论文投稿百科

蛋品卵黄磷蛋白的研究进展论文

发布时间:2024-07-03 06:08:43

蛋品卵黄磷蛋白的研究进展论文

。蛋类在我国人民膳食中构成中占,是优质蛋白质的主要来源。蛋类制成的蛋制品有皮蛋、咸蛋、槽蛋、冰蛋、全蛋粉、蛋白粉、蛋黄粉等。2、蛋的营养价值(1)蛋壳蛋壳含有丰富的碳酸钙,非常容易消化吸收,是补充钙质的最佳来源.在正常情况下,每天取约2公克的蛋壳研成粉状食用,可预防因钙质不足、骨量减少而导致的腰酸背痛、容易骨折或罹患骨质疏松症.(2)蛋黄蛋黄含有丰富的蛋白质、脂肪、钙、卵磷脂和铁质等营养成分,其中卵磷脂被肠胃吸收之后,可促进血管中胆固醇的排除,有预防动脉粥样化的功用,且卵磷脂经消化吸收之后,可生成胆碱,这种物质与脑部的神经传达作用有关,可促进学习、记忆的能力,达到预防老人痴呆的功效。胆碱还可预防肝脏积存过量脂肪,避免形成脂肪肝及改善肝脏机能。而蛋黄所含的铁质,利用率最高,是最补血的天然食品.(3)蛋白蛋白中含有一种叫白蛋白的蛋白,具有清除活性氧的作用,可增强人体免疫力,达到防癌的功效,且蛋白中的卵白蛋白,经消化酵素分解之后,可以产生一种溶解酶,可活化巨噬细胞,抵抗外来病菌的入侵,提高身体的免疫力.(4)蛋系带蛋黄左右有两条白色的索状物,就是蛋系带,它是蛋白的一部分,也是优质蛋白质的来源。它还含有一种燕窝也有的成分,叫「涎酸」,具有抗氧化作用,可与侵入人体的病毒结合,进而消灭病毒,防止感染的产生,并且有预防癌变的作用. 此外,中医药古籍《本草纲目》记载:蛋性味甘平,能安5脏、安心神;能定惊、安胎,具有养阴、健脾、补肺等作用,且补而燥,常吃能去病延年,最适合成长中的儿童、青少年。3、加工烹调对营养价值的影响一般烹调加工方法,如煮整蛋、油煎、油炒、蒸蛋等,除维生素B2少量损失外,对其它营养成分影响不大。烹调过程中的加热不仅具有杀菌作用,而且具有提高其消化吸收率的作用,因而生蛋清中存在抗微生物素和抗胰蛋白酶经加热后被破坏,蛋白质的消化吸收和利用更完全,因此,不宜生吃鲜蛋。蛋类包括鸡蛋、鸭蛋、鹅蛋、鹌鹑蛋、鸽蛋、鸵鸟蛋、火鸡蛋、海鸥蛋及其加工制成的咸蛋、松花蛋等。蛋类的营养素含量不仅丰富,而且质量也很好,是一类营养价值较高的食品。蛋类的主要营养成分一、蛋白质蛋类蛋白质含量一般在10%以上。全鸡蛋蛋白质的含量为12%左右,蛋清中略低,蛋黄中较高,加工成咸蛋或松花蛋后,变化不大。鸭蛋的蛋白质含量与鸡蛋类似。蛋白质氨基酸组成与人体需要最接近,因此生物价也最高,达94%,是其他食物蛋白质的  倍左右。蛋白质中赖氨酸和蛋氨酸含量较高,和谷类和豆类食物混合食用,可弥补其赖氨酸或蛋氨酸的不足。蛋中蛋白质中还富含半胱氨酸,加热过度使半胱氨酸部分分解产生硫化氢,与蛋黄中的铁结合可形成黑色的硫化铁。煮蛋中蛋黄表面的青黑色和鹌鹑蛋罐头的黑色物质来源于此。二、 脂类蛋清中含脂肪极少,98%的脂肪存在于蛋黄当中。蛋黄中的脂肪几乎全部以与蛋白质结合的良好乳化形式存在,因而消化吸收率高。鸡蛋黄中脂肪含量约28%~33%,其中中性脂肪含量约占62%~65%,磷脂占30%~33%,固醇占4%一 5%,还有微量脑苷脂类。蛋黄中性脂肪的脂肪酸中,以单不饱和脂肪酸油酸最为丰富,约占 50%左右,亚油酸约占10%,其余主要是硬脂酸、棕榈酸和棕榈油酸,含微量花生四烯酸。蛋黄是磷脂的极好来源,所含卵磷脂具有降低血胆固醇的效果,并能促进脂溶性维生素的吸收。胆固醇含量极高,主要集中在蛋黄,加工成咸蛋或松花蛋后,胆固醇含量无明显变化三、碳水化合物鸡蛋当中碳水化合物含量极低,大约为1%左右,分为两种状态存在,一部分与蛋白质相结合而存在,含量为 %左右;另一部分游离存在,含量约 %。后者中 98%为葡萄糖,其余为微量的果糖、甘露糖、阿拉伯糖、木糖和核糖。这些微量的葡萄糖是蛋粉制作中发生美拉德反应的原因之一,因此生产上在干燥工艺之前采用葡萄糖氧化酶除去蛋中的葡萄糖,使其在加工储藏过程中不发生褐变。五、矿物质蛋中的矿物质主要存在于蛋黄部分,蛋清部分含量较低。蛋黄中含矿物质 %~%,其中磷最为丰富,为240mg/l00g,钙为112mg/100g。蛋黄是多种微量元素的良好来源,包括铁、硫、镁、钾、钠等。蛋中所含铁元素数量较高,但以非血红素铁形式存在。由于卵黄高磷蛋白对铁的吸收具有干扰作用,故而蛋黄中铁的生物利用率较低,仅为3%左右。六、维生素蛋中维生素含量十分丰富,且品种较为完全,包括所有的B族维生素、维生素 A、维生素 D、维生素 E、维生素 K 和微量的维生素 C。其中绝大部分的维生素 A、维生素 D、维生素 E 和大部分维生素 B1都存在于蛋黄当中。鸭蛋和鹅蛋的维生素含量总体而言高于鸡蛋。此外,蛋中的维生素含量受到品种、季节和饲料中含量的影响。七、蛋类的合理食用在生鸡蛋蛋清中,含有抗生物素蛋白和抗胰蛋白酶。抗生物素蛋白能与生物素在且肠道内结合,影响生物素的吸收,食用者可引起食欲不振、全身无力、毛发脱落、皮肤发黄、肌肉疼痛等生物素缺乏的症状;抗胰蛋白酶能抑制胰蛋白酶的活力,妨碍蛋白质消化吸收,故不可生食蛋清。烹调加热可破坏这两种物质,消除它们的不良影响。但是至不宜过度加热,否则会使蛋白质过分凝固,甚至变硬变韧,形成硬块,反而影响食欲及消化吸收。蛋黄中的胆固醇含量很高,大量食用能引起高脂血症,是动脉粥样硬化、冠心病;疾病的危险因素,但蛋黄中还含有大量的卵磷脂,对心血管疾病有防治作用。因此,吃鸡蛋要适量。据研究,每人每日吃1~2个鸡蛋,对血清胆固醇水平既无明显影响,可发挥禽蛋其他营养成分的作用。希望可以帮到你

以前的物质生活比较匮乏,能够吃上鸡蛋是一件比较奢侈的事情。

随着时代的发展,人们的生活水平逐渐提高,人们的观念也发生了很大的转变。越来越多的人开始有 养生 的概念,鸡蛋成为每个家庭餐桌上常见的食物。

与此同时,人们对鸡蛋产生了不同的看法。有些人认为鸡蛋黄中含有大量的 胆固醇 ,吃多了对 心血管不好 ,也有些人认为常吃鸡蛋可以达到 养生 的效果。那么事实上 每天一个鸡蛋,是“ 养生 ”,还是“损坏心血管”呢?

据《英国医学杂志·心脏》研究显示,与不吃或者很少吃鸡蛋的人相比之下, 健康 成年人每天吃1个鸡蛋,有助于降低患上心血管疾病的风险,并不会损坏心血管 。这一研究结果为推荐 健康 的成年人摄入鸡蛋量提供了科学依据。

在《鸡蛋黄中蛋白质研究进展》研究表明,鸡蛋黄中富含 蛋白质 ,蛋白质占蛋黄总重量17%,并且其蛋白质的种类繁多。

蛋黄中主要包括卵黄免疫球蛋白、蛋黄低密度脂蛋白、蛋黄高密度脂蛋白以及卵黄高磷蛋白等,只有鸡蛋黄中富含蛋白质吗?蛋清中也富含着不同的蛋白质,在蛋清中主要包括卵白蛋白、卵转铁蛋白、卵类黏蛋白、卵黏蛋白、溶菌酶、卵糖蛋白等。

早在1973年,联合国粮农组织和世界卫生组织在 氨基酸平衡理论 的基础上,提出利用 氨基酸模式 来评价蛋白质营养价值。在 蛋白质中必需氨基酸的构成比例与人体氨基酸模式越接近,它的营养价值就越高。

据《鸡蛋营养品质评价的研究进展》表明,鸡蛋蛋白质含量高达%, 它属于完全蛋白,同时也是属于最接近人体的氨基酸模式蛋白质之一。鸡蛋中氨基酸比例均衡,它有利于促进 胃肠道吸收 。由此可见,鸡蛋的 营养价值很高 。

一个鸡蛋里并不仅仅富含着蛋白质,同时还含有脂质成分,尤其蛋黄中更是如此。据《鸡蛋营养品质评价的研究进展》表明鸡蛋的 脂肪 几乎都位于蛋黄中,在蛋黄里含有99%以上的脂类成分,分别有 真脂、磷脂和胆固醇 脂类成分。

其中真脂约占蛋黄总量的20%,占脂肪总量的% ;磷脂占蛋黄总量的10%,占脂肪总量的% ; 而胆固醇占脂肪总量的%。由此可见,在蛋黄中含量最多的是 真脂, 其次是磷脂和胆固醇。

蛋黄主要由 三酰甘油、磷脂和游离胆固醇 脂质组成, 其中包含丰富的 磷脂 和 不饱和脂肪酸 。

人体必需的脂肪酸主要分为两种,一种是 ω⁃3系列的α⁃亚麻酸 ,一种是 ω⁃6系列的亚油酸 。其中 α⁃亚麻酸 可以使人体血液中胆固醇和低密度脂蛋白胆固醇的浓度 降低 ,减少与炎症相关分子和物质的产生,从而起到减少患上的心脏病等 慢性病、癌症和关节炎 的发生率,达到一种 预防 的作用。

此外,在流行病学中研究表明,大量消耗 ω⁃3脂肪酸 的人群患上 乳腺癌,前列腺癌和结肠癌 的几率较低。大量研究还证明, 亚油酸 可以使胰岛素敏感性增强 ,从而有效降低 心血管疾病 的发病率。这说明,在人们的饮食中脂肪酸组成对人体 健康 是有一定的影响,必需脂肪酸的含量可作为评价鸡蛋营养水平的重要指标。

在日常生活中,鸡蛋常被认为是多种维生素的良好来源。鸡蛋中除了含有 维生素C 以外, 其蛋黄中还包含着 维生素A、D、E、烟酸、叶酸和泛酸 等。根据美国第三次全国 健康 和营养调查数据显示,按营养素总摄入量的百分比来计算,食用一个鸡蛋里可以提供9%的维生素B6,17%的叶酸、2%的维生素A、25%的维生素E、25%的维生素B12 。

在蛋黄中富含的 维生素A ,它不仅在维持人 正常视觉、上皮细胞完整 等方面起到重要作用,而且在抑制人体的 肿瘤 方面也起到一定的作用。

通常,在一个鸡蛋里约含有的维生素E,这个维生素E含量相当于每天标准推荐量的。维生素E可以有效地对抗自由基,它起到 延缓衰老、改善人体血液循环、软化血管、降血脂 等作用。

而烟酸属于一种B族维生素,它是人体里一种不可缺失的营养成分,对人体的生长发育起着非常重要的作用。

鸡蛋除了是多种维生素的来源之一,同时也是 矿物质 的良好来源。在蛋黄里约含有1%的各种矿物质。其中最为丰富的矿物质含量是 磷 ,超过60% 磷存在卵磷脂中。

在蛋清中主要为 硫、钾、钠和氯等 矿物质, 其次是 磷、钙、镁和硒 。这些微量元素是构成人体内各种酶、激素、维生素等物质的重要部分,对维护人体内 正常新陈代谢以及及生命活动 起到至关重要的作用。鸡蛋营养如此丰富,那么对于孕妇、小孩、胆囊患者是否可以多吃鸡蛋呢?

根据《中国居民膳食营养素参考摄入量(2013版)》中推荐,孕产妇在 不同孕期阶段 需要增加不同的 蛋白质摄入量, 孕早期中每天增加克,孕中期每天增加15克,孕晚期每天增加30克,产妇乳母每天增加25 克,而一个鸡蛋约含有克蛋白质。

因此,在摄入其他动物性食物量不过多的前提之下, 孕中、孕晚期阶段的产妇 可多吃一个鸡蛋。

在鸡蛋里富含着 卵磷脂、胆碱及维生素 ,这些营养成分有助于孩子的发育。孩子的蛋白质需要量低于一个成年人,并且孩子的胃容量是比较有限。如果吃太多的鸡蛋会占用到孩子的胃容量,导致孩子摄入其他辅食量减少。

因此 孩子不需要吃太多的鸡蛋,每天吃一个鸡蛋就足以满足幼儿补铁的需要 。 如果孩子吃其他动物性的食物不多的话,可以吃两个鸡蛋,这样可以更多地补充其他有益的营养成分。

很多人对于蛋黄的喜爱都止于 胆固醇,那么蛋黄要不要吃呢? 事实上,食物中的胆固醇并没有那么可怕。

胆固醇属于人体内所需要的重要成分,在人体里各组织里都含有它,它是合成维生素D3及胆汁酸的前提。人体里有 合成胆固醇的能力 ,人体 每天合成胆固醇的量远远大于通过食物摄入胆固醇的量 ,大部分 健康 的人体里可有效地调节吃进去和合成的胆固醇,使人体内保持一种 平衡 的状态。

在《中国居民膳食营养素参考摄入量(2013版)》中,已经取消了对于膳食胆固醇的限制。这说明,一个蛋黄还是可以吃的。 但是取消胆固醇上限,这并不代表着可以随意吃蛋黄。

对于一些患有 代谢性疾病 的人群而言,由于他们的体内合成胆固醇和外界摄取胆固醇的平衡能力有一定 影响 ,如果额外地多摄入的胆固醇可能会影响他们体内的血脂代谢,从而引起 高血脂 等症状。因此, 不建议患有代谢性疾病的人群摄入过多的蛋黄 。

那么对于患有胆囊炎疾病的人群而言,是否能吃鸡蛋呢? 胆囊炎患者的饮食要求低脂,不能摄入过多的胆固醇。

低脂饮食虽然限制了胆囊疾病患者食用蛋黄,但是蛋清还是可以食用的。因为在鸡蛋的蛋清中几乎不含有脂肪,也不含有胆固醇,同时也几乎没有蛋黄中的其他多种维生素和微量元素,没有膳食纤维,没有卵磷脂,对胆囊疾病患者来说是比较友好的。

此外,我们建议胆囊疾病患者吃 豆类及其豆制品 来补充蛋白质。因为豆类及其豆制品里富含着 膳食纤维和豆固醇 ,这些营养成分可以有利于胆囊疾病患者降低身体对胆固醇的利用。

鸡蛋营养丰富,物美价廉,它主要由 蛋白质及氨基酸、脂肪酸、维生素、矿物质、生物活性物质等组成 ,有益于人们的身体 健康 。

鸡蛋在人的体内容易消化、吸收,在全世界范围内,鸡蛋都是公认的营养食品。在基于摄入其他动物性食物量不过多的前提之下,处于孕中、孕晚期阶段的产妇以及小孩可多吃一个鸡蛋。

鸡蛋里富含着胆固醇,虽然在《中国居民膳食营养素参考摄入量(2013版)》中取消了对膳食胆固醇的摄入量上限,但仍然建议 胆囊炎患者 控制蛋黄的摄入量,过多的摄入会影响 胆囊炎患者 体内的血脂代谢,从而引起 高血脂 等症状。建议注意混合其他饮食搭配,保持营养均衡,更有助于身体 健康 。

参考文献:

【1】《鸡蛋营养品质评价的研究进展》中国食物与营养 2022,28(1)45-50

【2】《鸡蛋黄中蛋白质研究进展 》中国家禽2012年第34卷第21期

【3】《研究称每天吃鸡蛋可能有助降低心血管疾病风险》食品工业2018 年第39卷第 7 期

蛋含有蛋的全息全部营养成份是和人体最接近的优质蛋白含卵磷脂补充大脑和全身营养而蛋制品经过加工损矢很多营养成份还附加其它成份和添加剂毎人每天最好吃一个煮鸡蛋营养丰富

