论文投稿百科

步态检测身份识别论文

发布时间:2024-07-05 22:32:37

步态检测身份识别论文

【 资讯 】核心提示:曼彻斯特大学电气与电子工程学院的奥马尔·科斯蒂利亚·雷耶斯说:“每个人走路时都有大约24种不同的要素和动作,这使每个人都有独一无二的行走模式。”

6月1日报道   英媒称,每个人走路的姿势都有细微差别,科学家们正在开发一种通过观察步态识别包括罪犯在内的个人的技术。

英国《每日邮报》网站5月29日报道,这种系统可能很快就会在机场得到使用,就像指纹和眼部扫描技术一样。

报道称,这种非侵入式技术的识别准确度约为,它需要使用嵌入机场地面的压力垫。该系统研究的是一个人的步态,而不是脚印形状本身。

物理生物识别技术——如指纹、面部识别和视网膜扫描——目前在安全领域较为常见。

报道称,然而,行为生物识别技术——包括你的走路姿势、嗓音和你的签名——能够捕捉到一个人行为和动作的独特之处。

为了创建这套人工智能系统,曼彻斯特大学和西班牙马德里自治大学的研究人员收集建立了历史上最大的脚步数据库,包括来自127人的近2万个脚步信号。

这篇发表在《模式分析与机器智能会刊》月刊上的研究论文发现,可以利用对这些动作的监测来准确识别个人。

这项研究的带头人、曼彻斯特大学电气与电子工程学院的奥马尔·科斯蒂利亚·雷耶斯说:“每个人走路时都有大约24种不同的要素和动作,这使每个人都有独一无二的行走模式。”

他说:“因此,可以利用对这些动作的监测来明确识别或核实某个人的身份,就像指纹识别或视网膜扫描一样。”

报道称,研究人员在真实安全场景中测试了他们的数据,包括机场安检口、工作场所和家庭环境等。

为了收集样本和数据集,研究团队使用了地面传感器和高清摄像头。

雷耶斯说:“关注非侵入式步态识别技术——监测走路时地面的受力——非常具有挑战性。这是因为,要人工区分人与人之间的细微差异是极其困难的,这就是我们必须设计一个新的人工智能系统、从一个新角度来克服这一挑战的原因。”

报道称,该技术的其他应用还包括能够识别神经退化的智能措施。这是雷耶斯打算推进其脚步识别研究的另一个领域。

他说:“我们还在研究利用智能住宅广域地面传感器提供的第一手脚步数据,来解决寻找认知衰退和精神疾病发病的标记这一医疗问题。”

步态识别是一种新兴的生物特征识别技术,旨在通过人们走路的姿态进行身份识别,与其他的生物识别技术相比,步态识别具有非接触远距离和不容易伪装的优点。在智能视频监控领域,比面像识别更具优势。步态是指人们行走时的方式,这是一种复杂的行为特征。罪犯或许会给自己化装,不让自己身上的哪怕一根毛发掉在作案现场,但有样东西他们是很难控制的,这就是走路的姿势。英国南安普敦大学电子与计算机系的马克·尼克松教授的研究显示,人人都有截然不同的走路姿势,因为人们在肌肉的力量、肌腱和骨骼长度、骨骼密度、视觉的灵敏程度、协调能力、经历、体重、重心、肌肉或骨骼受损的程度、生理条件以及个人走路的“风格”上都存在细微差异。对一个人来说,要伪装走路姿势非常困难,不管罪犯是否带着面具自然地走向银行出纳员还是从犯罪现场逃跑,他们的步态就可以让他们露出马脚。人类自身很善于进行步态识别,在一定距离之外都有经验能够根据人的步态辨别出熟悉的人。步态识别的输入是一段行走的视频图像序列,因此其数据采集与面像识别类似,具有非侵犯性和可接受性。但是,由于序列图像的数据量较大,因此步态识别的计算复杂性比较高,处理起来也比较困难。尽管生物力学中对于步态进行了大量的研究工作,基于步态的身份鉴别的研究工作却是刚刚开始。步态识别主要提取的特征是人体每个关节的运动。到目前为止,还没有商业化的基于步态的身份鉴别系统。

随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。我整理了图像识别技术论文,欢迎阅读!

图像识别技术研究综述

摘要:随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。图像识别是利用计算机对图像进行处理、分析和理解,由于图像在成像时受到外部环境的影响,使得图像具有特殊性,复杂性。基于图像处理技术进一步探讨图像识别技术及其应用前景。

关键词:图像处理;图像识别;成像

中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2013)10-2446-02

图像是客观景物在人脑中形成的影像,是人类最重要的信息源,它是通过各种观测系统从客观世界中获得,具有直观性和易理解性。随着计算机技术、多媒体技术、人工智能技术的迅速发展,图像处理技术的应用也越来越广泛,并在科学研究、教育管理、医疗卫生、军事等领域已取得的一定的成绩。图像处理正显著地改变着人们的生活方式和生产手段,比如人们可以借助于图像处理技术欣赏月球的景色、交通管理中的车牌照识别系统、机器人领域中的计算机视觉等,在这些应用中,都离不开图像处理和识别技术。图像处理是指用计算机对图像进行处理,着重强调图像与图像之间进行的交换,主要目标是对图像进行加工以改善图像的视觉效果并为后期的图像识别大基础[1]。图像识别是利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。但是由于获取的图像本事具有复杂性和特殊性,使得图像处理和识别技术成为研究热点。

1 图像处理技术

图像处理(image processing)利用计算机对图像进行分析,以达到所需的结果。图像处理可分为模拟图像处理和数字图像图像处理,而图像处理一般指数字图像处理。这种处理大多数是依赖于软件实现的。其目的是去除干扰、噪声,将原始图像编程适于计算机进行特征提取的形式,主要包括图像采样、图像增强、图像复原、图像编码与压缩和图像分割。

1)图像采集,图像采集是数字图像数据提取的主要方式。数字图像主要借助于数字摄像机、扫描仪、数码相机等设备经过采样数字化得到的图像,也包括一些动态图像,并可以将其转为数字图像,和文字、图形、声音一起存储在计算机内,显示在计算机的屏幕上。图像的提取是将一个图像变换为适合计算机处理的形式的第一步。

2)图像增强,图像在成像、采集、传输、复制等过程中图像的质量或多或少会造成一定的退化,数字化后的图像视觉效果不是十分满意。为了突出图像中感兴趣的部分,使图像的主体结构更加明确,必须对图像进行改善,即图像增强。通过图像增强,以减少图像中的图像的噪声,改变原来图像的亮度、色彩分布、对比度等参数。图像增强提高了图像的清晰度、图像的质量,使图像中的物体的轮廓更加清晰,细节更加明显。图像增强不考虑图像降质的原因,增强后的图像更加赏欣悦目,为后期的图像分析和图像理解奠定基础。

3)图像复原,图像复原也称图像恢复,由于在获取图像时环境噪声的影响、运动造成的图像模糊、光线的强弱等原因使得图像模糊,为了提取比较清晰的图像需要对图像进行恢复,图像恢复主要采用滤波方法,从降质的图像恢复原始图。图像复原的另一种特殊技术是图像重建,该技术是从物体横剖面的一组投影数据建立图像。

4)图像编码与压缩,数字图像的显著特点是数据量庞大,需要占用相当大的存储空间。但基于计算机的网络带宽和的大容量存储器无法进行数据图像的处理、存储、传输。为了能快速方便地在网络环境下传输图像或视频,那么必须对图像进行编码和压缩。目前,图像压缩编码已形成国际标准,如比较著名的静态图像压缩标准JPEG,该标准主要针对图像的分辨率、彩色图像和灰度图像,适用于网络传输的数码相片、彩色照片等方面。由于视频可以被看作是一幅幅不同的但有紧密相关的静态图像的时间序列,因此动态视频的单帧图像压缩可以应用静态图像的压缩标准。图像编码压缩技术可以减少图像的冗余数据量和存储器容量、提高图像传输速度、缩短处理时间。

5)图像分割技术,图像分割是把图像分成一些互不重叠而又具有各自特征的子区域,每一区域是像素的一个连续集,这里的特性可以是图像的颜色、形状、灰度和纹理等。图像分割根据目标与背景的先验知识将图像表示为物理上有意义的连通区域的集合。即对图像中的目标、背景进行标记、定位,然后把目标从背景中分离出来。目前,图像分割的方法主要有基于区域特征的分割方法、基于相关匹配的分割方法和基于边界特征的分割方法[2]。由于采集图像时会受到各种条件的影响会是图像变的模糊、噪声干扰,使得图像分割是会遇到困难。在实际的图像中需根据景物条件的不同选择适合的图像分割方法。图像分割为进一步的图像识别、分析和理解奠定了基础。

