论文投稿百科

巨磁电阻效应相关的学术论文

发布时间:2024-07-05 07:52:44

巨磁电阻效应相关的学术论文

一、承担的学术研究课题(1)微纳电子材料的磁结构和磁相变的研究2006-2008年,国家自科科学基金(60571043),项目负责人(2)反铁磁耦合多层膜体系磁性的微磁学研究2007-2009年,湖南省自然科学基金(07JJ3103),项目负责人(3)磁性纳米结构体系的微磁结构和反磁化机制的研究2004-2006年,湖南省自然科学基金(04JJ3078),项目负责人(4)层状晶体结构的稀土-过渡族金属间化合物的磁相变和巨磁电阻效应的研究2003-2005年,湖南省自然科学基金(03JJY4044),项目负责人(5)磁性纳米结构材料的微磁结构和反磁化机制的研究2006-2008年,粉末冶金国家重点实验室开放基金,项目负责人二、在国内外公开发行刊物上发表的学术论文 1. Guang-hua Guo, Hai-bei Zhang. Magnetocrystalline anisotropy and spin reorientation transition of compound. J. Alloys Compd.,2007,429,. Guang-hua Guo, Hai-bei Zhang. The spin reorientation transition and first order magnetization process of compound. J. Alloys Compd.,2007,doi:. 秦江,郭光华,张海贝。化合物 的磁晶各向异性及自旋重取向相变研究。功能材料,2007,38 (3),4. 张腊梅,郭光华,韩念梅。磁性纳米线矫顽力随角度变化规律的微磁学研究。中国有色金属学报,2006,16(8),1400-1404。5. 郭光华,张海贝。化合物 的磁晶各向异性及自旋重取向相变研究。物理学报,2005,54 (12), 5879-5883。6. 郭光华,张海贝。化合物 的磁性和磁相变。中国有色金属学报,2005,15(10), . 张腊梅,郭光华,刘正方。磁性纳米线反磁化机制的微磁学模拟与研究。中国有色金属学报,2005,15(5),787~792。8. 郭光华,张海贝,张剑。 化合物的磁性和磁相变的分子场理论研究。稀有金属,2003,27(5), . Guo Guang-Hua, Zhang Hai-Bei and R. Z. Levitin. Magnetic properties and magnetic phase diagrams of intermetallic compound . Chinese Physics, 2003, 12(6), . Guo Guang-hua. Exchange interactions and magnetic properties of intermetallic compounds. Trans. Nonferrous Met. Soc. China, 2003, 13(1), . Guo Guanghua, N. P. Kolmakova, R. Z. Levitin, A. Yu. Sokolov and D. A. Filippov. Peculiarities of Magnetic Properties in Ferrimagnets with Antiferromagnetic Intra-Sublattice Exchange Interaction. The Physics of Metals and Metallography, 2002, , . Guo Guanghua, M. V. Eremin, N. P. Kolmakova, A. S. Lagutin and R. Z. Levitin. Magnetic Properties of the HoMn2Ge2 Intermetallic Compound. Phys. Solid State, 2002, 44(11), . Guo Guang-Hua, Wu Ye, Zhang Hai-Bei, . Filippov, . Levitin and . Snegirev. Magnetic phase transition and the corresponding magnetostriction of intermetallic compounds (R=Sm, Gd). Chinese Physics, 2002, 11(6), . 郭光华,吴烨。化合物 (x=, )中场诱导的反铁磁→铁磁一级磁相变。中国有色金属学报,2002,12(2), . Guo Guanghua, M. V. Eremin, A. Kirste, N. P. Kolmakova, A. S. Lagutin, R. Z. Levitin, M. von Ortenberg and A. A. Sidorenko. Magnetic Phase Transitions and Phase Diagrams of . J. Exp. Theor. Phys., 2001, 93(4), . Guo Guanghua, . Levitin, . Snegirev and . Filippov. Magnetostriction of and intermetallic compounds. Phys. Solid State, 2001, 43(3), . 郭光华, . Levitin。金属间化合物 的自发磁相变和场诱导的磁相变。物理学报,2001,50 (2), . Guo Guanghua, . Levitin, A,Yu. Sokolov, . Snegirev and . Filippov. Study of ferrimagnets with negative interaction within one of the sublattices: magnetic phase diagram of intermetallic compounds. J. Magn. Magn. Mater., 2000, 214, . Guo Guang-hua, , . Field-induced Magnetic Phase Transitions in Ferrimagnet : H-T Magnetic Phase Diagrams. J. Cent. South Univ. Technol., 2000, 7 (2), . Guo Guanghua, . Levitin, . Snegirev, . Filippov, A,Yu. Sokolov. Magnetic phase diagram of the intermetallic compounds and the effect of a field on transitions of the Mn subsystem from the antiferromagnetic into the ferromagnetic state. J. Exp. Theor. Phys., 2000, 90 (6), . 郭光华,。金属间化合物 (R=La, Pr, Nd, Sm, Gd, Tb和Y)中的自发磁相变及相变时的磁弹性异常。物理学报,2000,49 (9), . А., Guo Guanghua, S.А.Granovsky, , , М.Shiga, Т.Goto. Spontaneous and field-induced magnetic phase transitions in the intermetallic compounds . J. Exp. Theor. Phys., 1999, 89 (4), . I,, Gou Guanghua, S.А.Granovsky, , , , . X-ray studies of magnetic phase transitions in the intermetallic compounds (R=La, Sm, Gd, Nd, Tb and Y). Phys. Solid State, 1999, 41 (11), . Guo Guanghua, Filippov . Kolmakova , Levitin ., Sidorenko A,A, Kirste A., von Ortenberg M., Puhlman N., Stolpe I., Morkevtsev ., Platonov ., Tatsenko ., Magnetic Phase H-T Diagram of GdMn2Ge2. 6th International Symposium on Research in High Magnetic Fields. Porto, Portugal, (2000).25. Guo Guanghua, , , , , Novel features in magnetic phase diagrams of . 8th European Magnetic Materials and Applications Conference, 7-10 June 2000, Kyev, Ukraine, . Guo Guanghua, , , M,, A,, , “Ferrimagnets with antiferromagnetic intra-sublattice exchange interaction: the system ”, The Moscow International Symposium on Magnetism. Moscow, Russia (1999), . Guo Guanghua, , , M,, A,, “Spontaneous and field induced phase transitions in ferrimagnets with intra-sublattice antiferromagnetic exchange interaction”, The European Conference “Physics of Magnetism 99”, June 21-25, 1999, Poznan, Poland, 157.三、获得的学术研究表彰/奖励Irreversible magnetic exchange-spring processes in antiferromagnetic exchange- coupled bilayer systems. Applied Physics Letters, 获湖南省优秀自然科学论文二等奖,2008年,排名第一