白蛋白的研究进展论文怎么写

随着分子生物学的飞速发展,最为世人瞩目的人类基因组计划即将提前完成。人类将向了解自己的生命奥秘这一目标迈进一大步。但是,由于基因是遗传信息的携带者,而生命活动的执行者却是蛋白质,即基因的表达产物。因此,即使得到人类全部基因序列,也只是解决了遗传信息库的问题。人类揭示整个生命活动的规律,就必须研究基因的物产——蛋白质。相对于基因组而言,后者称为蛋白质组。1 蛋白质组概述及其相关研究技术和方法鉴于基因组研究的局限性,1994年澳大利亚Macquaie 大学的Wilkins和Williams等在意大利的一次科学会议上首次提出了蛋白质组(Proteome)这个概念。定义为“蛋白质组指的是一个基因组所表达的蛋白质”,即“PROTEOME”是由蛋白质的”PROTE”和基因组的“OME”字母拼接而成[1].这个新术语很快得到了国际生物学界的认可。目前对蛋白质组的分析工作大两个方面。一方面,通过二维胶电泳等技术得到正常生理条件下的机体、组织或细胞的全部蛋白质的图谱,相关数据将作为待测机体、组织或细胞的二维参考图谱和数据库。另一方面是比较分析在变化了生理条件下蛋白质组所发生的变化。目前蛋白质组研究技术常用以下手段:(1)用于蛋白质分离技术方面的如双向凝胶电泳(2-DE)、双向“高效”柱层析等。(2)用于蛋白质鉴定的技术如质谱技术、凝胶图像分析、蛋白质和多肽的N端、C端测序及氨基酸组成分析等。(3)用于蛋白质相互作用及作用方式研究的双杂交系统。(4)用于分析大量数据的生物工程信息学等[2].。2 蛋白质组在医学研究中的现状和前景自蛋白质组概念提出以来,已发表相关论文及论著数篇。并于是1997年举行了第一届国际性的“蛋白质组学”会议。同年出版式了第一部蛋白质组学的专著。目前蛋白质组在医学方面的研究重点在于对人类疾病的发病机制、早期诊断及治疗,对致病微生物的致病机理、耐药性及发现新的抗生素为主。现将这两方面的进展情况综述如下。 人类疾病的蛋白质组研究 直肠癌 直肠癌的发生是因多个基因的突变,导致肿瘤抑制基因失能所致,但确切机制仍不清楚。为探讨其发病机制,Sanchez等对15例结肠癌和13例正常人的结肠上皮进行2-DE,每个多肽模式用Melanie I12-DE分析软件进行分析。据此建立了包括882和861个斑点的结肠癌及正常人结肠粘膜的标准胶图。结果发现在分子量为13kD和pI值为处的蛋白质仅出现在结肠癌的组织中。15例结肠癌患者中13/蛋白有13例(87%)。此外,发现13/蛋白不仅在中度、低度分化的结肠癌及有24年病史的溃疡性结肠炎过度表达,而且出现在7例分化程度不同的腺瘤的癌前病灶。但对照组则极少出现。这表明该蛋白的出现对检测早期直肠癌有很强提示。通过对该蛋白HPLC及测序等分析后,发现与钙粒蛋白B(calgranulin B)及钙卫蛋白(calprotectin)有很大关系[3]。 肝癌 醛糖还原酶(aldose reductase, )是醛酮还原酶超家族中的一个成员。它催化葡萄糖还原为山梨醇,通过减少内源或外源性代谢产物而起到解毒作用。Peter R等在用N-甲基-N-亚基脲诱导(N-methly-N-nitrosourea-induced)的小鼠肝癌中,用2-DE及氨基酸微型测序可分辩出一种肝癌诱导的醛糖还原酶样的蛋白质(35Kd/)。而在小鼠的晶状体中,则发现一种醛糖还原的同工酶,该酶与已知的小鼠醛糖还原酶有98%的同源性,而与肝癌诱导的醛糖还原酶样的蛋白质截然不同。这表明两种蛋白质是由相关的两条基因编码,在小鼠不同的器官中表达不同。肝癌诱导的醛糖还原酶蛋白质优先表达在肝癌及胎肝中,它们均受到纤维细胞生长因子的刺激,但随小鼠鼠器官的生理及病理环境而表现不同的形式。经免疫组化证实,肝癌诱导的醛糖还原酶样的蛋白质在成人肝脏中不表达,但在小鼠的肝癌 中又重新表达。同时发现该蛋白在癌前病变及肝癌中表达强烈,而在肝脏周围的正常组织不表达[4]。表明该蛋白可能与肝癌的发病有很大关系。 扩张型心肌病 扩张型心肌病是一种严重的可导致心衰的心脏病,大多数患者需行心脏移植术。目前其发病机理不明,推测可能为多种因素所致。1990年已有两组人员进行该病的蛋白质组分析。其后不久心肌的2-DE数据库建成,并进入国际互联网络。Knecht等采用2-DE取得了3300个心肌蛋白条带,通过氨基酸序列分析、Edman降解法及基质辅助的激光解吸离子化质谱(MALDI-MS)等分析了其中150条。经活检及术后病理证实,有12条为扩张性心肌病特有的蛋白。但具体资料尚在进一步分析之中[5]。Arnott D等对新福林诱导的肥大心肌细胞进行蛋白质组分析,同对照相比亦发现有8种蛋白质的表达水平发现了变化[6]。 膀胱癌 IFN-γ除抗病毒外,还有一项重要的功能即抗肿瘤作用。目前其抗肿瘤作用机制不明。有资料表明,IFN-γ可能通过在相关细胞中增强或抑制有关基因而发挥抗肿瘤作用。重组IFN-γ和IL-2已开始应用于膀胱癌的治疗中。为探明其作用机制,George等将四种分级程度不同的人膀胱癌新鲜活检标本,用50U/ml IFN-γ作用20个小时后,采用2-DE、微型序列分析、等电聚集、蛋白质印迹等方法,对标本进行蛋白质组分析。结果表明有五种蛋白质(色按酸-tRNA合成酶、IFN-γ诱导的r3,超氧化物歧化酶及两种分子量为和的未知蛋白)的表达量增加了75%,而醛糖还原酶表达量则下降。为研究IFN-γ对治疗膀胱癌的作用机制提供了一种方法[7]。此外,由于缺乏对膀胱鳞状细胞癌客观可靠的组织学分级标准,因而很其进行早期诊断。为此,Morten等对150例膀胱癌进行双盲法2-DE,并结合了蛋白质印迹法、微型序列分析及质谱等技术,建立了新鲜膀胱癌标本的2-DE数据库,且发现角蛋白10、14及银屑病相关的脂肪酸结合蛋白(psoriasis-associated fatty acid-binding protein,PA-FABP)等可以作为膀胱癌不同分化程度的标记物[8]。为早期诊断提供了一种新的手段。[ 本帖最后由 snow_white 于 2007-7-20 16:32 编辑 ]查看完整版本请点击这里:蛋白质组学研究〔综述〕05我也来说两句 查看全部回复 最新回复snow_white (2007-7-20 16:31:50) 其它 目前人的各种组织、器官、细胞乃至各种细胞器已被广泛研究。以期为疾病诊治及了解发病机制提供新的手段。在一项利用蛋白质组研究技术进行的酒精对人体毒性的研究中发现,乙醇 会改变血清蛋白糖基化作用,导致许多糖蛋白的糖基缺乏,如转铁蛋白[9]。Jagathpala等对免疫所致的不孕症的男性精子蛋白质进行蛋白质组分析,发现了导致不孕症的6种自体及异体抗 精子抗体[10]。在对肾癌的研究中,发现有4种蛋白质存在于正常肾组织而在肾癌细胞中缺失。其中两种分别是辅酶Q蛋白色素还原酶和线粒体乏醌氧化还原复合物I。这提示线粒体功能低下可能在肿瘤发生过程中起重要作用[11]。Ekkehard Brockstedt等利用2-DE、Edman微型序列法、MALDI-MS等对人BL60-2伯基特淋巴瘤细胞系进行了细胞凋亡机制的研究,结果发现RNA聚合酶转录因子3a(BTF3a)和/或BTF3b与抗IgM抗体介导(anti-IgM antibody-mediated)的细胞凋亡有很大关系[12]。 致病微生物的蛋白质组研究 近年来,WHO越来越重视感染性疾病对人类健康的影响。除结核、多重耐药链球菌感染及机会致病菌外,出现了一些新的感染因素如HIV、博氏疏螺旋体及埃博拉病毒等。因此这些致病微生物的蛋白质组分析,对于了解其毒性因子、抗原及疫苗的制备非常重要,此外对疾病的诊断、治疗和预防也同样重要。现已获得18种微生物的全部基因组序列,另有60余种的基因序列正在研究之中。这些工作的开展为蛋白质组的研究提供了有利条件。 检测博氏疏螺旋体与免疫有关的蛋白质 博氏疏螺旋体(Borrelia burgdorferi)是莱姆病的主要病因,表现为环形红斑及流感样症状,大约有50%的未治患者发展为神经系统及关节系统疾病。该螺旋体可分为3种类型: sensu stricto,, 。其诊断需依靠血清学检查,但存在敏感性及特异性变化的缺点。为获得更可靠的血清学检查,Peter等用2-DE从得到217个银染的蛋白斑点。从中国兔多克隆抗体鉴别出6个已知的讥原。将不同临床表现莱姆病患者的血浆用 2-DE图杂交。用抗IgM及抗IgG作为第二抗体,在10例有游走性红斑的患者血浆中,检测出60~80个抗原。同时发现在有关节炎的患者血浆中,包含有抗15种抗原的IgM抗体及抗76种不同抗原的IgG抗体。而晚期有神经系统症状的患者血浆中,则包含有抗33种抗原的IgM抗体及抗76种抗原的IgG抗体。上述3种类型患者的血浆中均包含有抗6种已知抗原的抗体,且被SDSPAGE杂交所证实。这些抗原均是潜在的具有特异性诊断的标志物。 弓形体抗原的检测 弓形体病是由鼠弓形体虫引起的寄生虫病。全球人口大约有30%是携带者,在欧洲是最常见的寄生虫病。如果妊娠者感染,该虫可通过胎盘引起胎儿的感染。且随着妊娠时间的增加,感染的机会也增加。大约50%母体的感染可引起新生儿先天性疾病。因此诊断及治疗越早越好。目前要依靠血清学及PCR,而单独采用血清学如用IgG,IgM,或IgA抗体对疾病活动期敏感性不够,尤其对于妊娠或有免疫抑制的患者。潜在感染常发生在有免疫抑制的患者中。对AIDS患者来说,鼠弓形体虫是最主要的致命性脑损伤的病因。因此,能否早期诊断对治疗来说尤为关键。Jungblut等将鼠弓形体虫RH株在人羊膜细胞系FL521中传代后,用2-DE得到300个银染的斑点。再将其与以下3种患者的血浆进行免疫杂交:(1)患有急性弓形体病的妊娠女性(n=11); (2)患急性弓形体病的非妊娠者(n=6)(3)有潜在感染的患者(n=9)。结果有9个斑点对各阶段的弓形体感染均反应,这9种斑点被用来当作弓形体感染的标记。其中7种标记可用作区别疾病的不同阶段。但对区别急性期与潜在期仍需联合应用多种抗原[4]。 白色念珠菌 芽管结构是白色念珠菌向菌丝体转变的早期阶段,该结构能增强白色念珠菌对宿主细胞的粘附力、穿透力及破坏性。目前通过蛋白质组分析方法如2-DE、质谱等已检测出在芽管结构所表达的一组特异蛋白如DNA结合蛋白等,为致病提高了一些参考指标[13]。Monkt等发现,在conA反应后的SDS-PAGE图中,在芽管结构的膜上,分子量为80kD复合糖处,出现很淡的考马斯亮蓝染色,而在孢子时则未出现。提示膜的整合、出现未与ConA结合的80kD复合糖可能与芽管结构的发生及生长有关。粘附素(adhesin)是白色念珠菌表面的组成部分,介导其与宿主的结合,是侵入宿主所需的重要蛋白,包含多种成分如白色念珠菌胞壁上的疏水蛋白等,通过增强菌株的粘附性而在其致病机制中发挥一定作用。但由于这些蛋白有很大同源性、多种糖基化作用及与胞壁或胞浆膜上其它成分形成共价结合,故提纯及分析很难。现通过等电聚集、2-DE及洗脱电泳等方法,可使这些蛋白得到很好的纯化、分离及分析[14]。抗真菌药通过改变真菌胞壁组分的生物合成和重组胞壁相关酶的结合位置而发挥作用。抗真菌药远少于抗细菌药就在于对真菌细胞壁蛋白分析了解太少。现在临床上用于抗真菌的药物多为咪唑类(咪康唑、酮康唑)及三唑类(氟康唑、伊曲康唑),但有很多患者出现耐药现象。在白色念珠菌中,目前发现至少有8种CDR家族的基因可产生耐药株的表现型。且有55种基因分别表达ABC及MFS蛋白(菌内药物输出泵)[]。但这些基因、蛋白与耐药之间的关系仍未清楚。应用2-DE、免疫检测蛋白质等技术,对这些蛋白在菌内的表达量进行分析,发现Cdrlp及CaMdrlp蛋白在耐咪唑类菌株中过量表达。在对咪唑类每感及去除CDR1基因的白色念珠菌株CA114中,提取并检测耐氟康唑突变子(FL3)的表达。结果发现FL3对氟康唑的耐是去除CDR1的基因的白色念珠菌株CA114的500倍 ,是CA114的250倍。且CDR1 mRNA在FL3的量是Ca114的8倍[17]。同时,对敏感性及耐药株蛋白质的2-DE图分析发现,在耐中有25种蛋白质增加,有76种蛋白质减少。推测白色念株菌是通过改变染色体数目或染色体重组来调节基因的表达量,进而产生耐药性[18]。随着蛋白质组技术成熟完善,将对真菌壁及耐药基因分泌的各种蛋白组成分析带来重大突破,并对抗真菌的研制提供重要资料。虽然蛋白质组学还处在一个初期发展研段,但我们相信随着其不断地深入发展,蛋白质组(学)研究在提示诸如生长、发育和代谢调控等生命活动的规律上将会有所突破,对探讨重大疾病的机理、疾病诊断、疾病防治和新药开发将提供重要的理论基础。[ 本帖最后由 snow_white 于 2007-7-20 16:33 编辑 ]snow_white (2007-7-20 16:34:25)二、蛋白质组学的研究进展蛋白质组学强调的是针对蛋白质的一个整体思路。从整体的角度看,蛋白质组研究大致可分为两种类型:一种是针对细胞或组织的全部蛋白质,也就是着眼点是整个蛋白质组;而另一种是以与一个特定的生物学机制或机制相关的全部蛋白质为着眼点,在这里整体是局部性的。针对细胞蛋白质组的完整分析的工作已经比较全面地展开,不仅如大肠杆菌、酵母等低等模式生物的蛋白质组数据库在建立之中,高等生物如水稻和小鼠等的蛋白质研究也已开展,人类一些正常和病变细胞的蛋白质数据库也已在建立之中。与此同时,更多的蛋白质组研究工作则是将着眼点放在蛋白质组的变化或差异上,也就是通过对蛋白质组的比较分析。首先发现并去鉴定在不同生理条件下或不同外界条件下蛋白质组中有差异的蛋白质组分。限于篇幅,本文不对这方面的工作做进一步论述。本文接下来重点介绍近期发表的关于蛋白质组学的几个工作,从中可以看到蛋白质组学的思想方法在蛋白质整体(或局部整体)水平上是如何解决生理学的一些重要问题的。1999年11月《Nature》杂志发表了一篇用蛋白质组学方法研究蛋白质折叠的研究论文[10]。在这篇文章中,Houry等报道了在大肠杆菌胞质中的2500种新生多肽链种只有近300种以GroEL作为分子伴侣来帮助其折叠成正确构象。在以往的相关研究中,通常只是针对某个或某些特定的蛋白质,观察它(们)在折叠过程中是否需要诸如GroEL等分子伴侣的帮助。而在这个工作中,研究是从一个整体的思路出发,首先通过免疫共沉淀的方法获得所有与GroEL结合的肽链,再通过二维电泳和数据库比较等蛋白质研究的手段对这些肽链进行分析鉴定,从而实现了对大肠杆菌近2500条新生多肽链与分子伴侣GroEL的关系的全面分析。在这个工作中,研究者还通过对其中50种与GroEL作用的肽链的鉴定,进一步揭示了决定这些蛋白质能与GroEL相互作用的关键结构特征。应该说,这个工作很好地体现了蛋白质组学的思想方法和技术手段的运用。过去在细胞生物学领域还没有得到过一个主要亚细胞结构的完整的分子图。核孔复合体是一个巨大的跨核膜的八角形结构,是控制大分子在胞质和核质间运输的通道。多年来,很多方法被用来分析这一复合体的组成成分。虽然这些工作取得了很大的进展,但究竟在多大程度上反映了这一复合体的分子原貌仍然是一个未知数。最近通过使用蛋白质组学的手段,Rout等[11]鉴定了完整的酵母核孔复合体所有能检测到的多肽,并系统地对每种可能的蛋白质组分在细胞中定位,结合免疫电镜的方法将各组分在复合体内定位并定量,从而揭示了酵母核孔复合体的完整分子构造,并在此基础上揭示了其工作原理。这个工作可以说是蛋白质组学解决构造生物学问题的一个典范,为揭示其他巨大分子机器的"构造"和工作原理指出了一条新路[12]。通过分析一个蛋白质是否跟功能已知的蛋白质相互作用可得到揭示其功能的线索。因为经验告诉我们,如果两个蛋白质相互作用,那么它们一般参与相同或相关的细胞活动[13]。从近期国际上蛋白质组学研究的发展动向可以看出,揭示蛋白质之间的相互作用关系,建立相互作用关系的网络图,已成为揭示蛋白质组复杂体系与蛋白质功能模式的先导,业已成为蛋白质组学领域的研究热点。2000年初,《Science》登载了一篇应用蛋白质组学的大规模双杂交技术研究线虫生殖器发育的文章[14]。在这个工作中,Walhout等以线虫的生殖发育过程作为研究对象,从已知的27个与线虫发育的蛋白质出发,构造了一个大规模的酵母双杂交系统,得到了100多个相互作用的结果,初步建立了与线虫生殖发育相关的蛋白质相互作用图谱,从而为深入研究和揭示线虫发育的机制等提供了丰富的线索。这个工作不同于一般的应用酵母双杂交进行研究的地方在于,它出于对一个生物学问题的整体思考,尽可能地从所有已知的蛋白质而不只是个别的蛋白质为出发点。这一个工作为以前专注于信号转导过程中单个蛋白质作用的科学家们提供了一个新的思路,即将整个途径的相关蛋白质一起考虑。那么,能否通过酵母双杂交系统来分析一种细胞或特定组织的所有可能的蛋白质之间的相互作用呢?在今年初,《Nature》发表了一篇通过大规模双杂交技术研究酵母近6000个蛋白质之间相互作用的论文[15]。啤酒酵母基因组DNA的全序列业已测定,这为通过双杂交技术来鉴定酵母基因组编码的全部6000种左右的蛋白质间的可能相互作用提供了非常有利的条件。在这个工作中,研究人员采用了两种不同的策略对酵母的蛋白质间的相互作用作了全面分析。一是所谓的列阵筛选法(array screening)。在此方法中,6000株表达不同"猎物"蛋白的酵母单克隆分别加在微滴定板上,带有不同的"诱饵"蛋白的酵母株与前面6000株细胞一一接合形成二倍体细胞,"猎物"蛋白与"诱饵"蛋白的相互作用通过报道基因的表达而被鉴定。这篇文章中报道了192种不同的"诱饵"蛋白与近6000种"猎物"蛋白的相互作用的结果。另一种方法是文库筛选法。该方法与前一种方法的区别是,将表达6000种不同"猎物"蛋白的酵母细胞混在一起构成文库,再将这个文库分别与6000株表达不同"诱饵"蛋白的酵母细胞接合,再进一步筛选鉴定阳性克隆,即"诱饵"与"猎物"发生相互作用的克隆。根据这篇报告,上述两种策略得到了不同的结果,相比之下阵列筛选法更为有效,而文库筛选法的长处是通量大。这一工作的重要意义在于我们已经看到,在基因组序列被了解的基础上,可以利用大规模双杂交技术全面地,当然也是初步地,分析其物种或其细胞、组织的所有蛋白质之间的相互作用关系。相信类似的工作将很快针对其他物种开展,特别是基因组序列已被揭示的物种。由此可见,蛋白质组学已经开始从建立数据库走向解决生命科学的重大问题,成为研究生物学问题或机制的强有力手段。snow_white (2007-7-20 16:37:32)三、蛋白质组学研究进展与趋势曾 嵘 夏其昌(中国科学院上海生命科学研究院生物化学与细胞生物学研究所蛋白质组学研究分析中心 上海 200031)如果在五年前提到蛋白质组学(Proteomics),恐怕知之者甚少,而在略知一二者中,部分人还抱有怀疑态度。但是,2001年的Science杂志已把蛋白质组学列为六大研究热点之一,其“热度”仅次于干细胞研究,名列第二。蛋白质组学的受关注程度如今已令人刮目相看。1.蛋白质组学研究的研究意义和背景随着人类基因组计划的实施和推进,生命科学研究已进入了后基因组时代。在这个时代,生命科学的主要研究对象是功能基因组学,包括结构基因组研究和蛋白质组研究等。尽管现在已有多个物种的基因组被测序,但在这些基因组中通常有一半以上基因的功能是未知的。目前功能基因组中所采用的策略,如基因芯片、基因表达序列分析(Serial analysis of gene expression, SAGE)等,都是从细胞中mRNA的角度来考虑的,其前提是细胞中mRNA的水平反映了蛋白质表达的水平。但事实并不完全如此,从DNA mRNA 蛋白质,存在三个层次的调控,即转录水平调控(Transcriptional control ),翻译水平调控(Translational control),翻译后水平调控(Post-translational control )。从mRNA角度考虑,实际上仅包括了转录水平调控,并不能全面代表蛋白质表达水平。实验也证明,组织中mRNA丰度与蛋白质丰度的相关性并不好,尤其对于低丰度蛋白质来说,相关性更差。更重要的是,蛋白质复杂的翻译后修饰、蛋白质的亚细胞定位或迁移、蛋白质-蛋白质相互作用等则几乎无法从mRNA水平来判断。毋庸置疑,蛋白质是生理功能的执行者,是生命现象的直接体现者,对蛋白质结构和功能的研究将直接阐明生命在生理或病理条件下的变化机制。蛋白质本身的存在形式和活动规律,如翻译后修饰、蛋白质间相互作用以及蛋白质构象等问题,仍依赖于直接对蛋白质的研究来解决。虽然蛋白质的可变性和多样性等特殊性质导致了蛋白质研究技术远远比核酸技术要复杂和困难得多,但正是这些特性参与和影响着整个生命过程。传统的对单个蛋白质进行研究的方式已无法满足后基因组时代的要求。这是因为:(1) 生命现象的发生往往是多因素影响的,必然涉及到多个蛋白质。(2) 多个蛋白质的参与是交织成网络的,或平行发生,或呈级联因果。(3) 在执行生理功能时蛋白质的表现是多样的、动态的,并不象基因组那样基本固定不变。因此要对生命的复杂活动有全面和深入的认识,必然要在整体、动态、网络的水平上对蛋白质进行研究。因此在上世纪90年代中期,国际上产生了一门新兴学科-蛋白质组学(Proteomics),它是以细胞内全部蛋白质的存在及其活动方式为研究对象。可以说蛋白质组研究的开展不仅是生命科学研究进入后基因组时代的里程碑,也是后基因组时代生命科学研究的核心内容之一。虽然第一次提出蛋白质组概念是在1994年,但相关研究可以追溯到上世纪90年代中期甚至更早,尤其是80年代初,在基因组计划提出之前,就有人提出过类似的蛋白质组计划,当时称为Human Protein Index计划,旨在分析细胞内的所有蛋白质。但由于种种原因,这一计划被搁浅。90年代初期,各种技术已比较成熟,在这样的背景下,经过各国科学家的讨论,才提出蛋白质组这一概念。国际上蛋白质组研究进展十分迅速,不论基础理论还是技术方法,都在不断进步和完善。相当多种细胞的蛋白质组数据库已经建立,相应的国际互联网站也层出不穷。1996年,澳大利亚建立了世界上第一个蛋白质组研究中心:Australia Proteome Analysis Facility ( APAF )。丹麦、加拿大、日本也先后成立了蛋白质组研究中心。在美国,各大药厂和公司在巨大财力的支持下,也纷纷加入蛋白质组的研究阵容。去年在瑞士成立的GeneProt公司,是由以蛋白质组数据库“SWISSPROT” 著称的蛋白质组研究人员成立的,以应用蛋白质组技术开发新药物靶标为目的,建立了配备有上百台质谱仪的高通量技术平台。而当年提出Human Protein Index 的美国科学家Normsn G. Anderson也成立了类似的蛋白质组学公司,继续其多年未实现的梦想。2001年4月,在美国成立了国际人类蛋白质组研究组织(Human Proteome Organization, HUPO),随后欧洲、亚太地区都成立了区域性蛋白质组研究组织,试图通过合作的方式,融合各方面的力量,完成人类蛋白质组计划(Human Proteome Project)。snow_white (2007-7-20 16:37:49)2.蛋白质组学研究的策略和范围蛋白质组学一经出现,就有两种研究策略。一种可称为“竭泽法”,即采用高通量的蛋白质组研究技术分析生物体内尽可能多乃至接近所有的蛋白质,这种观点从大规模、系统性的角度来看待蛋白质组学,也更符合蛋白质组学的本质。但是,由于蛋白质表达随空间和时间不断变化,要分析生物体内所有的蛋白质是一个难以实现的目标。另一种策略可称为“功能法”,即研究不同时期细胞蛋白质组成的变化,如蛋白质在不同环境下的差异表达,以发现有差异的蛋白质种类为主要目标。这种观点更倾向于把蛋白质组学作为研究生命现象的手段和方法。早期蛋白质组学的研究范围主要是指蛋白质的表达模式(Expression profile), 随着学科的发展,蛋白质组学的研究范围也在不断完善和扩充。蛋白质翻译后修饰研究已成为蛋白质组研究中的重要部分和巨大挑战。蛋白质-蛋白质相互作用的研究也已被纳入蛋白质组学的研究范畴。而蛋白质高级结构的解析即传统的结构生物学,虽也有人试图将其纳入蛋白质组学研究范围,但目前仍独树一帜。

