论文投稿百科

磁性材料论文参考文献

发布时间:2024-07-05 00:41:24

磁性材料论文参考文献

钢结构无损检测 摘要:通过对应用于建筑钢结构行业中的几种常规无损检测方法的简述,归纳了被检对象所适用的不同无 损检测方法。为广大工程技术人员和管理人员了解、学习、应用无损检测技术提供参考。 关键词:建筑钢结构;无损检测 1 前言 建筑钢结构由于其强度高、工业化程度高以及综合经济效益好等优点,自上世纪 90 年代,特别是近年来得 到了迅猛发展,广泛应用于工业和民用等领域。由于一些重点工程,建筑钢结构发生了严重的质量事故, 如郑州中原博览中心网架曾发生了崩塌事故,所以建筑钢结构的安全性和可靠性越来越受到重视。 建筑钢结构的安全性和可靠性源于设计,其自身质量则源于原材料、加工制作和现场安装等因素。评价建 筑钢结构的安全性和可靠性一般有三种方式:⑴模拟实验;⑵破坏性实验;⑶无损检测。模拟实验是按一 定比例模拟建筑钢结构的规格、材质、结构形式等,模拟在其运行环境中的工作状态,测试、评价建筑钢 结构的安全性和可靠性。模拟实验能对建筑钢结构的整体性能作出定量评价,但其成本高,周期长,工艺 复杂。破坏性实验是采用破坏的方式对抽样试件的性能指标进行测试和观察。破坏性实验具有检测结果精 确、直观、误差和争议性比较小等优点,但破坏性实验只适用于抽样,而不能对全部工件进行实验,所以 不能得出全面、综合的结论。无损检测则能对原材料和工件进行 100%检测,且经济成本相对较低。 上世纪 50 年代初,无损检测技术通过前苏联进入我国。作为工艺过程控制和产品质量控制的手段,如今在 核电、航空、航天、船舶、电力、建筑钢结构等行业中得到广泛的应用,创造了巨大的经济效益和社会效 益。无损检测技术是建立在众多学科之上的一门新兴的、综合性技术。无损检测技术是以不损伤被检对象 的结构完整性和使用性能为前提,应用物理原理和化学现象,借助先进的设备器材,对各种原材料,零部 件和结构件进行有效的检验和测试,借以评价它们的完整性、连续性、致密性、安全性、可靠性及某些物 理性能。无损检测经历了三个阶段,即无损探伤(Non-destructive Inspection,简称 NDI)、无损检测 (Non-destructive testing,简称 NDT)、无损评价(Non-destructive Evaluation,简称 NDE)、无损 探伤的含义是探测和发现缺陷。无损检测不仅仅要探测和发现缺陷,而且要发现缺陷的大小、位置、当量、 性质和状态。无损评价的含义则更广泛、更深刻, 它不仅要求发现缺陷,探测被检对象的结构、性质、状 态,还要求获得更全面、更准确的,综合的信息,从而评价被检对象的运行状态和使用寿命。应用于钢结 构行业中的常规无损检测方法有磁粉检测(Magnetic Testing 简称 MT)、渗透检测(Penetrate Testing, 简称 PT)、涡流检测(Eddy current Testing 简称 ET)、声发射检测(Acoustic Emission Testing 简称 AET)、超声波检测(Ultrasonic Testing,简称 UT)、射线检测(Radiography Testing,简称 RT)。在 建筑钢结构行业中,按检测缺陷产生的时机,无损检测方法可以按下图分类。 2 检测方法的简述 磁粉检测(MT) 原理 铁磁性材料被磁化后,产生在被检对象上的磁力线均匀分布。由于不连续性的存在,使工件表面和近表面 的磁力线发生了局部畸变而产生了漏磁场,漏磁场吸附施加在被检对象表面的磁粉,形成在合适光照下可 见的磁痕,从而达到检测缺陷的目的。 适用范围 可以对铁磁性原材料,如钢板、钢管、铸钢件等进行检测,也可以对铁磁性结构件进行检测。 局限性 仅适用铁磁性材料及其合金的表面和近表面的缺陷检测,对检测人员的视力、工作场所、被检对象的规格、 形状等有一定的要求。 优点 经济、方便、效率高、灵敏度高、检测结果直观。 渗透检测(PT) 原理 在被检对象表面施加含有荧光染料或着色染料的渗透液,渗透液在毛细血管的作用下,经过一定时间 后,渗透液可以渗透到表面开口的缺陷中去。经过去除被检对象表面多余的渗透液,干燥后,再在被检对 象表面施加吸附介质(显象剂)。