计算机硬盘是通过磁介质来存储信息的。一块密封的计算机硬盘内部包含若干个磁盘片,磁盘片的每一面都被以转轴为轴心、以一定的磁密度为间隔划分成多个磁道,每个磁道又被划分为若干个扇区。

磁阻效应的一种,可以在磁性材料和非磁性材料相间的薄膜层(几个纳米厚)结构中观察到。这种结构物质的电阻值与铁磁性材料薄膜层的磁化方向有关;

两层磁性材料磁化方向相反情况下的电阻值,明显大于磁化方向相同时的电阻值,电阻在很弱的外加磁场下具有很大的变化量。巨磁阻效应被成功地运用在硬盘生产上,具有重要的商业应用价值。

扩展资料:

巨磁阻效应自从被发现以来就被用于开发研制用于硬磁盘的体积小而灵敏的数据读出头(Read Head)。这使得存储单字节数据所需的磁性材料尺寸大为减少,从而使得磁盘的存储能力得到大幅度的提高。第一个商业化生产的数据读取探头是由IBM公司于1997年投放市场的,巨磁阻技术已经成为全世界几乎所有电脑、数码相机、MP3播放器的标准技术。

参考资料来源:百度百科-巨磁阻效应

巨磁阻效应及实验研究论文

巨磁阻现象是指样品的电阻在很弱的外加磁场下会具有很大的变化。法国的Albert Fert及德国的Peter Grünberg在1980年代分别独立利用铁铬多层膜技术来产生巨磁阻效应,分别产生了50%及10%的磁阻变化。到了1988年,由M. N. Baibich等人在铁铬多层膜系统中使这个系统的的电阻在2T的磁场下变为两倍,取得了重大突破。巨磁阻现象可以利用下面的模型来帮助了解。假设我们有两层磁性物质中间夹着一层非磁性物质。如果两层磁性物质的磁化方向相同,当通过一束电子自旋方向跟磁性物质相同平行的电流时,基本上电子可以容易的通过。但是如果两层磁性物质的磁化方向相反,自旋与跟第一层磁化方向平行的电子可以顺利通过第一层,却会被第二层相反磁性方向的磁性物质所散射,因此通过的电流便会减少,也就是电阻会上升。因此利用电流的升降,可以定义逻辑讯号的0与1,进而发展各式各样的磁记录系统。 MR读磁头的构造这个现象用来读取磁性记录装置特别有用,当记录数据所需的扇区随着技术的发达而越来越小而能够在单位面积下容纳更多的数据,相对的读写头也要随之缩小才能增加读取效率。但是缩小的扇区同时也表示磁场的讯号会减弱,这时便显出巨磁阻物质的重要性。因为巨磁阻物质可以将磁性方法记录的讯号,以不同的电流大小输出。尽管磁场很小,但是还是可以产生足够的电流变化。因此可以大幅提高数据储存的密度。

巨磁阻效应自从被发现以来就被用于开发研制用于硬磁盘的体积小而灵敏的数据读出头(Read Head)。这使得存储单字节数据所需的磁性材料尺寸大为减少,从而使得磁盘的存储能力得到大幅度的提高。第一个商业化生产的数据读取探头是由IBM公司于1997年投放市场的,到目前为止,巨磁阻技术已经成为全世界几乎所有电脑、数码相机、MP3播放器的标准技术。在Grünberg最初的工作中他和他领导的小组只是研究了由铁、铬(Chromium)、铁三层材料组成的样品,实验结果显示电阻下降了。而Fert及其同事则研究了由铁和铬组成的多层材料样品,使得电阻下降了50%。阿尔贝·费尔和彼得·格林贝格尔所发现的巨磁阻效应造就了计算机硬盘存储密度提高50倍的奇迹。单以读出磁头为例,1994年,IBM公司研制成功了巨磁阻效应的读出磁头,将磁盘记录密度提高了17倍。1995年,宣布制成每平方英寸3Gb硬盘面密度所用的读出头,创下了世界记录。硬盘的容量从4GB提升到了600GB或更高。

