论文投稿百科

分子生物学基因相关论文

发布时间:2024-07-04 03:32:27

分子生物学基因相关论文

分子生物学技术在国内防制虫媒传染病领域的应用【摘要】本文综述了国内近年来,分子生物学技术在虫媒病中蚊媒传染病防制的应用情况,以期为蚊媒传染病的防制、应对突发公共卫生事件中蚊媒传染病的发生提供参考.【关键词】分子生物学技术;虫媒;传染病虫媒病是由节肢动物携带病原体传播的一组疾病.1992年在国际虫媒病毒中心登记的已达535种,其中128种对人有致病性[1].我国法定报告的传染病中,虫媒病占13种,蚊虫作为媒介,除了传播病毒性疾病外,还可传播寄生虫病.这类疾病大都属于自然疫源性疾病,有一定的地域性和时间性,发病率低、死亡率高,主要通过媒介的控制进行防制[2].近年来,随着分子生物学技术的研究和发展,在医学领域的应用日趋广泛,并取得了重大进展,作者就近年来分子生物学技术在蚊媒传染病的诊断和防制等方面的应用综述如下.1常用的分子生物学技术[3]1·1核酸分子杂交技术核酸的分子杂交(molecular hybridization)它是利用核酸分子的碱基互补原则,在特定的条件下,双链解开成两条单链,与异源的DNA或RNA (单链)复性,若异源DNA或RNA之间的某些区域有互补的碱基序列,则在复性时可形成杂交的核酸分子.杂交的双方是待测核酸序列及探针.核酸探针可用放射性核素、生物素或其它活性物质标记.根据其来源和性质可分为cDNA探针、基因组探针、寡核苷酸探针、RNA探针等.分类:根据被测定的对象,分为Southern杂交和Northern杂交;根据所用的方法,分为斑点(dot)杂交、狭槽(slot)杂交和菌落原位杂交;根据环境条件:分为液相杂交和固相杂交.1·2聚合酶链式反应(polymerase chain reaction, PCR)是以拟扩增的DNA分子为模板,以一对分别与模板互补的寡核苷酸片段为引物,在DNA聚合酶的作用下,按照半保留复制的机理沿着模板链延伸直至完成新的DNA合成.通过不断重复这一过程,可以使目的DNA片段得到扩增,同时新合成的DNA片段也可以作为模板,使DNA的合成量呈指数型增长.PCR各种应用模式:兼并引物( degenerate primer)pcr、套式引物(nested primer) pcr、复合pcr (multiplexpcr)、反向pcr ( inverse pcr或reverse pcr)、不对称pcr(asymmetric pcr)、标记pcr ( lp-pcr)和彩色pcr、加端pcr、锚定pcr或固定pcr、玻片pcr、反转录pcr方法检测rna、定量·3DNA芯片基因芯片又称DNA芯片(DNA chip)或DNA微阵列(DNA microarray).是采用光导原位合成或显微印刷等方法将大量特定序列的探针分子密集、有序地固定于经过相应处理的载体上,然后加入标记的待测样品,进行多元杂交,通过杂交信号的强弱及分布,来分析目的分子的有无、数量及序列,从而获得受检样品的遗传信.特点:具有通量大,并行性、微量化与自动化等优点,但在实践中其研究成本较高;方法标准化不足;配套软件不够完善.2分子生物学技术在虫媒病诊断的应用2·1疟疾黄炳成等[4]用pBF2 DNA片断,经标记后作探针,从多种疟原虫DNA样本中检出恶性疟原虫.基因芯片在疟原虫的研究内容还有疟原虫新基因发现[5]、转录因子调控网络[6]、疟原虫适应人体宿主机制[7]、疟原虫比较基因组杂交分析[8]、恶性疟原虫抗原变异分子机制[9]以及疟原虫攻击红细胞机制[10]等.2·2丝虫病黄志彪等[11]运用PCR技术检测血液中的班氏丝虫微丝蚴,可检出lOOul阳性血样中的l条班氏丝虫微丝蚴;用于检测班氏丝虫监测点540份血液样本结果均为阴性,镜检血片结果亦为阴性.常规丝虫检测是在夜间采血,有资料显示[12], SsP/PCR扩增系统可用于检测班氏丝虫病患者血样中的循环DNA,能用于周期性或夜间周期性丝虫病的日间血检工作,从根本上改变了丝虫病的诊断、监测和工作方式.2·3登革热病郑夔等[13]应用多重PCR技术快速鉴定4种血清型登革病毒,并在同一反应管中进行多重PCR对登革病毒进行分型鉴定,证实了2004年在广东发生的登革热疫情为I型登革病毒;也有报道应用寡核苷酸芯片技术能同时确认流感和登革热病毒[14].长期受这种疾病困扰的地区将有望通过这种技术的完善,获得有效的治疗和保护.

基因工程技术的现状和前景发展 【摘要】从20世纪70年代初发展起来的基因工程技术,经过30多年来的进步与发展,已成为生物技术的核心内容。许多科学家预言,生物学将成为21世纪最重要的学科,基因工程及相关领域的产业将成为21世纪的主导产业之一。基因工程研究和应用范围涉及农业、工业、医药、能源、环保等许多领域。【关键词】基因工程技术;前景;现状一、基因工程应用于植物方面 农业领域是目前转基因技术应用最为广泛的领域之一。农作物生物技术的目的是提高作物产量,改善品质,增强作物抗逆性、抗病虫害的能力。基因工程在这些领域已取得了令人瞩目的成就。由于植物病毒分子生物学的发展,植物抗病基因工程也也已全面展开。自从发现烟草花叶病毒(TMV)的外壳蛋白基因导入烟草中,在转基因植株上明显延迟发病时间或减轻病害的症状,通过导入植物病毒外壳蛋白来提高植物抗病毒的能力,已用多种植物病毒进行了试验。在利用基因工程手段增强植物对细菌和真菌病的抗性方面,也已取得很大进展。植物对逆境的抗性一直是植物生物学家关心的问题。由于植物生理学家、遗传学家和分子生物学家协同作战,耐涝、耐盐碱、耐旱和耐冷的转基因作物新品种(系)也已获得成功。植物的抗寒性对其生长发育尤为重要。科学家发现极地的鱼体内有一些特殊蛋白可以抑制冰晶的增长,从而免受低温的冻害并正常地生活在寒冷的极地中。将这种抗冻蛋白基因从鱼基因组中分离出来,导入植物体可获得转基因植物,目前这种基因已被转入番茄和黄瓜中。随着生活水平的提高,人们越来越关注口味、口感、营养成分、欣赏价值等品质性状。实践证明,利用基因工程可以有效地改善植物的品质,而且越来越多的基因工程植物进入了商品化生产领域,近几年利用基因工程改良作物品质也取得了不少进展,如美国国际植物研究所的科学家们从大豆中获取蛋白质合成基因,成功地导入到马铃薯中,培育出高蛋白马铃薯品种,其蛋白质含量接近大豆,大大提高了营养价值,得到了农场主及消费者的普遍欢迎。在花色、花香、花姿等性状的改良上也作了大量的研究。二、基因工程应用于医药方面目前,以基因工程药物为主导的基因工程应用产业已成为全球发展最快的产业之一,发展前景非常广阔。基因工程药物主要包括细胞因子、抗体、疫苗、激素和寡核甘酸药物等。它们对预防人类的肿瘤、心血管疾病、遗传病、糖尿病、包括艾滋病在内的各种传染病、类风湿疾病等有重要作用。在很多领域特别是疑难病症上,基因工程工程药物起到了传统化学药物难以达到的作用。我们最为熟悉的干扰素(IFN)就是一类利用基因工程技术研制成的多功能细胞因子,在临床上已用于治疗白血病、乙肝、丙肝、多发性硬化症和类风湿关节炎等多种疾病。 目前,应用基因工程研制的艾滋病疫苗已完成中试,并进入临床验证阶段;专门用于治疗肿瘤的“肿瘤基因导弹”也将在不久完成研制,它可有目的地寻找并杀死肿瘤,将使癌症的治愈成为可能。由中国、美国、德国三国科学家及中外六家研究机构参与研制的专门用于治疗乙肝、慢迁肝、慢活肝、丙肝、肝硬化的体细胞基因生物注射剂,最终解决了从剪切、分离到吞食肝细胞内肝炎病毒,修复、促进肝细胞再生的全过程。经4年临床试验已在全国面向肝炎患者。此项基因学研究成果在国际治肝领域中,是继干扰素等药物之后的一项具有革命性转变的重大医学成果。三、基因工程应用于环保方面工业发展以及其它人为因素造成的环境污染已远远超出了自然界微生物的净化能力,已成为人们十分关注的问题。基因工程技术可提高微生物净化环境的能力。美国利用DNA重组技术把降解芳烃、萜烃、多环芳烃、脂肪烃的4种菌体基因链接,转移到某一菌体中构建出可同时降解4种有机物的“超级细菌”,用之清除石油污染,在数小时内可将水上浮油中的2/3烃类降解完,而天然菌株需1年之久。也有人把Bt蛋白基因、球形芽孢杆菌、且表达成功。它能钉死蚊虫与害虫,而对人畜无害,不污染环境。现已开发出的基因工程菌有净化农药的DDT的细菌、降解水中的染料、环境中有机氯苯类和氯酚类、多氯联苯的工程菌、降解土壤中的TNT炸药的工程菌及用于吸附无机有毒化合物(铅、汞、镉等)的基因工程菌及植物等。90年代后期问世的DNA改组技术可以创新基因,并赋予表达产物以新的功能,创造出全新的微生物,如可将降解某一污染物的不同细菌的基因通过PCR技术全部克隆出来,再利用基因重组技术在体外加工重组,最后导入合适的载体,就有可能产生一种或几种具有非凡降解能力的超级菌株,从而大大地提高降解效率。四、前景展望由于基因工程运用DNA分子重组技术,能够按照人们预先的设计创造出许多新的遗传结合体,具有新奇遗传性状的新型产物,增强了人们改造动植物的主观能动性、预见性。而且在人类疾病的诊断、治疗等方面具有革命性的推动作用,对人口素质、环境保护等作出具大贡献。所以,各国政府及一些大公司都十分重视基因工程技术的研究与开发应用,抢夺这一高科技制高点。其应用前景十分广阔。我国基因工程技术尚落后于发达国家,更应当加速发展,切不可坐失良机。但是,任何科学技术都是一把“双刃剑”,在给人类带来利益的同时,也会给人类带来一定的灾难。比如基因药物,它不仅能根治遗传性疾病、恶性肿瘤、心脑血管疾病等,甚至人的智力、体魄、性格、外表等亦可随意加以改造;还有,克隆技术如果不加限制,任其自由发展,最终有可能导致人类的毁灭。还有,尽管目前的转基因动植物还未发现对人类有什么危害,但不等于说转基因动植物就是十分安全的,毕竟这些东西还是新生事物,需要实践慢慢地检验。转基因生物和常规繁殖生长的品种一样,是在原有品种的基础上对其部分性状进行修饰或增加新性状,或消除原来的不利性状,但常规育种是通过自然选择,而且是近缘杂交,适者生存下来,不适者被淘汰掉。而转基因生物远远超出了近缘的范围,人们对可能出现的新组合、新性状会不会影响人类健康和环境,还缺乏知识和经验,按目前的科学水平还不能完全精确地预测。所以,我们要在抓住机遇,大力发展基因工程技术的同时,需要严格管理,充分重视转基因生物的安全性。【参考文献】[1]楼士林,杨盛昌,龙敏南,等.基因工程[M].北京:科学出版社,2002.[2]李庆军,董艳桐,施冰.植物抗虫基因的研究进展[J].林业科技,2002,27(2):22 26. 这还有一篇