同样在毛细血管的作用下,显象剂吸附缺陷中的渗透液,使渗透液回渗 到显象剂中,在一定的光照下,缺陷中的渗透液被显示。从而达到检测缺陷的目的。 适用范围 适用于非多孔状固体表面开口缺陷。 局限性 仅适用于表面开口缺陷的检测,而且对被检对象的表面光洁度要求较高,涂料、铁锈、氧化皮会覆盖表面 缺陷而造成漏检。对检测人员的视力有一定要求,成本相对较高。 优点 设备轻便、操作简单,检测灵敏度高,结果直观、准确。 涡流检测(ET) 原理 金属材料在交变磁场的作用下产生了涡流,根据涡流的分布和大小可以检测出铁磁性材料和非铁磁性材料 的缺陷。 适用范围 适用于各种导电材料的表面和近表面的缺陷检测。 局限性 不适用不导电材料检测,对形状复杂的试件很难应用,比较适合钢管、钢板等形状规则的轧制型材的检测, 而且设备较贵;无法判定缺陷的性质。 优点 检测速度快,生产效率高,自动化程度高。 声发射检测(AET) 原理 材料或结构件受到内力或外力的作用产生形变或断裂时, 以弹性波的形式释放出应变能的现象称为声发射, 也称为应力波发射。声发射检测是通过受力时材料内部释放的应力波判断被检对象内部结构损伤程度的一 种新兴动态无损检测技术。 适用对象 适用于被检对象的动态监测,如对大型桥梁、核电设备的实时动态监测。 局限性 无法监测静态缺陷、干扰检测的因素较多;设备复杂、价格较贵、检测技术不太成熟。 优点 可以远距离监控设备的运行情况和缺陷的扩展情况,对结构的安全性和可靠性评价提供依据。 超声波检测(UT) 原理 超声波是指频率大于 20 千兆赫兹的机械波。根据波动传播时介质的振动方向相对于波的传播方向不同,可 将波动分为纵波、横波、表面波和板波等。用于钢结构检测的主要是纵波和横波。 超声波探伤仪激励探头产生的超声波在被检对象的介质中按一定速度传播,当遇到异面介质(如气孔、夹 渣)时,一部分超声波反射回来,经仪器处理后,放大进入示波屏,显示缺陷的回波。 适用对象 适用于各类焊逢、板材、管材、棒材、锻件、铸件以及复合材料的检测,特别适合厚度较大的工件。 局限性 检测结果可追溯性较差;定性困难,定量不精确,人为因素较多;对被检工件的材质规格,几何形状有一 定要求。 优点 检测成本低、速度快、周期短、效率高;仪器小、操作方便;能对缺陷进行精确定位;对面积型缺陷的检 出率较高(如裂纹、未熔合等) 射线检测(RT) 原理 射线是一种波长短、频率高的电磁波。 射线检测,常规使用×射线机或放射性同位素作为放射源产生射线,射线穿过被检对象,经过吸收和衰减, 由于被检试件中存在厚度差的原因,不同强度的射线到达记录介质(如射线胶片),射线胶片的不同部位 吸收了数量不等的光子,经过暗室处理后,底片上便出现了不同黑度的缺陷影象,从而判定缺陷的大小和 性质。 适用范围 适用较薄而不是较厚(如果工件的厚度超过 80mm 就要使用特殊设备进行检测,如加速器)的工件的内部体 积型缺陷的检测。 局限性 检测成本高、周期长,工作效率低;不适用角焊逢、板材、管材、棒材、锻件的检测;对面状的缺陷检出 率较低;对缺陷的高度和缺陷在被检对象中的深度较难确定;影响人体健康。 优点 检测结果直观、定性定量准确;检测结果有记录,可以长期保存,可追溯性较强。 3 小结 综上所述,每种无损检测方法的原理和特点各不相同,且适用的检测对象也不一样。在建筑钢结构的行业 中应根据结构的整体性能,检测成本及被检对象的规格、材质、缺陷的性质、缺陷产生的位置等诸多因素 合理选择无损检测方法。一般地,选择无损检测方法及合格等级,是设计人员依据相关规范而确定的。有 的工程,业主也有无损检测方法及合格等级的要求,这就需要供需双方相互协商了。 