电磁学的应用论文

自己上百度找,不过最好自己写,这里有一参考: 摘 要:介绍了电磁学计算方法的研究进展和状态,对几种富有代表性的算法做了介绍,并比较了各自的优势和不足,包括矩量法、有限元法、时域有限差分方法以及复射线方法等。 关键词:矩量法;有限元法;时域有限差分方法;复射线方法 1 引 言 1864年Maxwell在前人的理论(高斯定律、安培定律、法拉第定律和自由磁极不存在)和实验的基础上建立了统一的电磁场理论,并用数学模型揭示了自然界一切宏观电磁现象所遵循的普遍规律,这就是著名的Maxwell方程。在11种可分离变量坐标系求解Maxwell方程组或者其退化形式,最后得到解析解。这种方法可以得到问题的准确解,而且效率也比较高,但是适用范围太窄,只能求解具有规则边界的简单问题。对于不规则形状或者任意形状边界则需要比较高的数学技巧,甚至无法求得解析解。20世纪60年代以来,随着电子计算机技术的发展,一些电磁场的数值计算方法发展起来,并得到广泛地应用,相对于经典电磁理论而言,数值方法受边界形状的约束大为减少,可以解决各种类型的复杂问题。但各种数值计算方法都有优缺点,一个复杂的问题往往难以依靠一种单一方法解决,常需要将多种方法结合起来,互相取长补短,因此混和方法日益受到人们的重视。 本文综述了国内外计算电磁学的发展状况,对常用的电磁计算方法做了分类。 2 电磁场数值方法的分类 电磁学问题的数值求解方法可分为时域和频域2大类。频域技术主要有矩量法、有限差分方法等,频域技术发展得比较早,也比较成熟。时域法主要有时域差分技术。时域法的引入是基于计算效率的考虑,某些问题在时域中讨论起来计算量要小。例如求解目标对冲激脉冲的早期响应时,频域法必须在很大的带宽内进行多次采样计算,然后做傅里叶反变换才能求得解答,计算精度受到采样点的影响。若有非线性部分随时间变化,采用时域法更加直接。另外还有一些高频方法,如GTD,UTD和射线理论。 从求解方程的形式看,可以分为积分方程法(IE)和微分方程法(DE)。IE和DE相比,有如下特点:IE法的求解区域维数比DE法少一维,误差限于求解区域的边界,故精度高;IE法适合求无限域问题,DE法此时会遇到网格截断问题;IE法产生的矩阵是满的,阶数小,DE法所产生的是稀疏矩阵,但阶数大;IE法难以处理非均匀、非线性和时变媒质问题,DE法可直接用于这类问题〔1〕。 3 几种典型方法的介绍 有限元方法是在20世纪40年代被提出,在50年代用于飞机设计。后来这种方法得到发展并被非常广泛地应用于结构分析问题中。目前,作为广泛应用于工程和数学问题的一种通用方法,有限元法已非常著名。 有限元法是以变分原理为基础的一种数值计算方法。其定解问题为: 应用变分原理,把所要求解的边值问题转化为相应的变分问题,利用对区域D的剖分、插值,离散化变分问题为普通多元函数的极值问题,进而得到一组多元的代数方程组,求解代数方程组就可以得到所求边值问题的数值解。一般要经过如下步骤: ①给出与待求边值问题相应的泛函及其变分问题。 ②剖分场域D,并选出相应的插值函数。 ③将变分问题离散化为一种多元函数的极值问题,得到如下一组代数方程组: 其中:Kij为系数(刚度)矩阵;Xi为离散点的插值。 ④选择合适的代数解法解式(2),即可得到待求边值问题的数值解Xi(i=1,2,…,N) (2)矩量法 很多电磁场问题的分析都归结为这样一个算子方程〔2〕: L(f)=g(3)其中:L是线性算子,f是未知的场或其他响应,g是已知的源或激励。 在通常的情况下,这个方程是矢量方程(二维或三维的)。如果f能有方程解出,则是一个精确的解析解,大多数情况下,不能得到f的解析形式,只能通过数值方法进行预估。令f在L的定义域内被展开为某基函数系f1,f2,f3,…,fn的线性组合: 其中:an是展开系数,fn为展开函数或基函数。 对于精确解式(2)通畅是无限项之和,且形成一个基函数的完备集,对近似解,将式 (2)带入式(1),再应用算子L的线性,便可以得到: m=1,2,3,… 此方程组可写成矩阵形式f,以解出f。矩量法就是这样一种将算子方程转化为矩阵方程的一种离散方法。 在电磁散射问题中,散射体的特征尺度与波长之比是一个很重要的参数。他决定了具体应用矩量法的途径。如果目标特征尺度可以与波长比较,则可以采用一般的矩量法;如果目标很大而特征尺度又包括了一个很大的范围,那么就需要选择一个合适的离散方式和离散基函数。受计算机内存和计算速度影响,有些二维和三维问题用矩量法求解是非常困难的,因为计算的存储量通常与N2或者N3成正比(N为离散点数),而且离散后出现病态矩阵也是一个难以解决的问题。这时需要较高的数学技巧,如采用小波展开,选取合适的小波基函数来降维等〔3〕。 (3)时域有限差分方法 时域有限差分(FDTD)是电磁场的一种时域计算方法。传统上电磁场的计算主要是在频域上进行的,这些年以来,时域计算方法也越来越受到重视。他已在很多方面显示出独特的优越性,尤其是在解决有关非均匀介质、任意形状和复杂结构的散射体以及辐射系统的电磁问题中更加突出。FDTD法直接求解依赖时间变量的麦克斯韦旋度方程,利用二阶精度的中心差分近似把旋度方程中的微分算符直接转换为差分形式,这样达到在一定体积内和一段时间上对连续电磁场的数据取样压缩。电场和磁场分量在空间被交叉放置,这样保证在介质边界处切向场分量的连续条件自然得到满足。在笛卡儿坐标系电场和磁场分量在网格单元中的位置是每一磁场分量由4个电场分量包围着,反之亦然。 这种电磁场的空间放置方法符合法拉第定律和安培定律的自然几何结构。因此FDTD算法是计算机在数据存储空间中对连续的实际电磁波的传播过程在时间进程上进行数字模拟。而在每一个网格点上各场分量的新值均仅依赖于该点在同一时间步的值及在该点周围邻近点其他场前半个时间步的值。这正是电磁场的感应原理。这些关系构成FDTD法的基本算式,通过逐个时间步对模拟区域各网格点的计算,在执行到适当的时间步数后,即可获得所需要的结果。 在上述算法中,时间增量Δt和空间增量Δx,Δy和Δz不是相互独立的,他们的取值必须满足一定的关系,以避免数值不稳定。这种不稳定表现为在解显式 差分方程时随着时间步的继续计算结果也将无限制的67增加。为了保证数值稳定性必须满足数值稳定条件: 其中:(对非均匀区域,应选c的最大值)〔4〕。 用差分方法对麦克斯韦方程的数值计算还会在网格中引起所模拟波模的色散,即在FDTD网格中数字波模的传播速度将随波长、在网格中的传播方向以及离散化的情况而改变。这种色散将导致非物理原因引起的脉冲波形的畸变、人为的各向异性及虚拟的绕射等,因此必须考虑数值色散问题。如果在模拟空间中采用大小不同的网格或包含不同的介质区域,这时网格尺寸与波长之比将是位置的函数,在不同网格或介质的交界面处将出现非物理的绕射和反射现象,对此也应该进行定量的研究,以保证正确估计FDTD算法的精度。在开放问题中电磁场将占据无限大空间,而由于计算机内存总是有限的,只能模拟有限空间,因此差分网格在某处必将截断,这就要求在网格截断处不引起波的明显反射,使对外传播的波就像在无限大空间中传播一样。这就是在截断处设置吸收边界条件,使传播到截断处的波被边界吸收而不产生反射,当然不可能达到完全没有反射,目前已创立的一些吸收边界条件可达到精度上的要求,如Mur所导出的吸收边界条件。 (4)复射线方法 复射线是用于求解波场传播和散射问题的一种高频近似方法。他根据几何光学理论和几何绕射理论的分析方法和计算公式,在解析延拓的复空间中求解复射线轨迹和场的振幅和相位,从而直接得出局部不均匀波(凋落波)的传播和散射规律〔5〕。复射线方法是包括复射线追踪、复射线近轴近似、复射线展开以及复绕射线等处理技术在内的一系列处理方法的统称。其共同特点在于:通过将射线参考点坐标延拓到复空间而建立了一个简单而统一的实空间中波束/射线束(Bundle ofrays)分析模型;通过费马原理及其延拓,由基于复射线追踪或复射线近轴近似的处理技术,构造了射线光学架构下有效的鞍点场描述方法等。例如,复射线追踪法将射线光学中使用的射线追踪方法和场强计算公式直接地解析延拓到复空间,利用延拓后的复费马原理进行复射线搜索,从而求出复射线轨迹和复射线场。这一方法的特点在于可以基于射线光学方法有效地描述空间中波束的传播,因此,提供了一类分析波束传播的简便方法。其不足之处是对每一个给定的观察点必须进行一次二维或四维的复射线轨迹搜索,这是一个十分花费时间的计算机迭代过程。 4 几种方法的比较和进展 将有限元法移植到电磁工程领域还是二十世纪六七十年代的事情,他比较新颖。有限元法的优点是适用于具有复杂边界形状或边界条件、含有复杂媒质的定解问题。这种方法的各个环节可以实现标准化,得到通用的计算程序,而且有较高的计算精度。但是这种方法的计算程序复杂冗长,由于他是区域性解法,分割的元素数和节点数较多,导致需要的初始数据复杂繁多,最终得到的方程组的元数很大,这使得计算时间长,而且对计算机本身的存储也提出了要求。对电磁学中的许多问题,有限元产生的是带状(如果适当地给节点编号的话)、稀疏阵(许多矩阵元素是0)。但是单独采用有限元法只能解决开域问题。用有限元法进行数值分析的第一步是对目标的离散,多年来人们一直在研究这个问题,试图找到一种有效、方便的离散方法,但由于电磁场领域的特殊性,这个问题一直没有得到很好的解决。问题的关键在于一方面对复杂的结构,一般的剖分方法难于适用;另一方面,由于剖分的疏密与最终所形成的系数矩阵的存贮量密切相关,因而人们采用了许多方法来减少存储量,如多重网格法,但这些方法的实现较为困难〔6〕。 网格剖分与加密是有限元方法发展的瓶颈之一,采用自适应网格剖分和加密技术相对来说可以较好地解决这一问题。自适应网格剖分根据对场量分布求解后的结果对网格进行增加剖分密度的调整,在网格密集区采用高阶插值函数,以进一步提高精度,在场域分布变化剧烈区域,进行多次加密。 这些年有限元方法的发展日益加快,与其他理论相结合方面也有了新的进展,并取得了相当应用范围的成果,如自适应网格剖分、三维场建模求解、耦合问题、开域问题、高磁性材料及具有磁滞饱和非线性特性介质的处理等,还包括一些尚处于探索阶段的工作,如拟问题、人工智能和专家系统在电磁装置优化设计中的应用、边基有限元法等,这些都使得有限元方法的发展有了质的飞跃。 矩量法将连续方程离散化为代数方程组,既适用于求解微分方程,又适用于求解积分方程。他的求解过程简单,求解步骤统一,应用起来比较方便。然而 77他需要一定的数学技巧,如离散化的程度、基函数与权函数的选取,矩阵求解过程等。另外必须指出的是,矩量法可以达到所需要的精确度,解析部分简单,可计算量很大,即使用高速大容量计算机,计算任务也很繁重。矩量法在天线分析和电磁场散射问题中有比较广泛地应用,已成功用于天线和天线阵的辐射、散射问题、微带和有耗结构分析、非均匀地球上的传播及人体中电磁吸收等。 FDTD用有限差分式替代时域麦克斯韦旋度方程中的微分式,得到关于场分量的有限差分式,针对不同的研究对象,可在不同的坐标系中建模,因而具有这几个优点,容易对复杂媒体建模,通过一次时域分析计算,借助傅里叶变换可以得到整个同带范围内的频率响应;能够实时在现场的空间分布,精确模拟各种辐射体和散射体的辐射特性和散射特性;计算时间短。但是FDTD分析方法由于受到计算机存储容量的限制,其网格空间不能无限制的增加,造成FDTD方法不能适用于较大尺寸,也不能适用于细薄结构的媒质。因为这种细薄结构的最小尺寸比FDTD网格尺寸小很多,若用网格拟和这类细薄结构只能减小网格尺寸,而这必然导致计算机存储容量的加大。因此需要将FDTD与其他技术相结合,目前这种技术正蓬勃发展,如时域积分方程/FDTD方法,FDTD/MOM等。FDTD的应用范围也很广阔,诸如手持机辐射、天线、不同建筑物结构室内的电磁干扰特性研究、微带线等〔7〕。 复射线技术具有物理模型简单、数学处理方便、计算效率高等特点,在复杂目标散射特性分析等应用领域中有重要的研究价值。典型的处理方式是首先将入射平面波离散化为一组波束指向平行的复源点场,通过特定目标情形下的射线追踪、场强计算和叠加各射线场的贡献,可以得到特定观察位置处散射场的高频渐进解。目前已运用复射线分析方法对飞行器天线和天线罩(雷达舱)、(加吸波涂层)翼身结合部和进气道以及涂层的金属平板、角形反射器等典型目标散射特性进行了成功的分析。尽管复射线技术的计算误差可以通过参数调整得到控制,但其本身是一种高频近似计算方法,由于入射波场的离散和只引入鞍点贡献,带来了不可避免的计算误差。总的来说复射线方法在目标电磁散射领域还是具有独特的优势,尤其是对复 杂目标的处理。 5 结 语 电磁学的数值计算方法远远不止以上所举,还有边界元素法、格林函数法等,在具体问题中,应该采用不同的方法,而不应拘泥于这些方法,还可以把这些方法加以综合应用,以达到最佳效果。 电磁学的数值计算是一门计算的艺术,他横跨了多个学科,是数学理论、电磁理论和计算机的有机结合。原则上讲,从直流到光的宽频带范围都属于他的研究范围。为了跟上世界科技发展的需要,应大力进行电磁场的并行计算方法的研究,不断拓广他的应用领域,如生物电磁学、复杂媒质中的电磁正问题和逆问题、医学应用、微波遥感应用、非线性电磁学中的混沌与分叉、微电子学和纳米电子学等。 参考文献 〔1〕 文舸一.计算电磁学的进展与展望〔J〕.电子学报,1995,23(10):62-69. 〔2〕 刘圣民.电磁场的数值方法〔M〕.武汉:华中理工大学出版社,1991. 〔3〕 张成,郑宏兴.小波矩量法求解电磁场积分方程〔J〕.宁夏大学学报(自然科学版),2000,21(1):76-79. 〔4〕 王长清.时域有限差分(FD-TD)法〔J〕.微波学报,1989,(4):8-18. 〔5〕 阮颖诤.复射线理论及其应用〔M〕.成都:电子工业出版社,1991. 〔6〕 方静,汪文秉.有限元法和矩量法结合分析背腔天线的辐射特性〔J〕.微波学报,2000,16(2):139-143. 〔7〕 杨永侠,王翠玲.电磁场的FDTD分析方法〔J〕.现代电子技术,2001,(11):73-74. 〔8〕 洪伟.计算电磁学研究进展〔J〕.东南大学学RB (自然科学版),2002,32(3):335-339. 〔9〕 王长清,祝西里.电磁场计算中的时域有限差分法〔M〕.北京:北京大学出版社,1994. 〔10〕 楼仁海,符果行,袁敬闳.电磁理论〔M〕.成都:电子科技大学出版社,1996. 现代电子技术