现代分子生物学相关论文

分子生物学技术在国内防制虫媒传染病领域的应用分子生物学在医院感染控制中的应用和评价觉得合适与我索取全文

你们学校没有CNKI吗??那里面你要的文章用卡车装。

字数可能有点超,你自己截取吧~~分子生物学(molecular biology) 在分子水平上研究生命现象的科学。研究生物大分子(核酸、蛋白质)的结 构、功能和生物合成等方面来阐明各种生命现象的本质。研究内容包括各种生命过程如光合作用、发育的分子机制、神经活动的机理、癌的发生等。 从分子水平研究生物大分子的结构与功能从而阐明生命现象本质的科学。自20世纪50年代以来,分子生物学是生物学的前沿与生长点,其主要研究领域包括蛋白质体系、蛋白质-核酸体系 (中心是分子遗传学)和蛋白质-脂质体系(即生物膜)。 生物大分子,特别是蛋白质和核酸结构功能的研究,是分子生物学的基础。现代化学和物理学理论、技术和方法的应用推动了生物大分子结构功能的研究,从而出现了近30年来分子生物学的蓬勃发展。分子生物学和生物化学及生物物理学关系十分密切,它们之间的主要区别在于:①生物化学和生物物理学是用化学的和物理学的方法研究在分子水平,细胞水平,整体水平乃至群体水平等不同层次上的生物学问题。而分子生物学则着重在分子(包括多分子体系)水平上研究生命活动的普遍规律;②在分子水平上,分子生物学着重研究的是大分子,主要是蛋白质,核酸,脂质体系以及部分多糖及其复合体系。而一些小分子物质在生物体内的转化则属生物化学的范围;③分子生物学研究的主要目的是在分子水平上阐明整个生物界所共同具有的基本特征,即生命现象的本质;而研究某一特定生物体或某一种生物体内的某一特定器官的物理、化学现象或变化,则属于生物物理学或生物化学的范畴。 发展简史 结构分析和遗传物质的研究在分子生物学的发展中作出了重要的贡献。结构分析的中心内容是通过阐明生物分子的三维结构来解释细胞的生理功能。1912年英国 .布喇格和.布喇格建立了X射线晶体学,成功地测定了一些相当复杂的分子以及蛋白质的结构。以后布喇格的学生.阿斯特伯里和.贝尔纳又分别对毛发、肌肉等纤维蛋白以及胃蛋白酶、烟草花叶病毒等进行了初步的结构分析。他们的工作为后来生物大分子结晶学的形成和发展奠定了基础。50年代是分子生物学作为一门独立的分支学科脱颖而出并迅速发展的年代。首先是在蛋白质结构分析方面,1951年.波林等提出了 α-螺旋结构,描述了蛋白质分子中肽链的一种构象。1955年F.桑格完成了胰岛素的氨基酸序列的测定。接着 .肯德鲁和.佩鲁茨在X射线分析中应用重原子同晶置换技术和计算机技术分别于1957和1959年阐明了鲸肌红蛋白和马血红蛋白的立体结构。1965年中国科学家合成了有生物活性的胰岛素,首先实现了蛋白质的人工合成。 另一方面,M.德尔布吕克小组从1938年起选择噬菌体为对象开始探索基因之谜。噬菌体感染寄主后半小时内就复制出几百个同样的子代噬菌体颗粒,因此是研究生物体自我复制的理想材料。1940年.比德尔和.塔特姆提出了“一个基因,一个酶”的假设,即基因的功能在于决定酶的结构,且一个基因仅决定一个酶的结构。但在当时基因的本质并不清楚。1944年.埃弗里等研究细菌中的转化现象,证明了DNA是遗传物质。1953年.沃森和.克里克提出了DNA的双螺旋结构,开创了分子生物学的新纪元。在此基础上提出的中心法则,描述了遗传信息从基因到蛋白质结构的流动。遗传密码的阐明则揭示了生物体内遗传信息的贮存方式。1961年F.雅各布和J.莫诺提出了操纵子的概念,解释了原核基因表达的调控。到20世纪60年代中期,关于DNA自我复制和转录生成RNA的一般性质已基本清楚,基因的奥秘也随之而开始解开了。 仅仅30年左右的时间,分子生物学经历了从大胆的科学假说,到经过大量的实验研究,从而建立了本学科的理论基础。进入70年代,由于重组DNA研究的突破,基因工程已经在实际应用中开花结果,根据人的意愿改造蛋白质结构的蛋白质工程也已经成为现实。 基本内容 蛋白质体系 蛋白质的结构单位是α-氨基酸。常见的氨基酸共20种。它们以不同的顺序排列可以为生命世界提供天文数字的各种各样的蛋白质。 蛋白质分子结构的组织形式可分为 4个主要的层次。一级结构,也叫化学结构,是分子中氨基酸的排列顺序。首尾相连的氨基酸通过氨基与羧基的缩合形成链状结构,称为肽链。肽链主链原子的局部空间排列为二级结构。二级结构在空间的各种盘绕和卷曲为三级结构。有些蛋白质分子是由相同的或不同的亚单位组装成的,亚单位间的相互关系叫四级结构。 蛋白质的特殊性质和生理功能与其分子的特定结构有着密切的关系,这是形形色色的蛋白质所以能表现出丰富多彩的生命活动的分子基础。研究蛋白质的结构与功能的关系是分子生物学研究的一个重要内容。 随着结构分析技术的发展,现在已有几千个蛋白质的化学结构和几百个蛋白质的立体结构得到了阐明。70年代末以来,采用测定互补DNA顺序反推蛋白质化学结构的方法,不仅提高了分析效率,而且使一些氨基酸序列分析条件不易得到满足的蛋白质化学结构分析得以实现。 发现和鉴定具有新功能的蛋白质,仍是蛋白质研究的内容。例如与基因调控和高级神经活动有关的蛋白质的研究现在很受重视。 蛋白质-核酸体系 生物体的遗传特征主要由核酸决定。绝大多数生物的基因都由 DNA构成。简单的病毒,如λ噬菌体的基因组是由 46000个核苷酸按一定顺序组成的一条双股DNA(由于是双股DNA,通常以碱基对计算其长度)。细菌,如大肠杆菌的基因组,含4×106碱基对。人体细胞染色体上所含DNA为3×109碱基对。 遗传信息要在子代的生命活动中表现出来,需要通过复制、转录和转译。复制是以亲代 DNA为模板合成子代 DNA分子。转录是根据DNA的核苷酸序列决定一类RNA分子中的核苷酸序列;后者又进一步决定蛋白质分子中氨基酸的序列,就是转译。因为这一类RNA起着信息传递作用,故称信使核糖核酸(mRNA)。由于构成RNA的核苷酸是4种,而蛋白质中却有20种氨基酸,它们的对应关系是由mRNA分子中以一定顺序相连的 3个核苷酸来决定一种氨基酸,这就是三联体遗传密码。 基因在表达其性状的过程中贯串着核酸与核酸、核酸与蛋白质的相互作用。DNA复制时,双股螺旋在解旋酶的作用下被拆开,然后DNA聚合酶以亲代DNA链为模板,复制出子代 DNA链。转录是在 RNA聚合酶的催化下完成的。转译的场所核糖核蛋白体是核酸和蛋白质的复合体,根据mRNA的编码,在酶的催化下,把氨基酸连接成完整的肽链。基因表达的调节控制也是通过生物大分子的相互作用而实现的。如大肠杆菌乳糖操纵子上的操纵基因通过与阻遏蛋白的相互作用控制基因的开关。真核细胞染色质所含的非组蛋白在转录的调控中具有特殊作用。正常情况下,真核细胞中仅2~15%基因被表达。这种选择性的转录与转译是细胞分化的基础。 蛋白质-脂质体系 生物体内普遍存在的膜结构,统称为生物膜。它包括细胞外周膜和细胞内具有各种特定功能的细胞器膜。从化学组成看,生物膜是由脂质和蛋白质通过非共价键构成的体系。很多膜还含少量糖类,以糖蛋白或糖脂形式存在。 1972年提出的流动镶嵌模型概括了生物膜的基本特征:其基本骨架是脂双层结构。膜蛋白分为表在蛋白质和嵌入蛋白质。膜脂和膜蛋白均处于不停的运动状态。 生物膜在结构与功能上都具有两侧不对称性。以物质传送为例,某些物质能以很高速度通过膜,另一些则不能。象海带能从海水中把碘浓缩 3万倍。生物膜的选择性通透使细胞内pH和离子组成相对稳定,保持了产生神经、肌肉兴奋所必需的离子梯度,保证了细胞浓缩营养物和排除废物的功能。 生物体的能量转换主要在膜上进行。生物体取得能量的方式,或是像植物那样利用太阳能在叶绿体膜上进行光合磷酸化反应;或是像动物那样利用食物在线粒体膜上进行氧化磷酸化反应。这二者能量来源虽不同,但基本过程非常相似,最后都合成腺苷三磷酸。对于这两种能量转换的机制,P.米切尔提出的化学渗透学说得到了越来越多的证据。生物体利用食物氧化所释放能量的效率可达70%左右,而从煤或石油的燃烧获取能量的效率通常为20~40%,所以生物力能学的研究很受重视。对生物膜能量转换的深入了解和模拟将会对人类更有效地利用能量作出贡献。 生物膜的另一重要功能是细胞间或细胞膜内外的信息传递。在细胞表面,广泛地存在着一类称为受体的蛋白质。激素和药物的作用都需通过与受体分子的特异性结合而实现。癌变细胞表面受体物质的分布有明显变化。细胞膜的表面性质还对细胞分裂繁殖有重要的调节作用。 对细胞表面性质的研究带动了糖类的研究。糖蛋白、蛋白聚糖和糖脂等生物大分子结构与功能的研究越来越受到重视。从发展趋势看,寡糖与蛋白质或脂质形成的体系将成为分子生物学研究的一个新的重要的领域。 理论意义和应用 分子生物学的成就说明:生命活动的根本规律在形形色色的生物体中都是统一的。例如,不论在何种生物体中,都由同样的氨基酸和核苷酸分别组成其蛋白质和核酸。遗传物质,除某些病毒外,都是DNA,并且在所有的细胞中都以同样的生化机制进行复制。分子遗传学的中心法则和遗传密码,除个别例外,在绝大多数情况下也都是通用的。 物理学的成就证明,一切物质的原子都由为数不多的基本粒子根据相同的规律所组成,说明了物质世界结构上的高度一致,揭示了物质世界的本质,从而带动了整个物理学科的发展。分子生物学则在分子水平上揭示了生命世界的基本结构和生命活动的根本规律的高度一致,揭示了生命现象的本质。和过去基本粒子的研究带动物理学的发展一样,分子生物学的概念和观点也已经渗入到基础和应用生物学的每一个分支领域,带动了整个生物学的发展,使之提高到一个崭新的水平。 过去生物进化的研究,主要依靠对不同种属间形态和解剖方面的比较来决定亲缘关系。随着蛋白质和核酸结构测定方法的进展,比较不同种属的蛋白质或核酸的化学结构,即可根据差异的程度,来断定它们的亲缘关系。由此得出的系统进化树,与用经典方法得到的是基本符合的。采用分子生物学的方法研究分类与进化有特别的优越性。首先,构成生物体的基本生物大分子的结构反映了生命活动中更为本质的方面。其次,根据结构上的差异程度可以对亲缘关系给出一个定量的,因而也是更准确的概念。第三,对于形态结构非常简单的微生物的进化,则只有用这种方法才能得到可靠结果。 高等动物的高级神经活动是极其复杂的生命现象,过去多是在细胞乃至整体水平上研究,近年来深入到分子水平研究的结果充分说明高级神经活动也同样是以生物大分子的活动为基础的。例如,在高等动物学习与记忆的过程中,大脑中RNA和蛋白质的组成发生明显的变化,并且一些影响生物体合成蛋白质的药物也显著地影响学习与记忆的能力。又如,“生物钟”是一种熟知的生物现象。用鸡进行的实验发现,有一种重要的神经传递介质(5-羟色胺)和一种激素(褪黑激素)以及控制它们变化的一种酶,在鸡脑中的含量呈24小时的周期性变化。正是这种变化构成了鸡的“生物钟”的物质基础。 在应用方面,生物膜能量转换原理的阐明,将有助于解决全球性的能源问题。了解酶的催化原理就能更有针对性地进行酶的人工模拟,设计出化学工业上广泛使用的新催化剂,从而给化学工业带来一场革命。 分子生物学在生物工程技术中也起了巨大的作用,1973年重组DNA技术的成功,为基因工程的发展铺平了道路。80年代以来,已经采用基因工程技术,把高等动物的一些基因引入单细胞生物,用发酵方法生产干扰素、多种多肽激素和疫苗等。基因工程的进一步发展将为定向培育动、植物和微生物良种以及有效地控制和治疗一些人类遗传性疾病提供根本性的解决途径。 从基因调控的角度研究细胞癌变也已经取得不少进展。分子生物学将为人类最终征服癌症做出重要的贡献。[编辑本段]分子生物学的应用 1,亲子鉴定 近几年来,人类基因组研究的进展日新月异,而分子生物学技术也不断完善,随着基因组研究向各学科的不断渗透,这些学科的进展达到了前所未有的高度。在法医学上,STR位点和单核苷酸(SNP)位点检测分别是第二代、第三代DNA分析技术的核心,是继RFLPs(限制性片段长度多态性)VNTRs(可变数量串联重复序列多态性)研究而发展起来的检测技术。作为最前沿的刑事生物技术,DNA分析为法医物证检验提供了科学、可靠和快捷的手段,使物证鉴定从个体排除过渡到了可以作同一认定的水平,DNA检验能直接认定犯罪、为凶杀案、强奸杀人案、碎尸案、强奸致孕案等重大疑难案件的侦破提供准确可靠的依据。随着DNA技术的发展和应用,DNA标志系统的检测将成为破案的重要手段和途径。此方法作为亲子鉴定已经是非常成熟的,也是国际上公认的最好的一种方法。