钢结构在加工制作及安装过程中无损检测方法的选择见表 1 被检对象 原材料检验 板材 锻件及棒材 管材 螺栓 焊接检验 坡口部位 清根部位 对接焊逢 角焊逢和 T 型焊逢 UT 检测方法 UT、MT(PT) UT(RT)、MT(PT) UT、MT(PT) UT、PT(MT) PT(MT) RT(UT)、MT(PT) UT(RT)、PT(MT) 被检对象所适用的无损检测方法见表 2 内部缺陷 表面缺陷和近表面 检测方法 UT ● ○ ● ● MT ● ● ● ● PT ● ○ ○ ● ET △ △ ● × AET △ △ △ △ 发生中缺陷检 测 检测方法 RT 被检对象 试 件 分 类 锻件 铸件 压延件(管、板、型材) 焊逢 × ● × ● 分层 疏松 气孔 内部 缩孔 缺陷 未焊透 未熔合 缺陷 分类 夹渣 裂纹 白点 表面裂纹 表面 缺陷 表面气孔 折叠 断口白点 × × ● ● ● △ ● ○ × △ ○ — × ● ○ ○ ○ ● ● ○ ○ ○ △ × — × — — — — — — — — — ● △ ○ ● — — — — — — — — — ● ● ○ ● — — — — — — — — — ● △ ○ — — — — — △ △ △ △ △ △ — — — 注:●很适用;○适用;△有附加条件适用;×不适用;—不相关 参 1. 考 文 献 强天鹏 射线检测 [M] 云南科技出版社 2001 2. 3. 4. 5. 周在杞等 张俊哲等 无损检测技术及其应用 [M] 科学出版社 王小雷 锅炉压力容器无损检测相关知识 [M] 李家伟等 无损检测 冉启芳 2001 1993 [M] 机械工业出版社 2002 无损检测方法的分类及其特征的介绍 [J] 无损检测 1999 2 钢网架结构超声波检测及其质量的分 [J] 无损检测 2001 6 磁粉检测(MT) 磁粉检测(MT) 原理 铁磁性材料被磁化后,产生在被检对象上的磁力线均匀分布。由于不连续性的存在,使工件表面和近表面 的磁力线发生了局部畸变而产生了漏磁场,漏磁场吸附施加在被检对象表面的磁粉,形成在合适光照下可 见的磁痕,从而达到检测缺陷的目的。 磁粉探伤的原理及概述 磁粉探伤的原理 磁粉探伤又称 MT 或者 MPT(Magnetic Particle Testing),适用于钢铁等磁性材料的表面附近进行探伤 的检测方法。利用铁受磁石吸引的原理进行检查。在进行磁粉探伤检测时,使被测物收到磁力的作用,将 磁粉(磁性微型粉末)散布在其表面。然后,缺陷的部分表面所泄漏出来泄露磁力会将磁粉吸住,形成指 示图案。指示图案比实际缺陷要大数十倍,因此很容易便能找出缺陷。 磁粉探伤方法 磁粉探伤检测的顺序分为前期处理、磁化、磁粉使用、观察,以及后期处理。 前期处理→磁化→磁粉使用→观察→后期处理 以下分别说明各个步骤的概要。 (1)前期处理 探探伤面如果有油脂、涂料、锈、或其他异物附着的情况下,不仅会妨碍磁粉吸附在伤痕上,而且还会出 现磁粉吸附在伤痕之外的部分形成疑私图像的情况。因此在磁化之前,要采用物理或者化学处理,进行去 除污垢异物的步骤。 (2)磁化 将检测物适当磁化是非常重要的。通常,采用与伤痕方向与磁力线方向垂直的磁化方式。另外为了适当磁 化,根据检测物的形状可以采用多种方法。日本工业规格(JIS G 0565-1992)中规定了以下 7 种磁化方法。 ①轴通电法……在检测物轴方向直接通过电流。 ②直角通电法……在检测物垂直于轴的方向直接通过电流。 ③Prod 法……在检测物局部安置 2 个电极(称为 Prod)通过电流。 ④电流贯通法……在检测物的孔穴中穿过的导电体中通过电流。 ⑤线圈法……在检测物中放入线圈,在线圈中通过电流。 ⑥极间法……把检测物或者要检测的部位放入电磁石或永磁石的磁极间。 ⑦磁力线贯通法……对通过检测物的孔穴的强磁性物体施加交流磁力线,使感应电流通过检测物。 (3)磁粉使用磁粉探伤的原理 ① 磁粉的种类 为了让磁粉吸附在伤痕部的磁极间形成检出图像,使用的磁粉必须容易被伤痕部的微弱磁场磁化,吸附在 磁极上,也就是说需要优秀的吸附性能。另外,要求形成的磁粉图像必须有很高的识别性。 一般,磁粉探伤中使用的磁粉有在可见光下使用的白色、黑色、红色等不同磁粉,以及利用荧光发光的荧 光磁粉。另外,根据磁粉使用的场合,有粉状的干性磁粉以及在水或油中分散使用的湿性磁粉。 ② 磁粉的使用时间 磁粉使用时间分为一边通过磁化电流一边使用磁粉的连续法,以及在切断磁化电流的状态即利用检测物的 残留磁力的残留法两种。 (4)观察 为了便于观察附着在伤痕部位的磁粉图像,必须创造容易观察的环境。普通磁粉需要在尽可能明亮的环境 下观察,荧光磁粉则要使用紫外线照射灯将周围尽量变暗才容易观察。 (5)后期处理 磁粉探伤结束,检测物有可能仍作为产品或是需要送往下一个加工步骤接受机械加工等。这时就需要进行 退磁、去除磁粉、防锈处理等后期处理。 适用范围 可以对铁磁性原材料,如钢板、钢管、铸钢件等进行检测,也可以对铁磁性结构件进行检测。 局限性 仅适用铁磁性材料及其合金的表面和近表面的缺陷检测,对检测人员的视力、工作场所、被检对象的规格、 形状等有一定的要求。 优点 经济、方便、效率高、灵敏度高、检测结果直观。 生产厂家: 生产厂家:济宁联永超声电子有限公司 仪器设备名称: 仪器设备名称:CDX-Ⅲ该机型磁粉探伤仪 Ⅲ 仪器概况:CDX-Ⅲ该机型磁粉探伤仪是具有多种磁化方式的磁粉探 伤仪设备。仪器采用可控硅作无触点开关,噪音小、寿命长、操作简 单、方便、适应性强、工作稳定。是最近推出新产品,它除具有便携 式机种的一切优点,还具有移动机种的某些长处,扩展了用途,简化 了操作,还具有退磁功能。 该设备有四种探头: 1、旋转探头: 型)能对各种焊缝、各种几何形状的曲面、平面、 (E 管道、锅炉、球罐等压力容器进行一次性全方位显示缺陷和伤痕。 2、电磁轭探头: 型)它配有活关节,可以对平面、曲面工件进行 (D 探伤。 3、马蹄探头: 型)它可以对各种角焊缝,大型工件的内外角进行 (A 局部探伤。 4、磁环: 型)它能满足所有能放入工件的周向裂纹的探伤,用它 (O 来检测工件的疲劳痕(疲劳裂痕均垂于轴向)及为方便,用它还可以 对工件进行远离法退磁。 总之,该仪器是多种探伤仪的给合体,功能与适用范围广,尤其应用 于不允许通电起弧破表面零件的探伤。 无损检测概论及新技术应用 无损检测概论及新技术应用 概论 摘要: 摘要:综述了无损检测的定义、方法、特点、要求等基本知识,以及无损检测在 现今社会中的应用实例,其中包括混凝土超声波无损检测技术、涡流无损检测技 术、渗透探伤技术。 关键词: 关键词:无损检测;混凝土缺陷;涡流检测;渗透探伤。 引言: 引言:随着现代工业的发展,对产品的质量和结构的安全性、使用的可靠性提出 了越来越高的要求,无损检测技术由于具有不破坏试件、检测灵敏度高等优点, 所以其应用日益广泛。无损检测是工业发展必不可少的有效工具,在一定程度上 反映了一个国家的工业发展水平,其重要性已得到公认。 1、 无损检测概论 、 无损检测 检测概论 无损检测就是利用声、光、磁和电等特性,在不损害或不影响被检对象使用 性能的前提下,检测被检对象中是否存在缺陷或不均匀性,给出缺陷的大小、位 置、性质和数量等信息,进而判定被检对象所处技术状态(如合格与否、剩余寿 命等)的所有技术手段的总称。 常用的无损检测方法有射线照相检验(RT)、超声检测(UT)、磁粉检测(MT)和 液体渗透检测(PT) 四种。 其他无损检测方法: 涡流检测(ET)、 声发射检测 (AT) 、 (TIR) 泄漏试验 、 (LT) 交流场测量技术 、 (ACFMT) 漏磁检验 、 (MFL)、 热像/红外 远场测试检测方法(RFT)等。 基于以上方法,无损检测具有一下应用特点: 1>不损坏试件材质、结构 无损检测的最大特点就是能在不损坏试件材质、 结构的前提下进行检测, 所以实施无损检测后,产品的检查率可以达到 100%。但是,并不是所有需要测 试的项目和指标都能进行无损检测,无损检测技术也有自身的局限性。某些试验 只能采用破坏性试验, 因此, 在目前无损检测还不能代替破坏性检测。 也就是说, 对一个工件、材料、机器设备的评价,必须把无损检测的结果与破坏性试验的结 果互相对比和配合,才能作出准确的评定。 2>正确选用实施无损检测的时机 在无损检测时, 必须根据无损检测的目的,正确选择无损检测的时机,从而顺利 地完成检测预定目的,正确评价产品质量。 3>正确选用最适当的无损检测方法 由于各种检测方法都具有一定的特点,为提高检测结果可靠性,应根据设备 材质、制造方法、工作介质、使用条件和失效模式,预计可能产生的缺陷种类、 形状、部位和取向,选择合适的无损检测方法。 4>综合应用各种无损检测方法 任何一种无损检测方法都不是万能的,每种方法都有自己的优点和缺点。应 尽可能多用几种检测方法,互相取长补短,以保障承压设备安全运行。