你这是写教育教学类的论文还是只是说要写生物类的论文呀~这样~生物类的论文 你可以去看下(生物过程、计算生物学、微生物前沿)这样的期刊~教育教学的话~你可以去看下(教育进展、创新教育研究)这样的吧

蛋白质(protein)是生命的物质基础,没有蛋白质就没有生命。因此,它是与生命及与各种形式的生命活动紧密联系在一起的物质。机体中的每一个细胞和所有重要组成部分都有蛋白质参与。蛋白质占人体重量的,即一个60kg重的成年人其体内约有蛋白质。人体内蛋白质的种类很多,性质、功能各异,但都是由20多种氨基酸按不同比例组合而成的,并在体内不断进行代谢与更新。被食入的蛋白质在体内经过消化分解成氨基酸,吸收后在体内主要用于重新按一定比例组合成人体蛋白质,同时新的蛋白质又在不断代谢与分解,时刻处于动态平衡中。因此,食物蛋白质的质和量、各种氨基酸的比例,关系到人体蛋白质合成的量,尤其是青少年的生长发育、孕产妇的优生优育、老年人的健康长寿,都与膳食中蛋白质的量有着密切的关系[编辑本段]蛋白质的生理功能1、构造人的身体:蛋白质是一切生命的物质基础,是肌体细胞的重要组成部分,是人体组织更新和修补的主要原料。人体的每个组织:毛发、皮肤、肌肉、骨骼、内脏、大脑、血液、神经、内分泌等都是由蛋白质组成,所以说饮食造就人本身。蛋白质对人的生长发育非常重要。比如大脑发育的特点是一次性完成细胞增殖,人的大脑细胞的增长有二个高峰期。第一个是胎儿三个月的时候;第二个是出生后到一岁,特别是0---6个月的婴儿是大脑细胞猛烈增长的时期。到一岁大脑细胞增殖基本完成,其数量已达成人的9/10。所以0到1岁儿童对蛋白质的摄入要求很有特色,对儿童的智力发展尤关重要。2、修补人体组织:人的身体由百兆亿个细胞组成,细胞可以说是生命的最小单位,它们处于永不停息的衰老、死亡、新生的新陈代谢过程中。例如年轻人的表皮28天更新一次,而胃黏膜两三天就要全部更新。所以一个人如果蛋白质的摄入、吸收、利用都很好,那么皮肤就是光泽而又有弹性的。反之,人则经常处于亚健康状态。组织受损后,包括外伤,不能得到及时和高质量的修补,便会加速机体衰退。3、维持肌体正常的新陈代谢和各类物质在体内的输送。载体蛋白对维持人体的正常生命活动是至关重要的。可以在体内运载各种物质。比如血红蛋白—输送氧(红血球更新速率250万/秒)、脂蛋白—输送脂肪、细胞膜上的受体还有转运蛋白等。4、白蛋白:维持机体内的渗透压的平衡及体液平衡。5、维持体液的酸碱平衡。6、免疫细胞和免疫蛋白:有白细胞、淋巴细胞、巨噬细胞、抗体(免疫球蛋白)、补体、干扰素等。七天更新一次。当蛋白质充足时,这个部队就很强,在需要时,数小时内可以增加100倍。7、构成人体必需的催化和调节功能的各种酶。我们身体有数千种酶,每一种只能参与一种生化反应。人体细胞里每分钟要进行一百多次生化反应。酶有促进食物的消化、吸收、利用的作用。相应的酶充足,反应就会顺利、快捷的进行,我们就会精力充沛,不易生病。否则,反应就变慢或者被阻断。8、激素的主要原料。具有调节体内各器官的生理活性。胰岛素是由51个氨基酸分子合成。生长素是由191个氨基酸分子合成。7、构成神经递质乙酰胆碱、五羟色氨等。维持神经系统的正常功能:味觉、视觉和记忆。8、胶原蛋白:占身体蛋白质的1/3,生成结缔组织,构成身体骨架。如骨骼、血管、韧带等,决定了皮肤的弹性,保护大脑(在大脑脑细胞中,很大一部分是胶原细胞,并且形成血脑屏障保护大脑)9、提供热能。[编辑本段]蛋白质的作用蛋白质在细胞和生物体的生命活动过程中,起着十分重要的作用。生物的结构和性状都与蛋白质有关。蛋白质还参与基因表达的调节,以及细胞中氧化还原、电子传递、神经传递乃至学习和记忆等多种生命活动过程。在细胞和生物体内各种生物化学反应中起催化作用的酶主要也是蛋白质。许多重要的激素,如胰岛素和胸腺激素等也都是蛋白质。此外,多种蛋白质,如植物种子(豆、花生、小麦等)中的蛋白质和动物蛋白、奶酪等都是供生物营养生长之用的蛋白质。有些蛋白质如蛇毒、蜂毒等是动物攻防的武器。蛋白质和健康蛋白质是荷兰科学家格里特在1838年发现的。他观察到有生命的东西离开了蛋白质就不能生存。蛋白质是生物体内一种极重要的高分子有机物,占人体干重的54%。蛋白质主要由氨基酸组成,因氨基酸的组合排列不同而组成各种类型的蛋白质。人体中估计有10万种以上的蛋白质。生命是物质运动的高级形式,这种运动方式是通过蛋白质来实现的,所以蛋白质有极其重要的生物学意义。人体的生长、发育、运动、遗传、繁殖等一切生命活动都离不开蛋白质。生命运动需要蛋白质,也离不开蛋白质。球状蛋白质(三级结构)人体内的一些生理活性物质如胺类、神经递质、多肽类激素、抗体、酶、核蛋白以及细胞膜上、血液中起“载体”作用的蛋白都离不开蛋白质,它对调节生理功能,维持新陈代谢起着极其重要的作用。人体运动系统中肌肉的成分以及肌肉在收缩、作功、完成动作过程中的代谢无不与蛋白质有关,离开了蛋白质,体育锻炼就无从谈起。在生物学中,蛋白质被解释为是由氨基酸借肽键联接起来形成的多肽,然后由多肽连接起来形成的物质。通俗易懂些说,它就是构成人体组织器官的支架和主要物质,在人体生命活动中,起着重要作用,可以说没有蛋白质就没有生命活动的存在。每天的饮食中蛋白质主要存在于瘦肉、蛋类、豆类及鱼类中。蛋白质缺乏:成年人:肌肉消瘦、肌体免疫力下降、贫血,严重者将产生水肿。未成年人:生长发育停滞、贫血、智力发育差,视觉差。蛋白质过量:蛋白质在体内不能贮存,多了肌体无法吸收,过量摄入蛋白质,将会因代谢障碍产生蛋白质中毒甚至于死亡。[编辑本段]必需氨基酸和非必需氨基酸纤维状蛋白质(二级结构)食物中的蛋白质必须经过肠胃道消化,分解成氨基酸才能被人体吸收利用,人体对蛋白质的需要实际就是对氨基酸的需要。吸收后的氨基酸只有在数量和种类上都能满足人体需要身体才能利用它们合成自身的蛋白质。营养学上将氨基酸分为必需氨基酸和非必需氨基酸两类。必需氨基酸指的是人体自身不能合成或合成速度不能满足人体需要,必须从食物中摄取的氨基酸。对成人来说,这类氨基酸有8种,包括赖氨酸、蛋氨酸、亮氨酸、异亮氨酸、苏氨酸、缬氨酸、色氨酸、苯丙氨酸。对婴儿来说,组氨酸和精氨酸也是必需氨基酸。非必需氨基酸并不是说人体不需要这些氨基酸,而是说人体可以自身合成或由其它氨基酸转化而得到,不一定非从食物直接摄取不可。这类氨基酸包括谷氨酸、丙氨酸、甘氨酸、天门冬氨酸、胱氨酸、脯氨酸、丝氨酸和酪氨酸等。有些非必需氨基酸如胱氨酸和酪氨酸如果供给充裕还可以节省必需氨基酸中蛋氨酸和苯丙氨酸的需要量。

蛋白质折叠的研究进展论文

浅谈蛋白质折叠的有关问题 [关键字]生物 大分子 分子伴侣 蛋白质的折叠 识别 结合 生物大分子的结构与功能的研究是了解分子水平的先象的基础。没有对生物大分子的结构与功能的认识,就没有分子生物学。正如没有DNA双螺旋结构的发现,就没有遗传传达传递的中心法则,也就没有今天的分子生物学。结构分子以由第一分子进入对复和物乃至多亚基,多分子复和体结构研究。同时,过去难以研究的分子水平上的生命运动情况也随着研究的深入和技术手段的发展而逐渐由难点变为热点。蛋白质晶体学研究已从生物大分子静态(时间统计)的结构分析开始进入动态(时间分辨)的结构分析及动力学分析。第十三届国际生物物理大会的25个专题讨论会中有一半以上涉及蛋白质的结构与功能,而“结构与功能”又强调“动力学(Dynamics)”,即动态的结构或结构的运动与蛋白质分子功能的关系,以及对大分子相互作用的贡献。 蛋白质折叠问题被列为“21世纪的生物物理学”的重要课题,它是分子生物学中心法则尚未解决的一个重大生物学问题。从一级序列预测蛋白质分子的三级结构并进一步预测其功能,是极富挑战性的工作。研究蛋白质折叠,尤其是折叠早期过程,即新生肽段的折叠过程是全面的最终阐明中心法则的一个根本问题,在这一领域中,近年来的新发现对新生肽段能够自发进行折叠的传统概念做了根本的修正。这其中,X射线晶体衍射和各种波谱技术以及电子显微镜技术等发挥了极其重要的作用。第十三届国际生物物理大会上,Nobel奖获得者Ernst在报告中强调指出,NMR用于研究蛋白质的一个主要优点在于它能极为详细的研究蛋白质分子的动力学,即动态的结构或结构的运动与蛋白质分子功能的关系。目前的NMR技术已经能够在秒到皮秒的时间域上观察蛋白质结构的运动过程,其中包括主链和侧链的运动,以及在各种不同的温度和压力下蛋白质的折叠和去折叠过程。蛋白质大分子的结构分析也不仅仅只是解出某个具体的结构,而是更加关注结构的涨落和运动。例如,运输小分子的酶和蛋白质通常存在着两种构象,结合配体的和未结合配体的。一种构象内的结构涨落是构象转变所必需的前奏,因此需要把光谱学,波谱学和X射线结构分析结合起来研究结构涨落的平衡,构象改变和改变过程中形成的多种中间态,又如,为了了解蛋白质是如何折叠的,就必须知道折叠时几个基本过程的时间尺度和机制,包括二级结构(螺旋和折叠)的形成,卷曲,长程相互作用以及未折叠肽段的全面崩溃。多种技术用于研究次过程,如快速核磁共振,快速光谱技术(荧光,远紫外和近紫外圆二色)。 一、新生肽段折叠研究中的新观点 长期以来关于蛋白质折叠,形成了自组装(self-assembly)的主导学说,因此,在研究新生肽段的折叠时,就很自然的把在体外蛋白质折叠研究中得到的规律推广到体内,用变性蛋白的复性作为新生肽段折叠的模型,并认为细胞中新合成的多肽链,不需要别的分子的帮助,不需要额外能量的补充,就应该能够自发的折叠而形成它的功能状态。 1988年,邹承鲁明确指出,新生肽段的折叠在合成早期业已开始,而不是合成完后才开始进行,随着肽段的延伸同时折叠,又不断进行构象的调整,先形成的结构会作用于后合成的肽段的折叠,而后合成的结构又会影响前面已形成的结构的调整。因此,在肽段延伸过程中形成的结构往往不一定是最终功能蛋白中的结构。这样,三维结构的形成是一个同时进行着的,协调的动态过程。九十年代一类具有新的生物功能的蛋白,分子伴侣(Molecularchaperone)的发现,以及在更广泛意义上说的帮助蛋白质折叠的辅助蛋白(Accessoryprotein)的提出,说明细胞内新生肽段的折叠一般意义上说是需要帮助的,而不是自发进行的。 二、蛋白质分子的折叠和分子伴侣的作用 蛋白质分子的三维结构,除了共价的肽键和二硫键,还靠大量极其复杂的弱次级键共同作用。因此新生肽段在一边合成一边折叠过程中有可能暂时形成在最终成熟蛋白中不存在不该有的结构,他们常常是一些疏水表面,它们之间很可能发生本不应该有的错误的相互作用而形成的非功能的分子,甚至造成分子的聚集和沉淀。按照自组装学说,每一步折叠都是正确的,充分的,必要的。实际上折叠过程是一个正确途径和错误途径相互竞争的过程,为了提高蛋白质生物合成的效率的,应该有帮助正确途径的竞争机制,分子伴侣就是这样通过进化应运而生的。它们的功能是识别新生肽段折叠过程中暂时暴露的错误结构的,与之结合,生成复和物,从而防止这些表面之间过早的相互作用,阻止不正确的非功能的折叠途径,抑制不可逆聚合物产生,这样必然促进折叠向正确方向进行。(从哲学的观点说,似乎很容易驳斥自组装学说,它违背了矛盾的普遍性原理,试想,如果蛋白质的每一步折叠均是正确的,充分的,必要的,岂不是在无任何矛盾的前提下,完成了复杂的最稳定构象的形成,即完成了由量变到质变的伟大飞跃,从无活性的肽链变成有活性的功能蛋白,这显然是违背哲学基本原理的。换一个角度想,生物进化的过程本来就充满着不定向的变异,这些变异中有适应环境的,也有不适应环境的,“物竞天择”,自然的选择淘汰了那些不适应的,保留了那些适应的。蛋白质分子的折叠不也与此类似吗?我想,蛋白质的一级结构只是肽链折叠并形成功能蛋白的特定三维结构的内因,实际上,多肽链在形成活性蛋白的每一步,都有潜在的可能形成“不正确”的折叠,如果没有象分子伴侣或其它帮助蛋白等外部因素的作用,多肽链也永远不能折叠成为活性蛋百。) 三,分子伴侣的作用机制 分子伴侣的作用机制实际上就是它如何与靶蛋白识别,结合,又解离的机制。有的分子伴侣具高度专一性,如一些分子内分子伴侣,还有细菌Pseudomonascepacia的酯酶,有它自己的“私有分子伴侣”。它是由基因limA编码的,与酯酶的基因LipA只隔3个碱基,可能是进化过程中发生的基因分裂造成的。而一般的分子伴侣识别特异性不高,它是怎样识别需要它帮助的对象的呢?现在只能说分子伴侣识别非天然构象,而不去理会天然的构象。由于在天然分子中,疏水残基多半位于分子的内部而形成疏水核,去折叠后就可能暴露出来,或者在新生肽段的折叠过程中,会暂时形成在天然构象中本应该存在于分子内部的疏水表面,因此认为分子伴侣最有可能是与疏水表面相结合,如硫氰酸酶(Rhodanese)分子α-helix的疏水侧面。但是只有β-sheet结构的蛋白质才可为分子伴侣识别。 最近关于识别机制有较大的进展。Bip是内质网管腔内的分子伴侣,用一种affinitypanning的方法检查Bip与有随机序列的十二肽结合的特异性,结果发现,Hy-(W/X)-Hy-X-Hy-X-Hymotif与Bipj结合最强,Hy最多的是Trp、Leu、Phe,即较大的疏水残基。一般来说,2-4个疏水残基就足够进行结合。还有一种较普遍的说法是分子伴侣识别所谓熔球体结构(moltenglobule)。另一方面,分子伴侣本身与肽结合部位的结构分析最近也有些进展。譬如,PapD的晶体结构表明,多肽结合在它的β-sheet区。GroEL中,约40kD的153-531结构域是核苷酸的结合区。 分子伴侣作用的第二步是与靶蛋白形成复合物。非常盛行的一种模型认为分子伴侣常常以多聚`体形式而形成中心空洞的结构,用电子显微镜已经观察到由二圈层圆面包圈形组成的十四体GroEL分子和一个一层圆面包圈的七体GroES分子协同作用形成中空的非对称笼状结构(cagemodel),推测靶蛋白可以在与周围环境隔离的中间空腔内不受干扰的进一步折叠。但是不久前一个日本实验室发现GroEL的一个亚基,甚至其N端去除78个氨基酸残基的50kD片段,已经不能再组装成十四体结构,都有确定的分子伴侣功能。由此,我想:也许环状分子伴侣并非每个部位都是有效的结合部位,也就是说,该二层圆面包圈组成的十四体GroEL分子只有一个或若干个部位能够与疏水残基或所谓的熔球体结构结合,而其余部位起识别作用,就像一个探测器一样,整个十四体GroEL分子以圈层或笼状结构”包裹”在多肽链的主链上,以旋进方式再多肽链的链体上运动,一旦环状多聚体的某一识别部位发现疏水结构或所谓的熔球体结构等新生肽链折叠过程中暂时暴露的错误结构,经信号转导,多聚体的结合部位便与之结合,生成复合物,抑制不正确的折叠。以上完全是我个人的猜想,是基于上述两个试验现象的矛盾而试图作一番解释。至于为什么假设以旋进方式在多肽链上运动,我并没有相应的根据,只是觉得这应该是一个动态过程,因此作了一番狂妄的假想,另外,我觉得也许可以用X射线衍射来探测一下分子伴侣GroEL和GroES组成的笼状结构,看看它的a×b×c是否足以容纳多肽链的某一段,或者它的内部和外部的疏水性质和其他一些物化性质如何,也许可以找到支持或驳斥上述假设的证据。 以上谈的都是蛋白质的分子伴侣。不久前又出现了一个新名词“DNAchaperones”,DNA分子伴侣,这种分子伴侣是与DNA相结合并帮助DNA折叠的。在这种复合物中,DNA分子包围在蛋白质分子的表面,既是高度有序的,又是在一定程度上结构已有所改变的。DNA与蛋白的这种相互作用对DNA的转录,复制以及重组都十分重要;或如在核小体中,对DNA的包装是必须的。DNA在溶液中的结构有相当的刚性,必须克服一个能障才能转变成它的蛋白复合物中的结构,分子伴侣的作用就是帮助DNA分子进行折叠和扭曲,从而把DNA稳定在一个适合于和蛋白结构的特定构型中。这种结合是协同的,可逆的在形成复合物之后便解离下来。因此,不论是DNA分子伴侣还是蛋白分子伴侣,都与DNA和蛋白的相互作用有关,与基因调控有关,看来,分子伴侣确实与最终阐明中心法则当前主要问题有密切关系。 四、分子伴侣和酶的区别 与分子伴侣不同,以确定为帮助蛋白质折叠的酶目前只有两个,一个是蛋白质二硫键异构酶(proteindisulfideisomerase,PDI);另一个是肽基脯氨酸顺反异构酶(peptidylprolylcis-transisomerase,PPI)。以PDI为例,众所周知,蛋白质分子中的二硫键与新生肽段的折叠密切相关,对维系蛋白质分子的结构稳定性和功能发挥也有重要作用。PDI定位在内质网管腔内,含量丰富,催化蛋白质分子内巯基与二硫键之间的交换反应。同时,它是目前发现的最为突出的多功能蛋白,除了二硫键的异构酶的基本功能外,它还是脯氨酸-4-羟化酶的α亚基;又是微粒体内甘油三酯转移蛋白复合物的小亚基,还是一种糖基化位点结合蛋白(gkycisylationsitebindingprotein)等。其中,最引人注目的还是它有与多肽结合的能力,可以结合具有不同序列,长度和电荷分布的肽,特异性较低,主要是与肽的主链相作用,但对巯基尚有一些偏爱。按照分子伴侣的定义,一般认为PDI和分子伴侣是两类不同的帮助蛋白,但是我国上海生物物理研究所最近提出不同的看法,认为蛋白质二硫键异构酶也具有分子伴侣的功能。 蛋白质分子中天然二硫键的形成要求这些在肽链上往往处于不相邻位置的巯基,首先通过肽链一定程度的折叠,才能相互接近到可以正确形成二硫键的位置。肽链的自身折叠是一个慢过程,而蛋白质二硫键异构酶催化蛋白质天然二硫键的形成却是一个快过程。另一方面,蛋白质二硫键异构酶具有低特异性的与各种不同肽链相结合的能力,在内质网中以极高的浓度存在,又是是一个钙结合蛋白,是一个能被磷酸化的蛋白,这些都已经符合了分子伴侣的条件。因此他们推测蛋白质二硫键异构酶很可能首先通过它与伸展的,或部分折叠的肽段的结合,阻止错误的折叠途径,促进正确的中间物生成,帮助肽链折叠是相应的巯基配对,从而是正确的二硫键得以形成;然后催化巯基的氧化或二硫键的异构而形成天然二硫键。他们认为蛋白质二硫键异构酶的酶活性与它的分子伴侣功能不是相互排斥,而是密切相关,协调统一的。分子伴侣与帮助新生肽链折叠的酶之间,大概不应该,也不能够划一条绝对的分界线。我想:酶的最主要特性就是催化生化反应,分子伴侣的主要作用是与新生肽段的错误构象结合,从而阻止肽链不正确的非功能的折叠途径,促使其向正确的折叠方向反应,这难道不可以理解成间接的催化肽链的折叠吗?从表观上看,抑制不正确的折叠途径等于加快了正确反应的速度。所以,我本人也很赞成他们的观点。最近的试验已经为这一假说提供了很好的证据。PDI明显抑制变性的甘油醛-3-磷酸脱氢酶在复性股过程中的严重聚合,有效的提高它的复性效率,与典型的分子伴侣GroE系统对甘油醛3-磷酸脱氢酶复性的效应极其相似。 五、分子伴侣的结构 目前唯一解出晶体结构的分子伴侣是的PapD,帮助鞭毛蛋白折叠的分子伴侣。还有HSP70的N端结构域,即ATP结合域也以有晶体结构。用电子显微镜已经清楚的看到了GroEL的十四聚体和GroEL的七聚体的四级结构,象两个圆形中空的面包圈叠在一起,用NMR以及各种溶液构象变化是研究分子伴侣作用机制的有效手段。 六、分子伴侣研究的实际应用 分子伴侣的研究成果必然会大大加深我们对生命现象的认识,同时也一定会增加我们与自然斗争的能力和自身生存的能力。由于分子伴侣在生命活动的各个层次都具有重要作用,它的突变和损伤也必定会引起疾病,因此可以期望运用分子伴侣的知识来治疗所谓的”分子伴侣病”。另一方面,利用对分子伴侣的研究成果从根本上提高基因工程和蛋白工程的成功率,也必将对大幅度提高人类生活水平起重要作用。 [参考书目] 1.李宝健主编,面向21世纪生命科学发展前沿,广东科技出版社,1996年11月第一版:93-104页 2.郝柏林刘寄星主编,理论物理与生命科学,上海科学技术出版社,1997年12月第一版:29-58页 3.中国生物物理代表团,从第十三届国际生物物理大会看生物物理学研究的现状和趋势,生物物理学报,1999年第十五卷第四期:826-827页