CD44分子生物学特性及肿瘤关系的研究进展1 粘附分子CD44的研究进展 CD44是分布极为广泛的细胞表面跨膜糖蛋白,在淋巴细胞,成纤维细胞表面均能检测到它的表达[1,2]。CD44蛋白属于未分类的粘附分子,其正常功能是作为受体识别透明质酸(HA)和胶原蛋白Ⅰ、Ⅳ等,主要参与细胞-细胞,细胞-基质之间的特异性粘连过程。 CD44基因的定位与结构 人类CD44基因位于11号染色体短臂上,有20个高度保守的外显子,完整基因组在染色体DNA上大约跨越50kb。CD44基因的外显子按表达方式分为两种类型:一种是组成型外显子,另一种是V区变异型外显子。组成型外显子有10个,其中转录片段存在于所有CD44转录子中。仅含组成型外显子的CD44转录子,称为标准型CD44(CD44S),它编码361个氨基酸(Aa)。V区外显子也有10个,在基因组上位于第5和第6个组成型外显子之间,在染色体DNA中专25kb。含有V区外显子的CD44转录子统称为CD44拼接变异体(CD44V)。V区外显子的拼接方式非常特殊,它们既能以连续方式拼接,也能以跳跃方式拼接,参与拼接的V区外显子多少不一,从而使转录片段长短不一。目前通过PCR技术在许多细胞系中已发现10多种CD44V。早期发现血细胞的CD44分子(CD44H)为标准型。最先获得克隆的拼接变异体是含有CD44V8-10的CD44V,它主要存在于上皮细胞又称为上皮细胞型CD44V(CD44E)。目前对CD44的研究较多,如V3、V5、V6。 CD44分子的结构特征 从已知的cDNA序列推测,CD44S由341个Aa组成,N-末端起台于21位Aa,前面20个Aa为信号肽,紧接着是胞质外区域的248个Aa,第249个Aa至269位的21个是疏水性的,为跨膜区,其后是胞质内C-末端尾部有72个Aa。另外还有一种CD44S的短尾形式,其胞质内C-末端尾部仅3个Aa。这种Aa序列具有Ⅰ类膜蛋白的特征。Lokeshwar等[3]用实验观察CD44S分子的合成过程,发现CD44分子首先被合成43KD的蛋白前体,接着在内质网内进行N-糖基化,形成58KD的N-糖基化前体,其后在高尔基复合体内进行O-糖基化和其它翻译后修饰,形成最终的85-95KD分子。 CD44S胞质外结构域特征:CD44S分子信号肽的N-末端的130Aa内编码了5个Asn-x-Ser/Thr序列和6个半胱氨酸残基,前者是5个N-糖苷键连接位点,其中3个被利用。6个半胱酸形成3个二硫键,形成球形结构域,这一球形结构域的重要特征是与动物连接蛋白有较高的同源性。有两个区域与透明质酸结合,分别是21-45Aa,135-195Aa。 CD44S的胞外近膜区存在一个56Aa的结构域(161Arg-216Asp),含有19个ser和Thr残基,常以2~4个成簇,这些是已知的O-糖基化位点特征,表明CD44有7个潜在的O-糖基化位点,其中4~5个位点被利用。此外这一区域含有4个Ser-Gly二肽,是潜在的硫酸软骨素连接位点。并且已得到证实,CD44分子加上硫酸软骨素后,与其结合细胞外基质的能力有关,包括Ⅰ型胶原、层粘边蛋白、纤粘连蛋白。 CD44分子细胞膜外区域有多个潜在的N-糖苷键连接位点,可连换多个碳水化合物,不仅与分子成熟过程中的翻译后修饰有关,也与细胞的功能状态有关。糖基化赋予CD44分子异质性,而其异质性与不同的O-糖基化程度有关,这种现象是CD44分子所特有的。这种新的糖基化调节方式在CD44S结合不同的细胞外基质成分的能力方面超着重要作用。深入研究这一分子的糖基化调节机制及生物功能方面的联系是十分有意义的。 CD44S胞质内结构特征:CD44S分子第249-269跨膜区的Aa序列中存在一个半胱氨酸残基,代表着一个潜在的脂酰化位点,这一位点可与软脂酸连接导致CD44分子脂酰化。在CD44S的胞质内区域尾部存在一结构域可与锚蛋白(ankyntn)结合。胞质内尾部序列有5个保守的丝氨酸残基,可作为蛋白激酶C(PKC)的底物被磷化[4]。上述脂酰化过程均可增强CD44S分子与锚蛋白的结合能力。比较CD44S和其他G蛋白的序列发现存在4个 同源性高的区域,实验证实CD44还是一种GTP结合蛋白,可结合GDP底物并且有GTP酶活性,显著增强CD44与锚蛋白的相互作用[5]。在CD44合成过程的各种中间产物,发现均有锚蛋白结合位点和结合活性,提示糖基化对锚蛋白结合位点的形成无关,并且结合锚蛋白对于CD44分子的输送和信号传导功能起重要作用。 CD44V的特征:目前发现10个V外显子编码的氨基酸中有约30%的丝、苏氯酸残基,具有广泛潜在O-糖基化位点,如:V6具有潜在的O-糖基化位点。V3外显子序列分析中发现Ser-Gly-Ser-Gly片段,它可结合硫酸肝素,结合硫酸肝素后的CD44V能与碱性成纤维细胞生长因子(b-FGF)结合肝素的表皮生长(HBEGF)因子结合,此结果提示这种CD44参与了传递细胞因子的过程。 CD44蛋白的主要功能 CD44基因编码合成的CD44蛋白具有一系列功能,包括:①作为导向性受体,调节淋巴细胞在血液和淋巴液间的运行,即淋巴细胞归巢或再循环[6]。②在淋巴细胞自溶、离体淋巴细胞的活化中发挥作用。③促进成纤维细胞和淋巴细胞与胞外基质成分如透明质酸、硫酸软骨素、纤维素、糖原等的粘附。④参与信号传递蛋白可影响蛋白在细胞间的位置,刺激其分泌特异的生长因子具不同的传导作用。⑤结合并中和透明质酸,该作用类似于清除间质组织。⑥调节药物的吸收及细胞对药物的敏感性。 究竟是何种CD44蛋白参与了何种调节,至今不清楚,选择性剪切过程中的多样性CD44蛋白与细胞结合的多样性也表明其中有重要的协间或调节功能[7]。有研究认为,跨膜的CD44糖蛋白,其膜外成分的变异与细胞粘附及导向作用有关[8]。,而胞内分子的尾部则与活化T淋巴细胞的潜在作用有关,而且胞内分子长度可调节蛋白激酶A/C位置,影响细胞的信号传递[9]。 2 CD44分子在肿瘤细胞中的表达 1989年Stamenkevie等使用不同的单抗分离和克隆了一个编码CD44标准型的cDNA,该基因不仅由淋巴样细胞表达,也可由不同的癌细胞系包括实体瘤典型标本中表达。在裸鼠研究某些人的转移癌时发现,CD44基因表达在转移中起作用。在大鼠胰腺癌细胞中非转移性细胞株只表达标准CD44(CD44S),而转移性细胞株表达CD44V,而且将CD44V变异体cDNA转染到非转移性的细胞株可引起转移[10]。Hofmann[11]用 notherm印迹法研究了20多个体外培养的人癌细胞系,也发现许多肿瘤组织能表达CD44V,但在不同细胞中V区外显子的转录拼接模式不尽相同。第一份临床肿瘤标本(结肠癌)的检测结果是1992年由英国年津大学病理实验室的研究人员首先报道的,以后人们应用免疫组化及RNA-cDNA-PCR印迹杂交在肺癌、结肠癌、食道癌、乳腺癌、膀胱癌、肝癌、宫颈癌、肾癌和非何杰金淋巴瘤等中发现有CD44V表达。认为CD44V5、CD44V6的表达与肿瘤进展程度、转移及预后密切相关[12]。对于各种癌的实验研究已经进入肿瘤的发生、生长、转移增殖潜能及预后复发各环节与CD44分子表达的相关性,并提出实验数据和假说加以论证。 CD44分子与肿瘤的发生、生长、发展 癌的发生发展与癌基因(c-erb2、c-myc, ras)和抑癌基因(P53,nm23)等异常表达有关。有研究表明CD44异常表达可早于ras、P53等基因的异常,所以CD44的变异可能与ras部基因激活有关,是癌形成的一个因素[13]。Muider[14]对结肠癌肿瘤P53突变和CD44蛋白的研究,在结肠肿瘤各期中观察到有统计显著性的P53、CD44V6表达增强的趋势,P53和CD44V6表达间有显著相关性。P53被认为监视基因突变的“分子警察”,失活的P53可引起失控的肿瘤生长,因此P53突变引起失去最后控制时,V6‘表型获得明显的生长优势’。郭亚军等[15]用抗CD44的单抗以阻断其与透明质酸的结合,从而抑制CD44阳性的肿瘤细胞在体内的生长。他推测肿瘤细胞的生长可能是CD44阳性的细胞能与细胞外基质(ECM)中的透明质酸结合,从而获得附着性,并更易从ECM中获得生长因子。FasanoM等[16]报道成人非肿瘤患者肺泡Ⅰ型上皮不表达CD44V6。Ⅱ型上皮细胞和基 底细胞有CD44V6低量表达,Ⅱ型细胞与基底细胞属于干细胞,估计CD44V6对于肺生长有重要意义。所以认为CD44V6对于幼稚细胞生长和对于肿瘤细胞生长的机理可能相似。Lu等[17]发现在宫颈腺癌,无论是原位癌还是浸润癌均有CD44S弥漫表达,且浸润癌比原位癌明显高表达CD44S,几乎所有的原位癌与浸润癌CD44V9均增加,仅有较少的浸润癌表达CD44V4与CD44V6,而原位癌几乎不表达。说明宫颈上皮的癌变与CD44S和几种CD44V表达的量变和质变有关。 分子表达与肿瘤的转移、侵润 Matsumura等[18]用PCR技术检测了转移性结肠癌、非转移性结肠癌、正常结肠粘膜的CD44基因表达活性,发现转移性结肠癌细胞CD44变异拼接外显子表达明显增强。Pales等[19]用单克隆抗体检测以CD44表达情况发现,在人类结肠癌标本中,CD44V在浸润和转移的肿瘤中呈阳性表达,并认为CD44V的表达可作为结肠肿瘤浸润的标志。Herrtich[20]研究发现在一些分化不良的息肉中检测以V6外显子在肿瘤浸润中有增强的高频率表达,推测表达CD44V6的肿瘤细胞能够有利于癌细胞浸润和转移的条件。 Granberg等[21]发现在支气管类癌瘤患者,表达CD44S可减低远距离转移,CD44V77-8阳性肿瘤降低远距离转移风险,CD44V9阳性可降低远距离转移及死亡,而CD44V4、CD44V5、CD44V10与临床结果无关,证明支气管类癌瘤具有潜在恶性,CD44S、V7-8、V9阳性可能引起较好的临床结果,可以考虑作为预后评估的指标。 关于CD44V与肿瘤转移相关性的假说如下:激活的淋巴细胞和转移的癌细胞具有许多共性,即都有很强的侵出行为,均有可逆的粘附接触过程进行细胞迁移,在引流淋巴结中两类细胞皆能大量积聚和快速增殖,最后它们都能释放到循环系统,并通过外渗作用进入周围组织,这些相似性很可能基于CD44V6在二者中的共同作用,提示CD44V6在淋巴细胞活化中的作用机理与CD44V6在肿瘤转移中作用机理是相同的。即CD44V6高表达的癌细胞可能获得淋巴细胞“伪装”,逃避人体免疫系统的识别和杀伤,更易进入淋巴结,形成转移[10]。 有结论认为CD44V6变异体可能通过促进癌细胞与血管内皮细胞和细胞外基质的粘附,促进肿瘤细胞向基质侵袭,从而影响肿瘤细胞的迁移和运动能力。也有结论认为CD44V6可能通过影响癌细胞的骨架构像和分布,从而影响癌细胞的运动能力,而影响癌转移。 3 CD44分子对治疗肿瘤的展望 因为CD44V6对于肿瘤的发生、发展都有一定的相关性,推测CD44V6与肿瘤的分型、分化、分期有一定关系,如果这种关系得以明确,我们就可以通过癌组织CD44V6的表达程度来判断癌的类型,所处时期来进行适当治疗。 有研究认为CD44V6的表达要先于抑癌基因的表达,如果能够检测出CD44异常表达,则对于癌的早期诊断有密切关系。已有研究表明,CD44V6可用于诊断。如1997年吴忠等报道,应用RT-PCR技术检测CD44V6在30例尿液标本脱落细胞检测到CD44V6的表达,而在膀胱炎患者和正常志愿者未检测到CD44V6的表达。 肿瘤的转移是癌症患者的主要死亡原因,Seiter等[10]用抗CD44变异型蛋白的抗体与CD44变异型产物相结合,显示鼠癌细胞的转移潜能被终止,这也为大肠癌的治疗提供了又一个可能途径。 手术切除的肿瘤标本中如有CD44V6蛋白阳性,常会伴术后肿瘤再发或远处转移。CD44V6可作为一种有效的癌预后的标志物,用以指导治疗方案的制定。 CD44基因及其选择性剪切在癌的预测、早期诊断、病情进展、转移潜能与预后的估计等方面具有很大的潜在价值。随着分子生物学不断的发展,癌基因研究的不断深入,相信该基因对癌的预测、诊断、治疗、预后的价值会得到更加全面的认识。