电和磁有何关系 电磁,在许多人的印象里,电和磁就像是一对相生相成、形影不离的孪生兄弟,也像是一对亲密无间、夫唱妻随的美满佳偶。说到电,必然也会说到磁;提到磁,自然也离不开电。如充满宇宙中的电磁波,它们对于我们来说简直就是如雷贯耳,因为它们对宇宙天体和生命物质发挥着极为重要的作用,它们就是电性和磁性的统一体。 电和磁确实有许多相似之处:带电体周围有电场,磁体周围也有磁场;同种电荷相斥,同名磁极也相斥;异种电荷相吸,异名磁极也相吸;变化的电场能激发磁场,变化的磁场也能激发电场;用摩擦的方法能使物体带上电,如果用磁铁的一极在一根铁棒上沿同一方向摩擦几次,也能使铁棒磁化——物理学家法拉第和麦克斯韦为此创立了“电生磁、磁生电”的电磁场理论。 但在19世纪以前,人们始终认为两者是各不相关的。直到19世纪初,科学界仍普遍认为电和磁是两种独立的作用。法国物理学家库仑就曾经论证过,电和磁是物质的两种截然不同的性质,虽然它们的作用定律在数学上极为相似,但是电和磁是不会相互转化的。库仑的这个看法在当时成了一种权威的理论。 但后来,电与磁之间的联系被发现了,如奥斯特发现的电流磁效应和安培发现的电流与电流之间相互作用的规律。再后来,法拉第提出了电磁感应定律,这样电与磁就连成一体了。 现在我们认为,电和磁是不可分割的,它们始终交织在一起。简单地说,就是电生磁、磁生电。变化的磁场能激发电场,反之,变化的电场也能激发磁场,有电必有磁,有磁才有电。它们总是紧密联系而不可分割的。 电流产生磁场 在“电和磁相互独立”的观点风行欧洲时,丹麦的科学家奥斯特却坚信电与磁之间有着某种联系。经过多年的研究,他终于在1820年发现了电流的磁效应:在一根直导线的附近放一枚小磁针,使磁针和导线平行,当导线中有足够强的电流通过时,磁针突然偏转,并与导线垂直,证明了电流周围存在着磁场。 如果一条直的金属导线通过电流,那么在导线周围的空间将产生圆形磁场。导线中流过的电流越大,产生的磁场越强。磁场成圆形,围绕导线周围。磁场的方向可以根据“右手定则”来确定:将右手拇指伸出,其余四指并拢弯向掌心。这时,拇指的方向为电流方向,而其余四指的方向是磁场的方向。实际上,这种直导线产生的磁场类似于在导线周围放置了一圈N、S极首尾相接的小磁铁的效果。 如果有两条通电的直导线相互靠近,会发生什么现象?我们首先假设两条导线的通电电流方向相反。那么,根据上面的说明,两条导线周围都产生圆形磁场,而且磁场的走向相反。在两条导线之间的位置会是说明情况呢?不难想象,在两条导线之间,磁场方向相同。这就好像在两条导线中间放置了两块磁铁,它们的N极和N极相对,S极和S极相对。由于同性相斥,这两条导线会产生排斥的力量。类似地,如果两条导线通过的电流方向相同,它们会互相吸引。 如果一条通电导线处于一个磁场中,由于导线也产生磁场,那么导线产生的磁场和原有磁场就会发生相互作用,使得导线受力。这就是电动机和喇叭的基本原理。 1831年8月,法拉第在软铁环两侧分别绕2个线圈 ,其一为闭合回路,在导线下端附近平行放置一磁针;另一与电池组相连,接开关,形成有电源的闭合回路。实验发现,合上开关,磁针偏转;切断开关,磁针反向偏转,这表明在无电池组的线圈中出现了感应电流。法拉第立即意识到,这是一种非恒定的暂态效应。紧接着他做了几十个实验,把产生感应电流的情形概括为5类:变化的电流, 变化的磁场,运动的恒定电流,运动的磁铁,在磁场中运动的导体。并把这些现象正式定名为电磁感应。 如果把一个螺线管两端接上检测电流的检流计,在螺线管内部放置一根磁铁。当把磁铁很快地抽出螺线管时,可以看到检流计指针发生了偏转,而且磁铁抽出的速度越快,检流计指针偏转的程度越大。同样,如果把磁铁插入螺线管,检流计也会偏转,但是偏转方向和抽出时相反。 为什么会发生这种现象呢?我们已经知道,磁铁会向周围的空间发出磁力线。如果把磁铁放在螺线管中,那么磁力线就会穿过螺线管。这时,如果把磁铁抽出,磁铁远离了螺线管,将造成穿过螺线管的磁力线数目减少(或者说线圈内部的磁通量减少)。正是这种穿过螺线管的磁力线数目(也就是磁通量)的变化使得螺线管中产生了感生电动势。如果线圈闭合,就产生电流,称为 电磁感应现象的发现,乃是电磁学领域中最伟大的成就之一。它不仅揭示了电与磁之间的内在联系,而且为电与磁之间的相互转化奠定了实验基础,为人类获取巨大而廉价的电能开辟了道路,在实用上有重大意义。电磁感应现象的发现,标志着一场重大的工业和技术革命的到来。事实证明,电磁感应在电工、电子技术、电气化、自动化方面的广泛应用对推动社会生产力的发展和科学技术的进步都发挥了重要的作用。