此外在无 损检测的应用中,还应充分认识到,检测的目的不是片面追求过高要求的“高质 量”,而是应在充分保证安全性和合适风险率的前提下,着重考虑其经济性。只 有这样,无损检测在承压设备的应用才能达到预期目的。[1] 通过各种检测方法,最终对于无损检测的要求是:不仅要发现缺陷,探测试 件的结构、状态、性质,还要获取更全面、准确和综合的信息,辅以成象技术、 自动化技术、计算机数据分析和处理技术等,与材料力学、断裂力学等学科综合 应用,以期对试件和产品的质量和性能作出全面、准确的评价。 2、 无损检测在各领域的应用 、 无损检测基于以上优点,在现今社会受到广泛关注和应用,为实际生产工作减 少了废料成本,提供了极大的方便。其中超声波检测技术、涡流检测、渗透探伤 技术、霍尔效应无损探伤技术应用极为出色。 混凝土超声无损检测 混凝土是我国建筑结构工程最为重要的材料之一,它的质量直接关系到结构 的安全。多年来,结构混凝土质量的传统检测方法是以按规定的取样方法,制作 立方体试件,在规定的温度环境下,养护 28d 时按标准实验方法测得的试件抗压 强度来评定结构构件的混凝土强度。用试件实验测得的混凝土性能指标,往往是 与结构物中的混凝土性能有一定差别。因此,直接在结构物上检测混凝土质量的 现场检测技术,已成为混凝土质量管理的重要手段。 所谓混凝土“无损检测”技术,就是要在不破坏结构构件的情况下,利用测 试仪器获取有关混凝土质量等受力功能的物理量。 因该物理量与混凝土质量之间 有较好的相互关系,可采用获取的物理量去推定混凝土质量。[2] 混凝土超声检测是用超声波探头中的压电陶瓷或其他类型的压电晶体加载某 频率的交流电压后激发出固定频率的弹性波, 在材料或结构内部传播后再由超声 波换能器接收,通过对采集的超声波信号的声速、振幅、频率以及波形等声学参 数进行分析,以此推断混凝土结构的力学特性、内部结构及其组成情况。超声波 检测可用于混凝土结构的测厚、探伤、混凝土的弹性模量测定以及混凝土力学强 度评定等方面. [3] 涡流无损检测 涡流检测的基本原理:将通有交流电的线圈置于待测的金属板上或套在待测 的金属管外。这时线圈内及其附近将产生交变磁场,使试件中产生呈旋涡状的感 应交变电流,称为涡流。涡流的分布和大小,除与线圈的形状和尺寸、交流电流 的大小和频率等有关外,还取决于试件的电导率、磁导率、形状和尺寸、与线圈 的距离以及表面有无裂纹缺陷等。因而,在保持其他因素相对不变的条件下,用 一探测线圈测量涡流所引起的磁场变化,可推知试件中涡流的大小和相位变化, 进而获得有关电导率、缺陷、材质状况和其他物理量(如形状、尺寸等)的变化或 缺陷存在等信息。但由于涡流是交变电流,具有集肤效应,所检测到的信息仅能 反映试件表面或近表面处的情况。[4] 应用:按试件的形状和检测目的的不同,可采用不同形式的线圈,通常有穿过 式、探头式和插入式线圈 3 种。穿过式线圈用来检测管材、棒材和线材,它的内 径略大于被检物件, 使用时使被检物体以一定的速度在线圈内通过, 可发现裂纹、 夹杂、凹坑等缺陷。探头式线圈适用于对试件进行局部探测。应用时线圈置于金 属板、管或其他零件上,可检查飞机起落撑杆内筒上和涡轮发动机叶片上的疲劳 裂纹等。插入式线圈也称内部探头,放在管子或零件的孔内用来作内壁检测,可 用于检查各种管道内壁的腐蚀程度等。为了提高检测灵敏度,探头式和插入式线 圈大多装有磁芯。涡流法主要用于生产线上的金属管、棒、线的快速检测以及大 批量零件如轴承钢球、汽门等的探伤(这时除涡流仪器外尚须配备自动装卸和传 送的机械装置) 、材质分选和硬度测量,也可用来测量镀层和涂膜的厚度。[5] 优缺点:涡流检测时线圈不需与被测物直接接触,可进行高速检测,易于实现 自动化,但不适用于形状复杂的零件,而且只能检测导电材料的表面和近表面缺陷, 检测结果也易于受到材料本身及其他因素的干扰。 渗透探伤技术 液体渗透检测的基本原理:零件表面被施涂含有荧光染料或着色染料的渗透 剂后,在毛细管作用下,经过一段时间,渗透液可以渗透进表面开口缺陷中;经 去除零件表面多余的渗透液后,再在零件表面施涂显像剂,同样,在毛细管的作 用下,显像剂将吸引缺陷中保留的渗透液,渗透液回渗到显像剂中,在一定的光 源下 (紫外线光或白光) 缺陷处的渗透液痕迹被现实, 黄绿色荧光或鲜艳红色) , ( , 从而探测出缺陷的形貌及分布状态。