子脱溴并在表面自发发生分子内环化反应形成带自由基的四环产物并竖立在表面(图2)。进一步退火到400K,形成了金属有机二聚体(图3)。退火到540K,最终形成联苯撑二聚体(图3)。 2. 联苯撑二聚体的化学结构分析 通过化学键分辨的扫描隧道显微镜结合HOMA,NICS和ACID计算共同分析了该产物的键长和芳香性,证明了有机和计算化学中提出的该产物的键长交替结构,即四环保持单键的属性(图3)。 3. 联苯撑二聚体的电子结构分析 通过结合扫描隧道显微谱以及密度泛函计算分析了该产物的带隙、HOMO和LUMO的电荷密度分布等电子结构(图4)。成键轨道主要分布在苯环周围,反键轨道更多地分布于四环,进一步证实了之前提出的分子结构。 4. 反应机理分析 通过实验和DFT计算对比了DBBP和TBBP在Ag(111)表面的反应路径和产物,说明了两者反应选择性的差异是由于其不同的化学吸附构型导致的(图5)。 相关论文信息:

相关百科
热门百科
首页
发表服务