2 图像识别技术

图像识别是通过存储的信息(记忆中存储的信息)与当前的信息(当时进入感官的信息)进行比较实现对图像的识别[3]。前提是图像描述,描述是用数字或者符号表示图像或景物中各个目标的相关特征,甚至目标之间的关系,最终得到的是目标特征以及它们之间的关系的抽象表达。图像识别技术对图像中个性特征进行提取时,可以采用模板匹配模型。在某些具体的应用中,图像识别除了要给出被识别对象是什么物体外,还需要给出物体所处的位置和姿态以引导计算初工作。目前,图像识别技术已广泛应用于多个领域,如生物医学、卫星遥感、机器人视觉、货物检测、目标跟踪、自主车导航、公安、银行、交通、军事、电子商务和多媒体网络通信等。主要识别技术有:

指纹识别

指纹识别是生物识别技术中一种最实用、最可靠和价格便宜的识别手段,主要应用于身份验证。指纹识别是生物特征的一个部分,它具有不变性:一个人的指纹是终身不变的;唯一性:几乎没有两个完全相同的指纹[3]。一个指纹识别系统主要由指纹取像、预处理与特征提取、比对、数据库管理组成。目前,指纹识别技术与我们的现实生活紧密相关,如信用卡、医疗卡、考勤卡、储蓄卡、驾驶证、准考证等。

人脸识别 目前大多数人脸识别系统使用可见光或红外图像进行人脸识别,可见光图像识别性能很容易受到光照变化的影响。在户外光照条件不均匀的情况下,其正确识别率会大大降低。而红外图像进行人脸识别时可以克服昏暗光照条件变化影响,但由于红外线不能穿透玻璃,如果待识别的对象戴有眼镜,那么在图像识别时,眼部信息全部丢失,将严重影响人脸识别的性能[4]。

文字识别

文字识别是将模式识别、文字处理、人工智能集与一体的新技术,可以自动地把文字和其他信息分离出来,通过智能识别后输入计算机,用于代替人工的输入。文字识别技术可以将纸质的文档转换为电子文档,如银行票据、文稿、各类公式和符号等自动录入,可以提供文字的处理效率,有助于查询、修改、保存和传播。文字识别方法主要有结构统计模式识别、结构模式识别和人工神经网络[5]。由于文字的数量庞大、结构复杂、字体字形变化多样,使得文字识别技术的研究遇到一定的阻碍。

3 结束语

人类在识别现实世界中的各种事物或复杂的环境是一件轻而易举的事,但对于计算机来讲进行复杂的图像识别是非常困难的[6]。在环境较为简单的情况下,图像识别技术取得了一定的成功,但在复杂的环境下,仍面临着许多问题:如在图像识别过程中的图像分割算法之间的性能优越性比较没有特定的标准,以及算法本身存在一定的局限性,这使得图像识别的最终结果不十分精确等。

参考文献:

[1] 胡爱明,周孝宽.车牌图像的快速匹配识别方法[J].计算机工程与应用,2003,39(7):90—91.

[2] 胡学龙.数字图像处理[M].北京:电子工业出版社,2011.

[3] 范立南,韩晓微,张广渊.图像处理与模式识别[M].北京:科学出版社,2007.

[4] 晓慧,刘志镜.基于脸部和步态特征融合的身份识别[J].计算机应用,2009,1(29):8.

[5] 陈良育,曾振柄,张问银.基于图形理解的汉子构型自动分析系统[J].计算机应用,2005,25(7):1629-1631.

[6] Sanderson C,Paliwal K Fusion and Person Verification Using Speech & Face Information[C].IDIAP-RR 02-33,Martigny,Swizerland,2002.

点击下页还有更多>>>图像识别技术论文

论文答辩学生身份识别需求

毕业论文答辩的流程和注意事项PaperPP论文查重09月30日1、答辩前的准备①准备好PPT(有的学校不需要)─ppt模板选择文字清晰、简洁易看的。字体颜色要和背景形成鲜明反差,避免过多颜色。ppt做好后最好找个可以投影播放的地方自己先试看一下。还要注意学校教室电脑上的Office版本是否和自己的一样,有些人用的是Wps,这也会出现乱码的情况。─封面要包括论文名称、学校、专业、指导老师、答辩人、答辩时间等。─结构要包括摘要、研究或者实验设计目的和意义、材料和方案设计(流程图)、运行过程、讨论、研究结果、致谢等。─每页的内容不超过10行字或一幅图,只列要点重点。─可以适当地在PPT中穿插使用一些能说明论点的图表,不仅能吸引观众注意,还能更形象地表达你的观点(有数据,答辩老师会很喜欢)。─选择常用的ppt效果就可以了,不建议使用过多、过花哨的动态效果。②熟悉论文!!─参加答辩前,一定要对自己的论文有深刻、全面、准确的理解!!很重要!(不然不仅自己会慌乱,还会被老师一顿批)─自己论文中涉及的专业基本概念和原理、理论等,在答辩前要整理出来,确保老师问到时,自己能说出一二。─还要对论文内容有横向把握,即理解从论文主题延伸出的概念。─结合所写论文的论点,在答辩前,收集一些能说明问题的好案例等资料。─近期发生的、和论文有关的新闻时事、学术热点等最好多了解下。③陈述词在答辩前要事先想好怎么陈述自己的论文。一般来说应包含这些方面:─自我介绍+论文题目;─为什么选择这个题目;─写作目的是什么,要解决什么问题;─全文的基本框架、结构是什么;─通过研究发现了什么;─论文在选题、观点、方法等方面有什么创新之处;─论文有什么不足之处(简单提一句不伤大雅的不足之处,一定不要把论文的硬伤说出来);─结束语+感谢词例:各位老师同学们大家好,我叫...来自...专业...班。我的论文题目是....我今天准备主要从研究的背景与目的,研究项目,研究结果分析三个方面介绍。这个题目的选择背景是出于对...的考虑,意图改善目前...的现状(或者推进...研究的进行)。我的研究针对目前的...情况,主要分为以下几个方面,首先...然后...其次...面对这些问题,我提出的解决对策分别为...我的这次研究的创新之处在于...但也存在一些不足...感谢各位老师参加我的论文答辩,我的讲解结束,谢谢。2、答辩流程①答辩会开始前,学生需将答辩申请表和自己的论文(有几个答辩老师就打印几份)交给答辩委员会(除了答辩老师以外,还会有一个老师专门负责收学生的论文和材料)。②答辩开始,由答辩老师介绍答辩规则。③学生概述论文的题目、研究方法、研究内容、发现与结论等。④答辩老师针对论文提问,问题为2-3个。提问完后,有的学校规定可以让学生独立准备一段时间(5分钟)后,再来当场作答;而有的学校则不设准备时间,要求学生当场立即作答。⑤学生回答完所有问题后退场(如分组进行答辩,则待组里所有人答辩完成后清场休会),答辩委员会根据论文质量和答辩情况,商定是否通过,并统计成绩。⑥召回答辩学生,当场宣布答辩结果、小结;或之后宣布答辩成绩。⑦对答辩不能通过的学生,提出修改意见,一般允许学生另行答辩。3、答辩的注意事项①参加答辩没必要刻意穿正装(如果学校规定的话,那就穿呗),穿着得体就行。②答辩时注意和老师的眼神交流,眼睛不要飘忽不定。人称上要有礼貌用“您”,或者“某老师”。③回答时直奔主题,不要说了一大堆还没个重点。④回答问题时分点回答。⑤如果有问题回答不出来,也不要磕磕巴巴,保持好仪态,和老师讲明。例如:“抱歉,老师,您提出的这个问题,我事先并没有想到(或者说我并不是很清楚),不过我根据我们的研究结果来看,这次研究是符合预期的”。千万不要瞎说,老师一听就明白。写在最后其实论文答辩并不难,不要紧张。老师不会提那种刻意刁难你的问题,老师提的问题都是基于你的论文提出来的。如果你的论文写的足够好,老师甚至不会提任何问题,你陈述完后,她们再看一下就叫你下去了(我室友就是这样)。所以,只要你前面写论文的过程足够认真,答辩对你来说就是走个流程。最后我要强调一点前面我忘记强调了的特别特别重要的一点─格式!格式千万不能出错,一个字,一个标点符号都不能错!答辩老师各个都是火眼金睛,一旦出错,即使你的论文写的再好,也会大打折扣!排版也要好看,答辩老师最喜欢挑这些毛病!推荐阅读:《大学毕业论文查重是怎么查的? 》《毕业论文重复率越改越高怎么办? 》《论文写作去哪里找文献资料 》