电磁场与电磁波相关论文题目

学术堂整理了十五个通信工程毕业论文题目供大家进行参考:1、高移动无线通信抗多普勒效应技术研究进展2、携能通信协作认知网络稳态吞吐量分析和优化3、协作通信中基于链路不平衡的中继激励4、时间反转水声通信系统的优化设计与仿真5、散射通信系统电磁辐射影响分析6、无人机激光通信载荷发展现状与关键技术7、数字通信前馈算法中的最大似然同步算法仿真8、沙尘暴对对流层散射通信的影响分析9、测控通信系统中低延迟视频编码传输方法研究10、传输技术在通信工程中的应用与前瞻11、城市通信灯杆基站建设分析12、电子通信技术中电磁场和电磁波的运用13、关于军事通信抗干扰技术进展与展望14、城轨无线通信系统改造方案研究15、无线通信系统在天津东方海陆集装箱码头中的运用

电磁场与电磁波的论文根据要求选用恰当的排列格式。

开关磁阻电机调速系统的研究论文

开关磁阻电机调速系统(SRD)是当今世界最新、性能价格比最高的调速系统。它是一种基于改变供电电源频率的调速方式——交流变频调速系统应运而生。而开关磁阻电机调速系统(又称开关磁阻电机驱动系统)简称SRD系统,是它们中崭新的一种系统,并且已经是智能化和模块化,不仅调速性优越,而且各种保护功能也很完善,已在很多方面大量使用。这项技术一经问世,便以其宽广的调速范围,良好的机械特性,卓越的启动制动性能,节能,易维护等一系列突出优点而引起电气及其他行业的关注。SRD系统是磁阻电动机和电力电子技术相结合而产生的一种机电一体化装置,主要由SRM开关磁阻电动机、功率变换器、单片机(或DSP芯片)、电流及位置检测器等五大部分组成。其组成与特点: 开关磁阻电动机(Switched Reluctance Motor,简称SRM) 是系统中实现能量转换的部件, 它与传统的磁阻电动机相比,具有本质的区别。在结构上,SRM采用双凸极形式,即定子、转子均为凸极式构造;定子线圈采用集中式而不是分布式绕组;加在定子绕组上的电压为不连续的矩形波而非连续的正弦波。转子仅由硅钢片叠压而成,既无绕组也无永磁体,定子各极上绕有集中绕组。图2所示为8/6极(定子八极、转子六极)四相SRM剖面图. SRM有两种独特的运行方式:低速时采用电流斩波方式;高速时采用单脉冲角度控制方式。在电流斩波方式中,系统是通过调节相绕组电流的大小来控制转矩,因此能准确知道绕组中实际电流的大小,对电流进行反馈是很必要的;在角度位置控制方式中,系统通过调节触发角和关断角来实现对转矩的控制,此时电流己不再作为控制量,但为了防止系统过载或故障则要进行过流保护,所以系统中需要进行电流检测。 开关磁阻电动机(SRM)工作原理遵循“磁阻最小原理”,通电后,磁路有向磁阻最小路径变或化的趋势。当转子凸极与电子凸极错位时,气隙大、磁阻大:一旦定子磁极绕组通电,就会形成对转子凸起的磁拉力,使气隙变小一一磁路磁阻变小。与此同时用电子开关按一定逻辑关系切换定子磁极绕组的通电相序,即可形成连续旋转的力矩。开关磁阻调速电动机的调速功能是由开关磁阻电动机转子位置检测器、功率变换器和控制器(即单片机或DSP芯片)共同配合实现的。 为开关磁阻电动机的机械特性,至所以说它机械特性好是因启动转矩大于额定转矩的2-3倍。功率变换器是开关磁阻电动机-运行时所需能量的提供者,是连接电源和电动机绕组的开关部件。通过它将电源能量馈入电机,也可将电机内的磁场储能反馈回电源,其功率变换电路所用的开关部件为快速绝缘栅双极型晶体管(IGBT)。 理论与实践证明:SRD系统在单位体积转矩值、效率、逆变器伏安容量及其性能参数上,可与目前的变频调速系统竞争。该机种在转矩/转动惯量的比值上占有较大的优势,特别是两种临界转速的,使可变范围广,可控因素多,是一种较理想的新型调速系统。 值此需要特别指出,它与众不同的是,SRD系统很容易通过改变电动机的工作方式和控制参数实现不同的性能特点和满足特殊的性能指标,尤其当采用单片机或DSP单片可编程微处理器芯片为控制核心时,往往只需通过修改软件,便能满足用户许多不同的性能要求。 随着科技能力的不断进步,以及半导体集成控制技术水平的提高,SRD系统已有了系列化产品,其多种中小功率SRD系统在不同的工业部门和家用电器中得到应用。 2、SRD系统的特性 主要表现在: *启动电流小(≤30%额定电流),启动转矩大,大于额定转矩的2--3倍; *调速范围广;调速比大于20:1,调速平滑无极; *负载特性好;稳定精度高,在负载大小变化时,转速保持不变其稳速精度≤正负; *系统效率高,从低速、中速到高速,系统效率均达到85%以上; *机械结构牢固,可免维护运行; *具有启动时低电流、大转矩的特性,其电动机和控制器在启动过程中电流冲击小,发热较连续额定运转时还小; *在制动运行和电动运转时,同样具有优良的转矩输出能力和工作特性。因此,适用于频繁启动或频繁正反转运行的场合,转换频率可达1000次/h。