分类: 教育/科学 >> 科学技术 问题描述: 研究这个有什么现实意义呢?最新进展怎样?最好来点有价值的资料.谢谢. 解析: 研究蛋白质的折叠,是生命科学领域的前沿课题之一。蛋白质是一种生物大分子,基本上是由20种氨基酸以肽键连接成肽链。肽链在空间卷曲折叠成为特定的三维空间结构,包括二级结构和三级结构二个主要层次。有的蛋白质由多条肽链组成,每条肽链称为亚基,亚基之间又有特定的空间关系,称为蛋白质的四级结构。所以蛋白质分子有非常特定的复杂的空间结构。 通过“蛋白质结构预测”破译“第二遗传密码”,是蛋白质研究最后几个尚未揭示的奥秘之一。天津大学和中国科学院生物物理所的科学家已经做出了优秀的研究成果。他们预测,蛋白质的种类虽然成千上万,但它们的折叠类型却只有有限的650种左右。我国科学家在分子伴侣和折叠酶方面有特色的研究成果,也已经赢得了国际同行的注意。 外界环境的变化可以导致蛋白质空间结构的破坏和生物活性的丧失,但却并不破坏它的一级结构(氨基酸序列),这称为蛋白质的变性。变性的蛋白质往往成为一条伸展的肽链,在一定的条件下可以重新折叠成原有的空间结构并恢复原有的活性。对蛋白质变性作用的认识是我国科学家吴宪在三十年代首先提出的。 蛋白质异常的三维空间结构可以引发疾病,疯牛病、老年性痴呆症、囊性纤维病变、家族性高胆固醇症、家族性淀粉样蛋白症、某些肿瘤、白内障等等都是“折叠病”。造成疯牛病的Prion病蛋白可以感染正常蛋白而在蛋白质之间传染。研究蛋白质的折叠问题不仅具有重大的科学意义,而且在医学和在生物工程领域具有极大的应用价值。1分子生物学的中心法则 五十年代初运用X射线衍射技术解出了生命遗传物质脱氧核糖核酸(DNA)分子的三维空间结构,阐明了生物遗传的分子基础,揭示了这个最主要的生命活动的本质,从而开创了在分子水平上认识生命现象的新学科———分子生物学。分子生物学的出现是经典生物学转变成近代生物学的里程碑。 尽管自然界的生物物种千千万万,生命现象繁杂纷飞,在分子水平研究生命,使我们认识到各种生命现象的基本原理却是高度一致的!从最简单的单细胞生物到最高等的人类,它们最基本最重要的组成物质都是蛋白质和核酸。核酸是生物体遗传信息的携带者,所有生物体能世代相传,就是依靠核酸分子可以精确复制的性质。蛋白质则是生命活动的主要承担者。所有的生命活动,呼吸、运动、消化……甚至感知、思维和学习,无一例外是依靠蛋白质来完成的。 蛋白质是一种生物大分子,基本上是由20种氨基酸以肽键连接成肽链。肽键连接成肽链称为蛋白质的一级结构。不同蛋白质其肽链的长度不同,肽链中不同氨基酸的组成和排列顺序也各不相同。肽链在空间卷曲折叠成为特定的三维空间结构,包括二级结构和三级结构二个主要层次。有的蛋白质由多条肽链组成,每条肽链称为亚基,亚基之间又有特定的空间关系,称为蛋白质的四级结构。所以蛋白质分子有非常特定的复杂的空间结构。每一种蛋白质分子都有自己特有的氨基酸的组成和排列顺序,由这种氨基酸排列顺序决定它的特定的空间结构,这就是荣获诺贝尔奖的著名的Anfinsen原理。蛋白质分子只有处于它自己特定的三维空间结构情况下,才能获得它特定的生物活性;三维空间结构稍有破坏,就很可能会导致蛋白质生物活性的降低甚至丧失。 二十世纪生物学领域最重要的成就之一,是继DNA双螺旋结构的发现总结出分子生物学的中心法则,揭示生命遗传信息传递的方向和途径。近半个世纪以来对阐明中心法则有关问题有杰出贡献而获得诺贝尔奖的学者先后多达34位。分子生物学的中心法则简单表达如下: 分子生物学的中心法则中,DNA和核糖核酸(RNA)的复制、DNA转录成RNA、RNA逆转录成DNA以及以信使RNA为模板翻译成多肽链的过程和机制基本上已经阐明。但从多肽链折叠成蛋白质的过程,即所谓“新生肽的折叠”问题,是中心法则至今留下的空白,又是从“遗传信息”到“生物功能”的关键环节,有待我们在21世纪去解决。 2蛋白质折叠与“折叠病” 人们对由于基因突变造成蛋白质分子中仅仅一个氨基酸残基的变化就引起疾病的情况已有所了解,即所谓“分子病”,如地中海镰刀状红血球贫血症就是因为血红蛋白分子中第六位的谷氨酸突变成了颉氨酸。现在则发现蛋白质分子的氨基酸序列没有改变,只是其结构或者说构象有所改变也能引起疾病,那就是所谓“构象病”,或称“折叠病”。 大家都知道的疯牛病,它是由一种称为Prion的蛋白质的感染引起的,这种蛋白质也可以感染人而引起神经系统疾病。在正常机体中,Prion是正常神经活动所需要的蛋白质,而致病Prion与正常Prion的一级结构完全相同,只是空间结构不同。这一疾病的研究涉及到许多生物学的基本问题。一级结构完全相同的蛋白质为什么会有不同的空间结构,这与Anfinsen原理是否矛盾?显然这里有蛋白质的能量和稳定性问题。 从来认为蛋白结构的变化来自于序列的变化,而序列的变化来自于基因的变化,生命信息从核酸传递到蛋白。而致病Prion的信息已被诺贝尔奖获得者普鲁辛纳证明不是来自基因的变化,致病蛋白Prion导致正常蛋白Prion转变为致病的折叠状态是通过蛋白分子间的作用而感染!这种相互作用的本质和机制是什么?仅仅改变了折叠状态的分子又如何导致严重的疾病?这些问题都不能用传统的概念给予满意的解释,因此在科学界引起激烈的争论,有关研究的强度和竞争性也随之大大增强。 由于蛋白质折叠异常而造成分子聚集甚至沉淀或不能正常转运到位所引起的疾病还有老年性痴呆症、囊性纤维病变、家族性高胆固醇症、家族性淀粉样蛋白症、某些肿瘤、白内障等等。由于分子伴侣在蛋白质折叠中至关重要的作用,分子伴侣本身的突变显然会引起蛋白质折叠异常而引起折叠病。随着蛋白质折叠研究的深入,人们会发现更多疾病的真正病因和更针对性的治疗方法,设计更有效的药物。现在发现有些小分子可以穿越细胞作为配体与突变蛋白结合,从而使原已失去作战能力的突变蛋白逃逸“蛋白质质量控制系统”而“带伤作战”。这种小分子被称为“药物分子伴侣”,有希望成为治疗“折叠病”的新药。 新生肽的折叠问题或蛋白质折叠问题不仅具有重大的科学意义,除了上面提到的在医学上的应用价值外,在生物工程上具有极大的应用价值。基因工程和蛋白工程已经逐渐发展成为产值以数十亿美元计的大产业,进入21世纪后,还将会有更大的发展。但是当前经常遇到的困难,是在简单的微生物细胞内引入异体DNA后所合成的多肽链往往不能正确折叠成为有生物活性的蛋白质而形成不溶解的包含体或被降解。这一“瓶颈”问题的彻底解决有待于对新生肽链折叠更多的认识。 3蛋白质折叠和“第二遗传密码” 蛋白质折叠的研究,比较狭义的定义就是研究蛋白质特定三维空间结构形成的规律、稳定性和与其生物活性的关系。在概念上有热力学的问题和动力学的问题;蛋白质在体外折叠和在细胞内折叠的问题;有理论研究和实验研究的问题。这里最根本的科学问题就是多肽链的一级结构到底如何决定它的空间结构?既然前者决定后者,一级结构和空间结构之间肯定存在某种确定的关系,这是否也像核苷酸通过“三联密码”决定氨基酸顺序那样有一套密码呢?有人把这设想的一级结构决定空间结构的密码叫作“第二遗传密码”。 如果说“三联密码”已被破译而实际上已成为明码,那么破译“第二遗传密码”正是“蛋白质结构预测”从理论上最直接地去解决蛋白质的折叠问题,这是蛋白质研究最后几个尚未揭示的奥秘之一。“蛋白质结构预测”属于理论方面的热力学问题。就是根据测得的蛋白质的一级序列预测由Anfinsen原理决定的特定的空间结构。蛋白质氨基酸序列,特别是编码蛋白质的核苷酸序列的测定现在几乎已经成为常规技术,从互补DNA(cDNA)序列可以根据“三联密码”推定氨基酸序列,这些在上一世纪获得重大突破的分子生物学技术,大大加速了蛋白质一级结构的测定。目前蛋白质数据库中已经存有大约17万个蛋白的一级结构,但是测定了空间结构的蛋白大约只有1.2万个,这中间有许多是很相似的同源蛋白,而真正不同的蛋白只有1000多个。随着人类基因组计划的胜利完成,解读了人类DNA的全序列,蛋白质一级结构的数据增长必定会出现爆炸的态势,而空间结构测定的速度远远滞后,因此二者之间还会形成更大的距离,这就更需要进行蛋白质结构的预测。 由于蛋白质分子结构本身的极端复杂性决定了结构预测不可能一蹴而就。目前结构预测的方法大致可分为两大类。一类是假设蛋白质分子天然构象处于热力学最稳定,能量最低状态,考虑蛋白质分子中所有原子间的相互作用以及蛋白质分子与溶剂之间的相互作用,采用分子力学的能量极小化方法,计算出蛋白质分子的天然空间结构。第二类方法是找出数据库中已有的蛋白质的空间结构与其一级序列之间的联系总结出一定的规律,逐级从一级序列预测二级结构,再建立可能的三维模型,根据总结出的空间结构与其一级序列之间的规律,排除不合理的模型,再根据能量最低原理得到修正的结构。这也就是所谓“基于知识的预测方法”。但是,第一类方法遇到在数学上难以解决的多重极小值问题,而逐级预测又受到二级结构预测精度的限制。因此必须解决这些困难,或者发展新的方法,将基于知识的预测方法与计算化学以及统计物理学结合起来,才有希望能破译“第二遗传密码”。 另一方面,和以往只能利用存入蛋白质数据库的数据进行预测相比,人类DNA的全序列的测定给予蛋白质结构预测更自然的、信息量更大得多的数据库,因此可用基于同源性的重复循环技术非常可靠地灵敏地进行结构预测。已经有人根据基因组的数据用统计方法重新估计了蛋白质折叠类型数目大约为1000种,这和早期的理论估计是一致的。显然,人类基因全序列的揭示必然为蛋白质结构预测、蛋白质相互作用的预测以及单核苷酸多态性的分子表型预测开辟前所未有的广阔天地。天津大学和中国科学院生物物理所的科学家已经活跃在蛋白质结构预测领域,并做出了优秀的研究成果。他们预测,蛋白质的种类虽然成千上万,但它们的折叠类型却只有有限的650种左右。 蛋白质折叠第二个根本的科学问题是具有完整一级结构的多肽链又是如何折叠成为它特定的高级结构?这是一个折叠的动力学的问题,长期以来,主要用体外的实验方法研究,虽然已有四五十年,但至今尚未解决。我们知道,多数蛋白质在体外是不稳定的,外界环境的变化,如温度、酸度等,都可以导致其空间结构的破坏和生物活性的丧失,但却并不破坏它的一级结构,这称为蛋白质的变性。对蛋白质变性作用的认识是我国科学家吴宪在三十年代基于他在国内的工作首先提出来的,长期以来已经为国际上广泛接受。变性的蛋白质往往成为一条伸展的肽链,由于一级结构仍然完整,根据Anfinsen原理它应该可以在一定的条件下重新折叠成原有的空间结构并恢复原有的活性。这就是长时间来在体外研究蛋白质折叠的基本模型。 现在知道,绝大多数蛋白质从一条伸展的肽链,折叠成有其特定结构的、有活性的蛋白质,并不是一步完成的,而要经过许多折叠的中间状态。含有多个亚基的蛋白质分子,亚基间的相互作用使之组装成复杂蛋白分子。研究人员用实验方法,特别是近年来发展的快速测定方法去追踪蛋白质重折叠的全过程,尽可能捕捉折叠过程中的每一个中间状态。不同阶段的折叠速度不同,有的比较慢,比较容易发现和捕捉;但有的非常快,必须要有特殊的设备配合各种测试技术去进行研究。最近有人尝试大幅度降低温度使折叠速度减慢而得以追踪。最终,人们要定量地描述整个折叠的动态过程,拍出一部蛋白质折叠的电影来,但这必然要经过一个长时间的艰苦的工作。 4细胞内的蛋白质折叠 尽管多年来体外蛋白质折叠研究为揭示蛋白质折叠的本质提供了大量信息,但细胞内蛋白质的生物合成,一个广义的蛋白质折叠问题,是一个比试管内蛋白质折叠复杂得多的多的过程。蛋白质的多肽链都是在细胞内的一种由多种蛋白质和核糖核酸所组成的被称为核糖体的复合物上,以信使核糖核酸为模板,从氨基末端开始,按照三联密码,一个氨基酸一个氨基酸加上去而合成出来的。现在比较一致的看法认为,这种新合成出来的多肽链(称为新生肽)在合成过程中长度不断增加,并在延伸的同时也在进行着折叠,而不是在合成完成脱离核糖体后再自发折叠成为蛋白质。所以上面介绍的在体外用变性伸展肽链的重折叠研究蛋白质折叠的模型看来并不是研究细胞内蛋白质折叠的理想模型。由于每个信使核糖核酸可以同时携带多个核糖体,而每个核糖体上的多肽链的延伸程度又是不同的,所以核糖体上的多肽链的合成同步化是目前研究新生肽折叠的关键问题,但一直没有解决。 我们实验室暂时绕过这个障碍,制备一系列从氨基末端开始具有不同长度的肽段,比较研究它们的构象作为模型,对新生肽在合成延伸的同时也在进行着折叠的观点已经提供了大量信息。从核糖体上合成出来的肽链还需经过与翻译同时进行的和翻译完成后的化学加工,如形成二硫键,完成糖基化作用、羟基化作用、磷酸化作用等化学修饰。化学修饰往往与肽链的折叠密切相关,没有化学修饰的肽链往往不能完成正确折叠。 新生肽还要被运送到细胞的特定部位,“各就各位”才能发挥它特定的生物功能:例如进入细胞核中的 *** 白与DNA组成染色体;进入线粒体的蛋白参与能量代谢;组成膜的蛋白以及分泌到细胞外的蛋白必须进入内质网,先进行加工再继续转运等等。这些转运都有一个穿越膜结构,甚至是多次越膜的过程。有完整空间结构的蛋白分子是不能越膜的,因此在转运过程中折叠过多的分子必须解开折叠后才能越膜。此外,多亚基蛋白必须进行组装。有些蛋白质,如一些酶和激素,以前体形式合成后还要经过水解除去某一段序列后才能成熟为有活性的分子。所有这些都包含在新生肽成熟为功能蛋白的全过程中,每一步都涉及新生肽链的构象变化、折叠和调整。 在试管中做蛋白质折叠实验的条件往往人为简化或不得不简化,与新生肽在细胞内折叠的条件有质的或量的差别。所有的细胞中都存在着大量的蛋白质、核酸、多糖等各种生物大分子,它们大约占用细胞容积的20-30%,总浓度高达每升80-200克,因此任何一种大分子都处于一个充满其他大分子的“拥挤”环境中,使得任何一个大分子的实际可及空间大大减少,这种情况对所有大分子之间的反应在热力学和动力学上都有很大的影响。最近,有人呼吁,在体外研究蛋白质折叠必须考虑模拟细胞内的“拥挤”环境。我们实验室在这方面的研究已经得到国际同行的注意。此外,某一种蛋白在某一时刻在细胞内的局部浓度可以非常高,这样高浓度的蛋白质在试管中必然发生聚集而不可能完成折叠。所以,在体外进行的实验,为了提高蛋白折叠效率,并且有利于进行分析,实验所用的蛋白浓度总是很低的;温度也常在37摄氏度以下,有时低到10摄氏度以下,以减缓反应速度。溶液成分也尽量简单,便于分析。 5分子伴侣蛋白和折叠酶 最近15年来,由于发现一些蛋白质的折叠必须在另一些蛋白质存在时才能正确完成的现象,对蛋白质折叠的概念产生了革命性的全新认识,“自发折叠”的经典概念发生了转变和更新,这是蛋白质折叠研究中的大事。现在认为新生肽在细胞内的折叠和成熟在多数情况下是不能自发完成的,而是需要别的蛋白质帮助的。这个新概念并不与Anfinsen原理相矛盾,而是在动力学的观点上完善了Anfinsen学说。一个在热力学上可以成立的反应由于动力学的能障等问题在实际上未必可以完成,但在别的蛋白质帮助下可以克服能障而得以进行。 目前已认识到的在细胞内帮助新生肽链折叠的蛋白有二类:一类称为分子伴侣蛋白,另一类是催化与折叠直接有关的化学反应的酶,又称折叠酶。分子伴侣显然是一种具有新功能的蛋白,近年来已经鉴定到越来越多新的分子伴侣蛋白或已知蛋白的新的分子伴侣活性。它们的精细三维结构、结构与功能的关系、它们帮助生物大分子折叠的机制都在活跃的研究之中;特别是有些蛋白的分子伴侣活性和在同一分子上的其他生物活性之间的关系以及在生命活动中的协作和调控更引起人们的兴趣。现在发现,不仅蛋白质的折叠需要分子伴侣的帮助,DNA分子和RNA分子的折叠也往往需要分子伴侣的帮助,因为功能DNA和RNA分子,特别是它们与蛋白质形成的复合物都要有一定的构象。DNA和RNA分子本身具有较大的刚性,不容易折叠或在折叠过程中容易发生折叠错误,因此需要DNA分子伴侣或RNA分子伴侣帮助它们折叠而形成特定的构象。另一方面,不仅蛋白质,现在发现有一些核酸和磷脂也能发挥分子伴侣的作用;更有趣的是最近发现核糖体也有分子伴侣活性。有些生物大分子在成熟过程中需要一系列的分子伴侣在不同的阶段给予帮助才能完成最终的折叠。另外,有一些小分子物质对某些蛋白质在体外的折叠有帮助作用,被称之为“化学分子伴侣”。我国科学家在分子伴侣和折叠酶方面的有特色的研究成果已经赢得了国际同行的注意。 新生肽在细胞中折叠和成熟的过程由于转录或翻译出现了错误,或受到各种环境 *** 而损伤,并非能百分之百地完成。为提高蛋白质生物合成的效率,处理掉不能继续正确折叠的或错误折叠的“次品”或“废品”,防止这些“垃圾”的堆积而危害正常生命活动,生命的进化使细胞获得了一种“蛋白质质量控制系统”。这种系统是由分子伴侣和靠消耗三磷酸腺苷的能量而发挥作用的特定的蛋白水解酶组成。分子伴侣帮助新生肽正确折叠;而特定的蛋白水解酶把不能继续正确折叠的或错误折叠的“垃圾”水解成小分子。这里的科学问题是质量控制系统到底如何进行质量控制?有人借用了医院里诊断病人应该送到哪种病房作什么治疗的机制(triage)来描述细胞的蛋白质质量控制体系的作用机理。关键是如何“诊断”和区分什么样的新生肽“病人”可以送到分子伴侣“病房”进行治疗和拯救,而什么样的新生肽“病人”已“无可救药”,只能送给蛋白水解酶去处理。细胞内新生肽“病人”的命运主要是由分子伴侣处理“病人”的能力和速度在动力学上来决定的。尚未治好的新生肽“病人”可能获得再治疗的机会,但也可能不幸送到蛋白水解酶那里去了;还有一种可能性就是形成聚集,聚集体是抗水解的。如果形成有规则的聚集体,即所谓“淀粉样纤维”。一些神经系统退化疾病,如老年性痴呆症、帕金森氏病、亨廷顿氏病就是由此造成的。 在21世纪,人类在解决了新生肽折叠的问题,解决了基因调控的问题后,应该就可以说全面地最终地阐明了分子生物学的中心法则,那时人类对自身的认识又将有一个新的飞跃。