[6] 渗透检测适用于具有非吸收的光洁表面的金属、非金属,特别是无法采用磁 性检测的材料,例如铝合金、镁合金、钛合金、铜合金、奥氏体钢等的制品,可 检验锻件、铸件、焊缝、陶瓷、玻璃、塑料以及机械零件等的表面开口型缺陷。 渗透检测的优点是灵敏度较高(已能达到检测开口宽度达 的裂缝) ,检测 成本低,使用设备与材料简单,操作轻便简易,显示结果直观并可进一步作直观 验证(例如使用放大镜或显微镜观察) ,其结果也容易判断和解释,检测效率较 高。缺点是受试件表面状态影响很大并只能适用于检查表面开口型缺陷,如果缺 陷中填塞有较多杂质时将影响其检出的灵敏度。[7] 3、 结语 、 随着现代科学技术的发展,激光、红外、微波、液晶等技术都被应用于无损 检测领域,而传统的常规无损检测技术也因为现代科技的发展,大大丰富了应用 方法,如射线照相就可细分为 X 射线、γ射线、中子射线、高能 X 射线、射线 实时照相、层析照相……等多种方法。 无损检测作为一种综合性应用技术,无损检测技术经历了从无损探伤,到无 损检测,再到无损评价,并且向自动无损评价、定量无损评价发展。相信在不远 的将来, 新生的纳米材料、 微机电器件等行业的无损检测技术将会得到迅速发展。 参考文献【1】李喜孟.无损检测.机械工业出版社.2011 】 【2】父新漩. 混凝土无损检测手册.人民交通出版社.2003 】 【 3】 冯子蒙.超声波无损检测于评价的关键技术问题及其解决方案.煤矿机 】 械.2009(9) 【4】唐继强.无损检测实验.机械工业出版社.2011 】 【5】李丽茹.表面检测.机械工业出版社.2009 】 【6】国防科技工业无损检测人员资格鉴定与认证培训教材编审委员会.机械工业 出版社.2004 【7】胡学知主编. 中国劳动社会保障出版社.2007 】

对于许多现代技术应用,如用于磁共振成像的超导导线,工程师们希望尽可能地消除电阻及其产生的热量。然而事实证明,在固态计算机内存等自旋电子应用中,电阻产生的少量热量是金属薄膜的理想特性。同样地,虽然缺陷在材料科学中通常也是不受欢迎,但它们可以用来控制被称为斯凯密子的磁性准粒子产生。麻省理工学院杰弗里·s·d·比奇教授和他在加利福尼亚、德国、瑞士和韩国的同事在本月发表在《自然纳米技术与高级材料》上的另一篇论文中指出:博科园-科学科普:在室温下可以在特制的层状材料中产生稳定而快速移动的拓扑结构——斯格米子(skyrmion)态,创造了尺寸和速度的世界纪录,而且每篇论文都登上了各自期刊的封面!为了发表在《高级材料》(Advanced Materials)上的这项研究,研究人员制作了一种金属合金线,这种金属合金由一种重金属铂、一种磁性材料钴铁硼和镁氧组成,共15层。在这些层状材料中,铂金属层和钴铁硼之间的界面创造了一种环境,在这种环境中,通过施加垂直于薄膜的外部磁场和沿导线长度传播的电流脉冲:可以形成拓扑结构——斯格米子(skyrmion)态。值得注意的是,在20毫安特斯拉的磁场下(磁场强度的一种测量方法),导线在室温下会形成天空介子。在349 kelvins(168华氏度)以上的温度下,拓扑结构——斯格米子(skyrmion)态在没有外部磁场的情况下形成,这是由材料升温引起,即使材料冷却到室温,斯格米子(skyrmion)仍然保持稳定,比奇说:以前只有在低温和强磁场的情况下才能看到这样的结果。 这篇高级材料论文的第一作者,也是麻省理工学院材料科学与工程专业的研究生Ivan Lemesh(合作作者包括资深作家比奇和其他17人)说:在开发了许多理论工具之后,我们现在不仅可以预测内部的斯格米子(skyrmion)态结构和大小,而且我们还可以做一个逆向工程问题,比如想要一个这样大小的斯格米子(skyrmion)态,我们将能够生成多层,或者材料,参数,这将导致该斯格米子(skyrmion)态的大小。电子的一个基本特征是自旋,自旋可以指向上,也可以指向下。斯格米子(skyrmion)态是一组电子的圆形簇,其自旋方向与周围电子的方向相反,并且skyrmion保持顺时针或逆时针方向。