现代分子生物学的相关论文

21世纪生命科学的研究进展和发展趋势 20世纪后半叶生命科学各领域所取得的巨大进展,特别是分子生物学的突破性成就,使生命科学在自然科学中的位置起了革命性的变化。很多科学家认为,在未来的自然科学中,生命科学将要成为带头学科,甚至预言21世纪是生物学世纪,虽然目前对这些论断还有不同看法,但勿庸置疑,在21世纪生命科学将继续蓬勃发展,生命科学对自然科学所起的巨大推动作用,决不亚于19世纪与20世纪上半叶的物理学。假如过去生命科学曾得益于引入物理学、化学和数学等学科的概念、方法与技术而得到长足的发展,那么,未来生命科学将以特有的方式向自然科学的其他学科进行积极的反馈与回报。当21世纪来临的时候,一些有远见的科学家、思想家与政治家将日益严重的诸多人类社会问题,如人口、地球环境、食物、资源与健康等重大问题的解决,莫不寄希望于生命科学与生物技术的进步。 2· 08·生命科学将成为21世纪自然科学的带头学科 20世纪50年代DNA双螺旋结构模型的发现,随后遗传信息传递“中心法则”的确立与DNA重组技术的建立使生命科学的面貌起了根本性的变化。分子生物学与遗传学的结合将用10一15年测定出人类基因组30亿个碱基对(遗传密码)的全序列,人体细胞约有10万个基因。人类基因组的“工作草图”迄今20%的测序已达的准确率和完成率,今后将要继续发现与阐明大量新的重要基因,诸如控制记忆与行为的基因,控制细胞衰老与程序性死亡的基因,新的癌基因与抑癌基因,以及与大量疾病有关的基因。将利用这些成果去为人类健康服务。 70年代后,分子生物学的发展,以基因工程为代表的生物工程的出现,生物技术通过对DNA链的精确切割与有目的地重组,使有目的地改良生物的性状与品质成为可能。迄今生物工程所取得的成就已在生产上显示出诱人的前景,尽管还存在有不少争议的问题,但很有可能成为21世纪的新兴产业。 发育生物学将要快速地兴起,它将要回答无数科学家100多年来孜孜以求而未解决的重大课题,一个受精卵通过细胞分裂与分化如何发育成为结构与功能无比复杂的个体,阐明在个体发育中时空上有条不紊的程序控制机理,从而为人类彻底控制动植物生长、发育创造条件。 RNA分子既有遗传信息功能又有酶功能的发现,为数十年踏步不前的难题“生命如何起源”的解决提供了新的契机。在21世纪,人们还要试图在实验室人工合成生命体。人们己有可能利用生物技术将保存在特殊环境中的古生物或冻干的尸体的DNA扩增,揭示其遗传密码,建立已绝灭生物的基因库,研究生物的进化与分类问题。 神经科学的崛起,预示着生命科学又一个高峰的来临。脑是含有1011细胞的无比复杂的高级结构体系,21世纪初从分子到行为水平的各个层次对脑功能的研究都将有重大突破,在阐明学习。记忆。思维。行为与感情机理等方面也将有重大进展。脑机能在理论上的进展将会促进新一代智能计算机的研制,这可能成为未来生命科学对自然科学与技术科学回报的最好例子。 生态学可能是最直接为人类生存环境服务并对国民经济持续与协调发展起重要作用的科学。生态学的理论与实践为中国三峡水库建设提供的决策依据就是一个例证。保护生物的多样性是当前生命科学最紧迫的任务之一。据可靠的数据说明每天约有100多种生物在地球上绝灭,很多生物在没有被人类认识以前就已消亡,这对人类无疑是一种灾难。生态学与生物多样性保护与利用的研究成果将指导人类遵循自然规律积极保护自己生存环境,否则人类的物质文明与精神文明都要受到灾难性影响。 顺应生命科学迅速发展的形势,发达国家政府及一些国际组织先后提出了《国际地圈及生物圈计划》、《人类基因组作图与测序计划》、《人类前沿科学计划》、《脑的十年》及《生物多样性利用与保护研究》等投资巨大的生命科学研究计划。其中仅《人类基因组作图与测序计划》,一项预算就高达30亿美元。 由于生命科学的发展,人才的需求量激增,近年除越来越多的物理学家,化学家与技术科学家被吸引到生物学研究领域外,以美国为例,近年统计48万博士学位获得者中从事生命科学的占51%。优秀青年科学家流向生命科学前沿,这是21世纪生命科学欣欣向荣的动力与源泉。 2. 08. 2 21世纪初生命科学的重大分支学科和发展趋势 80年代有远见的生物学家把分子生物学(包括分子遗传学)、细胞生物学、神经生物学与生态学列为当前生物科学的四大基础学科,无疑是正确地反映了现代生命科学的总趋势。遗传学(主要是分子遗传学)不仅当前是生物科学的带头学科,在今后多年还将保持其在生命科学中的核心作用。 有些科学家早就预测到,由于分子生物学、细胞生物学与遗传学的结合,必然促进发育生物学的蓬勃发展,从而提出发育生物学将成为21世纪生命科学的“新主人”,这种预测已逐渐变为现实。 分子生物学(包括分子遗传学)在生命科学中的主流地位,以及它在推动整个生命科学发展中所起的巨大作用是无可争辩的。细胞是生命活动基本的结构与功能单位,细胞生物学作为生物科学的基础学科地位必须给予重视。 很多生物科学家认为神经科学或脑科学的崛起将代表着生命科学发展的下一个高峰,然后将促进认知科学与行为科学的兴起。 生态学可能是最直接为人类生存环境服务,井对国民经济持续与协调发展起重要作用的学科。 A.分子生物学 分子生物学是在分子水平上研究生命现象本质与规律的学科。核酸与蛋白质(有人认为还有糖)是生命的最基本物质,因此核酸与蛋白质结构与功能的研究今后仍然是分子生物学研究的主要内容。蛋白质是生命活动的主要承担者,几乎一切生命活动都要依靠蛋白质(包括酶)来进行。蛋白质分子结构与功能的研究除了要阐明由氨基酸形成的并有一定顺序的肽链结构外,今后将特别重视肽链拆叠成的特定的三维空间结构,因为蛋白质生物功能与它的空间构型关系极为密切,核酸是遗传信息的携带者与传递者,遗传信息由DNA~RNA一蛋白质的传递过程,称为遗传信息传递的“中心法则”,是分子生物学(分子遗传学)研究的核心。其基本问题己比较清楚,当前研究的重点是: ①约经10一15年,人类基因组30亿个碱基对全序列(遗传密码)可以测出,这是具有里程碑意义的工作; ②真核生物基因表达过程在各层次上调节的研究仍然是今后相当长一段时间的任务。 分子生物学的概念、方法与技术和各学科的渗透,正在形成很多新的学科,诸如分子遗传学、细胞分子生物学、神经分子生物学、分子分类学、分子药理学与分子病理学等等。因此分子生物学在生命科学中的主导作用还将要持续下去。 B.遗传学 遗传学比分子生物学更具有自己独立的学科体系。但现代遗传学与分子生物学是不可分割、相互交叉的两个学科,且很难截然分开。 有些著名的遗传学家把遗传学概括称为基因学,因为现代遗传学主要是研究生物体遗传信息传递与表达的学科。基因携带的信息是由基因的结构所决定,信息的表达是由基因的功能实现的,因此遗传学研究的是基因的结构与功能。从遗传学的角度看,所有生命现象的机制,追根究底都会与基因的结构与功能相关。因此遗传学在今后较长时间仍然是生命科学的核心学科和推动力。 有人估计人体细胞内约有10万个基因,迄今弄清楚的不到5%,所以与重要生命活动有关与疾病有关的新基因的发现与阐明将是今后几十年的重要任务。 C.细胞生物学 著名生物学家威尔逊(Wilson)早在20世纪20年代就提出一句名言“一切生物学关键问题必须在细胞中找寻”,至今还有着很深的内涵。魏斯曼与摩尔根都曾先后试图在细胞研究的基础上建立遗传、发育与进化统一的理论,虽然当时没有找到具体解决的途径,但关于细胞的知识在生物科学中的重要性是显而易见的。细胞是一切生命活动结构与功能的基本单位,细胞生物学是研究细胞生命活动基本规律的科学,细胞的结构。细胞代谢、细胞遗传、细胞的增殖与分化,细胞信息的传递与细胞的通讯等是细胞生物学主要研究内容。虽然今后细胞生物学研究的内容是全方位的,但概括起来可能是两个基本点: 一是基因与基因产物如何控制细胞的重要生命活动,如生长、增殖、分化与衰老等,在此要涉及到一个全新的问题,细胞内外信号如何传递;二是基因产物一一蛋白质分子与其他生物分子如何构建与装配成细胞的结构,并行使细胞的有序的生命活动。 今后20多年,以下一些问题可望取得重要进展与突破: ①遗传信息的储存、复制与表达的主要执行者——染色体的结构与功能可能在不同的结构层次上得到阐明。 ②细胞骨架(包括核骨架与染色体骨架)的研究将得到全方位的进展。 ③细胞生物学与分子生物学、遗传学的结合,将在细胞分化机理研究方面有重要突破,为发育生物学快速发展奠定基础。 ④细胞衰老与细胞程序化死亡的机理将在更深层次上阐明。 ⑤以细胞分子生物学为骨干学科与其他学科结合,人工装配生命体的理想可能逐步 实现。 D.发育生物学 从一个受精卵通过细胞分裂与分化如何发育成为一个结构与功能复杂的个体,是至今未能解决的生命科学的重大课题,也是发育生物学的主课题。由于近几十年分子生物学、遗传学与细胞生物学所取得一一系歹(突破性成果与知识的积累,已为解决这一重大课题创造了条件,这也就是今后发育生物学应运而飞速发展的原因。 发育生物学当今要解决的基本问题是细胞的基因如何按一定的时空关系选择性地表达专一性的蛋白质,从而控制细胞的分化与个体发育。阐明基因在多层次水平上控制胚胎的发育就不仅是涉及到个别基因的问题,而是一系列调节基因在时空上的联系与配合,从而支配发育的程序。虽然这是难度极大的课题,但近年已初见端倪并有所突破。估计今后发育生物学将沿着这条道路深入下去,并可望取得丰硕的成果。 E.神经科学(或脑科学) 神经科学是研究人与动物神经系统(主要是脑)的结构与功能,在分子水平、神经网络水平、整体水平乃至行为水平阐明神经系统特别是脑的活动规律的学科群。脑的结构与功能是无比复杂的高级体系,含有10 11细胞。它是感觉、运动、学习、记忆、感情、行为与思维的活动基础。大脑细胞,口何指导人与动物的行为是未来生物学中最富潜力与最吸引人的领域;神经科学的崛起,预示着生命科学又有一个高峰的来临。神经科学或脑科学必然在下世纪促进认知科学与行为科学的兴起。因此各国政府投入巨资支持这一课题,包括美国总统签署的“命名1990年1月1日为脑的10年”不是没有道理的。 在今后几十年内可以预示到的神经科学突破性的进展可能包括: ①在分子到行为的各层次上阐明学习、记忆与认知等活动的基础; ②很快会发现与阐明一系列与记忆、行为有关的基因与基因产物; ③神经细胞的分化与神经系统的发育研究会有重大进展; ④脑机能在理论上的进展与突破(如模式识别、联想记忆、思维逻辑机理的阐明)会 促进新一代智能计算机与智能机器人的研制; ⑤一系列神经性疾病与精神病的病因可望在神经生物学研究中得到解释。 F.主态学(包括物种多样性保护研究) 生态学是研究有机体与周围环境——包括非生物环境与生物环境相互关系的科学。 由于生态学理论与应用是与世界环境保护。资源合理开发与保护,以至人类本身在地球上继续生存紧密相关的,尤其是地球环境日益恶化的情况下,生态学的重要性就变得十分突出。未来生态学的主要任务是协调人类活动与环境的关系。所以生态学经典学科的概念与研究内容必然要适应人类生存环境的保护与社会经济持续发展的要求而不断改变。 今后生态学研究的重点可能表现在以下方面: ①生态群落的多样性、稳定性与演变规律与人类活动的关系; ②全球气候变化对生态系统结构与功能的影响; ③生物多样性的保护和永续利用也是保护人类自身生存环境尤其是拯救濒临绝灭的 生物种类更加具有紧迫性; ④城市生态学与经济生态学将迅速发展; ⑤生态工程与生态技术将在国民经济建设中发挥作用。 G.空间生命科学 空间环境向生命科学提出了新的挑战,也为生命科学的发展提供了机遇。 21世纪人类的空间活动将要离开地球附近,探索月球及其他太阳系的大体。这就要求人在地球外各种环境中能长期地生活和工作,首先是在,长期空间飞行器中航行,月球站以及火星或火卫站等,空间医学必须有重大突破,解决长期在地外空间所遇到的宇航员骨质疏松,肌肉萎缩和兔疫功能变化等生理学难题,同时,与开拓大疆相关联的是受控生态系统,创造一个不需要外界补给,而使人们能在其中长期生活的环境。这些问题有希望在21世纪20一30年代解决,其中空间生理学问题有可能利用中医和中药的方法取得某些重大突破。 地球外层空间为研究重力生物学提供了理想的条件,重力条件对各种层次结构生物的影响仍然是21世纪重力生物学的主题,今后的研究重点将集中于细胞,绿色植物,一些微生物和小动物。特别是重力环境对哺乳动物细胞形态、结构、变异和基因表达的影响将是一个热点。重力生物学的学术意义在于揭示重力效应在生物进化过程中的作用,是自然科学的基本问题;另一方面,重力生物学的成果将是空间制药及空间生态系统等应用领域的基础,重力生物学的学术和应用都是下个世纪的重要课题,可望在21世纪20-30年代取得突破性的进展。 地外生物探索是生命起源的重大课题,其中地球以外的智能生物探索是一个长期的 课题。地球上的人类正在向外层空间发射电波和接收讯号。外星人与地球人之间可能存在的学术和技术差距不仅是一种危险,也是自然科学的重大前沿问题,将被持续地研究下去。 2. 08. 5 21世纪初生命科学最有可能突破的领域 ①人类基因组的全序列(遗传密码)将在10一15年测定完毕,为全部遗传信息的破译奠定基础。 ②与生命活动有关的重要基因与重要疾病有关的基因将被陆续发现,其中特别引人注目的是控制记忆与行为的基因、控制衰老与细胞程序性死亡的基因、控制细胞增殖的系列基因、胚胎发育多层次网络调节基因。新的癌基因与抑癌基因的发现与其生物学功能的释明将大大提高对生命本质的了解。 ③人与动物的高级生命活动:感知、思维、记忆、行为与感情的发生与活动机制在脑科学研究突破的基础上,有更深的认识。 ④癌症的治疗将有全面的突破,爱滋病的防治得到控制。 ⑤在阐明地球上原始生命起源的基础上,人类还可能在实验室合成生命体,这种生命体应具有原始细胞的基本特征。 回答者: monkeynobd - 高级经理 六级 5-22 18:16给楼主论文: 分子细胞基因组的研究 随着结构分析技术的发展,现在已有几千个蛋白质的化学结构和几百个蛋白质的立体结构得到了阐明。70年代末以来,采用测定互补DNA顺序反推蛋白质化学结构的方法,不仅提高了分析效率,而且使一些氨基酸序列分析条件不易得到满足的蛋白质化学结构分析得以实现。 发现和鉴定具有新功能的蛋白质,仍是蛋白质研究的内容。例如与基因调控和高级神经活动有关的蛋白质的研究现在很受重视。 蛋白质-核酸体系 生物体的遗传特征主要由核酸决定。绝大多数生物的基因都由 DNA构成。简单的病毒,如λ噬菌体的基因组是由 46000个核苷酸按一定顺序组成的一条双股DNA(由于是双股DNA,通常以碱基对计算其长度)。细菌,如大肠杆菌的基因组,含4×106碱基对。人体细胞染色体上所含DNA为3×109碱基对。 遗传信息要在子代的生命活动中表现出来,需要通过复制、转录和转译。复制是以亲代 DNA为模板合成子代 DNA分子。转录是根据DNA的核苷酸序列决定一类RNA分子中的核苷酸序列;后者又进一步决定蛋白质分子中氨基酸的序列,就是转译。因为这一类RNA起着信息传递作用,故称信使核糖核酸(mRNA)。由于构成RNA的核苷酸是4种,而蛋白质中却有20种氨基酸,它们的对应关系是由mRNA分子中以一定顺序相连的 3个核苷酸来决定一种氨基酸,这就是三联体遗传密码。 基因在表达其性状的过程中贯串着核酸与核酸、核酸与蛋白质的相互作用。DNA复制时,双股螺旋在解旋酶的作用下被拆开,然后DNA聚合酶以亲代DNA链为模板,复制出子代 DNA链。转录是在 RNA聚合酶的催化下完成的。转译的场所核糖核蛋白体是核酸和蛋白质的复合体,根据mRNA的编码,在酶的催化下,把氨基酸连接成完整的肽链。基因表达的调节控制也是通过生物大分子的相互作用而实现的。如大肠杆菌乳糖操纵子上的操纵基因通过与阻遏蛋白的相互作用控制基因的开关。真核细胞染色质所含的非组蛋白在转录的调控中具有特殊作用。正常情况下,真核细胞中仅2~15%基因被表达。这种选择性的转录与转译是细胞分化的基础。 蛋白质-脂质体系 生物体内普遍存在的膜结构,统称为生物膜。它包括细胞外周膜和细胞内具有各种特定功能的细胞器膜。从化学组成看,生物膜是由脂质和蛋白质通过非共价键构成的体系。很多膜还含少量糖类,以糖蛋白或糖脂形式存在。 高等植物的性状主要由核基因控制,其遗传遵循孟德尔规律。1900年Coorence和Baut等人就已发现影响质体表型的一些突变不符合孟德尔遗传规律;1962年里斯(Ris)和Plont证明植物叶绿体中存在遗传物质DNA。现已证明,植物细胞质中的叶绿体和线粒体都含有自己的DNA及整套的转录和翻译系统,能够合成蛋白质。高等植物的叶绿体和线粒体基因组,多数在有性杂交过程中表现为母性遗传。其机制有两种解释:一是认为雄配子不含有细胞质,因而没有胞质基因;另一种观点是雄配子含有少量的细胞质,其细胞器在受精前即已解体,失去功能。胞质基因组的母性遗传,大大限制了胞质基因的遗传研究,利用有性杂交方法难以知晓当胞质基因处于杂合状态时的遗传和生理效应及其对表型的影响。近年来发展起来的体细胞杂交技术为胞质基因的研究开辟了一条新途径。本文拟对植物体细胞杂交后代胞质基因重组的多样性,创制胞质杂种的可能途径及胞质基因组的传递等问题加以说明。 1 植物体细胞杂交后代胞质基因组重组的多样性 体细胞杂交时,核基因组、线粒体基因组和叶绿体基因组三者均既可以单亲传递又可以双亲传递,因而可以产生许多有性杂交难以产生的核-质基因组的新组合类型。Kumar等人根据已有的实验结果结合理论推导提出,植物体细胞杂交一代理论上可以产生48种类型,而相应的有性杂交一代只能产生两种类型。48种类型可分为亲型、核杂种和胞质杂种3类。胞质杂种即是具有一个亲本的细胞核和双亲细胞质的植株或愈伤组织,它是研究胞质基因组的好材料。 2 创制胞质杂种的方法 2.1 “供体-受体”原生质体融合技术 这是目前最为可行的方法,由Zelcer等(1987)提出。其原理基于生理代谢互补,利用高于致死剂量的电离辐射处理供体原生质体使其核解或完全失活,细胞质完整无损;再用碘乙酸或碘乙酚胺处理受体原生质体以使其受到暂时抑制而不分裂,这样双亲原生质体融合后,只有融合体能够实现代谢上的补偿,进行持续分裂,形成愈伤组织或再生植株,这些融合体就是各种各样的胞质杂种。此技术的优点是双亲不需任何选择标记,适用范围广,可行性强,缺点是适宜的辐射剂量难以掌握。 2.2 “胞质体-原生质体”融合法 所谓胞质体是指去核后的原生质体。该法由Maliga提出。优点是避免了电离辐射可能产生的不利影响,缺点是制备胞质体尚存在一些技术性的困难。最近Lesney等人提出了一种能够从悬浮系原生质体制备大量胞质体的方法。 2.3 其它的可能途径 (1)根据双亲原生质体形态上的差异或通过荧光染料标记来机械分离融合体,然后进行微培养。(2)利用分别由核基因组和质基因组编码的抗药性状,通过双重抗性选择获得胞质杂种。(3)原生质体直接摄取外缘细胞器。(4)通过显微注射或电激法实现细胞器转移。 3 胞质杂种中双亲胞质基因的传递遗传学 3.1 叶绿体基因组 胞质杂种中,叶绿体基因组的传递分为单亲传递和双亲传递两种。单亲传递是指胞质杂种愈伤组织及由之再生的植株只含有亲本之一的叶绿体基因组。这种分离机制目前尚不清楚。关于叶绿体基因组的分离是否随机的问题,由于研究者们采用的试验材料不同得出两种结论:一种是叶绿体基因组的随机分离,这在品种间、种间及属间原生质体融合中都被观察到;另一种是叶绿体基因组的非随机分离(即亲本之一的叶绿体基因组优先保留),如弗利克(Flick)和埃文(Evens,1982)在烟草的研究中表明,所有的N.nesophila和N.tabacum体细胞杂种都只具有N.nesophila叶绿体基因组,类似的例子很多。双亲传递是指胞质杂种中,同时含有双亲的叶绿体基因组,其在体细胞杂种以后的有性繁殖过程中能够保持稳定,既然双亲叶绿体能够共存,理论上二者就有可能发生重组。事实上,叶绿体基因组重组现象已被观察到,但频率很低。 3.2 线粒体基因组 胞质杂种中,线粒体基因组的传递方式是双亲传递,且发生活跃的重组,产生丰富的新类型。然而在分析线粒体基因组重组类型时不可忽视由于离体培养而诱发的线粒体基因组分子内重组(突变)的可能性,因为离体培养过程中不仅使核基因组产生大量变异,而且对于某些植物,也可诱发线粒体基因组发生变异。 4 植物胞质基因组控制的重要性状 目前已基本阐明的由叶绿体基因组编码的性状主要是一些抗药性状。如:链霉素抗性、林肯霉素抗性等。在与线粒体基因组有关的性状中,研究最多的是胞质型雄性不育性状。许多学者在不同植物上研究发现,雄性不育系与其同型保持系之间在线粒体DNA内切图谱或其编码的蛋白上存在明显差异。如在玉米上已发现T型雄性不育植株的线粒体基因组发生了多至7次重组,且主要发生于26s rRAN基因附近,产生一个嵌合基因,因此导致转录时阅读框架发生了改变,如果这个嵌合基因发生了缺失或小段插入,则阅读框架恢复正常,育性也随之恢复。 总之,植物体细胞杂交是胞质基因组及其所控制性状研究的有效途径,关于胞质性状的研究对于某些植物已从分子水平上深入到了与雄性不育相关的特异线粒体DNA片段及相应的特殊蛋白,但仍有许多问题有待深入研究。这些问题的阐明将会使得从分子水平上改良雄性不育性状成为可能。是真的哦