论文答辩需注意的问题

论文答辩需注意的问题,又是一年毕业季了,大家都忙着开始写着毕业论文了,相信还是有个别朋友对于论文还是有些不知如何下手的,那么我们如何高效的写出论文还拿高分呢,下面就一起来看看论文答辩需注意的问题吧。

一、论文答辩——熟悉内容

作为将要参加毕业论文答辩的同学,首先而且必须对自己所著的论文内容有比较深刻的理解和比较全面的熟悉。所谓“深刻的理解”是对论文有横向的把握。这两方面是为回答答辩委员会成员就有关论文的深度及相关知识面而提出的问题所做的准备。

例如,题为<创建名牌产品发展民族产业>的论文,答辩委员会成员可能会问“民族品牌”与“名牌”有何关系。尽管论文中未必涉及“民族品牌”,但学生必须对自己的论文有“比较全面的熟悉”和“比较深刻的理解”,否则,就会出现尴尬局面。

二、论文答辩——图表穿插

任何毕业论文,无论是文科还是理科都或多或少地涉及到用图表表达论文观点的可能,故我认为应该有此准备。图表不仅是一种直观的表达观点的方法,更是一种调节答辩会气氛的手段,特别是对私人答辩委员会成员来讲,长时间地听述,听觉难免会有排斥性,不再对你论述的内容接纳吸收,这样,秘然对你的毕业论文答辩成绩有所影响。所以,应该在答辩过程事适当穿插图表或类似图表的其它媒介以提高你的答辩成绩。

三、论文答辩——语流适中

进行毕业论文答辩的同学一般都是首次。无数事实证明,他们在众多的都是和同学面前答辩时,说话速度往往越来越快,以致答辩委员会听不清楚,影响了答辩成绩。故答辩学生一定要注意在答辩过程中的语流速度,要有急有缓,有轻有重,不能像连珠炮似的轰向听众。

四、论文答辩——目光移动

毕业生在论文答辩时,一般可脱稿,也可半脱稿,也可完全不脱稿。但不管哪种开工,都应注意自己的目光,使目光时常地瞟向答辩委员会成员及会场上的同学们。这是你用目光与听众进行心灵的接触,使听众对你的论题产生兴趣的一种手段。在毕业论文答辩会上,由于听时间过长,委员们难免会有分神现象,这时,你用目光的投射会很礼貌地将他们的神“拉”回来,使委员们的思路跟你的思路走。

五、论文答辩——体态语辅助

虽然毕业论文答辩同其它答辩一样以口语为主,但适当的体态语运用会辅助你的答辩,使答辩效果更好。特别是手势语言的恰当运用会显得自信、有力、不容辩驳。相反,如果你在答辩过程中始终如一地直挺挺地站着,或者始终如一地低头俯视,即使你的论文结构再合理,主题再新颖,结论再正确,答辩效果也会大受影响。所以在毕业论文答辩时,一定要注意使用态语。

六、论文答辩——时间控制

一般在比较正规的答辩会上,都对辩手有时间要求,因此,毕业学生在进行论文答辩时应重视时间的掌握。对时间的控制要有力度,到该截止的时间立即结束,这样,显得有准备,对内容的掌握和控制也轻车熟路,容易给答辩委员会成员一个良好的印象。故在答辩前应该对将要答辩的内容有时间上的估计。当然在答辩过程中灵活地减少或增加也是对时间控制的一种表现,应该重视的。

七、论文答辩——紧扣主题

在校园中进行毕业论文答辩,往往辩手较多,因此,对于答辩委员会成员来说,他们不可能对每一位的论文内容有全面的.了解,有的甚至连题目也不一定熟悉。因此,在整个答辩过程中能否围绕主题进行,能否最后扣题就显得非常重要了。另外,委员们一般也容易就题目所涉及的问题进行提问,如果能自始至终地以论文题目为中心展开论述就会使评委思维明朗化,对你的论文加以首肯。

八、论文答辩——人称使用

在毕业论文答辩过程中必然涉及人称使用问题,我建议尽量多地使用第一人称,如“我”“我们”,即使论文中的材料是引用他人的,用“我们引用”了哪儿哪儿的数据或材料,特别是毕业论文大多是你自己作的,所以要更多使用而且是果断地、大胆地使用第一人称“我”和“我们”。如果是这样,会使答辩委员会成员有这样的印象:东西是你的,工作做了不少!

怎么编写论文

原始积累法:收集一手资料避免麻烦

论文考验的其实是学生对事件是否拥有独到看法,是否有独立思维能力,并从中反映出归纳总结的能力。学生在选择论文方向时,一定要选择自己熟悉、感兴趣的课题。这样就能够充分利用自己日常积累的。首先可自我梳理成一个大型提纲,然后按照提纲,去大型图书馆、阅读室搜索资料,这样可以让论文的搜集环节目的明确、化繁为简。同时,在图书馆等地点搜集资料还要注意尽量选择第一手材料,以免引起不必要的麻烦。如果你恰巧看到的是引用、文摘型内容,一定要不怕麻烦追根溯源,最好能查看到原文。同时,还应注意材料的局部真实和整体的真实。

网上搜集:需核实查真伪

当下网络已经得到大规模普及,通过网络收集材料也是个不错的办法。网络搜集材料的优点是信息量大,各种论点均能看到。但缺点也比较明显,就是真假均有,资料、新闻的可靠度需要同学们的进一步核实、查证。如果采用不实资料肯定会直接将影响论文的成绩。所以,在网络中查找资料,需紧盯资料库、文库等官方渠道,切勿直接在搜索网站中查找。值得提醒的是,在查找名著等书籍时,加上书名号,将可提升搜索精度。

留心留意:从生活找到灵感

除了这种直接在书籍和网络中收集的,还有一种是从生活中寻找灵感。不管小伙伴写的是什么方向,总不会离生活太远。生活中的所见所闻有时可以给大家一些启示,有时也会让大家对理论产生质疑。在这个过程中,小伙伴们还需要随时掌握一部优秀的手机作为辅助工具。为年轻人倾力打造的华为麦芒3S便是个不错的选择。同学们在生活中随时看到关键信息便可利用麦芒3S电信4G全网通的特点,随时搜索、探究,了解字面下的真实意思。同时,麦芒3S还支持联通、移动2G网络,双卡双待双通让网络和日常通讯全都尽在掌握。

学生对知识的饥渴程度不仅仅体现在深度,更在乎快速获取的速度。为了以超高效率满足学生们随时随地快速获取知识的需求,华为麦芒3S搭载主频位高通骁龙615真八核CPU,高配置保证手机的高速顺畅响应,打开多个软件不卡顿,让论文材料收集事半功倍。

文字检测识别论文

1、可以通过文字扫描器,将你的论文录入到电脑上进行查重。

2、如果字文字扫描器扫描不出来,只能一个字一个字输入到电脑上,毕竟论文系统只能通过云计算检测,没有人工检测系统。

3、识别系统:文字识别一般包括文字信息的采集、信息的分析与处理、信息的分类判别等几个部分。

4、信息采集 将纸面上的文字灰度变换成电信号,输入到计算机中去。信息采集由文字识别机中的送纸机构和光电变换装置来实现,有飞点扫描、摄像机、光敏元件和激光扫描等光电变换装置。

5、信息分析和处理 对变换后的电信号消除各种由于印刷质量、纸质(均匀性、污点等)或书写工具等因素所造成的噪音和干扰,进行大小、偏转、浓淡、粗细等各种正规化处理。

6、信息的分类判别 对去掉噪声并正规化后的文字信息进行分类判别,以输出识别结果。

7、文字识别方法 :文字识别方法基本上分为统计、逻辑判断和句法三大类。常用的方法有模板匹配法和几何特征抽取法。

(1)、模板匹配法 将输入的文字与给定的各类别标准文字(模板)进行相关匹配,计算输入文字与各模板之间的相似性程度,取相似度最大的类别作为识别结果。

(2)、几何特征抽取法 抽取文字的一些几何特征,如文字的端点、分叉点、凹凸部分以及水平、垂直、倾斜等各方向的线段、闭合环路等,根据这些特征的位置和相互关系进行逻辑组合判断,获得识别结果。这种识别方式由于利用结构信息,也适用于手写体文字那样变形较大的文字。

扩展资料:

1、论文检测服务:

(1)、论文检测服务也可以称为论文查重,是一种为了应对论文(包括学位论文、学术论文、发表论文、职称论文以及科研成果和学生作文)的学术不端行为(包括抄袭、剽窃、伪造、篡改、不当署名、一稿多投等行为)而推出的计算机软件检测系统。