2018年11月30日莱梅什在波士顿的材料研究学会秋季会议上介绍了他的研究并表示:然而,除此之外,我们还发现磁性多层中的斯格米子(skyrmion)态形成了一种复杂、依赖于厚度的扭曲性质,这些发现发表在《物理评论B》上的另一项理论研究中。目前的研究表明,虽然这种扭曲结构对斯格米子(skyrmion)态计算平均尺寸的能力影响较小,但它对其电流诱导行为有显著影响。 在《自然纳米技术》上发表的这篇论文中,研究人员研究了一种不同的磁性材料,将铂与钆钴合金和氧化钽的磁性层叠加在一起。在这种材料中,研究人员展示了他们可以产生10纳米大小的斯格米子(skyrmion)态,并证实他们可以在这种材料中快速移动。第一作者、材料科学与工程专业研究生卢卡斯·卡塔塔(Lucas Caretta)说:我们在这篇论文中发现,铁磁体对于准粒子的大小以及利用电流驱动它们速度有基本极限。在铁磁体中,例如钴铁硼,相邻的自旋平行排列,产生很强的方向磁矩。为了克服铁磁体的基本限制,研究人员求助于钆钴,这是一种铁磁体,相邻的自旋上下交替,这样它们就可以相互抵消,导致整体磁矩为零。可以设计一个铁磁体,使其净磁化率为零,从而产生超小的自旋纹理,或者调整它,使其净角动量为零,从而产生超快的自旋纹理。”这些性能可以通过材料组成或温度来设计。2017年,Beach团队的研究人员和他们的合作者通过实验证明,他们可以通过在磁性层中引入一种特殊的缺陷,在特定的位置随意制造这些准粒子。莱梅什说:可以通过使用离子轰击等不同的局部技术来改变一种材料的性质,通过这种方法,你可以改变它的磁性,然后如果你向导线中注入电流,斯格米子(skyrmion)态就会在那个位置诞生。最初发现这种材料存在天然缺陷,后来通过金属丝的几何形状,它们变成了工程缺陷。用这种方法在新的自然纳米技术论文中创造了天空介子。研究人员利用x射线全息术,在德国同步加速器中心的室温下拍摄了钴钆混合物中的斯格米子(skyrmion)态。Felix Buttner,海滩实验室的博士后,是这种x射线全息技术的开发者之一。这是唯一的一种技术,可以允许这样高分辨率的图像,可以看到这样大小的skyrmions。这些斯格米子(skyrmion)态只有10纳米大小,这是目前室温斯格米子(skyrmion)态的世界纪录。研究人员利用一种同样可以用来移动斯格米子(skyrmion)态的机制,证明了当前驱动的域壁运动速度为每秒公里,这也创造了一项新的世界纪录。除了同步加速器的工作,所有研究都是在麻省理工学院完成,研究人员在麻省理工学院“种植”材料,制造材料,并对材料进行特性描述。 这些斯格米子(skyrmion)态是这些材料中电子自旋的一种自旋构型,而畴壁是另一种。域壁是自旋方向相反的域之间的边界。由于斯格米子(skyrmion)态是材料的基本属性,其形成和运动能量的数学表征涉及到一组复杂的方程,这些方程包含了它们的圆形尺寸、自旋角动量、轨道角动量、电子电荷、磁强度、层厚,以及一些捕捉相邻自旋和相邻层之间相互作用的能量的特殊物理术语,如交换相互作用。其中一种相互作用被称为Dzyaloshinskii-Moriya相互作用(DMI),它是由铂层和磁层的电子相互作用产生,对形成斯格米子(skyrmion)态具有特殊的意义。勒梅什说:在季亚罗辛斯基-森也相互作用中,自旋相互垂直排列,从而稳定了天空介子。DMI的相互作用使这些斯格米子(skyrmion)态具有拓扑结构,产生迷人的物理现象,使它们稳定,并允许它们随电流移动。卡塔塔说:铂本身提供了所谓的自旋电流,这是驱动自旋纹理的运动,自旋电流对邻近的铁或铁磁体的磁化提供了一个扭矩,这个扭矩最终导致了自旋结构的运动,基本上是用简单的材料在界面上实现复杂现象。在这两篇论文中,研究人员进行了微磁和原子自旋计算的混合,以确定形成斯格米子(skyrmion)态和移动它们所需的能量。事实证明,通过改变磁性层的比例,可以改变整个系统的平均磁性能,所以现在我们不需要使用不同的材料来产生其他性质。可以用不同厚度的间隔层稀释磁性层,就会得到不同的磁性,这就给了无限的机会来制造系统。 新罕布什尔大学(University of New Hampshire)物理学助理教授张家东(Jiadong Zang)在谈到这篇先进材料论文时表示:精确控制产生磁斯格米子(skyrmion)态是该领域的一个中心课题。