分子生物学技术在国内防制虫媒传染病领域的应用【摘要】本文综述了国内近年来,分子生物学技术在虫媒病中蚊媒传染病防制的应用情况,以期为蚊媒传染病的防制、应对突发公共卫生事件中蚊媒传染病的发生提供参考.【关键词】分子生物学技术;虫媒;传染病虫媒病是由节肢动物携带病原体传播的一组疾病.1992年在国际虫媒病毒中心登记的已达535种,其中128种对人有致病性[1].我国法定报告的传染病中,虫媒病占13种,蚊虫作为媒介,除了传播病毒性疾病外,还可传播寄生虫病.这类疾病大都属于自然疫源性疾病,有一定的地域性和时间性,发病率低、死亡率高,主要通过媒介的控制进行防制[2].近年来,随着分子生物学技术的研究和发展,在医学领域的应用日趋广泛,并取得了重大进展,作者就近年来分子生物学技术在蚊媒传染病的诊断和防制等方面的应用综述如下.1常用的分子生物学技术[3]1·1核酸分子杂交技术核酸的分子杂交(molecular hybridization)它是利用核酸分子的碱基互补原则,在特定的条件下,双链解开成两条单链,与异源的DNA或RNA (单链)复性,若异源DNA或RNA之间的某些区域有互补的碱基序列,则在复性时可形成杂交的核酸分子.杂交的双方是待测核酸序列及探针.核酸探针可用放射性核素、生物素或其它活性物质标记.根据其来源和性质可分为cDNA探针、基因组探针、寡核苷酸探针、RNA探针等.分类:根据被测定的对象,分为Southern杂交和Northern杂交;根据所用的方法,分为斑点(dot)杂交、狭槽(slot)杂交和菌落原位杂交;根据环境条件:分为液相杂交和固相杂交.1·2聚合酶链式反应(polymerase chain reaction, PCR)是以拟扩增的DNA分子为模板,以一对分别与模板互补的寡核苷酸片段为引物,在DNA聚合酶的作用下,按照半保留复制的机理沿着模板链延伸直至完成新的DNA合成.通过不断重复这一过程,可以使目的DNA片段得到扩增,同时新合成的DNA片段也可以作为模板,使DNA的合成量呈指数型增长.PCR各种应用模式:兼并引物( degenerate primer)pcr、套式引物(nested primer) pcr、复合pcr (multiplexpcr)、反向pcr ( inverse pcr或reverse pcr)、不对称pcr(asymmetric pcr)、标记pcr ( lp-pcr)和彩色pcr、加端pcr、锚定pcr或固定pcr、玻片pcr、反转录pcr方法检测rna、定量·3DNA芯片基因芯片又称DNA芯片(DNA chip)或DNA微阵列(DNA microarray).是采用光导原位合成或显微印刷等方法将大量特定序列的探针分子密集、有序地固定于经过相应处理的载体上,然后加入标记的待测样品,进行多元杂交,通过杂交信号的强弱及分布,来分析目的分子的有无、数量及序列,从而获得受检样品的遗传信.特点:具有通量大,并行性、微量化与自动化等优点,但在实践中其研究成本较高;方法标准化不足;配套软件不够完善.2分子生物学技术在虫媒病诊断的应用2·1疟疾黄炳成等[4]用pBF2 DNA片断,经标记后作探针,从多种疟原虫DNA样本中检出恶性疟原虫.基因芯片在疟原虫的研究内容还有疟原虫新基因发现[5]、转录因子调控网络[6]、疟原虫适应人体宿主机制[7]、疟原虫比较基因组杂交分析[8]、恶性疟原虫抗原变异分子机制[9]以及疟原虫攻击红细胞机制[10]等.2·2丝虫病黄志彪等[11]运用PCR技术检测血液中的班氏丝虫微丝蚴,可检出lOOul阳性血样中的l条班氏丝虫微丝蚴;用于检测班氏丝虫监测点540份血液样本结果均为阴性,镜检血片结果亦为阴性.常规丝虫检测是在夜间采血,有资料显示[12], SsP/PCR扩增系统可用于检测班氏丝虫病患者血样中的循环DNA,能用于周期性或夜间周期性丝虫病的日间血检工作,从根本上改变了丝虫病的诊断、监测和工作方式.2·3登革热病郑夔等[13]应用多重PCR技术快速鉴定4种血清型登革病毒,并在同一反应管中进行多重PCR对登革病毒进行分型鉴定,证实了2004年在广东发生的登革热疫情为I型登革病毒;也有报道应用寡核苷酸芯片技术能同时确认流感和登革热病毒[14].长期受这种疾病困扰的地区将有望通过这种技术的完善,获得有效的治疗和保护.

不足之处是操作复杂,成本较高。以上分子生物学方法对结核杆菌...