2、现在,随着毕业季的临近,不断有来自大学的消息称,学生的毕业论文应该接受“反抄袭”的测试。一旦被判定为抄袭者,学生就不会按时毕业。

3、随着“反抄袭软件”的广泛应用,高校师生之间出现了“反抄袭”、“反抄袭”的拉锯战。最近也出现了一个新的行业。淘宝网上出现了大量提供“纸检服务”的卖家。他们声称能够提供“与大学的探测节点”。得到了同样的结果。

4、高校使用的反剽窃软件大多是中国知网开发的“学术不端行为检测系统”,淘宝网上卖家声称使用知网系统。

5、事实上,“反剽窃软件”是由中国知网免费提供给用户的。其官方网站特别强调,该系统只供高校、科研机构、出版单位等机构的用户免费使用,不供个人用户使用。

参考资料来源:

百度百科-论文检测服务

百度百科-文字识别

知网查重完毕后会生成一个检测报告,报告中主要包含六点:1.文字复制比,就是文章的重复率。2.去除引用文献复制比,就是去除引用文献后的论文有多少重复率。3.去除本人已发表文献复制比,就是去除和本人已发表的论文重复后的结果。4.单篇最大文字复制比,就是和本论文相似度最高的文章和本论文的重复率为多少百分比及文章名称。5.指标分,包括剽窃观点、剽窃文字表述、自我剽窃、一稿多投、过度引用、整体剽窃、重复发表。6.报告目录,就是章节复制比。

首先,要选择一个靠谱的论文查重系统(定稿再使用学校要求的定稿检测系统);其次,登录后点击论文查重,提交自己的论文内容,如果需要付费或者免费抵扣,之后点击提交检测;最后,等待3-10分钟检测完成,及时下载报告保存。

一到大学毕业季,本科的同学们都需要经历论文写作与论文查重的阶段。而除了论文写作之外,论文查重也使得很多本科的同学感到为难。因为很多同学是第一次进行论文写作与论文查重,对于论文查重不仅缺乏了解,而且对选择哪一个论文查重系统感到困惑。今天论文大师来为大家分享一下本科论文查重会检测哪些内容。在此之前,我们需要先对论文查重率做一个基本的了解。对于本科毕业论文而言,论文查重率是怎么统计出来的呢?鉴于当前大部分高校会选择知网也就是学术不端系统来进行论文查重工作,因此我们以知网论文查重系统为例说明。在知网论文查重系统中,对于论文中的句子出现连续13个字符的重复现象,就会判定该句子为重复。然后,把毕业论文中所有的重复部分字数除以论文总字数,也就得出了论文的重复率了。对于大部分高校的规定和标准来讲,本科毕业论文的重复率一般是要求在30%以下,有些学校则严格一些,会要求重复率低于20%等。对于学校规定的重复率的标准,同学们可以通过咨询师兄师姐或者老师来确定。现在转到正题,大学本科毕业论文在进行论文查重时通常是检测哪些内容呢?实际上,对本科毕业论文来讲,论文查重的内容基本上是包含论文的摘要、正文与结尾等文字部分。对于论文的目录、参考文献以及图片等这些部分是不会进行论文查重,也并不计入重复率中。不过需要注意的是,在进行论文查重时需要按照规范的标准对引用符合等格式做好标注,否则有可能会造成论文查重系统无法识别导致重复率过高的问题。PS:论文大师小编可以跟大家说一个小技巧,在借鉴或引用别人的的文献资料时,我们可以多多参考课本或书籍等。毕竟网络上可以寻找到的文献资料等一般都是在论文查重的数据库中,这样直接使用必定是会造成重复率过高的问题。以上。