蛋白质的基本单位为氨基酸,而蛋白质的一级结构指的就是其氨基酸序列,蛋白质会由所含氨基酸残基的亲水性、疏水性、带正电、带负电……等等特性通过残基间的相互作用而折叠成一立体的三级结构。虽然蛋白质可在短时间中从一级结构折叠至立体结构,研究者却无法在短时间中从氨基酸序列计算出蛋白质结构,甚至无法得到准确的三维结构。因此,研究蛋白质折叠的过程,可以说是破译“第二遗传密码”——折叠密码(folding code)的过程。 意义蛋白质折叠机制的阐明将揭示生命体内的第二套遗传密码,这是它的理论意义。蛋白质折叠的研究,比较狭义的定义就是研究蛋白质特定三维空间结构形成的规律、稳定性和与其生物活性的关系。在概念上有热力学的问题和动力学的问题;蛋白质在体外折叠和在细胞内折叠的问题;有理论研究和实验研究的问题。这里最根本的科学问题就是多肽链的一级结构到底如何决定它的空间结构?既然前者决定后者,一级结构和空间结构之间肯定存在某种确定的关系,这是否也像核苷酸通过“三联密码”决定氨基酸顺序那样有一套密码呢?有人把这设想的一级结构决定空间结构的密码叫作“第二遗传密码”。 如果说“三联密码”已被破译而实际上已成为明码,那么破译“第二遗传密码”正是“蛋白质结构预测”从理论上最直接地去解决蛋白质的折叠问题,这是蛋白质研究最后几个尚未揭示的奥秘之一。“蛋白质结构预测”属于理论方面的热力学问题。就是根据测得的蛋白质的一级序列预测由Anfinsen原理决定的特定的空间结构。蛋白质氨基酸序列,特别是编码蛋白质的核苷酸序列的测定现在几乎已经成为常规技术,从互补DNA(cDNA)序列可以根据“三联密码”推定氨基酸序列,这些在上一世纪获得重大突破的分子生物学技术,大大加速了蛋白质一级结构的测定。目前蛋白质数据库中已经存有大约17万个蛋白的一级结构,但是测定了空间结构的蛋白大约只有1.2万个,这中间有许多是很相似的同源蛋白,而真正不同的蛋白只有1000多个。随着人类基因组计划的胜利完成,解读了人类DNA的全序列,蛋白质一级结构的数据增长必定会出现爆炸的态势,而空间结构测定的速度远远滞后,因此二者之间还会形成更大的距离,这就更需要进行蛋白质结构的预测。

蛋白质工程的研究与进展论文

如果在五年前提到蛋白质组学(Proteomics),恐怕知之者甚少,而在略知一二者中,部分人还抱有怀疑态度。但是,2001年的Science杂志已把蛋白质组学列为六大研究热点之一,其“热度”仅次于干细胞研究,名列第二。蛋白质组学的受关注程度如今已令人刮目相看。1.蛋白质组学研究的研究意义和背景随着人类基因组计划的实施和推进,生命科学研究已进入了后基因组时代。在这个时代,生命科学的主要研究对象是功能基因组学,包括结构基因组研究和蛋白质组研究等。尽管现在已有多个物种的基因组被测序,但在这些基因组中通常有一半以上基因的功能是未知的。目前功能基因组中所采用的策略,如基因芯片、基因表达序列分析(Serialanalysisofgeneexpression,SAGE)等,都是从细胞中mRNA的角度来考虑的,其前提是细胞中mRNA的水平反映了蛋白质表达的水平。但事实并不完全如此,从DNAmRNA蛋白质,存在三个层次的调控,即转录水平调控(Transcriptionalcontrol),翻译水平调控(Translationalcontrol),翻译后水平调控(Post-translationalcontrol)。从mRNA角度考虑,实际上仅包括了转录水平调控,并不能全面代表蛋白质表达水平。实验也证明,组织中mRNA丰度与蛋白质丰度的相关性并不好,尤其对于低丰度蛋白质来说,相关性更差。更重要的是,蛋白质复杂的翻译后修饰、蛋白质的亚细胞定位或迁移、蛋白质-蛋白质相互作用等则几乎无法从mRNA水平来判断。毋庸置疑,蛋白质是生理功能的执行者,是生命现象的直接体现者,对蛋白质结构和功能的研究将直接阐明生命在生理或病理条件下的变化机制。蛋白质本身的存在形式和活动规律,如翻译后修饰、蛋白质间相互作用以及蛋白质构象等问题,仍依赖于直接对蛋白质的研究来解决。虽然蛋白质的可变性和多样性等特殊性质导致了蛋白质研究技术远远比核酸技术要复杂和困难得多,但正是这些特性参与和影响着整个生命过程。传统的对单个蛋白质进行研究的方式已无法满足后基因组时代的要求。这是因为:(1)生命现象的发生往往是多因素影响的,必然涉及到多个蛋白质。(2)多个蛋白质的参与是交织成网络的,或平行发生,或呈级联因果。(3)在执行生理功能时蛋白质的表现是多样的、动态的,并不象基因组那样基本固定不变。因此要对生命的复杂活动有全面和深入的认识,必然要在整体、动态、网络的水平上对蛋白质进行研究。因此在上世纪90年代中期,国际上产生了一门新兴学科-蛋白质组学(Proteomics),它是以细胞内全部蛋白质的存在及其活动方式为研究对象。可以说蛋白质组研究的开展不仅是生命科学研究进入后基因组时代的里程碑,也是后基因组时代生命科学研究的核心内容之一。虽然第一次提出蛋白质组概念是在1994年,但相关研究可以追溯到上世纪90年代中期甚至更早,尤其是80年代初,在基因

蛋白质工程的研究进展及前景展望 1 蛋白质工程的由来和目标蛋白质工程是在基因工程冲击下应运而生的。基因工程的研究与开发是以遗传基因,即脱氧核糖核酸为内容的。这种生物大分子的研究与开发诱发了另一个生物大分子蛋白质的研究与开发。这就是蛋白质工程的由来。它是以蛋白质的结构及其功能为基础,通过基因修饰和基因合成对现存蛋白质加以改造,组建成新型蛋白质的现代生物技术。这种新型蛋白质必须是更符合人类的需要。因此,有学者称,蛋白质工程是第二代基因工程。其基本实施目标是运用基因工程的DNA重组技术,将克隆后的基因编码加以改造,或者人工组装成新的基因,再将上述基因通过载体引入挑选的宿主系统内进行表达,从而产生符合人类设计需要的“突变型”蛋白质分子。这种蛋白质分子只有表达了人类需要的性状,才算是实现了蛋白质工程的目标。2 蛋白质工程原理和基本操作2.1 分子设计由于基因工程的发展,人们已经可以运用基因重组等理论和方法去设计并制造出预想的各种性能的蛋白质。这种改变蛋白质的操作可以在蛋白质水平上,也可以在基因水平上。如基因水平的改变,是在功能基因开发的基础上,对编码蛋白质的基因进行改造,小到可改变一个核苷酸,大到可以加入或消除某一结构的编码序列。蛋白质水平的改变则主要是对制造出的蛋白质进行加工、修饰,如磷酸化、糖基化等。蛋白质的化学修饰条件剧烈,无专一性,而基因操作则比较方便,在实施基因操作时,必须预先知道是哪个氨基酸或哪几个氨基酸影响着蛋白质的性状。就现代生物技术发展水平看,大量新蛋白质通过检测,来确定改变的蛋白质是否具有预期的性状,技术上已是可行的。2.2 定点突变技术目前,在蛋白质工程中最常采用的技术是定点诱变技术,即在特定的位点改变基因上核苷酸的种类,从而达到改变蛋白质性状的目的。蛋白质工程发展至当代,利用专一改变基因中某个或某些特定核苷酸的技术,可以产生具有工业上和医药上所需性状的蛋白质。一般来讲对蛋白质所作的改造包括增强酶蛋白的催化能力、稳定性、专一性以及改善酶蛋白质的反应条件等几个方面,已为其大规模的应用创造了条件。3 蛋白质工程应用研究进展当前,蛋白质工程修饰、改造的蛋白质为数不算多,但进展较快。随着基因组测序的国际联合行动的快速进展,也带来并已出现了蛋白质高速发展的新阶段。3.1 在医药方面许多蛋白质工程的目标是设法提高蛋白质的稳定性。在酶反应器中可延长酶的半衰期或增强其热稳定性,也可以延长治疗用蛋白质的贮存寿命或重要氨基酸抗氧化失活的能力。在这个领域已取得了一些重要研究成果。用蛋白质工程来改造特殊蛋白质为制造特效抗癌药物开辟了新途径。如人的β-干扰素和白细胞-2是两种抗癌作用的蛋白质。但在它们的分子结构中,有一个不成对的基因,是游离的,因而很不稳定,会使蛋白质失去活性。当通过蛋白质工程修饰这种不稳定的结构就可以提高这两种抗癌物质的生物活性。美国的Cetus公司成功地修饰了这两种治疗癌瘤的蛋白质,大大提高了它们的稳定性,已用于临床试验并取得了良好的效果。具有抗癌作用的蛋白质工程产品免疫球蛋白质是一种高效治癌药物,它能成为征服癌症的“生物导弹”,即具有对准目标杀死特定癌细胞而不伤害正常细胞的特效。近年来,澳大利亚医学科学研究所的一个微生物研究课题组经过多年的研究后发现了激发基因开始或停止产生癌细胞的蛋白质。这种蛋白质在癌细胞生长过程中对癌基因起着开通或关闭的作用。这个发现,对于通过蛋白质工程研制鉴别与控制多种类型的血液癌、固体癌的蛋白质有很好的作用,并为诊断和治疗癌症提供了新的方法。目前,应用蛋白质工程研究开发抗癌及抗艾滋病等重大疑难病症等方面,均取得了重大进展。另据实验,蛋白质工程还可以改变α1抗胰蛋白(ATT)。运用此工程技术在ATT的Met358和Ser359之间切开后,可以与嗜中性白细胞弹性蛋白酶迅速结合而引发抑制作用。在病理学的氧化条件下可导致Met358变成蛋氨酸硫氧化物使ATT不可能与弹性蛋白酶的弹性位点相结合。通过位点直接诱变,Met358被Val代替就成为抗氧化疗法的AAT突变体。含AAT突变体的血浆静脉替代疗法已经用于AAT产物基因缺陷疾病患者的治疗,并已取得明显疗效。3.2 在农业方面蛋白质工程正在成为改造农业,大幅度提高粮食产量的新途径。如植物光合作用是利用白光能将二氧化碳转化成贮成能量淀粉,在植物叶片中普遍存在着一种重要的起催化作用的酶,它能固定住二氧化碳,这种酶叫核酮糖-1.5-二磷酸羧化酶。而这种酶具有双重性:它既能固定二氧化碳,又会使二氧化碳在光照条件下通过光呼吸作用损失一半,即光合效率只有50%。现在。这种酶的三维结构已经搞清楚了。参与研究的工作人员认为,可以通过蛋白质工程改造这种酶,控制其不利于人需要的一面,从而大大提高其光合作用效率,增加粮食产量。近年来,美国坎布里奇的雷普里根公司的科研人员立题,以蛋白质工程作为设计优良微生物农药的新思路,他们实施对微生物蛋白质结构进行修改,仅此一举,使微生物农药的杀虫率提高了10倍。3.3 在工业方面蛋白质工程在工业上的应用取得的成果亦是很多。现以改变酶的动力学特性研制出高效除污酶为例说明其应用价值。酶的动力学基本规律为:酶(E)-底物(S)=酶-底物复合物(ES)=酶(E)+产物(P)在这个反应过程中有4个速率常数:E-S=ES=E+P在稳态阶段,ES形成速率与分解速率相等,这个速率就是Km(Michaelis常数)。在数值上,Km等于达到最大速率一半时的底物浓度。Vmax常在反应的初始阶段测定,反应进行中产物浓度将增加,K4则不可忽视,高浓度的底物会抑制酶活性。在底物低浓度时,酶的Km是关键的参数。如在枯草杆菌蛋白酶的活性位点内有一个Met残基,作为去污剂的一种组分,该酶要置于氧化条件下使用。利用位点直接诱变,用其他19种氨基酸的任何一种取代这个Met,这些突变酶在活性方面大不相同,除了CYS代替Met的突变酶外,其他突变酶的活性都下降,而Km值提高。含不可氧化氨基酸(如Cer,Ala或Len)的突变酶在1 mol/L H2O中不失活,而Net和CYS酶则迅速失活。研究者正是根据突变酶的动力学特性来确定枯草蛋白酶在去污剂中的应用,以提高其除污效率,加强去污作用。另外,美国、日本等国家的科学工作者利用蛋白质工程研制生物元件来取代“硅芯片”,研制生物计算机,开发生物传感器的蛋白质都取得了重大进展。还有利用蛋白质(酶)生产模仿羊毛、蚕丝、蜘蛛丝,其强度高、质量轻,均是蛋白质工程取得的应用性研究成果。3 展望蛋白质工程研究,从20世纪80年代初至今,由于分子生物学和技术科学相结合,已经完成了几十种蛋白质分子结构的改造。在蛋白质结构与其功能的研究上已获得很多有价值的检测资料。人们已经初步掌握了蛋白质工程的技术程序,这就是基因定位、诱变。在了解蛋白质三维结构与功能的基础上,对突变后的一维纤性肽链进行分子设计,从而构建全新的蛋白质分子。当今,在这个技术程序的控制手段方面已经取得了关键技术的突破。蛋白质工程的应用领域极为广泛,现在已对探索环境保护,控制和设计与DNA相互作用的某些调控蛋白,进一步实现控制遗传,改造生物体,创造符合人类需求新生物类型等方面发挥着重要作用。学者们普遍认为,蛋白质工程是在生物工程领地上崭露出的一片特富魅力的新芽。它不仅可以带动生物工程进一步发展,还可以推动与人类生产、生活关系密切的相关科学的发展,如抗蛋白质变性延缓衰老,遗传病的防治,农牧业遗传育种、航天科技、新型材料学等。