字数可能有点超,你自己截取吧~~分子生物学(molecular biology) 在分子水平上研究生命现象的科学。研究生物大分子(核酸、蛋白质)的结 构、功能和生物合成等方面来阐明各种生命现象的本质。研究内容包括各种生命过程如光合作用、发育的分子机制、神经活动的机理、癌的发生等。 从分子水平研究生物大分子的结构与功能从而阐明生命现象本质的科学。自20世纪50年代以来,分子生物学是生物学的前沿与生长点,其主要研究领域包括蛋白质体系、蛋白质-核酸体系 (中心是分子遗传学)和蛋白质-脂质体系(即生物膜)。 生物大分子,特别是蛋白质和核酸结构功能的研究,是分子生物学的基础。现代化学和物理学理论、技术和方法的应用推动了生物大分子结构功能的研究,从而出现了近30年来分子生物学的蓬勃发展。分子生物学和生物化学及生物物理学关系十分密切,它们之间的主要区别在于:①生物化学和生物物理学是用化学的和物理学的方法研究在分子水平,细胞水平,整体水平乃至群体水平等不同层次上的生物学问题。而分子生物学则着重在分子(包括多分子体系)水平上研究生命活动的普遍规律;②在分子水平上,分子生物学着重研究的是大分子,主要是蛋白质,核酸,脂质体系以及部分多糖及其复合体系。而一些小分子物质在生物体内的转化则属生物化学的范围;③分子生物学研究的主要目的是在分子水平上阐明整个生物界所共同具有的基本特征,即生命现象的本质;而研究某一特定生物体或某一种生物体内的某一特定器官的物理、化学现象或变化,则属于生物物理学或生物化学的范畴。 发展简史 结构分析和遗传物质的研究在分子生物学的发展中作出了重要的贡献。结构分析的中心内容是通过阐明生物分子的三维结构来解释细胞的生理功能。1912年英国 .布喇格和.布喇格建立了X射线晶体学,成功地测定了一些相当复杂的分子以及蛋白质的结构。以后布喇格的学生.阿斯特伯里和.贝尔纳又分别对毛发、肌肉等纤维蛋白以及胃蛋白酶、烟草花叶病毒等进行了初步的结构分析。他们的工作为后来生物大分子结晶学的形成和发展奠定了基础。50年代是分子生物学作为一门独立的分支学科脱颖而出并迅速发展的年代。首先是在蛋白质结构分析方面,1951年.波林等提出了 α-螺旋结构,描述了蛋白质分子中肽链的一种构象。1955年F.桑格完成了胰岛素的氨基酸序列的测定。接着 .肯德鲁和.佩鲁茨在X射线分析中应用重原子同晶置换技术和计算机技术分别于1957和1959年阐明了鲸肌红蛋白和马血红蛋白的立体结构。1965年中国科学家合成了有生物活性的胰岛素,首先实现了蛋白质的人工合成。 另一方面,M.德尔布吕克小组从1938年起选择噬菌体为对象开始探索基因之谜。噬菌体感染寄主后半小时内就复制出几百个同样的子代噬菌体颗粒,因此是研究生物体自我复制的理想材料。1940年.比德尔和.塔特姆提出了“一个基因,一个酶”的假设,即基因的功能在于决定酶的结构,且一个基因仅决定一个酶的结构。但在当时基因的本质并不清楚。1944年.埃弗里等研究细菌中的转化现象,证明了DNA是遗传物质。1953年.沃森和.克里克提出了DNA的双螺旋结构,开创了分子生物学的新纪元。在此基础上提出的中心法则,描述了遗传信息从基因到蛋白质结构的流动。遗传密码的阐明则揭示了生物体内遗传信息的贮存方式。1961年F.雅各布和J.莫诺提出了操纵子的概念,解释了原核基因表达的调控。到20世纪60年代中期,关于DNA自我复制和转录生成RNA的一般性质已基本清楚,基因的奥秘也随之而开始解开了。 仅仅30年左右的时间,分子生物学经历了从大胆的科学假说,到经过大量的实验研究,从而建立了本学科的理论基础。进入70年代,由于重组DNA研究的突破,基因工程已经在实际应用中开花结果,根据人的意愿改造蛋白质结构的蛋白质工程也已经成为现实。 基本内容 蛋白质体系 蛋白质的结构单位是α-氨基酸。常见的氨基酸共20种。它们以不同的顺序排列可以为生命世界提供天文数字的各种各样的蛋白质。 蛋白质分子结构的组织形式可分为 4个主要的层次。一级结构,也叫化学结构,是分子中氨基酸的排列顺序。首尾相连的氨基酸通过氨基与羧基的缩合形成链状结构,称为肽链。肽链主链原子的局部空间排列为二级结构。二级结构在空间的各种盘绕和卷曲为三级结构。有些蛋白质分子是由相同的或不同的亚单位组装成的,亚单位间的相互关系叫四级结构。 蛋白质的特殊性质和生理功能与其分子的特定结构有着密切的关系,这是形形色色的蛋白质所以能表现出丰富多彩的生命活动的分子基础。研究蛋白质的结构与功能的关系是分子生物学研究的一个重要内容。 随着结构分析技术的发展,现在已有几千个蛋白质的化学结构和几百个蛋白质的立体结构得到了阐明。70年代末以来,采用测定互补DNA顺序反推蛋白质化学结构的方法,不仅提高了分析效率,而且使一些氨基酸序列分析条件不易得到满足的蛋白质化学结构分析得以实现。 发现和鉴定具有新功能的蛋白质,仍是蛋白质研究的内容。例如与基因调控和高级神经活动有关的蛋白质的研究现在很受重视。 蛋白质-核酸体系 生物体的遗传特征主要由核酸决定。绝大多数生物的基因都由 DNA构成。简单的病毒,如λ噬菌体的基因组是由 46000个核苷酸按一定顺序组成的一条双股DNA(由于是双股DNA,通常以碱基对计算其长度)。细菌,如大肠杆菌的基因组,含4×106碱基对。人体细胞染色体上所含DNA为3×109碱基对。 遗传信息要在子代的生命活动中表现出来,需要通过复制、转录和转译。复制是以亲代 DNA为模板合成子代 DNA分子。转录是根据DNA的核苷酸序列决定一类RNA分子中的核苷酸序列;后者又进一步决定蛋白质分子中氨基酸的序列,就是转译。因为这一类RNA起着信息传递作用,故称信使核糖核酸(mRNA)。由于构成RNA的核苷酸是4种,而蛋白质中却有20种氨基酸,它们的对应关系是由mRNA分子中以一定顺序相连的 3个核苷酸来决定一种氨基酸,这就是三联体遗传密码。 基因在表达其性状的过程中贯串着核酸与核酸、核酸与蛋白质的相互作用。DNA复制时,双股螺旋在解旋酶的作用下被拆开,然后DNA聚合酶以亲代DNA链为模板,复制出子代 DNA链。转录是在 RNA聚合酶的催化下完成的。转译的场所核糖核蛋白体是核酸和蛋白质的复合体,根据mRNA的编码,在酶的催化下,把氨基酸连接成完整的肽链。基因表达的调节控制也是通过生物大分子的相互作用而实现的。如大肠杆菌乳糖操纵子上的操纵基因通过与阻遏蛋白的相互作用控制基因的开关。真核细胞染色质所含的非组蛋白在转录的调控中具有特殊作用。正常情况下,真核细胞中仅2~15%基因被表达。这种选择性的转录与转译是细胞分化的基础。 蛋白质-脂质体系 生物体内普遍存在的膜结构,统称为生物膜。它包括细胞外周膜和细胞内具有各种特定功能的细胞器膜。从化学组成看,生物膜是由脂质和蛋白质通过非共价键构成的体系。很多膜还含少量糖类,以糖蛋白或糖脂形式存在。 1972年提出的流动镶嵌模型概括了生物膜的基本特征:其基本骨架是脂双层结构。膜蛋白分为表在蛋白质和嵌入蛋白质。膜脂和膜蛋白均处于不停的运动状态。 生物膜在结构与功能上都具有两侧不对称性。以物质传送为例,某些物质能以很高速度通过膜,另一些则不能。象海带能从海水中把碘浓缩 3万倍。生物膜的选择性通透使细胞内pH和离子组成相对稳定,保持了产生神经、肌肉兴奋所必需的离子梯度,保证了细胞浓缩营养物和排除废物的功能。 生物体的能量转换主要在膜上进行。生物体取得能量的方式,或是像植物那样利用太阳能在叶绿体膜上进行光合磷酸化反应;或是像动物那样利用食物在线粒体膜上进行氧化磷酸化反应。这二者能量来源虽不同,但基本过程非常相似,最后都合成腺苷三磷酸。对于这两种能量转换的机制,P.米切尔提出的化学渗透学说得到了越来越多的证据。生物体利用食物氧化所释放能量的效率可达70%左右,而从煤或石油的燃烧获取能量的效率通常为20~40%,所以生物力能学的研究很受重视。对生物膜能量转换的深入了解和模拟将会对人类更有效地利用能量作出贡献。 生物膜的另一重要功能是细胞间或细胞膜内外的信息传递。在细胞表面,广泛地存在着一类称为受体的蛋白质。激素和药物的作用都需通过与受体分子的特异性结合而实现。癌变细胞表面受体物质的分布有明显变化。细胞膜的表面性质还对细胞分裂繁殖有重要的调节作用。 对细胞表面性质的研究带动了糖类的研究。糖蛋白、蛋白聚糖和糖脂等生物大分子结构与功能的研究越来越受到重视。从发展趋势看,寡糖与蛋白质或脂质形成的体系将成为分子生物学研究的一个新的重要的领域。 理论意义和应用 分子生物学的成就说明:生命活动的根本规律在形形色色的生物体中都是统一的。例如,不论在何种生物体中,都由同样的氨基酸和核苷酸分别组成其蛋白质和核酸。遗传物质,除某些病毒外,都是DNA,并且在所有的细胞中都以同样的生化机制进行复制。分子遗传学的中心法则和遗传密码,除个别例外,在绝大多数情况下也都是通用的。 物理学的成就证明,一切物质的原子都由为数不多的基本粒子根据相同的规律所组成,说明了物质世界结构上的高度一致,揭示了物质世界的本质,从而带动了整个物理学科的发展。分子生物学则在分子水平上揭示了生命世界的基本结构和生命活动的根本规律的高度一致,揭示了生命现象的本质。和过去基本粒子的研究带动物理学的发展一样,分子生物学的概念和观点也已经渗入到基础和应用生物学的每一个分支领域,带动了整个生物学的发展,使之提高到一个崭新的水平。 过去生物进化的研究,主要依靠对不同种属间形态和解剖方面的比较来决定亲缘关系。随着蛋白质和核酸结构测定方法的进展,比较不同种属的蛋白质或核酸的化学结构,即可根据差异的程度,来断定它们的亲缘关系。由此得出的系统进化树,与用经典方法得到的是基本符合的。采用分子生物学的方法研究分类与进化有特别的优越性。首先,构成生物体的基本生物大分子的结构反映了生命活动中更为本质的方面。其次,根据结构上的差异程度可以对亲缘关系给出一个定量的,因而也是更准确的概念。第三,对于形态结构非常简单的微生物的进化,则只有用这种方法才能得到可靠结果。 高等动物的高级神经活动是极其复杂的生命现象,过去多是在细胞乃至整体水平上研究,近年来深入到分子水平研究的结果充分说明高级神经活动也同样是以生物大分子的活动为基础的。例如,在高等动物学习与记忆的过程中,大脑中RNA和蛋白质的组成发生明显的变化,并且一些影响生物体合成蛋白质的药物也显著地影响学习与记忆的能力。又如,“生物钟”是一种熟知的生物现象。用鸡进行的实验发现,有一种重要的神经传递介质(5-羟色胺)和一种激素(褪黑激素)以及控制它们变化的一种酶,在鸡脑中的含量呈24小时的周期性变化。正是这种变化构成了鸡的“生物钟”的物质基础。 在应用方面,生物膜能量转换原理的阐明,将有助于解决全球性的能源问题。了解酶的催化原理就能更有针对性地进行酶的人工模拟,设计出化学工业上广泛使用的新催化剂,从而给化学工业带来一场革命。 分子生物学在生物工程技术中也起了巨大的作用,1973年重组DNA技术的成功,为基因工程的发展铺平了道路。80年代以来,已经采用基因工程技术,把高等动物的一些基因引入单细胞生物,用发酵方法生产干扰素、多种多肽激素和疫苗等。基因工程的进一步发展将为定向培育动、植物和微生物良种以及有效地控制和治疗一些人类遗传性疾病提供根本性的解决途径。 从基因调控的角度研究细胞癌变也已经取得不少进展。分子生物学将为人类最终征服癌症做出重要的贡献。[编辑本段]分子生物学的应用 1,亲子鉴定 近几年来,人类基因组研究的进展日新月异,而分子生物学技术也不断完善,随着基因组研究向各学科的不断渗透,这些学科的进展达到了前所未有的高度。在法医学上,STR位点和单核苷酸(SNP)位点检测分别是第二代、第三代DNA分析技术的核心,是继RFLPs(限制性片段长度多态性)VNTRs(可变数量串联重复序列多态性)研究而发展起来的检测技术。作为最前沿的刑事生物技术,DNA分析为法医物证检验提供了科学、可靠和快捷的手段,使物证鉴定从个体排除过渡到了可以作同一认定的水平,DNA检验能直接认定犯罪、为凶杀案、强奸杀人案、碎尸案、强奸致孕案等重大疑难案件的侦破提供准确可靠的依据。随着DNA技术的发展和应用,DNA标志系统的检测将成为破案的重要手段和途径。此方法作为亲子鉴定已经是非常成熟的,也是国际上公认的最好的一种方法。