目标检测与识别论文

原文: Scalable Object Detection using Deep Neural Networks——学术范 最近,深度卷积神经网络在许多图像识别基准上取得了最先进的性能,包括ImageNet大规模视觉识别挑战(ILSVRC-2012)。在定位子任务中获胜的模型是一个网络,它预测了图像中每个对象类别的单个边界框和置信度得分。这样的模型捕获了围绕对象的整幅图像上下文,但如果不天真地复制每个实例的输出数量,就无法处理图像中同一对象的多个实例。在这篇论文中提出了一个显著性启发的神经网络检测模型,它预测了一组与类无关的边界框,每个框有一个分数,对应于它包含任何感兴趣的对象的可能性。该模型自然地为每个类处理数量可变的实例,并允许在网络的最高级别上进行跨类泛化。 目标检测是计算机视觉的基本任务之一。一个解决这个问题的通用范例是训练在子图像上操作的对象检测器,并在所有的场所和尺度上以详尽的方式应用这些检测器。这一范例被成功地应用于经过区别训练的可变形零件模型(DPM)中,以实现检测任务的最新结果。对所有可能位置和尺度的穷举搜索带来了计算上的挑战。随着类数量的增加,这个挑战变得更加困难,因为大多数方法都训练每个类单独的检测器。为了解决这个问题,人们提出了多种方法,从检测器级联到使用分割提出少量的对象假设。 关于对象检测的文献非常多,在本节中,我们将重点讨论利用类不可知思想和解决可伸缩性的方法。 许多提出的检测方法都是基于基于部件的模型,最近由于有区别学习和精心设计的特征,已经取得了令人印象深刻的性能。然而,这些方法依赖于在多个尺度上详尽地应用零件模板,这是非常昂贵的。此外,它们在类的数量上是可伸缩的,这对像ImageNet这样的现代数据集来说是一个挑战。 为了解决前一个问题,Lampert等人使用分支绑定策略来避免计算所有可能的对象位置。为了解决后一个问题,Song et al.使用了一个低维部件基,在所有对象类中共享。基于哈希算法的零件检测也取得了良好的结果。 另一种不同的工作,与我们的工作更接近,是基于对象可以本地化的想法,而不必知道它们的类。其中一些方法建立在自底向上无阶级分割[9]的基础上。通过这种方式得到的片段可以使用自上而下的反馈进行评分。基于同样的动机,Alexe等人使用一种廉价的分类器对对象假设是否为对象进行评分,并以这种方式减少了后续检测步骤的位置数量。这些方法可以被认为是多层模型,分割作为第一层,分割分类作为后续层。尽管它们编码了已证明的感知原理,但我们将表明,有更深入的模型,充分学习可以导致更好的结果。 最后,我们利用了DeepLearning的最新进展,最引人注目的是Krizhevsky等人的工作。我们将他们的边界盒回归检测方法扩展到以可扩展的方式处理多个对象的情况。然而,基于dnn的回归已经被Szegedy等人应用到对象掩模中。最后一种方法实现了最先进的检测性能,但由于单个掩模回归的成本,不能扩展到多个类。 我们的目标是通过预测一组表示潜在对象的边界盒来实现一种与类无关的可扩展对象检测。更准确地说,我们使用了深度神经网络(DNN),它输出固定数量的包围盒。此外,它为每个盒子输出一个分数,表示这个盒子包含一个对象的网络信任度。 为了形式化上述思想,我们将i-thobject框及其相关的置信度编码为最后一网层的节点值: Bounding box: 我们将每个框的左上角和右下角坐标编码为四个节点值,可以写成vectorli∈R4。这些坐标是归一化的w. r. t.图像尺寸,以实现图像绝对尺寸的不变性。每个归一化坐标是由最后一层的线性变换产生的。 Confidence: 置信度:包含一个对象的盒子的置信度得分被编码为单个节点valueci∈[0,1]。这个值是通过最后一个隐藏层的线性变换产生的,后面跟着一个sigmoid。 我们可以组合边界盒位置sli,i∈{1,…K}为一个线性层。同样,我们可以将所有置信区间ci,i∈{1,…K}作为一个s型层的输出。这两个输出层都连接到最后一个隐藏层 在推理时,我们的算法生成kbound盒。在我们的实验中,我们使用ek = 100和K= 200。如果需要,我们可以使用置信分数和非最大抑制在推理时获得较少数量的高置信框。这些盒子应该代表对象。因此,它们可以通过后续的分类器进行分类,实现目标检测。由于盒子的数量非常少,我们可以提供强大的分类器。在我们的实验中,我们使用另一个dnn进行分类。 我们训练一个DNN来预测每个训练图像的边界框及其置信度得分,以便得分最高的框与图像的groundtruth对象框很好地匹配。假设对于一个特定的训练例子,对象被标记为boundingboxesgj,j∈{1,…,M}。在实践中,pre- dictionary的数量远远大于groundtruthboxm的数量。因此,我们试图只优化与地面真实最匹配的预测框子集。我们优化他们的位置,以提高他们的匹配度,最大化他们的信心。与此同时,我们将剩余预测的置信度最小化,这被认为不能很好地定位真实对象。为了达到上述目的,我们为每个训练实例制定一个分配问题。Wexij∈{0,1}表示赋值:xij= 1,如果第i个预测被赋值给第j个真对象。这项任务的目标可以表示为 其中,我们使用标准化边界框坐标之间的el2距离来量化边界框之间的不同。此外,我们希望根据分配x优化盒子的可信度。最大化指定预测的置信度可以表示为  最终的损失目标结合了匹配损失和信心损失 受式1的约束。α平衡了不同损失条款的贡献。 对于每个训练例子,我们通过解决一个最佳的赋值x*的预测到真实的盒子 约束执行赋值解决方案。这是二部匹配的一种变体,是一种多项式复杂度匹配。在我们的应用程序中,匹配是非常便宜的——每幅图像中标记的对象的数量少于一打,而且在大多数情况下只有很少的对象被标记。然后,通过反向传播优化网络参数。例如,反向传播算法的一阶导数计算w、r、t、l和c 尽管上述定义的损失在原则上是足够的,但三次修改使其有可能更快地达到更好的准确性。第一个修改是对地面真实位置进行聚类,并找到这样的聚类/质心,我们可以使用这些聚类/质心作为每个预测位置的先验。因此,鼓励学习算法为每个预测位置学习一个残差到一个先验。 第二个修改涉及到在匹配过程中使用这些先验:不是将N个groundtruth位置与K个预测进行匹配,而是在K个先验和groundtruth之间找到最佳匹配。一旦匹配完成,就会像之前一样计算目标的置信度。此外,位置预测损失也不变:对于任何一对匹配的(目标,预测)位置,其损失定义为groundtruth和对应于匹配先验的坐标之间的差值。我们把使用先验匹配称为先验匹配,并假设它促进了预测的多样化。  需要注意的是,尽管我们以一种与类无关的方式定义了我们的方法,但我们可以将它应用于预测特定类的对象盒。要做到这一点,我们只需要在类的边框上训练我们的模型。此外,我们可以预测每个类的kbox。不幸的是,这个模型的参数数量会随着类的数量线性增长。此外,在一个典型的设置中,给定类的对象数量相对较少,这些参数中的大多数会看到很少有相应梯度贡献的训练示例。因此,我们认为我们的两步过程——首先本地化,然后识别——是一个更好的选择,因为它允许使用少量参数利用同一图像中多个对象类型的数据 我们使用的本地化和分类模型的网络架构与[10]使用的网络架构相同。我们使用Adagrad来控制学习速率衰减,128的小批量,以及使用多个相同的网络副本进行并行分布式训练,从而实现更快的收敛。如前所述,我们在定位损失中使用先验——这些是使用训练集上的均值来计算的。我们还使用α = 来平衡局部化和置信度损失。定位器可以输出用于推断的种植区以外的坐标。坐标被映射和截断到最后的图像区域。另外,使用非最大抑制对盒进行修剪,Jaccard相似度阈值为。然后,我们的第二个模型将每个边界框分类为感兴趣的对象或“背景”。为了训练我们的定位器网络,我们从训练集中生成了大约3000万幅图像,并对训练集中的每幅图像应用以下步骤。最后,样品被打乱。为了训练我们的本地化网络,我们通过对训练集中的每一幅图像应用以下步骤,从训练集中生成了大约3000万幅图像。对于每幅图像,我们生成相同数量的平方样本,使样本总数大约为1000万。对于每幅图像,样本被桶状填充,这样,对于0 - 5%、5 - 15%、15 - 50%、50 - 100%范围内的每个比例,都有相同数量的样本,其中被包围框覆盖的比例在给定范围内。训练集和我们大多数超参数的选择是基于过去使用非公开数据集的经验。在下面的实验中,我们没有探索任何非标准数据生成或正则化选项。在所有的实验中,所有的超参数都是通过对训练集。 Pascal Visual Object Classes (VOC)挑战是最常用的对象检测算法基准。它主要由复杂的场景图像组成,其中包含了20种不同的对象类别的边界框。在我们的评估中,我们关注的是2007版VOC,为此发布了一个测试集。我们通过培训VOC 2012展示了结果,其中包含了大约。11000张图片。我们训练了一个100框的定位器和一个基于深度网络的分类器。 我们在一个由1000万作物组成的数据集上训练分类器,该数据集重叠的对象至少为 jaccard重叠相似度。这些作物被标记为20个VOC对象类中的一个。•2000万负作物与任何物体盒最多有个Jaccard相似度。这些作物被贴上特殊的“背景”类标签。体系结构和超参数的选择遵循。 在第一轮中,定位器模型应用于图像中最大-最小中心方形作物。作物的大小调整到网络输入大小is220×220。单次通过这个网络,我们就可以得到上百个候选日期框。在对重叠阈值为的非最大抑制后,保留评分最高的前10个检测项,并通过21路分类器模型分别通过网络进行分类。最终的检测分数是给定盒子的定位分数乘以分类器在作物周围的最大方形区域上评估的分数的乘积。这些分数通过评估,并用于计算精确查全曲线。 首先,我们分析了本地化器在隔离状态下的性能。我们给出了被检测对象的数量,正如Pascal检测标准所定义的那样,与生成的包围框的数量相对比。在图1中,我们展示了使用VOC2012进行训练所获得的结果。此外,我们通过使用图像的最大中心面积(max-center square crop)作为输入以及使用两个尺度(second scale)来给出结果:最大中心面积(max-center crop)的第二个尺度(select3×3windows的大小为图像大小的60%)正如我们所看到的,当使用10个边界框的预算时,我们可以用第一个模型本地化的对象,用第二个模型本地化48%的对象。这显示出比其他报告的结果更好的性能,例如对象度算法达到42%[1]。此外,这个图表显示了在不同分辨率下观察图像的重要性。虽然我们的算法通过使用最大中心作物获得了大量的对象,但当使用更高分辨率的图像作物时,我们获得了额外的提升。进一步,我们用21-way分类器对生成的包围盒进行分类,如上所述。表1列出了VOC 2007的平均精度(APs)。达到的平均AP是,与先进水平相当。注意,我们的运行时间复杂度非常低——我们只使用top10框。示例检测和全精度召回曲线分别如图2和图3所示。值得注意的是,可视化检测是通过仅使用最大中心方形图像裁剪,即使用全图像获得的。然而,我们设法获得了相对较小的对象,例如第二行和第二列的船,以及第三行和第三列的羊。 在本工作中,我们提出了一种新的方法来定位图像中的对象,该方法可以预测多个边界框的时间。该方法使用深度卷积神经网络作为基本特征提取和学习模型。它制定了一个能够利用可变数量的groundtruth位置的多箱定位成本。在“一个类一个箱”方法的情况下,对1000个盒子进行非max-suppression,使用与给定图像中感兴趣的DeepMulti-Box方法相同的准则,并学习在未见图像中预测这些位置。 我们在VOC2007和ILSVRC-2012这两个具有挑战性的基准上给出了结果,在这两个基准上,所提出的方法具有竞争力。此外,该方法能够很好地预测后续分类器将探测到的位置。我们的结果表明,deepmultibox的方法是可扩展的,甚至可以在两个数据集之间泛化,就能够预测感兴趣的定位,甚至对于它没有训练的类别。此外,它能够捕获同一类物体的多种情况,这是旨在更好地理解图像的算法的一个重要特征。 在未来,我们希望能够将定位和识别路径折叠到一个单一的网络中,这样我们就能够在一个通过网络的一次性前馈中提取位置和类标签信息。即使在其当前状态下,双通道过程(本地化网络之后是分类网络)也会产生5-10个网络评估,每个评估的速度大约为1个CPU-sec(现代机器)。重要的是,这个数字并不与要识别的类的数量成线性关系,这使得所提出的方法与类似dpm的方法非常有竞争力。