正因为具有以上特点,所以能开发应用的领域相当广泛。 3、开关磁阻电机调速系统(SRD)的应用 开关磁阻电机调速系统(SRD)的应用范围非常广泛,随着科技能力的不断进步,以及半导体集成控制技术水平的提高,SRD系统已有了系列化产品,其多种功率SRD系统在不同的工业部门和家用电器及国防军工中得到应用。如需频繁启动、停止、快速频繁正反转及需在很宽范围内调速的设备。如机械行业的龙门刨床、铣床,冶金行业的可逆轧机、飞锯、飞剪、电弧炉的电极升降,科研试验设备、医疗设备、食品、印刷机械、汽车、电力机车及空间技术、家用电器等。 在龙门刨床中的应用 龙门刨床是加工大面积金属平面的常见机床,其切削过程为:横梁和侧刀架在立柱上移动,垂直刀架在横梁上左右移动,工件所在的工作台在导轨上作直线往复运动。单就工作台的传动电机则要求:*能频繁快速地实现启动、制动及正反旋转,并能在直线往复运动中自动平稳地变换速度。*能在≥20的速比范围内平滑地调速。*能在工件吃刀后,不低于吃刀前速度的95%。*在任一速度下换向时,冲击电流限制在允许值内。*工作台在往复换向时切削点过切刀的距离不超过7一Bom,并能实现良好地制动。 过去多采用直流电动机和直流调速系统,虽然在性能上满足了需要,但缺点是:结构复杂,体积大,操作麻烦,维护量多,效率低,能耗高。近年来,使用了SRD后,省去了减速器,简化了结构,方便了操作,减少了能耗,降低了成本。 用于纺织“探边”设备 经过纺织行业的“探边” 与“对中”设备的实践使用,取得了较好的效果。对作为“探边”设备的动力,其反应速度小于,即电动机运转时,接到指令后,能在内实现反转,并要求在24小时内连续频繁运转,同时要求在较宽广范围内进行无级调速。这些功能都是在变频调速系统难以实现的。 用于家用电器: 将克服当今洗衣机和空调机、电冰箱的缺陷,成为更完善新一代产品。 目前世界上使用面广的现代洗衣机主要有二大类:一是波轮式全自动洗衣机,二是滚筒式全自动洗衣机。这两类洗衣机对电动机有共同的性能要求:即洗涤时要电机低速旋转,且能适应频繁正反转;脱水时要电机高速旋转。为此,它们均采用一种2极/16极变极双速单相异步电动机,勉强达到使用要求,但存在着调速性能差与效率低(一般均在30%以下)、启动电流大(特别是作频繁正反转洗涤状况时竟达到额定电流的7--8倍以上)。 而采用SRD系统代替原2极/16极变极双速单相异步电动机,则可以克服上述缺陷。因SRD系统有宽广的调速范围,可以使“洗涤”与“脱水”均工作在最佳的转速上;SRD 系统良好的启动性能可消除洗涤过程中启动电流对电网的冲击,使冼涤、换向平稳无噪声;实现全部调速范围的高效率,大大减少耗电量。 空调、电冰箱的核心部件都是压缩机,大都是由单相异步电动机带动压缩机,作二位置式的通断控温,因而系统效率与功率因数均低,并且温度的起伏范围大。况且启动时因电流大对电网有严重的冲击。虽则近年来有“变频空调”新产品,它采用异步电动变频调速系统取代单相异步电机空调机并获得了制冷速度快、运行噪音小,效率高,节能等一系优越性,但由于变频调速系统通常运行在中、低速时,机械特性差,系统效率和功率因素下降明显。而变频空调系统的压缩机电机恰恰大多数时间运行在中、低速,仅在刚刚开启才会运行在高速,所以这给变频空调的节能优越性大大地打了个折扣。反之SRD系统具有优良的调速性能,有更高的电能--机械能转换效率,特别是在中低速时,优势尤为突出。从而能有效的克服了变频调速系统的弊端,使节能更为有效。一般情况下,空调均是高耗能型家电,如果能节5%能以上,必将会获得较大的经济与社会效益。 在电动车与驱动上的应用 由于燃油汽车废气严重污染环境,故发展和完善无污染的电动车是社会的必然。而发展电动车除了随车的蓄电池要有高能量密封之外,再则就是要有性能和效率很优越的电动机调速系统作动力。而SRD系统高效率、高可靠性、宽广的调速范围,卓越的启、制动性能,它是各类电动车最理想的动力之一。 除此以还,国外还在下列车辆中开发使用: 电动自行车和电动摩托车、公共汽车、轮椅车、高尔夫球车、割草机、小型电动汽车。 高速运行应用场合的开发 由于SRM电动机具有坚固性和需要相对低的开关频,所以在叠片性能和轴承满足的条件下可作高速传动与运行,为此作为开发高速SRD系统又是一个应用方向。据有关资料,美国为空间技术应用研制了25000r/min、90Kw的高速SRD样机,其电动机有效材料仅为10Kg。 4、结束语 虽然SRD系统系统在我国出现较晚,产业化工作滞后,它的特点目前尚未被广大用户所了解,但由于SRD系统具有十分优良的控制性能,从而使得某些领域可取代现在仍广泛采用的交流变频调速系统,特别是在一些现有调速系统难以胜任的场所,发挥作用。为此,可以肯定开关磁阻电动机调速系统可望在21世纪尽显光彩。(我在别的地方找的,我也是学电控的,看后有点收获,看看你看过后能不能找到有用的吧~~)