生物分子相关的中文期刊

生物有很多,化学亦然,合二者却甚少。

补充楼上-CellResearch2010/2011ImpactFactor=,中国人主办的学术期刊中排名,快接近美国科学院院报(PNAS,IF=)啦!而则是新创办的JMOLCELLBIOL(分子细胞生物学报),IF=。JMCB由中科院上海生科院生化与细胞所和中国细胞生物学学会共同主办,上海生命科学信息中心承办。期刊组建了强大的国际、国内编委阵容,由中科院院士裴钢担任名誉主编、李党生研究员担任主编,并与牛津大学出版社(OUP)进行国际出版与发行合作。另外,中国科学(SCIENCECHINA)也是国内顶级的期刊,虽然IF很低但很难发文章,包括中英文版本,其C辑为生命科学。

生命的化学

中国生物化学与分子生物学报

遗传

都是比较容易的。

转基因相关论文

你等我,我绝对给你答案,拜托拜托

从20世纪70年代中期开始,就有人尝试用各种办法向动物体内转移外源基因。如将牛奶成分中特有的基因转移到白鼠体内,这些外来基因在白鼠体内重组后,白鼠分泌的乳汁便含有牛奶成分。这种通过人工方法获得外来基因的白鼠,称为转基因鼠。 转基因动物技术的核心,是把遗传的功能单位——基因转移到动物体内,使它成为动物体内的一部分。被转移的基因可以来自同种或异种动物,也可以来自植物或微生物。这样一来,就打破了物种之间的界线,也可以说动物能与植物、微生物杂交了。不过目前的杂交是低水平的,只限于主管一两个性状的一两个基因。随着科学技术的发展,一次可以转移的遗传信息将越来越多,那时就可以实现真正意义上的动植物之间的杂交。从科学上讲,这将是一个大突破。 目前,世界上已报道了多种生产转基因动物的方法,但真正成熟并可以稳定生产转基因动物的方法只有两种,即显微注射DNA的方法和精子介导的基因转移法。 显微注射DNA的方法是对单细胞的胚胎进行基因操作,涉及复杂的操作步骤。首先是要准确掌握母畜的性周期,在此基础上加以人工调节,使母畜在预先确定的时间排卵,保证获得大量的刚刚受精的单细胞胚胎。第二步是用手术或非手术的方法收集单细胞胚胎,经短暂的离心处理后,放在显微镜下用口径1 μm玻璃微管向细胞核注射500~600拷贝基因。然后把经过DNA注射的胚胎移植到另外一头处于相同性周期的母畜的体内。经过这样处理后,在后代中就会出现1%~3%的转基因动物。效率虽然不高,但结果相当稳定。全世界已在各种动物身上进行了上万次的试验,都能生产出转基因动物。 精子介导的基因转移是把精子作适当处理后,使其具有携带外源基因的能力。然后,用携带有外源基因的精子给发情母畜授精。在母畜所生的后代中,就有一定比例的动物是整合了外源基因的转基因动物。同显微注射方法相比,精子介导的基因转移有两个优点:首先是它的成本很低,只有显微注射法成本的1/10。其次,由于它不涉及对动物进行手术处理,因此,可以用生产牛群或羊群进行试验,以保证每次试验都能够获得成功。 生产转基因动物的研究自20世纪90年代以来日趋活跃,转基因动物技术的实用意义是:①生产出性状优良的家畜家禽,如长得快的,繁殖力高的,能抗病的等;②利用动物体作为反应器,生产珍贵的蛋白质,如一些只能从人体内提取的蛋白质;③利用动物作研究模型,比如,知道高血压症是由某种原因造成,可以生产一些高血压小鼠,让医生在小鼠身上试用各种疗法;④生产玩赏动物,如同猫一样大的小马,如同鼠一样大的兔子,以及各种不同毛色和花纹的观赏动物。 在转基因动物方面,我国也取得了许多可喜的成果,目前已获得了转基因鱼、兔、鸡等多种转基因动物。1998年2月中国科学家又获得了在所分泌的乳汁中含有蛋白凝血因子X的转基因山羊。