深度学习目前已经应用到了各个领域,应用场景大体分为三类:物体识别,目标检测,自然语言处理。  目标检测可以理解为是物体识别和物体定位的综合 ,不仅仅要识别出物体属于哪个分类,更重要的是得到物体在图片中的具体位置。 2014年R-CNN算法被提出,基本奠定了two-stage方式在目标检测领域的应用。它的算法结构如下图 算法步骤如下: R-CNN较传统的目标检测算法获得了50%的性能提升,在使用VGG-16模型作为物体识别模型情况下,在voc2007数据集上可以取得66%的准确率,已经算还不错的一个成绩了。其最大的问题是速度很慢,内存占用量很大,主要原因有两个 针对R-CNN的部分问题,2015年微软提出了Fast R-CNN算法,它主要优化了两个问题。 R-CNN和fast R-CNN均存在一个问题,那就是 由选择性搜索来生成候选框,这个算法很慢 。而且R-CNN中生成的2000个左右的候选框全部需要经过一次卷积神经网络,也就是需要经过2000次左右的CNN网络,这个是十分耗时的(fast R-CNN已经做了改进,只需要对整图经过一次CNN网络)。这也是导致这两个算法检测速度较慢的最主要原因。 faster R-CNN 针对这个问题, 提出了RPN网络来进行候选框的获取,从而摆脱了选择性搜索算法,也只需要一次卷积层操作,从而大大提高了识别速度 。这个算法十分复杂,我们会详细分析。它的基本结构如下图 主要分为四个步骤: 使用VGG-16卷积模型的网络结构: 卷积层采用的VGG-16模型,先将PxQ的原始图片,缩放裁剪为MxN的图片,然后经过13个conv-relu层,其中会穿插4个max-pooling层。所有的卷积的kernel都是3x3的,padding为1,stride为1。pooling层kernel为2x2, padding为0,stride为2。 MxN的图片,经过卷积层后,变为了(M/16) x (N/16)的feature map了。 faster R-CNN抛弃了R-CNN中的选择性搜索(selective search)方法,使用RPN层来生成候选框,能极大的提升候选框的生成速度。RPN层先经过3x3的卷积运算,然后分为两路。一路用来判断候选框是前景还是背景,它先reshape成一维向量,然后softmax来判断是前景还是背景,然后reshape恢复为二维feature map。另一路用来确定候选框的位置,通过bounding box regression实现,后面再详细讲。两路计算结束后,挑选出前景候选框(因为物体在前景中),并利用计算得到的候选框位置,得到我们感兴趣的特征子图proposal。 卷积层提取原始图像信息,得到了256个feature map,经过RPN层的3x3卷积后,仍然为256个feature map。但是每个点融合了周围3x3的空间信息。对每个feature map上的一个点,生成k个anchor(k默认为9)。anchor分为前景和背景两类(我们先不去管它具体是飞机还是汽车,只用区分它是前景还是背景即可)。anchor有[x,y,w,h]四个坐标偏移量,x,y表示中心点坐标,w和h表示宽度和高度。这样,对于feature map上的每个点,就得到了k个大小形状各不相同的选区region。 对于生成的anchors,我们首先要判断它是前景还是背景。由于感兴趣的物体位于前景中,故经过这一步之后,我们就可以舍弃背景anchors了。大部分的anchors都是属于背景,故这一步可以筛选掉很多无用的anchor,从而减少全连接层的计算量。 对于经过了3x3的卷积后得到的256个feature map,先经过1x1的卷积,变换为18个feature map。然后reshape为一维向量,经过softmax判断是前景还是背景。此处reshape的唯一作用就是让数据可以进行softmax计算。然后输出识别得到的前景anchors。 另一路用来确定候选框的位置,也就是anchors的[x,y,w,h]坐标值。如下图所示,红色代表我们当前的选区,绿色代表真实的选区。虽然我们当前的选取能够大概框选出飞机,但离绿色的真实位置和形状还是有很大差别,故需要对生成的anchors进行调整。这个过程我们称为bounding box regression。 假设红色框的坐标为[x,y,w,h], 绿色框,也就是目标框的坐标为[Gx, Gy,Gw,Gh], 我们要建立一个变换,使得[x,y,w,h]能够变为[Gx, Gy,Gw,Gh]。最简单的思路是,先做平移,使得中心点接近,然后进行缩放,使得w和h接近。如下:我们要学习的就是dx dy dw dh这四个变换。由于是线性变换,我们可以用线性回归来建模。设定loss和优化方法后,就可以利用深度学习进行训练,并得到模型了。对于空间位置loss,我们一般采用均方差算法,而不是交叉熵(交叉熵使用在分类预测中)。优化方法可以采用自适应梯度下降算法Adam。 得到了前景anchors,并确定了他们的位置和形状后,我们就可以输出前景的特征子图proposal了。步骤如下: 1,得到前景anchors和他们的[x y w h]坐标。 2,按照anchors为前景的不同概率,从大到小排序,选取前pre_nms_topN个anchors,比如前6000个 3,剔除非常小的anchors。 4,通过NMS非极大值抑制,从anchors中找出置信度较高的。这个主要是为了解决选取交叠问题。首先计算每一个选区面积,然后根据他们在softmax中的score(也就是是否为前景的概率)进行排序,将score最大的选区放入队列中。接下来,计算其余选区与当前最大score选区的IOU(IOU为两box交集面积除以两box并集面积,它衡量了两个box之间重叠程度)。去除IOU大于设定阈值的选区。这样就解决了选区重叠问题。 5,选取前post_nms_topN个结果作为最终选区proposal进行输出,比如300个。 经过这一步之后,物体定位应该就基本结束了,剩下的就是物体识别了。 和fast R-CNN中类似,这一层主要解决之前得到的proposal大小形状各不相同,导致没法做全连接。全连接计算只能对确定的shape进行运算,故必须使proposal大小形状变为相同。通过裁剪和缩放的手段,可以解决这个问题,但会带来信息丢失和图片形变问题。我们使用ROI pooling可以有效的解决这个问题。 ROI pooling中,如果目标输出为MxN,则在水平和竖直方向上,将输入proposal划分为MxN份,每一份取最大值,从而得到MxN的输出特征图。 ROI Pooling层后的特征图,通过全连接层与softmax,就可以计算属于哪个具体类别,比如人,狗,飞机,并可以得到cls_prob概率向量。同时再次利用bounding box regression精细调整proposal位置,得到bbox_pred,用于回归更加精确的目标检测框。 这样就完成了faster R-CNN的整个过程了。算法还是相当复杂的,对于每个细节需要反复理解。faster R-CNN使用resNet101模型作为卷积层,在voc2012数据集上可以达到的准确率,超过yolo ssd和yoloV2。其最大的问题是速度偏慢,每秒只能处理5帧,达不到实时性要求。 针对于two-stage目标检测算法普遍存在的运算速度慢的缺点, yolo创造性的提出了one-stage。也就是将物体分类和物体定位在一个步骤中完成。 yolo直接在输出层回归bounding box的位置和bounding box所属类别,从而实现one-stage。通过这种方式, yolo可实现45帧每秒的运算速度,完全能满足实时性要求 (达到24帧每秒,人眼就认为是连续的)。它的网络结构如下图: 主要分为三个部分:卷积层,目标检测层,NMS筛选层。 采用Google inceptionV1网络,对应到上图中的第一个阶段,共20层。这一层主要是进行特征提取,从而提高模型泛化能力。但作者对inceptionV1进行了改造,他没有使用inception module结构,而是用一个1x1的卷积,并联一个3x3的卷积来替代。(可以认为只使用了inception module中的一个分支,应该是为了简化网络结构) 先经过4个卷积层和2个全连接层,最后生成7x7x30的输出。先经过4个卷积层的目的是为了提高模型泛化能力。