字数可能有点超,你自己截取吧~~ 分子生物学(molecular biology) 在分子水平上研究生命现象的科学。研究生物大分子(核酸、蛋白质)的结 构、功能和生物合成等方面来阐明各种生命现象的本质。研究内容包括各种生命过程如光合作用、发育的分子机制、神经活动的机理、癌的发生等。 从分子水平研究生物大分子的结构与功能从而阐明生命现象本质的科学。自20世纪50年代以来,分子生物学是生物学的前沿与生长点,其主要研究领域包括蛋白质体系、蛋白质-核酸体系 (中心是分子遗传学)和蛋白质-脂质体系(即生物膜)。 生物大分子,特别是蛋白质和核酸结构功能的研究,是分子生物学的基础。现代化学和物理学理论、技术和方法的应用推动了生物大分子结构功能的研究,从而出现了近30年来分子生物学的蓬勃发展。分子生物学和生物化学及生物物理学关系十分密切,它们之间的主要区别在于:①生物化学和生物物理学是用化学的和物理学的方法研究在分子水平,细胞水平,整体水平乃至群体水平等不同层次上的生物学问题。而分子生物学则着重在分子(包括多分子体系)水平上研究生命活动的普遍规律;②在分子水平上,分子生物学着重研究的是大分子,主要是蛋白质,核酸,脂质体系以及部分多糖及其复合体系。而一些小分子物质在生物体内的转化则属生物化学的范围;③分子生物学研究的主要目的是在分子水平上阐明整个生物界所共同具有的基本特征,即生命现象的本质;而研究某一特定生物体或某一种生物体内的某一特定器官的物理、化学现象或变化,则属于生物物理学或生物化学的范畴。 发展简史 结构分析和遗传物质的研究在分子生物学的发展中作出了重要的贡献。结构分析的中心内容是通过阐明生物分子的三维结构来解释细胞的生理功能。1912年英国 .布喇格和.布喇格建立了X射线晶体学,成功地测定了一些相当复杂的分子以及蛋白质的结构。以后布喇格的学生.阿斯特伯里和.贝尔纳又分别对毛发、肌肉等纤维蛋白以及胃蛋白酶、烟草花叶病毒等进行了初步的结构分析。他们的工作为后来生物大分子结晶学的形成和发展奠定了基础。50年代是分子生物学作为一门独立的分支学科脱颖而出并迅速发展的年代。首先是在蛋白质结构分析方面,1951年.波林等提出了 α-螺旋结构,描述了蛋白质分子中肽链的一种构象。1955年F.桑格完成了胰岛素的氨基酸序列的测定。接着 .肯德鲁和.佩鲁茨在X射线分析中应用重原子同晶置换技术和计算机技术分别于1957和1959年阐明了鲸肌红蛋白和马血红蛋白的立体结构。1965年中国科学家合成了有生物活性的胰岛素,首先实现了蛋白质的人工合成。 另一方面,M.德尔布吕克小组从1938年起选择噬菌体为对象开始探索基因之谜。噬菌体感染寄主后半小时内就复制出几百个同样的子代噬菌体颗粒,因此是研究生物体自我复制的理想材料。1940年.比德尔和.塔特姆提出了“一个基因,一个酶”的假设,即基因的功能在于决定酶的结构,且一个基因仅决定一个酶的结构。但在当时基因的本质并不清楚。1944年.埃弗里等研究细菌中的转化现象,证明了DNA是遗传物质。1953年.沃森和.克里克提出了DNA的双螺旋结构,开创了分子生物学的新纪元。在此基础上提出的中心法则,描述了遗传信息从基因到蛋白质结构的流动。遗传密码的阐明则揭示了生物体内遗传信息的贮存方式。1961年F.雅各布和J.莫诺提出了操纵子的概念,解释了原核基因表达的调控。到20世纪60年代中期,关于DNA自我复制和转录生成RNA的一般性质已基本清楚,基因的奥秘也随之而开始解开了。 仅仅30年左右的时间,分子生物学经历了从大胆的科学假说,到经过大量的实验研究,从而建立了本学科的理论基础。进入70年代,由于重组DNA研究的突破,基因工程已经在实际应用中开花结果,根据人的意愿改造蛋白质结构的蛋白质工程也已经成为现实。 基本内容 蛋白质体系 蛋白质的结构单位是α-氨基酸。常见的氨基酸共20种。它们以不同的顺序排列可以为生命世界提供天文数字的各种各样的蛋白质。 蛋白质分子结构的组织形式可分为 4个主要的层次。一级结构,也叫化学结构,是分子中氨基酸的排列顺序。首尾相连的氨基酸通过氨基与羧基的缩合形成链状结构,称为肽链。肽链主链原子的局部空间排列为二级结构。二级结构在空间的各种盘绕和卷曲为三级结构。有些蛋白质分子是由相同的或不同的亚单位组装成的,亚单位间的相互关系叫四级结构。 蛋白质的特殊性质和生理功能与其分子的特定结构有着密切的关系,这是形形色色的蛋白质所以能表现出丰富多彩的生命活动的分子基础。研究蛋白质的结构与功能的关系是分子生物学研究的一个重要内容。 随着结构分析技术的发展,现在已有几千个蛋白质的化学结构和几百个蛋白质的立体结构得到了阐明。70年代末以来,采用测定互补DNA顺序反推蛋白质化学结构的方法,不仅提高了分析效率,而且使一些氨基酸序列分析条件不易得到满足的蛋白质化学结构分析得以实现。 发现和鉴定具有新功能的蛋白质,仍是蛋白质研究的内容。例如与基因调控和高级神经活动有关的蛋白质的研究现在很受重视。 蛋白质-核酸体系 生物体的遗传特征主要由核酸决定。绝大多数生物的基因都由 DNA构成。简单的病毒,如λ噬菌体的基因组是由 46000个核苷酸按一定顺序组成的一条双股DNA(由于是双股DNA,通常以碱基对计算其长度)。细菌,如大肠杆菌的基因组,含4×106碱基对。人体细胞染色体上所含DNA为3×109碱基对。 遗传信息要在子代的生命活动中表现出来,需要通过复制、转录和转译。复制是以亲代 DNA为模板合成子代 DNA分子。转录是根据DNA的核苷酸序列决定一类RNA分子中的核苷酸序列;后者又进一步决定蛋白质分子中氨基酸的序列,就是转译。因为这一类RNA起着信息传递作用,故称信使核糖核酸(mRNA)。由于构成RNA的核苷酸是4种,而蛋白质中却有20种氨基酸,它们的对应关系是由mRNA分子中以一定顺序相连的 3个核苷酸来决定一种氨基酸,这就是三联体遗传密码。 基因在表达其性状的过程中贯串着核酸与核酸、核酸与蛋白质的相互作用。DNA复制时,双股螺旋在解旋酶的作用下被拆开,然后DNA聚合酶以亲代DNA链为模板,复制出子代 DNA链。转录是在 RNA聚合酶的催化下完成的。转译的场所核糖核蛋白体是核酸和蛋白质的复合体,根据mRNA的编码,在酶的催化下,把氨基酸连接成完整的肽链。基因表达的调节控制也是通过生物大分子的相互作用而实现的。如大肠杆菌乳糖操纵子上的操纵基因通过与阻遏蛋白的相互作用控制基因的开关。真核细胞染色质所含的非组蛋白在转录的调控中具有特殊作用。正常情况下,真核细胞中仅2~15%基因被表达。这种选择性的转录与转译是细胞分化的基础。 蛋白质-脂质体系 生物体内普遍存在的膜结构,统称为生物膜。它包括细胞外周膜和细胞内具有各种特定功能的细胞器膜。从化学组成看,生物膜是由脂质和蛋白质通过非共价键构成的体系。很多膜还含少量糖类,以糖蛋白或糖脂形式存在。 1972年提出的流动镶嵌模型概括了生物膜的基本特征:其基本骨架是脂双层结构。膜蛋白分为表在蛋白质和嵌入蛋白质。膜脂和膜蛋白均处于不停的运动状态。 生物膜在结构与功能上都具有两侧不对称性。以物质传送为例,某些物质能以很高速度通过膜,另一些则不能。象海带能从海水中把碘浓缩 3万倍。生物膜的选择性通透使细胞内pH和离子组成相对稳定,保持了产生神经、肌肉兴奋所必需的离子梯度,保证了细胞浓缩营养物和排除废物的功能。 生物体的能量转换主要在膜上进行。生物体取得能量的方式,或是像植物那样利用太阳能在叶绿体膜上进行光合磷酸化反应;或是像动物那样利用食物在线粒体膜上进行氧化磷酸化反应。这二者能量来源虽不同,但基本过程非常相似,最后都合成腺苷三磷酸。对于这两种能量转换的机制,P.米切尔提出的化学渗透学说得到了越来越多的证据。生物体利用食物氧化所释放能量的效率可达70%左右,而从煤或石油的燃烧获取能量的效率通常为20~40%,所以生物力能学的研究很受重视。对生物膜能量转换的深入了解和模拟将会对人类更有效地利用能量作出贡献。 生物膜的另一重要功能是细胞间或细胞膜内外的信息传递。在细胞表面,广泛地存在着一类称为受体的蛋白质。激素和药物的作用都需通过与受体分子的特异性结合而实现。癌变细胞表面受体物质的分布有明显变化。细胞膜的表面性质还对细胞分裂繁殖有重要的调节作用。 对细胞表面性质的研究带动了糖类的研究。糖蛋白、蛋白聚糖和糖脂等生物大分子结构与功能的研究越来越受到重视。从发展趋势看,寡糖与蛋白质或脂质形成的体系将成为分子生物学研究的一个新的重要的领域。 理论意义和应用 分子生物学的成就说明:生命活动的根本规律在形形色色的生物体中都是统一的。例如,不论在何种生物体中,都由同样的氨基酸和核苷酸分别组成其蛋白质和核酸。遗传物质,除某些病毒外,都是DNA,并且在所有的细胞中都以同样的生化机制进行复制。分子遗传学的中心法则和遗传密码,除个别例外,在绝大多数情况下也都是通用的。 物理学的成就证明,一切物质的原子都由为数不多的基本粒子根据相同的规律所组成,说明了物质世界结构上的高度一致,揭示了物质世界的本质,从而带动了整个物理学科的发展。分子生物学则在分子水平上揭示了生命世界的基本结构和生命活动的根本规律的高度一致,揭示了生命现象的本质。和过去基本粒子的研究带动物理学的发展一样,分子生物学的概念和观点也已经渗入到基础和应用生物学的每一个分支领域,带动了整个生物学的发展,使之提高到一个崭新的水平。 过去生物进化的研究,主要依靠对不同种属间形态和解剖方面的比较来决定亲缘关系。随着蛋白质和核酸结构测定方法的进展,比较不同种属的蛋白质或核酸的化学结构,即可根据差异的程度,来断定它们的亲缘关系。由此得出的系统进化树,与用经典方法得到的是基本符合的。采用分子生物学的方法研究分类与进化有特别的优越性。首先,构成生物体的基本生物大分子的结构反映了生命活动中更为本质的方面。其次,根据结构上的差异程度可以对亲缘关系给出一个定量的,因而也是更准确的概念。第三,对于形态结构非常简单的微生物的进化,则只有用这种方法才能得到可靠结果。 高等动物的高级神经活动是极其复杂的生命现象,过去多是在细胞乃至整体水平上研究,近年来深入到分子水平研究的结果充分说明高级神经活动也同样是以生物大分子的活动为基础的。例如,在高等动物学习与记忆的过程中,大脑中RNA和蛋白质的组成发生明显的变化,并且一些影响生物体合成蛋白质的药物也显著地影响学习与记忆的能力。又如,“生物钟”是一种熟知的生物现象。用鸡进行的实验发现,有一种重要的神经传递介质(5-羟色胺)和一种激素(褪黑激素)以及控制它们变化的一种酶,在鸡脑中的含量呈24小时的周期性变化。正是这种变化构成了鸡的“生物钟”的物质基础。 在应用方面,生物膜能量转换原理的阐明,将有助于解决全球性的能源问题。了解酶的催化原理就能更有针对性地进行酶的人工模拟,设计出化学工业上广泛使用的新催化剂,从而给化学工业带来一场革命。 分子生物学在生物工程技术中也起了巨大的作用,1973年重组DNA技术的成功,为基因工程的发展铺平了道路。80年代以来,已经采用基因工程技术,把高等动物的一些基因引入单细胞生物,用发酵方法生产干扰素、多种多肽激素和疫苗等。基因工程的进一步发展将为定向培育动、植物和微生物良种以及有效地控制和治疗一些人类遗传性疾病提供根本性的解决途径。 从基因调控的角度研究细胞癌变也已经取得不少进展。分子生物学将为人类最终征服癌症做出重要的贡献。 [编辑本段]分子生物学的应用 1,亲子鉴定 近几年来,人类基因组研究的进展日新月异,而分子生物学技术也不断完善,随着基因组研究向各学科的不断渗透,这些学科的进展达到了前所未有的高度。在法医学上,STR位点和单核苷酸(SNP)位点检测分别是第二代、第三代DNA分析技术的核心,是继RFLPs(限制性片段长度多态性)VNTRs(可变数量串联重复序列多态性)研究而发展起来的检测技术。作为最前沿的刑事生物技术,DNA分析为法医物证检验提供了科学、可靠和快捷的手段,使物证鉴定从个体排除过渡到了可以作同一认定的水平,DNA检验能直接认定犯罪、为凶杀案、强奸杀人案、碎尸案、强奸致孕案等重大疑难案件的侦破提供准确可靠的依据。随着DNA技术的发展和应用,DNA标志系统的检测将成为破案的重要手段和途径。此方法作为亲子鉴定已经是非常成熟的,也是国际上公认的最好的一种方法。参考资料:蛋白质质谱分析研究进展 摘 要: 随着科学的不断发展,运用质谱法进行蛋白质的分析日益增多,本文简要综述了肽和蛋白质等生物大分子质谱分析的特点、方法及蛋白质质谱分析的原理、方式和应用,并对其发展前景作出展望。 关键词: 蛋白质,质谱分析,应用 前言: 蛋白质是生物体中含量最高,功能最重要的生物大分子,存在于所有生物细胞,约占细胞干质量的50%以上, 作为生命的物质基础之一,蛋白质在催化生命体内各种反应进行、调节代谢、抵御外来物质入侵及控制遗传信息等方面都起着至关重要的作用,因此蛋白质也是生命科学中极为重要的研究对象。关于蛋白质的分析研究,一直是化学家及生物学家极为关注的问题,其研究的内容主要包括分子量测定,氨基酸鉴定,蛋白质序列分析及立体化学分析等。随着生命科学的发展,仪器分析手段的更新,尤其是质谱分析技术的不断成熟,使这一领域的研究发展迅速。 自约翰.芬恩()和田中耕一()发明了对生物大分子进行确认和结构分析的方法及发明了对生物大分子的质谱分析法以来,随着生命科学及生物技术的迅速发展,生物质谱目前已成为有机质谱中最活跃、最富生命力的前沿研究领域之一[1]。它的发展强有力地推动了人类基因组计划及其后基因组计划的提前完成和有力实施。质谱法已成为研究生物大分子特别是蛋白质研究的主要支撑技术之一,在对蛋白质结构分析的研究中占据了重要地位[2]。 1.质谱分析的特点 质谱分析用于蛋白质等生物活性分子的研究具有如下优点:很高的灵敏度能为亚微克级试样提供信息,能最有效地与色谱联用,适用于复杂体系中痕量物质的鉴定或结构测定,同时具有准确性、易操作性、快速性及很好的普适性。 2.质谱分析的方法 近年来涌现出较成功地用于生物大分子质谱分析的软电离技术主要有下列几种:1)电喷雾电离质谱;2)基质辅助激光解吸电离质谱;3)快原子轰击质谱;4)离子喷雾电离质谱;5)大气压电离质谱。在这些软电离技术中,以前面三种近年来研究得最多,应用得也最广泛[3]。 3.蛋白质的质谱分析 蛋自质是一条或多条肽链以特殊方式组合的生物大分子,复杂结构主要包括以肽链为基础的肽链线型序列[称为一级结构]及由肽链卷曲折叠而形成三维[称为二级,三级或四级]结构。目前质谱主要测定蛋自质一级结构包括分子量、肽链氨基酸排序及多肽或二硫键数目和位置。 蛋白质的质谱分析原理 以往质谱(MS)仅用于小分子挥发物质的分析,由于新的离子化技术的出现,如介质辅助的激光解析/离子化、电喷雾离子化,各种新的质谱技术开始用于生物大分子的分析。其原理是:通过电离源将蛋白质分子转化为气相离子,然后利用质谱分析仪的电场、磁场将具有特定质量与电荷比值(M/Z值)的蛋白质离子分离开来,经过离子检测器收集分离的离子,确定离子的M/Z值,分析鉴定未知蛋白质。 蛋白质和肽的序列分析 现代研究结果发现越来越多的小肽同蛋白质一样具有生物功能,建立具有特殊、高效的生物功能肽的肽库是现在的研究热点之一。因此需要高效率、高灵敏度的肽和蛋白质序列测定方法支持这些研究的进行。现有的肽和蛋白质测序方法包括N末端序列测定的化学方法Edman法、C末端酶解方法、C末端化学降解法等,这些方法都存在一些缺陷。例如作为肽和蛋白质序列测定标准方法的N末端氨基酸苯异硫氰酸酯(phenylisothiocyanate)PITC分析法(即Edman法,又称PTH法),测序速度较慢(50个氨基酸残基/天);样品用量较大(nmol级或几十pmol级);对样品纯度要求很高;对于修饰氨基酸残基往往会错误识别,而对N末端保护的肽链则无法测序[4]。C末端化学降解测序法则由于无法找到PITC这样理想的化学探针,其发展仍面临着很大的困难。在这种背景下,质谱由于很高的灵敏度、准确性、易操作性、快速性及很好的普适性而倍受科学家的广泛注意。在质谱测序中,灵敏度及准确性随分子量增大有明显降低,所以肽的序列分析比蛋白容易许多,许多研究也都是以肽作为分析对象进行的。近年来随着电喷雾电离质谱(electrospray ionisation,ESI)及基质辅助激光解吸质谱(matrix assisted laser desorption/ionization,MALDI)等质谱软电离技术的发展与完善,极性肽分子的分析成为可能,检测限下降到fmol级别,可测定分子量范围则高达100000Da,目前基质辅助的激光解吸电离飞行时间质谱法(MALDI TOF MS)已成为测定生物大分子尤其是蛋白质、多肽分子量和一级结构的有效工具,也是当今生命科学领域中重大课题——蛋白质组研究所必不可缺的关键技术之一 [5] 。目前在欧洲分子生物实验室(EMBL)及美国、瑞士等国的一些高校已建立了MALDI TOF MS蛋白质一级结构(序列)谱库,能为解析FAST谱图提供极大的帮助,并为确证分析结果提供可靠的依据[6]。 蛋白质质谱分析研究进展 来自: 免费论文网 蛋白质的质谱分析方式 质谱用于肽和蛋白质的序列测定主要可以分为三种方法:一种方法叫蛋白图谱(proteinmapping),即用特异性的酶解或化学水解的方法将蛋白切成小的片段,然后用质谱检测各产物肽分子量,将所得到的肽谱数据输入数据库,搜索与之相对应的已知蛋白,从而获取待测蛋白序列。将蛋白质绘制“肽图”是一重要测列方法。第二种方法是利用待测分子在电离及飞行过程中产生的亚稳离子,通过分析相邻同组类型峰的质量差,识别相应的氨基酸残基,其中亚稳离子碎裂包括“自身”碎裂及外界作用诱导碎裂.第三种方法与Edman法有相似之处,即用化学探针或酶解使蛋白或肽从N端或C端逐一降解下氨基酸残基,形成相互间差一个氨基酸残基的系列肽,名为梯状测序(laddersequencing),经质谱检测,由相邻峰的质量差知道相应氨基酸残基。 蛋白消化 蛋白的基团越大,质谱检测的准确率越低。因此,在质谱检测之前,须将蛋白消化成小分子的多肽,以提高质谱检测的准确率。一般而言,6-20个氨基酸的多肽最适合质谱仪的检测。现今最常用的酶为胰蛋白酶(trypsin),它于蛋白的赖氨酸(lysine)和精氨酸(arginine)处将其切断。因此,同一蛋白经胰蛋白酶消化后,会产生相同的多肽。 基质辅助激光解吸电离/飞行时间质谱测量法(MALDI-TOF MS) [7] 简而言之,基质辅助激光解吸电离/飞行时间质谱测量仪是将多肽成分转换成离子信号,并依据质量/电荷之比(mass/charge,m/z)来对该多肽进行分析,以判断该多肽源自哪一个蛋白。待检样品与含有在特定波长下吸光的发光团的化学基质(matrix)混合,此样品混合物随即滴于一平板或载玻片上进行挥发,样品混合物残余水份和溶剂的挥发使样品整合于格状晶体中,样品然后置于激光离子发生器(lasersource)。激光作用于样品混合物,使化学基质吸收光子而被激活。此激活产生的能量作用于多肽,使之由固态样品混合物变成气态。由于多肽分子倾向于吸收单一光子,故多肽离子带单一电荷.这些形成的多肽离子直接进入飞行时间质量分析仪(TOFmassanalyzer)。飞行时间质量分析仪用于测量多肽离子由分析仪的一端飞抵另一端探测器所需要的时间。而此飞行时间同多肽离子的质量/电荷的比值成反比,即质量/电荷之比越高,飞行时间越短。最后,由电脑软件将探测器录得的多肽质量/电荷比值同数据库中不同蛋白经蛋白酶消化后所形成的特定多肽的质量/电荷比值进行比较,以鉴定该多肽源自何种蛋白.此法称为多肽质量指纹分析(peptidemassfin-gerprinting)。基质辅助激光解吸电离/飞行时间质谱测量法操作简便,敏感度高,同许多蛋白分离方法相匹配,而且,现有数据库中有充足的关于多肽质量/电荷比值的数据,因此成为许多实验室的首选蛋白质谱鉴定方法。 电子喷雾电离质谱测量法(electrosprayion-izationmassspectrometry,ESI-MS)[8 ] 同基质辅助激光解吸电离/飞行时间质谱测量法在固态下完成不同,电子喷雾电离质谱测量法是在液态下完成,而且多肽离子带有多个电荷,由高效液相层析等方法分离的液体多肽混合物,在高压下经过一细针孔。当样本由针孔射出时,喷射成雾状的细小液滴,这些细小液滴包含多肽离子及水份等其他杂质成分。去除这些杂质成分后,多肽离子进入连续质量分析仪(tan- demmassanalyzer),连续质量分析仪选取某一特定质量/电荷比值的多肽离子,并以碰撞解离的方式将多肽离子碎裂成不同电离或非电离片段。随后,依质量/电荷比值对电离片段进行分析并汇集成离子谱(ionspectrum),通过数据库检索,由这些离子谱得到该多肽的氨基酸序列。依据氨基酸序列进行的蛋白鉴定较依据多肽质量指纹进行的蛋白鉴定更准确、可靠。而且,氨基酸序列信息即可通过蛋白氨基酸序列数据库检索,也可通过核糖核酸数据库检索来进行蛋白鉴定。 蛋白质质谱分析研究进展 来自: 免费论文网 4.蛋白质质谱分析的应用 1981年首先采用FAB双聚焦质谱测定肽分子量,分析十一肽(Mr=1318),质谱中出现准分子离子[M+1]+=1319强峰。分子量小于6kDa肽或小蛋白质合适用FAB质谱分析,更大分子量的多肽和蛋自质可用MALDI质谱或ESI质谱分析。用MALDI-TOF质谱分析蛋自质最早一例是Hillen Kramp等[9]于1988年提出用紫外激光以烟酸为基质在TOF谱仪上测出质量数高达60kDa蛋白质,精确度开始只有,后改进到。质谱技术主要用于检测双向凝胶电泳或“双向”高效柱层析分离所得的蛋白质及酶解所得的多肽的质量,也可用于蛋白质高级结构及蛋白质间相互作用等方面的研究[10,11],三条肽段的精确质量数便可鉴定蛋白质。近年来,串联质谱分析仪发展迅猛,其数据采集方面的自动化程度、检测的敏感性及效率都大大提高,大规模数据库和一些分析软件(如:SEQUEST)的应用使得串联质谱分析仪可以进行更大规模的测序工作。目前,利用2D电泳及MS技术对整个酵母细胞裂解产物进行分析,已经鉴定出1484种蛋白质,包括完整的膜蛋白和低丰度的蛋白质[12];分析肝细胞癌患者血清蛋白质组成分[13],并利用质谱进行鉴定磷酸化蛋白研究工作[14]及采用质谱技术研究许旺细胞源神经营养蛋白(SDNP)的分子结构[15]等。 结束语: 在蛋白质的质谱分析中,质谱的准确性(accuracy)对测定结果有很大影响,因此质谱测序现在仍很难被应用于未知蛋白的序列测定。肽和蛋白的质谱序列测定方法具有快速、用量少、易操作等优点,这些都非常适合于现在科学研究的需要。我们相信,随着各种衍生化方法和酶解方法的不断改进,蛋白双向电泳的应用[16]以及质谱技术的不断完善,质谱将会成为多肽和蛋白质分析最有威力的工具之一。