算你找对人了啊,我就是这个单位的,先看下吧北京中纺锐力机电有限公司(简称中纺锐力)成立于2004年7月5日,注册在北京经济技术开发区— 中关村科技园区通州园金桥科技产业基地,为中纺机电研究所(简称机研所)改制后成立的高新技术企业。 机研所始建于1953年,是建国后成立的第一家国家级纺织机械研究机构,曾为我国纺织机械工业的起步和发展做出过重大贡献。由于行业特征和历史传统,该所在我国调速电机的研究开发领域占有重要地位:上世纪五十年代末在我国率先推出电磁调速电机,应用于多单元印染联合机;六十年代从国外引进交流变频器,应用于化纤机械;八十年代中期起,作为我国第一批从事开关磁阻调速电动机(SRD)的研制单位,在领域始终处于国际先进和国内绝对领先水平,并被科技部授予该项目重点推广计划的技术依托单位。 我的邮箱,如需要更深入的就发邮件吧

可以帮忙定制,收费

本书共8章,第1章介绍了开关磁阻电机调速系统的概况、发展趋势及主要应用领域。第2章介绍了开关磁阻电机线性数学模型、准线性数学模型及非线性数学模型。第3章分析了开关磁阻电机各类损耗,介绍了开关磁阻电机本体设计方法。第4章利用Ansoft软件建立开关磁阻电机的有限元模,用Rmxrpt得到二维几何模型,在Maxwell 2D的瞬态求模块下进行有限元分析。分析得到的绕组电流、绕组电流、绕组磁链、电磁转矩曲线。对转子极弧系数、轴径、开通角等参数进行优化分析。第5章介绍了开关磁阻电机调速系统在各类调速系统的地位,设计开关磁阻调速控制系统硬件。第6章针对开关磁阻电机调速特性研究开关磁阻电机控制策略和发电机理。第7章用MATLAB软件建立开关磁阻电机系统的系统模型,并对系统模型进行稳态性能仿真和动态性能仿真。第8章针对DSP对开关磁阻电机有位置传感器和无位置传感器调速系统进行理论分析与设计。

相关百科
热门百科
首页
发表服务