yolo将一副448x448的原图分割成了7x7个网格,每个网格要预测两个bounding box的坐标(x,y,w,h)和box内包含物体的置信度confidence,以及物体属于20类别中每一类的概率(yolo的训练数据为voc2012,它是一个20分类的数据集)。所以一个网格对应的参数为(4x2+2+20) = 30。如下图 其中前一项表示有无人工标记的物体落入了网格内,如果有则为1,否则为0。第二项代表bounding box和真实标记的box之间的重合度。它等于两个box面积交集,除以面积并集。值越大则box越接近真实位置。 分类信息: yolo的目标训练集为voc2012,它是一个20分类的目标检测数据集 。常用目标检测数据集如下表: | Name | # Images (trainval) | # Classes | Last updated | | --------------- | ------------------- | --------- | ------------ | | ImageNet | 450k | 200 | 2015 | | COCO | 120K | 90 | 2014 | | Pascal VOC | 12k | 20 | 2012 | | Oxford-IIIT Pet | 7K | 37 | 2012 | | KITTI Vision | 7K | 3 | | 每个网格还需要预测它属于20分类中每一个类别的概率。分类信息是针对每个网格的,而不是bounding box。故只需要20个,而不是40个。而confidence则是针对bounding box的,它只表示box内是否有物体,而不需要预测物体是20分类中的哪一个,故只需要2个参数。虽然分类信息和confidence都是概率,但表达含义完全不同。 筛选层是为了在多个结果中(多个bounding box)筛选出最合适的几个,这个方法和faster R-CNN 中基本相同。都是先过滤掉score低于阈值的box,对剩下的box进行NMS非极大值抑制,去除掉重叠度比较高的box(NMS具体算法可以回顾上面faster R-CNN小节)。这样就得到了最终的最合适的几个box和他们的类别。 yolo的损失函数包含三部分,位置误差,confidence误差,分类误差。具体公式如下: 误差均采用了均方差算法,其实我认为,位置误差应该采用均方差算法,而分类误差应该采用交叉熵。由于物体位置只有4个参数,而类别有20个参数,他们的累加和不同。如果赋予相同的权重,显然不合理。故yolo中位置误差权重为5,类别误差权重为1。由于我们不是特别关心不包含物体的bounding box,故赋予不包含物体的box的置信度confidence误差的权重为,包含物体的权重则为1。 Faster R-CNN准确率mAP较高,漏检率recall较低,但速度较慢。而yolo则相反,速度快,但准确率和漏检率不尽人意。SSD综合了他们的优缺点,对输入300x300的图像,在voc2007数据集上test,能够达到58 帧每秒( Titan X 的 GPU ),的mAP。 SSD网络结构如下图: 和yolo一样,也分为三部分:卷积层,目标检测层和NMS筛选层 SSD论文采用了VGG16的基础网络,其实这也是几乎所有目标检测神经网络的惯用方法。先用一个CNN网络来提取特征,然后再进行后续的目标定位和目标分类识别。 这一层由5个卷积层和一个平均池化层组成。去掉了最后的全连接层。SSD认为目标检测中的物体,只与周围信息相关,它的感受野不是全局的,故没必要也不应该做全连接。SSD的特点如下。 每一个卷积层,都会输出不同大小感受野的feature map。在这些不同尺度的feature map上,进行目标位置和类别的训练和预测,从而达到 多尺度检测 的目的,可以克服yolo对于宽高比不常见的物体,识别准确率较低的问题。而yolo中,只在最后一个卷积层上做目标位置和类别的训练和预测。这是SSD相对于yolo能提高准确率的一个关键所在。 如上所示,在每个卷积层上都会进行目标检测和分类,最后由NMS进行筛选,输出最终的结果。多尺度feature map上做目标检测,就相当于多了很多宽高比例的bounding box,可以大大提高泛化能力。 和faster R-CNN相似,SSD也提出了anchor的概念。卷积输出的feature map,每个点对应为原图的一个区域的中心点。以这个点为中心,构造出6个宽高比例不同,大小不同的anchor(SSD中称为default box)。每个anchor对应4个位置参数(x,y,w,h)和21个类别概率(voc训练集为20分类问题,在加上anchor是否为背景,共21分类)。如下图所示: 另外,在训练阶段,SSD将正负样本比例定位1:3。训练集给定了输入图像以及每个物体的真实区域(ground true box),将default box和真实box最接近的选为正样本。然后在剩下的default box中选择任意一个与真实box IOU大于的,作为正样本。而其他的则作为负样本。由于绝大部分的box为负样本,会导致正负失衡,故根据每个box类别概率排序,使正负比例保持在1:3。SSD认为这个策略提高了4%的准确率 另外,SSD采用了数据增强。生成与目标物体真实box间IOU为 的patch,随机选取这些patch参与训练,并对他们进行随机水平翻转等操作。SSD认为这个策略提高了的准确率。 和yolo的筛选层基本一致,同样先过滤掉类别概率低于阈值的default box,再采用NMS非极大值抑制,筛掉重叠度较高的。只不过SSD综合了各个不同feature map上的目标检测输出的default box。 SSD基本已经可以满足我们手机端上实时物体检测需求了,TensorFlow在Android上的目标检测官方模型,就是通过SSD算法实现的。它的基础卷积网络采用的是mobileNet,适合在终端上部署和运行。 针对yolo准确率不高,容易漏检,对长宽比不常见物体效果差等问题,结合SSD的特点,提出了yoloV2。它主要还是采用了yolo的网络结构,在其基础上做了一些优化和改进,如下 网络采用DarkNet-19:19层,里面包含了大量3x3卷积,同时借鉴inceptionV1,加入1x1卷积核全局平均池化层。结构如下 yolo和yoloV2只能识别20类物体,为了优化这个问题,提出了yolo9000,可以识别9000类物体。它在yoloV2基础上,进行了imageNet和coco的联合训练。这种方式充分利用imageNet可以识别1000类物体和coco可以进行目标位置检测的优点。当使用imageNet训练时,只更新物体分类相关的参数。而使用coco时,则更新全部所有参数。 YOLOv3可以说出来直接吊打一切图像检测算法。比同期的DSSD(反卷积SSD), FPN(feature pyramid networks)准确率更高或相仿,速度是其1/3.。 YOLOv3的改动主要有如下几点:不过如果要求更精准的预测边框,采用COCO AP做评估标准的话,YOLO3在精确率上的表现就弱了一些。如下图所示。 当前目标检测模型算法也是层出不穷。在two-stage领域, 2017年Facebook提出了mask R-CNN 。CMU也提出了A-Fast-RCNN 算法,将对抗学习引入到目标检测领域。Face++也提出了Light-Head R-CNN,主要探讨了 R-CNN 如何在物体检测中平衡精确度和速度。 one-stage领域也是百花齐放,2017年首尔大学提出 R-SSD 算法,主要解决小尺寸物体检测效果差的问题。清华大学提出了 RON 算法,结合 two stage 名的方法和 one stage 方法的优势,更加关注多尺度对象定位和负空间样本挖掘问题。 目标检测领域的深度学习算法,需要进行目标定位和物体识别,算法相对来说还是很复杂的。当前各种新算法也是层不出穷,但模型之间有很强的延续性,大部分模型算法都是借鉴了前人的思想,站在巨人的肩膀上。我们需要知道经典模型的特点,这些tricks是为了解决什么问题,以及为什么解决了这些问题。这样才能举一反三,万变不离其宗。综合下来,目标检测领域主要的难点如下: 一文读懂目标检测AI算法:R-CNN,faster R-CNN,yolo,SSD,yoloV2 从YOLOv1到v3的进化之路 SSD-Tensorflow超详细解析【一】:加载模型对图片进行测试  YOLO              C#项目参考: 项目实践贴个图。