蛋白多肽研究进展论文怎么写

【关键词】 蛋白质组 【关键词】 线粒体;蛋白质组 0引言 线粒体拥有自己的DNA(mtDNA),可以进行转录、翻译和蛋白质合成. 根据人类的基因图谱,估计大约有1000~2000种线粒体蛋白,大约有600多种已经被鉴定出来. 线粒体蛋白质只有2%是线粒体自己合成的,98%的线粒体蛋白质是由细胞核编码、细胞质核糖体合成后运往线粒体的,线粒体是真核细胞非常重要的细胞器,在细胞的整个生命活动中起着非常关键的作用. 线粒体的蛋白质参与机体许多生理、病理过程,如ATP的合成、脂肪酸代谢、三羧酸循环、电子传递和氧化磷酸化过程. 线粒体蛋白质结构与功能的改变与人类许多疾病相关,如退行性疾病、心脏病、衰老和癌症. 尤其是在神经退行性疾病方面,线粒体蛋白质的研究日益受到关注. 蛋白质组研究技术的产生与发展为线粒体蛋白质组的研究提供了有力的支持,使得从整体上研究线粒体蛋白质组在生理、病理过程中的变化成为可能. 1线粒体的结构、功能与人类疾病 线粒体一般呈粒状或杆状,也可呈环形、哑铃形或其他形状,其主要化学成分是蛋白质和脂类. 线粒体由内外两层膜封闭,包括外膜、内膜、膜间隙和基质四个部分. 线粒体在细胞内的分布一般是不均匀的,根据细胞代谢的需要,线粒体可在细胞质中运动、变形和分裂增殖. 线粒体是细胞进行呼吸的主要场所,在细胞代谢旺盛的需能部位比较集中,其主要功能是进行氧化磷酸化,合成ATP,为细胞生命活动提供直接能量. 催化三羧酸循环、氨基酸代谢、脂肪酸分解、电子传递、能量转换、DNA复制和RNA合成等过程所需要的一百多种酶和辅酶都分布在线粒体中. 这些酶和辅酶的主要功能是参加三羧酸循环中的氧化反应、电子传递和能量转换. 线粒体具有独立的遗传体系,能够进行DNA复制、转录和蛋白质翻译. 线粒体不仅为细胞提供能量,而且还与细胞中氧自由基的生成、细胞凋亡、细胞的信号转导、细胞内离子的跨膜转运及电解质稳态平衡的调控等有关. 许多实验证实,线粒体功能改变与细胞凋亡〔1〕、衰老〔2〕、肿瘤〔3,4〕的发生密切相关;另外,有许多人类疾病的发生与线粒体功能缺陷相关,如线粒体肌病和脑肌病、线粒体眼病,老年性痴呆、帕金森病、2型糖尿病、心肌病及衰老等,有人统称为线粒体疾病〔5〕. 2线粒体蛋白质组学研究现状 线粒体蛋白质组的蛋白质鉴定Rabilloud等〔6〕在1998年,以健康人的胎盘作为组织来源,分离提取线粒体进行蛋白质组研究,试图建立线粒体蛋白质组的数据库,为研究遗传性或获得性线粒体功能障碍时线粒体蛋白质的变化提供依据. 他们使用IPG(pH )双相电泳技术, 共获得1500个蛋白点. 通过MALDITOFMS和PMF等技术鉴定其中的一些蛋白点,鉴于当时基因组信息的局限性,只有46种蛋白被鉴定出来. 随着人类基因组图谱的完成,应该有更多的蛋白点被鉴定出来. Fountoulakis等〔7〕从大鼠的肝脏中分离线粒体,并分别利用宽范围和窄范围pH梯度IPG对线粒体蛋白质进行双相电泳,通过MALDIMS鉴定出192个基因产物,大约70%的基因产物是具有广谱催化能力的酶,其中8个基因产物首次被检测到并且由一个点构成,而大多数蛋白质都是由多个点构成,平均10~15个点对应于一个基因产物. Mootha等〔8〕从小鼠大脑、心脏、肾脏、肝脏中分离提取线粒体蛋白质,进行线粒体蛋白质组研究,他们参照已有的基因信息共鉴定出591个线粒体蛋白质,其中新发现了163个蛋白质与线粒体有关. 这些蛋白质的表达与RNA丰度的检测在很大程度上是一致的. 不同组织的RNA表达图谱揭示出线粒体基因在功能、调节机制方面形成的网络. 对这些蛋白与基因的整合分析使人们对哺乳动物生物起源的认识更加深入,对理解人类疾病也具有参考价值. 线粒体亚组分的研究线粒体对维持细胞的体内平衡起着关键作用,因此加速了人们对线粒体亚组分的研究. 线粒体内膜不仅包含有呼吸链复合物,它还包含多种离子通道和转运蛋白. 对线粒体发挥正常的功能起着重要作用. Cruz等〔9〕专注于线粒体内膜蛋白质的研究,他们通过二维液相色谱串联质谱技术鉴定出182个蛋白质,pI(),MW(Mr 6000~527 000),这些蛋白与许多生化过程相关,比如电子传递、蛋白质运输、蛋白质合成、脂类代谢和离子运输. 线粒体蛋白质复合物的研究线粒体内膜上嵌有很多蛋白质复合物,对于线粒体的功能具有重要作用,应用常规的双相电泳很难将这些蛋白质复合物完整地分离出来. Devreese等〔10〕采用Bluenative polyacrylamide gel electrophoresis(BNPAGE)分离线粒体内膜上的五个氧化磷酸化复合物,结合肽质量指纹图谱,成功地鉴定出氧化磷酸化复合物中60%的已知蛋白质. BNPAGE在分离蛋白质复合物时可以保持它们的完整性,因此这项技术可以用于研究在不同的生理病理状态下蛋白质复合物的变化及临床诊断等. 线粒体蛋白质组数据库目前人们查询最多的线粒体蛋白质组数据库有MITOP, MitoP2和SWISSPROT三种. MITOP〔11〕是有关线粒体、核编码的基因和相应的线粒体蛋白质的综合性数据库,收录了1150种线粒体相关的基因和对应的蛋白质,人们可依据基因、蛋白质、同源性、通道与代谢、人类疾病分类查询相关的信息.MitoP2〔12〕数据库中主要为核编码的线粒体蛋白质组的数据,MitoP2数据库将不同来源的线粒体蛋白质的信息整合在一起,人们可以根据不同的参数进行查询. MitoP2数据库既包括最新的数据也包括最初的MITOP〔11〕数据库中的数据. 目前数据库中主要为酵母和人的线粒体蛋白质组的数据,以后还将收录小鼠、线虫等的数据. 数据库旨在为人们提供线粒体蛋白质的综合性数据. SWISSPROT数据库包含269种人类线粒体蛋白质,其中与人类疾病相关的蛋白质有225种. 数据库中有相当一部分蛋白质没有明确的定位和功能信息的描述. 随着线粒体研究热潮到来和蛋白质组学技术的发展,将有更多的数据被填充到数据库中. 3线粒体蛋白质组研究中存在的问题 线粒体碱性蛋白质与低分子量蛋白质线粒体蛋白质中,具有碱性等电点的蛋白质占有很大比例,在等电聚焦时难以溶解,一些碱性程度很大的蛋白质如细胞色素C(pH )在pH 3~10的IPG胶上不能被分离出. 线粒体蛋白质中相当一部分蛋白是低分子量蛋白,因此在SDSPAGE电泳时要分别应用高浓度和低浓度分离胶,以更好地分离低分子量蛋白质和高分子量蛋白质. 线粒体膜蛋白质线粒体是一个具有双层膜结构的细胞器,内膜和外膜上整和有很多膜蛋白质,这些膜蛋白质对于线粒体功能的发挥具有重要作用,但是膜蛋白质具有很强的疏水性,在等电聚焦时,用常规的水化液难以溶解,因此用常规的IPG胶检测不出来. 换用不同的裂解液对膜蛋白的溶解具有帮助. 有研究人员在等电聚焦缓冲液中加入SB310以增加膜蛋白的溶解性. 在等电聚焦前对样品进行有机酸处理也可以增加膜蛋白的溶解性. 在研究中人们发现,不同的样品应该选用不同的裂解液,没有一种裂解液能够适合于所有的膜蛋白质.百事通针对膜蛋白质的难溶和等电聚焦时的沉淀,一些研究人员另辟径,避开双相电泳而进行一维SDSPAGE电泳,如Taylor等〔13〕先通过蔗糖梯度离心将线粒体蛋白质分成不同的组分,而后将每一个组分进行一维电泳,一维电泳中SDS可以很好地溶解疏水性蛋白质和膜整合蛋白质,他们鉴定出600多种线粒体蛋白质,其中有很多蛋白质以前应用双相电泳没有被鉴定出来. 他们鉴定的蛋白质中有很多具有跨膜结构域,如adenine nucleotide translocator(ANT1)和VDACs蛋白质,这些蛋白质对于调节线粒体的功能具有关键作用而且应用常规双相电泳很难被鉴定出来. 提高质谱鉴定的灵敏性对于一维SDSPAGE电泳后蛋白质分析鉴定具有很大的帮助,Pflieger等〔14〕应用液相色谱串联质谱(LCMS/MS)成功地鉴定出179种线粒体蛋白质,其中43%是膜蛋白质而且23%具有跨膜结构域. 液相色谱串联质谱(LCMS/MS)检测灵敏度较高,SDS可以很好地溶解膜蛋白,因此这种方法比传统的双相电泳具有更高的灵敏性而且不受蛋白质等电点、分子量、疏水性的限制. 线粒体样品的纯度线粒体样品的纯度对于蛋白质组分析非常重要,在样品制备的过程中,具有与线粒体相同沉降系数的成分会同线粒体一起沉降下来,如内质网、微粒体、胞浆蛋白的一些成分. 这些蛋白斑点出现在双相电泳胶上,会影响整体蛋白质组分析的结果. 因此提高样品的纯度至关重要. Scheffler等〔15〕采用多步percoll/metrizamide密度梯度离心纯化线粒体样品,双相电泳后鉴定出61个蛋白质,几乎全部是线粒体蛋白质. 4未来展望 随着人类基因组工作草图的完成,生命科学的研究进入后基因组时代,蛋白质组学的研究遂成为重点. 蛋白质组学旨在采用全方位、高通量的技术路线,确认生物体全部蛋白质的表达和功能模式,从一个机体、一个器官组织或一个细胞的蛋白质整体活动来揭示生命规律,并研究疾病的发生机制、建立疾病的早期诊断和防治方法. 抗体技术在线粒体蛋白质组学领域中具有重要的应用价值. 单克隆抗体还具有高度的特异性,应用于亲和层析技术中不仅可以去除组织细胞样品中高表达的蛋白质成分,同样也可以富集表达量极低的组分. 结合蛋白免疫转印、流式细胞术和免疫组织细胞化学,实现对相应蛋白质的定性、定量和细胞(内)定位分析. 与微阵列技术(芯片)结合,可以研制出含有成百上千种抗体的蛋白(抗体)芯片,这种新技术使得研究人员可以在一次实验中比较生物样品中成百上千的蛋白质的相对丰度,能够检测到样品中浓度很低的抗原,以实现蛋白质组学对复杂组分高通量、高效率的检测. 某些抗体可以特异性识别蛋白质翻译后修饰的糖基化或磷酸化位点、降解产物、功能状态和构象变化,成为基因芯片检测不可替代的补充. 抗体捕获组分的分析有助于蛋白质复合物及其相互作用的研究,也在新的蛋白质发现和确认方面提供重要信息和证据. 随着抗体技术的不断提高,抗体数目的不断增多,蛋白质组学的研究也将更加深入. 线粒体不仅参与细胞重要的生命活动,而且对于生物进化的研究也有重要意义. 随着线粒体研究热潮的到来,将有更多的蛋白质被发现,对于蛋白质功能的研究也将更加深入,相信线粒体蛋白质组的研究对于人类疾病的发病机制和早期诊断将做出重要贡献. 【参考文献】 〔1〕 Jiang X, Wang X. Cytochrome Cmediated apoptosis 〔J〕. Annu Rev Biochem, 2004,73: 87-106. 〔2〕 Chen XJ, Wang X, Kaufman BA, et al. Aconitase couples metabolic regulation to mitochondrial DNA maintenance 〔J〕. Science, 2005,307(5710): 714-717. 〔3〕 Petros JA, Baumann AK, RuizPesini E, et al. mtDNA mutations increase tumorigenicity in prostate cancer 〔J〕. PNAS, 2005,102(3):719-724. 〔4〕 Wonsey DR, Zeller KI, Dang CV. The cMyc target gene PRDX3 is required for mitochondrial homeostasis and neoplastic transformation 〔J〕. PNAS, 2002, 99(10): 6649-6654. 〔5〕 Taylor RW, Turnbull DM. Mitochondrial DNA mutations in human disease〔J〕. Nat Rev Genet, 2005,6:389-402. 〔6〕 Rabilloud T, Kieffer S, Procaccio V, et al. Twodimensional electrophoresis of human placental mitochondria and protein identification by mass spectrometry: toward a human mitochondrial proteome 〔J〕. Electrophoresis, 1998,19:1006-1014. 〔7〕 Fountoulakis M, Berndt P, Langen H, et al. The rat liver mitochondrial proteins〔J〕. Electrophoresis, 2002,23:311-328. 〔8〕 Mootha VK, Bunkenborg J, Olsen JV, et al. Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria 〔J〕. Cell, 2003,115(5): 629-640. 〔9〕 Cruz SD, Xenarios I, Langridge J, et al. Proteomic analysis of the mouse liver mitochondrial inner membrane 〔J〕. J Biol Chem, 2003, 278(42): 41566-41571. 〔10〕 Devreese B, Vanrobaeys F, Smet J, et al. Mass spectrometric identification of mitochondrial oxidative phosphorylation subunits separated by twodimensional bluenative polyacrylamide gel electrophoresis 〔J〕. Electrophoresis, 2002,23: 2525-2533. 〔11〕 Scharfe C, Zaccaria P, Hoertnagel K, et al. MITOP, the mitochondrial proteome database: 2000 update 〔J〕. Nuc Acid Res, 2000,28(1):155-158. 〔12〕 Andreoli C, Prokisch H, Hortnagel K, et al. MitoP2, an integrated database on mitochondrial proteins in yeast and man 〔J〕. Nuc Acid Res, 2004,32(90001):459-462. 〔13〕 Taylor SW, Warnock DE, Glenn GM, et al. An alternative strategy to determine the mitochondrial proteome using sucrose gradient fractionation and 1D PAGE on highly purified human heart mitochondria 〔J〕. J Proteome Res, 2002,1(5):451-458. 〔14〕 Pflieger D, Le Caer JP, Lemaire C, et al. Systematic identi?cation of mitochondrial proteins by LCMS/MS 〔J〕. Anal Chem, 2002,74:2400-2406. 〔15〕 Scheffler NK, Miller SW, Carroll AK, et al. Twodimensional electrophoresis and mass spectrometric identification of mitochondrial proteins from an SHSY5Y neuroblastoma cell line〔J〕. Mitochondrion, 2001,1(2):161-179.