转基因技术是通过有性生殖过程实现的,作为生命科学的前沿技术,转基因技术已经逐渐走入了人们的生活。面是我整理的关于转基因技术论文,希望能对大家有所帮助!转基因技术论文篇一:《试谈转基因技术》 【摘要】 作为生命科学的前沿技术,转基因技术已经逐渐走入了人们的生活,应用领域不断开拓,在解决人类所面临的粮食短缺、环境污染、资源匮乏、效益衰减等重大问题上显示出日益重要的作用, 逐渐发展成为强大的现代生物技术产业。然而,由于转基因生物及其产品是否存在潜在风险尚无定论,故转基因生物及其产品的安全性成为全球的 热点 问题,并引起世界各国政府和许多国际组织的高度重视。 【关键词】转基因技术;发展现状;争议;生物安全管理 1 转基因技术简介 转基因技术(Transgene technology)是指根据人们的意愿,利用分子生物学 方法 , 将人工分离和修饰过的基因导入到生物体基因组中,由于导入基因的表达,引起生物体的性状的可遗传的修饰。人们常说的"遗传工程"、"基因工程"、"遗传转化"均为转基因的 同义词 。经转基因技术修饰的生物体在媒体上常被称为"遗传修饰过的生物体"(Genetically modified organism,简称GMO)。 转基因技术的优越性体现在:首先,转基因技术突破了传统技术的某些局限,其所转移的基因不受生物体间亲缘关系的限制,比如将人类的胰岛素基因导入到细菌体内,跨越了物种之间的界限。其次,转基因技术所操作和转移的一般是经过明确定义的基因,功能清楚,后代表现可准确预期。因此,转基因技术对传统的育种技术进行了广泛的发展和比较完美的补充。 2 转基因技术方法 植物转基因方法。 转基因植物是指利用重组DNA技术将克隆的优良目的基因整合到植物的基因组中,并使其得以表达,从而获得的具有新的遗传性状的植物。方法有如下几种: 农杆菌介导法:农杆菌中有一种致瘤的环型DNA,称为Ti质粒。被农杆菌感染的植物之所以长瘤正是由于T―DNA插入了植物染色体。从此,人们便利用这种天然的转化体系向植物转基因。 基因枪:利用火药爆炸或高压气体加速(这一加速设备被称为基因枪),将包裹了带目的基因的DNA溶液的高速微弹直接送入完整的植物组织和细胞中,然后通过细胞和组织培养技术,再生出植株,选出其中转基因阳性植株即为转基因植株。主要优点是不受受体植物范围的限制。而且其载体质粒的构建也相对简单,因此也是目前转基因研究中应用较为广泛的一种方法。 花粉管通道法:在授粉后向子房注射含目的基因的DNA溶液,利用植物在开花、受精过程中形成的花粉管通道,将外源DNA导入受精卵细胞,并进一步地被整合到受体细胞的基因组中,随着受精卵的发育而成为带转基因的新个体。该法的最大优点是不依赖组织培养人工再生植株,技术简单,不需要装备精良的实验室,常规育种工作者易于掌握。 动物转基因方法。 转基因动物是通过人工实验方法,将别的基因导入动物细胞,与动物本身的基因整合在一起,并随细胞的分裂而繁殖,并且能够将别的基因信息遗传给后代,严格意义上说,转基因动物是人工创造的新动物。 转基因动物接受外来基因的细胞一般是受精卵。主要的转基因动物技术包括有: 核显微注射法:是动物转基因技术中最常用的方法。它是在显微镜下将外源基因注射到受精卵细胞的原核内,注射的外源基因与胚胎基因组融合,然后进行体外培养,最后移植到受体母畜子宫内发育,这样分娩的动物体内的每一个细胞都含有新的DNA片段。它可以直接获得纯系,实验周期短。 逆转录病毒载体法:指将目的基因重组到逆转录病毒载体上,制成高浓度的病毒颗粒,人为感染着床前或着床后的胚胎,也可以直接将胚胎与能释放逆转录病毒的单层培养细胞共孵育以达到感染的目的,通过病毒将外源目的基因插入整合到宿主基因组DNA中去。此法优点在于无需要重排,可在整合点整合转移基因的单个拷贝;将胚胎置于高浓度病毒容器中,或者与被感染的细胞体外共同培养,或微注射鸡胚盘里,整合有逆转录病毒的DNA的胚胎率高。 胚胎干细胞介导法:是将基因导入胚胎于细胞;然后将转基因的胚胎干细胞注射于动物囊胚后可参与宿主的胚胎构成,形成嵌合体,直至达到种系嵌合。其优点是:在将胚胎干细胞植入胚胎前,可以在体外选择一个特殊的基因型,用外源DNA转染以后,胚胎干细胞可以被克隆,继而可以筛选含有整合外源DNA的细胞用于细胞融合,由此可以得到很多遗传上相同的转基因动物。 3 转基因技术发展现状 目前,国际上获得的转基因植物已达100种以上。转基因作物已在美国、阿根廷及加拿大等国大面积 种植 ,在所有转基因作物中,转基因的大豆、玉米、棉花和油菜的种植面积占99%以上。中国政府十分重视生物技术的研究,中国正在研发的转基因作物和林木有47种,涉及的基因种类超过100种。以转基因山羊、奶牛生产LAt-PA,以转基因猪生产人血红蛋白等,这些基因产品具有高效、优质、廉价与相应的人体蛋白具有同样的生物活性,且多随乳汁分泌,便于分离纯化。 4 转基因技术的争议 随着转基因问题日益成为热点,越来越多的人开始关注转基因。科学家发明转基因技术的初衷是想利用该技术造福人类,既可加快农作物和家畜品种的改良速度,提高人类食物的品质,又可以生产珍贵的药用蛋白,为患病者带来福音。 但是,人类对自然界的干预是否会造成潜在的尚不可能预知的危险?由于一系列的争论,联合国也公开言论试图说明转基因产品是无害安全的,国际经合组织1993年提出了食品安全性评价的实质等同性原则,如果转基因动植物生产的产品与传统产品具有实质等同性,则可以认为是安全的。然而各国政府对于转基因的态度却转向两个方向。一方是以美国为代表的宽松政策,认为只要在科学上无法证明转基因产品的危害性都不应该限制。另一方以欧盟为代表的则认为只要不能否定其危害性就应该限定。 我国政府十分重视转基因生物安全管理问题,2001年5月,国务院颁布了《农业转基因生物安全管理条例》,我国越来越重视转基因生物及其产品的安全性,并且密切关注国际上有关管理法规的动向。 转基因技术论文篇二:《试论转基因食品检测技术》 摘要:在基因工程技术开展的影响下,各国对转基因食品的研发也在不时放慢,而转基因食品的呈现随同着食品平安成绩,人们对转基因食品的信任度并不高,为了使人们可以对转基因食品停止自主选择,各个国度与组织机构要求企业对消费的转基因产品停止标识,这也对转基因食品剖析检测技术提出了更高的要求。本文引见了转基因食品剖析检测技术的内容,讨论其研讨进程,并对转基因食品剖析检测技术的将来开展停止了瞻望。 关键词:转基因食品;剖析检测技术;基因工程 20世纪70年代重组DNA技术的问世将生物技术带进基因工程时代,农业生物技术在世界范围内迅速崛起,转基因动物在全球范围内失掉普遍种植,随之而来的转基因食品也迅猛开展。由于转基因生物技术的普遍使用和转基因作物的大规模种植,转基因食品的平安性成绩也已惹起人们越来越多的关注。 一、转基因食品标识制度与剖析检测技术 我国在2015年对叶食品平安法曳的修订中有明白的指示,企业对转基因食品必需依照规则停止标识。目前国际中关于转基因食品标识制度次要分为强迫性标识与自愿性标识2种。在我国关于转基因食品的标识有着较为严厉的法律制度,关于企业消费与运营的产品直达基因食品含量超越阈值必需停止标识。而在一些欧美国度对转基因食品标识没有严厉的要求,只关于存有过敏要素的转基因食品停止标志。而在我国产品出口时需求停止严厉的剖析检测,关于合格的转基因食品同意出口并停止转基因标识,其也是产品流通的关键。由此可见标识的重要性[1]。而对转基因产品的标识需求经过剖析检测来完成,故转基因食品标识制度是转基因食品的重要标签。实践检测才能决议标识制度的树立,定性和定量剖析检测技术所到达的检测限为标识制度提供迷信根据;但是在实践检验检疫任务中标识制度是经过检测技术来完成的。因而,标识制度与剖析检测技术的关系非常亲密,二者互相影响,互相作用[2]。 二、、转基因食品成绩现状 转基因食品概述 在基因工程中,应用DNA重组技术将外源性基因转移到其他生物体中,使生物体显现出特殊的遗传特征与生物性状,失掉新的基因重组的生物体就是转基因的内容。而所谓转基因食品则是使用这些特殊的生物体停止加工而成的食品。转基因在某种水平上只是应用外源性基因放慢生物体的生出息程,在基因工程中,转基因食品次要是为了延长作物生长周期尧添加作物产量尧添加抗病虫害才能,从而无效降低消费本钱,进步作物的消费效益。在目前的转基因研讨中,并没有发现食品中含有少量的毒素。但是由于转基因食品属于人工制造的外来生物体而非自然选择生成的物种,在基因漂流的进程中发生的基因序列的改动无法完全地停止掌握,外源性基因在与DNA停止重组时存在着不可控制的性状,因此对转基因食品的平安性也无法停止确切的定论[3]。 转基因食品存在的成绩 转基因食品自呈现开端便成了一种十分具有争议的食品,越来越多的转基因食品流入市场与媒体的发酵使人们对转基因食品的平安性有了很大的质疑。而在转基因食品平安的成绩上,目前还没有严谨的迷信结论与研讨 报告 对其平安性给出确切的证据结论,其存在的成绩次要有以下几个方面。第一,转基因食品是由基因植入及基因重组构成的新的生物体,其本来具有的构造与成分能否发作了变化;第二,转基因食品不是自然界生成的产物,食用转基因食品能否会对人体发生负面影响,临时食用能否会有毒素的积聚,对人体的发育生长有什麼影响;第三,转基因作物不是在自然选择下呈现的产物,其能否会对生物链有影响,能否会毁坏生态均衡;第四,转基因作物是基因活动下的产物,这种状况下能否会呈现基因净化的状况,涉及到其他自然界的作物,使其基因发作改动[4]。由于上述这些成绩并没有失掉无效的处理,因此才迫切需求完好尧精确尧严谨的转基因食品剖析检测技术对其平安性停止保证,从而进一步完善我国转基因食品监管方面的迷信标准。 转基因食品检测技术的内容和分类 目前,关于转基因食品的平安性次要依托转基因食品剖析检测来停止测定。而在转基因食品的剖析检测进程中,次要是对DNA尧蛋白质及核酸这3类物质停止测定,可以依据这3类物质分红3个品种的检测办法,在实践状况中可以依据需求停止检测办法的联用。由于蛋白质程度检测办法仅适用于未停止加工的食品检测和新颖食品范围,具有较大的局限性,因此现阶段外源基因测定办法的运用范围较为普遍[5]。 三、转基因食品检测技术的研讨 蛋白质印迹检测技术 蛋白质印迹检测次要是应用聚丙烯酰氨凝胶电泳对转基因食品外源蛋白质停止别离,并与显色酶反响停止结合,从而使外源蛋白质可以无效地停止别离检测。这种检测办法次要是对转基因食品中不可溶蛋白质停止剖析,检测在转基因食品中的蛋白质含量,并与蛋白质预定限值停止比对。 复合扩增PCR检测技术 目前在转基因食品检测中多重PCR检测技术是一种被普遍运用的检测手腕。PCR渊聚合酶链式反响冤普通只能对1个DNA片段停止缩小扩增检测。为了能在转基因食品检测中取得更片面的基因序列信息,在停止基因检测时应用PCR反响原理停止多重检测,由此构成了复合扩增PCR转基因食品检测技术。这种检测技术的使用可以无效提升检测效率,并且可以对基因序列多个靶位点同时停止检测,完成转基因食品检测的精确性与牢靠性[6]。 外源DNA检测技术 转基因食品次要是将外源DNA导入生物体中,而对外源DNA的检测次要是对植入的DNA片段停止转基因食品基因序列特征的检测,以转基因食品DNA序列作为检测目的,转基因食品核酸程度检测作为最次要的转基因产品检测技术,其次要检测启动子尧基因和终止子,便于检测转基因食品。 基因芯片检测技术 基因芯片是对转基因生物体的基因组序列停止测定,经过将转基因食品的DNA有规律排布在硅片或是玻片上构成微距阵。经过对基因芯片上的基因序列停止计算机软件的计算处置,从而取得转基因食品的基因特征与生物信息,这种办法可以精确无效地对转基因生物体的基因表达特征停止检测[7-9]。 检测技术 LAMP渊环介导等温扩增冤技术是众多核苷酸扩增技术中的一种,这种技术在运用时没有特定的环境条件要求,只需求在恒温形态下就可以停止检测实验,操作技术较为复杂。LAMP检测技术次要是应用显色反响对转基因生物体停止察看,并且应用浊度仪对其在反响进程中发生的沉淀物停止检测判别,是一种较为复杂的检测技术。 联用检测技术 联用检测技术次要是集合多种检测技术的优点对转基因食品停止无效的剖析检测,这样可以起到扬长避短的作用。在基因检测中,现有的联用检测技术有PCR技术与酶联免疫吸附法的结合运用等办法[10-11]。 四、结语 转基因食品剖析检测技术次要是对转基因食品的平安停止评价。目前,转基因食品剖析检测技术有多种,由于转基因食品的基因片段不同,因此采用的检测技术也需求根据实践需求停止选择,确保检测技术的无效性。在将来市场上会呈现越来越多的转基因食品,剖析检测技术作为其中重要的检测手腕也肯定会有新的开展。 转基因技术论文篇三:《浅议转基因食品消费者知情权保护制度》 [摘 要]转基因食品消费中存在的信息不对称及食品安全的不确定性引发了消费者的普遍关注,切实保障消费者的知情权有助于转基因食品的理性消费和转基因技术的健康发展。 因此,应借鉴美国和欧盟保障消费者知情权的主要制度,从标识制度、安全评价和检测制度以及公众参与制度等方面构建和完善我国转基因食品消费者知情权的保障体系。 [关键词]转基因食品;消费者;知情权。 二十世纪末以来,转基因食品在生活中得到了广泛的推广。 所谓转基因,就是利用分子生物学手段,将某些生物的基因转移到其他生物物种中去,使其出现原物种不具有的性状或产物,以转基因生物为原料加工生产的食品就是转基因食品。但另一方面,随着转基因技术日益普遍的运用,这一技术对人类健康可能带来的安全隐患也逐渐受到社会各界的关注。在转基因食品已经生产并上市的情况下,消费者的知情权具有正当性,应当予以保护。 一、消费者知情权的内涵。 消费者有权要求经营者按照法律规定的方式标明转基因食品及其相关服务的真实成份、所用原料、来源。如果食品含有转基因成份、所用原料为转基因产品、直接来自于转基因方法培育的作物、所提供的餐饮服务中涉及转基因食品等等,则消费者有权要求经营者在出售转基因食品或提供转基因食品相关的服务时,予以标明。消费者有权在交易过程中,就所售食品或所提供服务进行询问和了解,经营者应该耐心、细致地予以回答和说明。经营者在提供转基因食品或与转基因食品相关的服务时,无论食品或服务的优、缺点均应向消费者如实介绍。 二、消费者知情权保护制度的意义。 (一)转基因食品消费者知情权保护,是食品安全保障的重要方面。 由于转基因作物能更好地防治病虫害,抵御干旱,提高产量,营养成分高,因此发展前景十分广阔。但专家们也强调,发展转基因食品必须有严格监督、科学检验、加强立法和管理,以避免它对人类健康和环境造成损害。[1]而转基因食品消费者知情权保护法律制度,有助于通过消费者监督,促使食品生产者在转基因技术的运用上更加慎重,避免有害健康的食品进入消费领域,因而是食品安全保障的重要途径和手段。 (二)转基因食品消费者知情权保护,是消费者权益的重要体现。 知情权作为政治民主化的一种必要和结果,是公民依法享有的基本人身权利。消费者作为特定的民事主体,其享有知情权是政治领域的民主原则扩展到经济生活的必然要求,我国相关法律法规做出了明确规定。特别是消费者的知情权,还是其行使选择权的前提条件,消费者有权决定是否购买转基因食品。因而知情权对食品消费者的基本权益的全面实现有着至关重要的作用。然而,就目前我国转基因食品研发、生产、加工、销售等方面而言,消费者所应享有的知情权与社会现实有着极大差距,现行法律对此方面规定亦不完善。这种情况不利于对消费者基本权益的保护,也对转基因食品的规范管理造成负面影响。 三、国外转基因食品消费者知情权保护现状。 转基因食品信息公开,保障消费者充分享有知情权,是目前世界各国自转基因生物技术研发到转基因食品商业化生产销售过程中所需解决的重要课题。欧美等发达国家对于此有着较为完善的立法和管理体系。国外先进的信息透明化管理模式以及消费者知情权保护法律制度的研究与实践对我国有着重大的借鉴意义。其主要可归纳为三大模式: (一)以欧盟为代表的严格限制型模式。 欧盟对转基因食品的认定根据过程而非最终产品。为保证消费者对食品拥有充分知情权,欧盟设立了专门机构,即欧盟食品安全管理局(EFSA),负责评估与整个食物链相关的风险,不受其他机构管辖,独立开展工作。[2]并建立专门网站向公众提示食品风险问题,充分公开转基因食品自研发到销售的各环节信息。 在对消费者知情权法律保护方面,欧盟以《通用食品法》为主体,辅以大量食品标签法令和 广告 法令,构成高低有序,结构严谨的转基因食品信息公开制度。2003 年第 1829 号法令和1830 号法令规定:无论源自转基因生物的 DNA或蛋白质是否存在,只要食品包含转基因生物或由转基因生物制成,都要有特别标签加以标明。法令细化到标签规格制式,转基因含量限制等,种类扩展到数十类百余种。 (二)以美国为代表的宽松鼓励型模式。 美国对于转基因食品管理遵循的是“可靠性科学原则”,采取宽松式管理模式,奉行自律管制。但其仍十分注重公众知情权的法律保护,强调转基因技术研发、实践、生产、推广的透明性,并建立了有效的食品安全信息系统,定时发布转基因食品检测信息,在网络发布转基因食品名录、食品安全资源信息等,使食品安全信息最大限度予以公开。[3]美国《转基因食品安全管理草案》、《公共健康卫生法》、《联邦食品及药物管理现代化法》规定了转基因食品商业化申请流程,并将对公众公开相关技术资料等,作为取得食品和药物管理局(FDA)合法执照的必要条件。 (三)以日本为代表的折中模式日本对转基因食品采取的是在严格管制的同时加以鼓励的原则。为保护消费者知情权,日本政府颁布《转基因食品标识法》,对主要原料为已通过安全评价的转基因农产品,加工后仍残留重组 DNA或其编码的蛋白质食品,制定具体的标识办法。同时,由日本科学技术厅、农林水产省和厚生省共同管理转基因技术事项,定期公布转基因食品研发资料以及市场流通转基因食品名录。 国外转基因食品管理模式,不管其对转基因技术产品是否持谨慎态度,都将信息透明化、保证消费者充分知情权置于立法及管理优先考虑的方面,值得我国相关立法执法机构借鉴。 四、我国转基因食品消费者知情权保护现状。 我国政府高度关注现代生物技术,支持和鼓励转基因生物和转基因食品的研究。我国于 2000 年 8 月 8 日签署《卡塔赫纳生物安全议定书》的第 23 条规定:各缔约方应按其各自的法律规章,在关于改性活生物体的决策过程中征求公众的意见,并在不违反关于机密资料的情况下,向公众通报;缔约方应力求使公众知悉可通过何种方式公开获得生物安全资料。[4]2001 年 5月 23 日,国务院发布《农业转基因生物安全管理条例》,明确规定农业转基因生物实行安全评价制度,标志管理制度,生产许可制度,经营许可制度和安全审批制度。作为迄今为止我国级别最高、最全面的转基因技术管理条例,信息公开制度和知情权保护制度均未列入其中。 我国在转基因食品消费者知情权的保护方面在立法上取得重大成就的同时,也存在着一些弊端。如缺少专门生物技术安全立法,立法层次不高,研究、生产、销售等转基因技术重要阶段信息公开出现“真空管理”,[5]造成信息公开制度和知情同意制度严重缺失。转基因食品强制标识是保护消费者知情权最重要的手段,但随着转基因技术迅速发展,《农业转基因生物标识管理办法》所规定标识种类未进行更新补充,标识管理未向烟酒等进行细化规范,造成标识混乱,透露信息极为有限,对消费者充分行使知情权造成巨大阻碍。 五、完善我国转基因食品消费者知情权保护制度 措施 。 我国学术界在转基因食品消费者知情权法律保护方面,也做了较多的研究。具体来说,完善我国转基因食品消费者知情权保护制度,应加强以下三个工作重点: 第一,加强对转基因食品的标识管理。虽然转基因标识制度已经实施多年, 但在转基因食品标识上还存在诸多问题。一方面, 还有众多转基因食品没有进行标识;另一方面, 现有的进行了标识的转基因食品,其所作的标识多数不符合规范。因此,国家相关部门应在今后加强对转基因食品标识的监管工作。 第二,强调公众对转基因食品的知情权和选择权。公众对所消费的食品应拥有知情权和选择权, 公众只有充分地获得知情权, 才能享有选择权, 并最大限度地保护自己的权益。在目前转基因食品的风险和危害尚不明确的情况下, 消费者对其选择有些茫然难以避免。因此, 政府相关主管部门应提高转基因相关信息透明性和安全管理的公众可参与性, 比如在批准转基因生物环境释放和商业化生产时增加公众听证的程序。 第三,健全转基因食品检测、评估体系。首先, 建立独立的权威检测机构, 对转基因食品进行严格的检测, 保证其质量和安全性, 并逐渐形成一个覆盖全国的农业生物技术管理监督与监测网络体系。定时发布转基因食品名录供消费者参考。其次,严格控制转基因食品的生产、加工、贮运、销售直到进出口各环节, 使安全风险降至最低。[6]结合我国实际, 研制出一套切实可行的转基因食品安全评估体系, 将转基因食品置于规范化的管理和监控之中, 使消费者能放心地消费转基因食品。第三, 要加大执法力度。对未经申报审批而进行商业化生产的, 对不执行转基因食品标识制度的单位和个人, 应承担相应的法律责任,以保证转基因食品市场健康发展。 六、结语。

相关百科
热门百科
首页
发表服务