Since we combine region proposals   with CNNs, we call our method R-CNN: Regions with CNN features. 下面先介绍R-CNN和Fast R-CNN中所用到的边框回归方法。 为什么要做Bounding-box regression? 如上图所示,绿色的框为飞机的Ground Truth,红色的框是提取的Region Proposal。那么即便红色的框被分类器识别为飞机,但是由于红色的框定位不准(IoU<),那么这张图相当于没有正确的检测出飞机。如果我们能对红色的框进行微调,使得经过微调后的窗口跟Ground Truth更接近,这样岂不是定位会更准确。确实,Bounding-box regression 就是用来微调这个窗口的。 那么经过何种变换才能从图11中的窗口P变为窗口呢?比较简单的思路就是: 注意:只有当Proposal和Ground Truth比较接近时(线性问题),我们才能将其作为训练样本训练我们的线性回归模型,否则会导致训练的回归模型不work(当Proposal跟GT离得较远,就是复杂的非线性问题了,此时用线性回归建模显然不合理)。这个也是G-CNN: an Iterative Grid Based Object Detector多次迭代实现目标准确定位的关键。 PASCAL VOC为图像识别和分类提供了一整套标准化的优秀的数据集,从2005年到2012年每年都会举行一场图像识别challenge。模型详解 RCNN全程就是Regions with CNN features,从名字也可以看出,RCNN的检测算法是基于传统方法来找出一些可能是物体的区域,再把该区域的尺寸归一化成卷积网络输入的尺寸,最后判断该区域到底是不是物体,是哪个物体,以及对是物体的区域进行进一步回归的微微调整(与深度学习里的finetune去分开,我想表达的就只是对框的位置进行微微调整)学习,使得框的更加准确。        正如上面所说的,RCNN的核心思想就是把图片区域内容送给深度网络,然后提取出深度网络某层的特征,并用这个特征来判断是什么物体(文章把背景也当成一种类别,故如果是判断是不是20个物体时,实际上在实现是判断21个类。),最后再对是物体的区域进行微微调整。实际上文章内容也说过用我之前所说的方法(先学习分类器,然后sliding windows),不过论文用了更直观的方式来说明这样的消耗非常大。它说一个深度网络(alexNet)在conv5上的感受野是195×195,按照我的理解,就是195×195的区域经过五层卷积后,才变成一个点,所以想在conv5上有一个区域性的大小(7×7)则需要原图为227×227,这样的滑窗每次都要对这么大尺度的内容进行计算,消耗可想而知,故论文得下结论,不能用sliding windows的方式去做检测(消耗一次用的不恰当,望各位看官能说个更加准确的词)。不过论文也没有提为什么作者会使用先找可能区域,再进行判断这种方式,只是说他们根据09年的另一篇论文[1],而做的。这也算是大神们与常人不同的积累量吧。中间的深度网络通过ILSVRC分类问题来进行训练,即利用训练图片和训练的分类监督信号,来学习出这个网络,再根据这个网络提取的特征,来训练21个分类器和其相应的回归器,不过分类器和回归器可以放在网络中学习,R-CNN 模型如果要拟人化比喻,那 R-CNN 肯定是 Faster R-CNN 的祖父了。换句话说,R-CNN 是一切的开端。 R-CNN,或称 Region-based Convolutional Neural Network,其工作包含了三个步骤: 1.借助一个可以生成约 2000 个 region proposal 的「选择性搜索」(Selective Search)算法,R-CNN 可以对输入图像进行扫描,来获取可能出现的目标。 2.在每个 region proposal 上都运行一个卷积神经网络(CNN)。 3.将每个 CNN 的输出都输入进:a)一个支持向量机(SVM),以对上述区域进行分类。b)一个线性回归器,以收缩目标周围的边界框,前提是这样的目标存在。 下图具体描绘了上述 3 个步骤:Abstract :                  R-CNN的两个贡献:卷积层的能力很强,可以遍历候选区域达到精确的定位。2.当有标签的数据很少的时候,我们可以事前进行有标签(别的数据集上?)的预训练作为辅助任务,然后对特定的区域进行微调。Introduction:                 这篇文章最开始是在PASCAL VOC上在图像分类和目标检测方面取得了很好的效果。                为了达到很好的效果,文章主要关注了两个问题:1.用深层网络进行目标的定位。2.如何用少量的带标签的检测数据来训练模型                 对于 对一个问题目标定位 ,通常有两个思路可以走:                      1.把定位看成回归问题。效果不是很好。                      2.建立划窗检测器。                 CNN一直采用建立划窗这个方式,但是也只是局限于人脸和行人的检测问题上。               本文使用了五个卷积层(感受野食195*195),在输入时移动步长是32*32。               除此之外,对于定位问题,我们采用区域识别的策略。                在测试阶段,本文的方法产生了大约2000个类别独立的候选区域作为cnn的输入。然           后得到一个修正后的特征向量。然后对于特定的类别用线性SVM分类器分类。我们用简             单的方法(放射图像变形)来将候选区域变成固定大小。                   对于第二个缺少标签数据的问题                     目前有一个思路就是无监督的预训练,然后再加入有监督的微调。                    作为本文最大的贡献之二:在ILSVRC数据集上,我们先进行有监督的预训练。然                  后我们在PASCAL这个小数据集上我们进行特定区域的微调。在我们的实验中,微调                  可以提升8%的mAP。                     本文的贡献;效率高                      仅仅是特别类别的计算是合乎情理的矩阵运算,和非极大值抑制算法。他们共享权                值,并且都是低维特征向量。相比于直接将区域向量作为输入,维数更低。                本文方法处理能实现目标检测,还以为实现语义分割。 2.用R-CNN进行目标检测:             有3个Model:            (1)产生独立的候选区域。            (2)CNN产生固定长度的特征向量。             (3)针对特别类别的一群svm分类器。 模块的设计 候选区域:                   之前有大量的文章都提过如果产生候选区域。本文采用SS(selective search )方法。参考文献【34】+【36】 特征抽取:                 对于每个候选区域,我们采用cnn之后得到4096维向量。 测试阶段的检测               在测试阶段,我们用选择性搜素的方式在测试图片上选取了2000个候选区域,如上图所示的步骤进行。 运行时间分析: 总之当时相比很快。 训练模型 有监督的预训练: 我们使用了大量的ILSVRC的数据集来进行预训练CNN,但是这个标签是图片层的。换句话说没有带边界这样的标签。 特定区域的微调: 我们调整VOC数据集的候选区域的大小,并且我们把ImageNet上午1000类,变成了21类(20个类别+1个背景)。我们把候选区域(和真实区域重叠的)大于的标记为正数,其他的标记为负数。然后用32个正窗口和96个负窗口组成128的mini-batch。 目标类别分类器:         对于区域紧紧的包括着目标的时候,这肯定就是正样本。对于区域里面全部都是背景的,这也十分好区分就是负样本。但是某个区域里面既有目标也有背景的时候,我们不知道如歌标记。本文为了解决这个,提出了一个阈值:IoU覆盖阈值,小于这个阈值,我们标记为负样本。大于这个阈值的我们标记为正样本。我们设置为。这个是一个超参数优化问题。我们使用验证集的方法来优化这个参数。然而这个参数对于我们的最后的性能有很大的帮助。         一旦,我们得到特征向量。因为训练数据太大了。我们采用standard hard negative mining method(标准难分样本的挖掘)。这个策略也是的收敛更快。 Results on PASCAL VOC 201012 . Visualization, ablation, and modes of error . Visualizing learned features      提出了一个非参数的方法,直接展现出我们的网络学习到了什么。这个想法是将一个特定的单元(特性)放在其中使用它,就好像它自己是一个对象检测器正确的。具体方法就是:我们在大量候选区域中,计算每个单元的激励函数。按从最高到最低排序激活输出,执行非最大值抑制,然后显示得分最高的区域。我们的方法让选定的单元“为自己说话”通过显示它所触发的输入。我们避免平均为了看到不同的视觉模式和获得洞察力为单位计算的不变性。我们可以看到来着第五个maxpooling返回的区域。第五层输出的每一个单元的接受野对应输出227*227的其中的195*195的像素区域。所以中心那个点单元有全局的视觉。. Ablation studies 实际上ablation study就是为了研究模型中所提出的一些结构是否有效而设计的实验。比如你提出了某某结构,但是要想确定这个结构是否有利于最终的效果,那就要将去掉该结构的网络与加上该结构的网络所得到的结果进行对比,这就是ablation study。 Performance layer-by-layer, without fine-tuning. 我们只观察了最后三层Performance layer-by-layer, with fine-tuning. 微调之后,fc6和fc7的性能要比pool5大得多。从ImageNet中学习的pool5特性是一般的,而且大部分的提升都是从在它们之上的特定领域的非线性分类器学习中获得的。Comparison to recent feature learning methods.              见上图 . Detection error analysis           CNN的特征比HOG更加有区分。. Bounding box regression 有了对错误的分析,我们加入了一种方法来减少我们的定位错误。我们训练了一个线性的回归模型HOG和SIFT很慢。但是我们可以由此得到启发,利用有顺序等级和多阶段的处理方式,来实现特征的计算。生物启发的等级和移不变性,本文采用。但是缺少有监督学习的算法。使得卷积训练变得有效率。第一层的卷积层可以可视化。 【23】本文采用这个模型,来得到特征向量  ImageNet Large Scale Visual Recognition Competition用了非线性的激励函数,以及dropout的方法。【34】直接将区域向量作为输入,维数较高。IoU覆盖阈值=,而本文设置为,能提高5个百分点。产生候选区域的方式:selective search 也是本文所采取的方式是结合【34】+【36】。【5】产生候选区域的方式为:限制参数最小割bounding box regression HOG-based DPM文章中的对比试验。缩略图概率。[18][26][28]文章中的对比试验。

人脸检测和识别论文

可以。 毕业论文是可以用别人训练出来的,但是自己也要有创新,不能全部使用,不然是不会过的。毕业论文(graduation study)是专科及以上学历教育为对本专业学生集中进行科学研究训练而要求学生在毕业前撰写的论文。毕业论文一般安排在修业的最后一学年(学期)进行,论文题目由教师指定或由学生提出,学生选定课题后进行研究,撰写并提交论文,目的在于培养学生的科学研究能力,加强综合运用所学知识、理论和技能解决实际问题的训练,从总体上考查学生大学阶段学习所达到的学业水平。

姓名:张钰  学号:21011210154  学院:通信工程学院 【嵌牛导读】Frequency-aware Discriminative Feature Learning Supervised by Single-Center Loss for Face Forgery Detection论文阅读笔记 【嵌牛鼻子】Deepfake人脸检测方法,基于单中心损失监督的频率感知鉴别特征学习框架FDFL,将度量学习和自适应频率特征学习应用于人脸伪造检测,实现SOTA性能 【嵌牛提问】本文对于伪造人脸检测的优势在哪里体现 【嵌牛正文】 转自:

相关百科
热门百科
首页
发表服务