随着生物工程技术的迅速发展,生物技术活性物质不断面世,已有不少生物技术药物应用于临床,国内外已批准上市的约40多种,1995年开发数为234种,目前正在研究的则成倍增加,在这些品种中,大量的均为多肽和蛋白质类药物。由于多肽和蛋白质药物的体内外不稳定性,临床主要剂型是溶液型注射剂和冻干粉针。为解决长期用药的问题,克服注射剂的不便和缺点,发展适宜给药途径的非注射传输系统是药剂学面对的挑战。

多肽物质分离与分析方法研究进展 浏览次数: 47  日期: 2017-05-24 15:17:02多肽类化合物广泛存在于自然界中,其中对具有一定生物学活性的多肽的研究,一直是药物开发的一个主要方向。生物体内已知的活性多肽主要是从内分泌腺组织器官、分泌细胞和体液中产生或获得的,生命活动中的细胞分化、神经激素递质调节、肿瘤病变、免疫调节等均与活性多肽密切相关。随着现代科技的飞速发展,从天然产物中获得肽类物质的手段也不断得到提高。一些新方法、新思路的应用,不断有新的肽类物质被发现应用于防病治病之中。本文介绍了近几年肽类物质分离、分析的主要方法研究进展。分离方法 采取何种分离纯化方法要由所提取的组织材料、所要提取物质的性质决定。对蛋白质、多肽提取分离常用的方法包括:盐析法、超滤法、凝胶过滤法、等电点沉淀法、离子交换层析、亲和层析、吸附层析、逆流分溶、酶解法等。这些方法常常组合到一起对特定的物质进行分离纯化,同时上述这些方法也是蛋白、多肽类物质分析中常用的手段,如层析、电泳等。1、 高效液相色谱(HPLC) HPLC的出现为肽类物质的分离提供了有利的方法手段,因为蛋白质、多肽的HPLC应用与其他化合物相比,在适宜的色谱条件下不仅可以在短时间内完成分离目的,更重要的是HPLC能在制备规模上生产具有生物活性的多肽。因此在寻找多肽类物质分离制备的最佳条件上,不少学者做了大量的工作。如何保持多肽活性、如何选择固定相材料、洗脱液种类、如何分析测定都是目前研究的内容。1)  反相高效液相色谱(RP-HPLC) 结果与保留值之间的关系:利用RP-HPLC分离多肽首先得确定不同结构的多肽在柱上的保留情况。为了获得一系列的保留系数,Wilce等利用多线性回归方法对2106种肽的保留性质与结构进行分析,得出了不同氨基酸组成对保留系数影响的关系,其中极性氨基酸残基在2~20氨基酸组成的肽中,可减少在柱上的保留时间;在10~60氨基酸组成的肽中,非极性氨基酸较多也可减少在柱上的保留时间。而含5~25个氨基酸的小肽中,非极性氨基酸增加可延长在柱上的保留时间。同时有不少文献报道了肽链长度、氨基酸组成、温度等条件对保留情况的影响,并利用计算机处理分析得到每种多肽的分离提取的最佳条件。 肽图分析(Peptide Mapping):肽图分析是根据蛋白质、多肽的分子量大小以及氨基酸组成特点,使用专一性较强的蛋白水解酶[一般为肽链内切酶(endopeptidase)]作用于特殊的肽链位点将多肽裂解成小片断,通过一定的分离检测手段形成特征性指纹图谱。肽图分析对多肽结构研究和特性鉴别具有重要意义。利用胰蛋白酶能特意性作用于Arg和Lys羧基端的肽链的性质,通过RP-HPLC法采用C18柱检测了重组人生长激素(rhGH)的肽片断,成功获得了人生长激素特征性胰肽图谱。同时胰岛素的肽图经V8酶专一裂解也制得,并可鉴别仅相差一个氨基酸残疾的不同种属来源的胰岛素。人类肿瘤坏死因子的单克隆抗体结构也应用酶解法及在线分析技术确定了肽图,便于鉴定分析。此项技术已经在新药开发中得到广泛应用。2)  疏水作用色谱(Hydrophobic interaction chromatography,HIC) HIC是利用多肽中含有疏水基团,可与固定相之间产生疏水作用而达到分离分析的目的,其比RP-HPLC具有较少使多肽变性的特点。利用HIC分离生产激素(GH)产品的结构与活性比RP-HPLC分离的要稳定,活性较稳定。Geng等利用HIC柱的低变性特点,将大肠杆菌表达出的经盐酸胍乙啶变性得到人重组干扰素-γ,通过HIC柱纯化、折叠出高生物活性的产品。不同人尿表皮生长因子(EGF)也利用HIC纯化到了,均具有良好的生物活性。HIC可将未经离子交换柱的样品纯化。而RP-HPLC则不能达到这一要求。3)  分子排阻色谱(Size-Exclusion chromatography,SEC) SEC是利用多肽分子大小、形状差异来分离纯化多肽物质,特别对一些较大的聚集态的分子更为方便。如人重组生长激素(hGH)的分离,不同结构、构型的GH在SEC柱上的分离行为完全不同,从而可分离不同构型或在氨基酸序列上有微小差异的变异体。利用SEC研究修饰化的PEG的分离方法,此PEG具有半衰期长、作用强的特点。一些分子量较大的肽或蛋白均可利用此法分离分析。4)  离子交换色谱(Iron-Exchange chromatography,IEXC) IEXC可在中性条件下,利用多肽的带电性不同分离纯化具有生物活性的多肽。其可分为阳离子柱与阴离子柱两大类,还有一些新型树脂,如大孔型树脂、均孔型树脂、离子交换纤维素、葡聚糖凝胶、琼脂糖凝胶树脂等。在多肽类物质的分离分析研究中,对多肽的性质、洗脱剂、洗脱条件的研究较多,不同的多肽分离条件有所不同,特别是洗脱剂的离子强度、盐浓度等对纯化影响较大。Wu等报道利用离子交换柱层析法,探讨分离牛碳酸酐酶异构体和牛血清白蛋白、鸡血清白蛋白酶的提取条件,获得了有价值的数据供今后此类物质分离研究。5)  膜蛋白色谱(Chromatography of Membrane Protein,CMP) CMP+分离强疏水性蛋白、多肽混合物的层析系统,一般有去垢剂(如,SDS)溶解膜蛋白后形成SDS-融膜蛋白,并由羟基磷灰石为固定相的柱子分离纯化。羟基磷灰石柱具有阴离子磷酸基团(P-端),又具有阳离子钙(C-端),与固定相结合主要决定于膜蛋白的大小、SDS结合量有关。利用原子散射法研究cAMP的分离机制发现,样品与SDS结合后在离子交换柱上存在SDS分子、带电荷氨基酸与固定相中带电离子间的交换,从而达到分级分离的目的。6)  高效置换色谱(High-Performance Displacement Chromatography,HPDC) HPDC是利用小分子的高效置换剂来交换色谱柱上的样品,从而达到分离目的。它具有分离组分含量较少成分的特性。利用HPDC鉴定分离了低于总量1%组分的活性人重组生长激素(rHG)。在研究非毒性交换剂时Jayarama发现硫酸化葡聚糖(Detran Sulfate,DS)是对β-乳球蛋白A和B的良好置换剂,一般DS的相对分子质量为1×104和4×104最宜。研究表明置换剂的相对分子质量越低,越易于与固定相结合,因此在分离相对分子质量小的多肽时,需要更小的置换剂才能将其置换纯化出来。7)  灌注层析(Perfusion Chromatography,PC) PC是一种基于分子筛原理与高速流动的流动相的层析分离方法,固定相孔径大小及流动相速度直接影响分离效果。试验证明其在生产、制备过程中具有低投入、高产出的特性。目前市场上可供应的PC固定相种类较多,适合于不同分子量的多肽分离使用。2、 亲和层析(Affinity Chromatography,AC) AC是利用连接在固定相基质上的配基与可以和其特异性产生作用的配体之间的特异亲合性而分离物质的层析方法。自1968年Cuatrecasas提出亲和层析概念以来,在寻找特异亲和作用物质上发现了许多组合,如,抗原-抗体、酶-催化底物、凝集素-多糖、寡核苷酸与其互补链等。对多肽类物质分离目前主要应用其单抗或生物模拟配基与其亲和,这些配基有天然的,也有根据其结构人工合成的。Patel等人利用一系列亲合柱分离纯化到了组织血浆纤维蛋白酶原激活剂蛋白多肽。 固定金属亲和层析(Immobilized Metal Affinity Chromatography,IMAC)是近年来发展起来的一种亲和方法。其固定相基质上鳌合了一些金属离子,如,Cu2+、Ni2+、Fe3+等,此柱可通过配为键鳌合侧链含有Lys、Met、Asp、Arg、Tyr、Glu和His的多肽,特别是肽序列中含有His-X-X-X-His的结构最易结合到金属离子亲和柱上,纯化效果较好。其中胰岛素样生长因子(Insulin-Like Growth Factor,IGF)、二氢叶酸还原酶融合蛋白等均用此方法分离到纯度较高的产品。 Chaiken等人报道了另一种亲和层析方法,利用反义多肽作为配基,这种多肽是由反义DNA表达产生,其与正链DNA表达产生的肽或蛋白具有一定的亲和性,如,Arg加压素受体复合物,已用此法分离得到。DNA与蛋白、多肽复合物之间的作用也是生物亲和中常用的方法。将人工合成的寡核苷酸结合在固定相基质上,将样品蛋白或多肽从柱中流过,与之结合可达到分离特定结构多肽的目的。3、 毛细管电泳(Capillary electrophoresis,CE)――分离分析方法: CE是在传统的电泳技术基础上于本世纪60年代末由Hjerten发明的,其利用小的毛细管代替传统的大电泳槽,使电泳效率提高了几十倍。此技术从80年代以来发展迅速,是生物化学分析工作者与生化学家分离、定性多肽与蛋白类物质的有利工具。CE根据应用原理不同可分为以下几种;毛细管区带电泳(Capillary Zone electrophoresis,CZE)、毛细管等电聚焦电泳(Capillary Isoeletric Focusing,CIEF)、毛细管凝胶电泳(Capillary Gel Electrophoresis,CGE)和胶束电动毛细管层析(Micellar Electrokinetic Electrophoresis Chromatography,MECC)等。1)  毛细管区带电泳(Capillary Zone electrophoresis,CZE) CZE分离多肽类物质主要是依据不同组分中的化合物所带电荷不同,且分离效果只由带电性决定,比传统凝胶电泳更准确。目前存在于CZE分离分析多肽物质的主要问题是天然蛋白或肽易与毛吸管硅胶柱上的硅醇发生反应,影响峰形与电泳时间,针对这些问题不少学者做了大量实验进行改进,如,调节电泳液的pH值,使与硅醇反应的极性基团减少;改进毛细管柱材料的组成,针对多肽性质的不同采取不同的CZE柱来分离。Issaq等利用CZE方法研究分离5个含9个氨基酸残基的小肽,确定了小肽分析的基本条件,即在低pH条件下,缓冲液中含有一定浓度的金属离子,如,Zn2+等,此时分离速度快而且准确。2)  毛细管等电聚焦电泳(Capillary Isoeletric Focusing,CIEF) 由于不同的蛋白、多肽的等电点(PI)不同,因此在具有不同pH梯度的电泳槽中,其可在等电点pH条件下聚集沉淀下来,而与其他肽分离开来。CIEF在分离、分析混合多肽物质中应用不多,主要应用与不同来源的多肽异构体之间的分离,如对rHG不同异构体分离。由于在CIEF柱表面覆盖物的不稳定性限制了此法的广泛应用。3)  毛细管凝胶电泳(Capillary Gel Electrophoresis,CGE) CGE是基于分子筛原理,经十二烷基磺酸钠(SDS)处理的蛋白或多肽在电泳过程中主要靠分子形状、分子量不同而分离。目前,又有一种非交联、线性、疏水多聚凝胶柱被用于多肽类物质的分离分析,此电泳法适于含疏水侧链较多的肽分离。这种凝胶易于灌注,使用寿命长,性质较为稳定。4)  胶束电动毛细管层析(Micellar Electrokinetic Electrophoresis Chromatography,MECC) MECC的原理是在电泳液中加入表面活性剂,如,SDS,使一些中性分子带相同电荷分子得以分离。特别对一些小分子肽,阴离子、阳离子表面活性剂的应用都可使之形成带有一定电荷的胶束,从而得到很好的分离效果。有文献报道在电解液中加入环糊精等物质,可使含疏水结构组分的多肽选择性与环糊精的环孔作用,从而利用疏水作用使多肽得到分离。4、 多肽及蛋白质分离工程的系统应用 以上提到的分离多肽的技术在实际应用过程中多相互结合,根据分离多肽性质的不同,采用不同的分离手段。特别是在后基因组时代,对于蛋白质组深入的研究,人们对于分离多肽及蛋白质的手段不断改进,综合利用了蛋白质和多肽的各种性质,采用包括前面提到的常规蛋白多肽提取方法,同时利用了高效液相色谱,毛细管电泳,2-D电泳等手段分离得到细胞或组织中尽可能多的蛋白多肽。在蛋白质组学研究中系统应用蛋白和多肽分离鉴定的技术是实现蛋白质组计划的关键。其中电泳技术在此项研究中即是分离手段也是分析方法之一。特别是以下提到的质谱技术的发展,大大的提高了蛋白多肽类物质的分析鉴定的效率。分析方法 1、 质谱分析(Mass Spectrometry,MS) MS在蛋白、多肽分析中已经得到了广泛应用,特别是在分离纯化后的在线分析中,MS的高灵敏性、快速性特别适合多肽物质分析鉴定。其中连续流快原子轰击质谱(Continuous-Flow Fast Atom Bombardment,cf-FAB)和电雾离子化质谱(Electrospray Ionization,EIS)是近几年发展起来的新方法。1)  连续流快原子轰击质谱(Continuous-Flow Fast Atom Bombardment,cf-FAB) cf-FAB是一种弱离子化技术,可将肽类或小分子量蛋白离子化成MH+或(M-H)形式。主要应用于肽类的分离检测,其具有中等分辨率,精确度大于±,流速一般在μl•mL-1。在测定使流动相需加%~10%基质,如,甘油和高有机溶剂成分,使样品在检测探针处达到敏感化。cf-FAB常与HPLC、CEZ等方法结合使用达分离、分析目的,许多多肽的cf-FAB分析方法已经建立,并得到很好的应用,如,Hideaki等利用此法研究L-Pro、L-Ala的四肽化合物系列。证明L-Pro在保持小肽构相稳定性,连接分子方面具有重要意义。2)  电雾离子化质谱(Electrospray Ionization,EIS) EIS可产生多价离子化的蛋白或多肽,允许相对分子质量达1×105的蛋白进行分析,分辨率在1500~2000amu,精确度在%左右。EIS更适合相对分子质量大的蛋白质的在线分析,且需要气化或有机溶剂使样品敏感化。利用EIS与HPLC联合分离分析GH和血红蛋白均获成功,其也可与CEZ联合应用。3)  基质辅助激光解析/离子化——飞行时间质谱(Matrix-associated laser  dissociation/ionization time of flight mass spectrometry,MALDI-TOF MS) MALDI-TOF是目前蛋白质鉴定中精确测定相对分子质量的手段,特别适合对混合蛋白多肽类物质的相对分子质量的测定,灵敏度和分辨率均较高。它是目前蛋白质组学研究的必备工具。同时结合液相色谱的联用技术可以高效率的鉴定多肽物质。特别是当各种原理的质谱技术串联应用时,不但可以得到多肽的相对分子质量信息,还可以测定它的序列结构,此项技术将在未来蛋白质组学研究中起到决定性作用。2、 核磁共振(Nuclear Magnetic Resonance,NMR) NMR因图谱信号的纯数字化、过度的重叠范围过宽(由于相对分子质量太大)和信号弱等原因,在蛋白、多肽物质的分析中应用一直不多。随着二维、三维以及四维NMR的应用,分子生物学、计算机处理技术的发展,使NMR逐渐成为此类物质分析的主要方法之一。NMR可用于确定氨基酸序列、定量混合物中的各组分组成含量等分析中。但要应用于蛋白质分析中仍有许多问题需要解决,例如,如何使分子量大的蛋白质有特定的形状而便于定量与定性分析,如何减少数据处理的时间问题等。这些问题多有不少学者在进行研究。虽然在蛋白质分析中应用较少,NMR在分析分子中含少于30个氨基酸的小肽时是非常有用的,可以克服上述蛋白质分析中的缺点而达到快速准确分析的目的。3、 其他 除上述方法之外,氨基酸组成分析、氨基酸序列分析、场解析质谱、IR、UV光谱、CD、圆而色谱、生物鉴定法、放射性同位素标记法及免疫学方法等都已应用于多肽类物质的结果鉴定、分析检测之中。 以上简要的介绍了近几年多肽类物质分离、分析的常用方法及最新研究方向。随着科学技术水平的不断发展,会有许多更新的分离分析手段不断涌现,因此这一领域的研究具有广阔的前景

相关百科
热门百科
首页
发表服务