这项工作提出了一种通过电流脉冲产生零场斯格米子(skyrmion)态的新方法。这无疑是朝着纳秒级斯格米子(skyrmion)态操纵迈出的坚实一步。英国利兹大学凝聚态物理学教授Christopher Marrows在评论《自然纳米技术报告》时表示:斯凯米子非常小,但在室温下可以稳定下来,这一点非常重要。Marrows注意到Beach小组在今年早些时候的一篇科学报告中预测了室温天空介子,并说:新结果是最高质量的研究工作。但是他们做出了预测,现实生活并不总是如理论预期的那样,所以他们应该为这一突破负全部责任。Zang在评论《自然纳米技术》的论文时补充道:斯格米子(skyrmion)态研究的一个瓶颈是要达到小于20纳米尺寸(相当于最先进的存储单元的尺寸),并以每秒1公里以上的速度驱动它 运动,这两项挑战都在这项开创性的工作中得到了解决。一个关键的创新是使用铁磁体,而不是常用的铁磁体,来承载斯格米子(skyrmion)态,这项研究工作极大地刺激了基于skyrmi的内存和逻辑设备的设计,这绝对是skyrmion领域的一份明星论文。 基于这些斯格米子(skyrmion)态的固态设备有一天可能会取代现有磁存储硬盘驱动器。比奇在华盛顿大学的一次演讲中说:磁斯格米子(skyrmion)态流可以作为计算机应用程序的比特。在这些材料中,可以很容易地绘制出磁迹的图样。这些新发现可以应用于由IBM的Stuart Parkin开发的赛道内存设备。设计这些材料用于赛道设备的一个关键是设计能够形成skyrmions的材料,因为斯格米子(skyrmion)态是在材料存在缺陷的地方形成。理工学院材料研究实验室(MRL)的联合主任Beach说:人们可以通过在这类系统中设置缺口来进行设计,注入材料中的电流脉冲在缺口处形成了斯格米子(skyrmion)态。同样的电流脉冲可以用来写入和删除,这些斯格米子(skyrmion)态的形成速度非常快,不到十亿分之一秒。为了能够有一个实用的操作逻辑或内存赛道设备,必须写入比特,这就是在创建磁准粒子时所讨论,必须确保写入比特非常小,必须以非常快的速度将比特通过材料进行转换。利兹大学的教授Marrows补充道:在基于斯基里米的自旋电子学中的应用将会受益,尽管现在就确定在包括记忆、逻辑器件、振荡器和神经形态学器件在内的各种各样的提议中哪个会是赢家还为时过早。剩下的一个挑战是阅读这些斯格米子(skyrmion)态位元的最佳方式。海滩小组在这一领域的工作仍在继续,目前的挑战是找到一种方法,以电的方式检测这些天空介子,以便在电脑或手机上使用它们。卡塔塔说:是的,所以不需要把你的手机带到同步加速器来读一点,由于在铁磁体和类似的反铁磁体系统上所做的一些工作,我认为该领域的大多数领域实际上将开始转向这类材料,因为它们拥有巨大的前景!

磁学与磁性材料杂志

磁学国家重点实验室以磁性物理的基础研究为指导,以具有重大应用背景的磁性材料为对象,开展物质的基本磁性、磁输运和宏观量子效应以及磁、电、热、光交叉效应研究,探讨微观电子结构、表面和界面效应与宏观磁性的内在联系,探索新的磁性材料和新的人工纳米结构材料与器件。实验室主要研究方向和研究内容1.磁性理论研究Mn12, Fe8 等纳米分子磁体的磁性理论及宏观量子效应2.纳米自旋电子学研究研究自旋电子在纳米尺度下的输运特性,探索新的磁电子材料,设计新型磁电子器件。3.氧化物的巨磁电阻效应研究稀土-过渡族氧化物的结构、磁性和磁电阻效应,以及产生巨磁电阻效应的物理机制。4.稀土-过渡族化合物的结构、磁性与磁熵变以及纳米晶稀土永磁材料和物理研究稀土过渡族金属间化合物的晶体结构、磁结构、内禀磁性、相变和磁热效应,以及磁熵变的物理机制。研究纳米晶稀土永磁材料的结构、微结构、畴结构、相结构与永磁性,纳米晶稀土材料的永磁理论。5.磁性材料的晶体结构和磁结构分析利用中子衍射和X射线衍射方法,研究磁性材料的晶体结构和磁结构,探讨磁结构与磁性的关系。6.磁性单晶的生长和物性磁性单晶的生长、大磁致伸缩、形状记忆和大应变效应的研究。7.原子力和磁力显微学研究磁性材料的磁畴结构、磁化过程和反磁化过程。8.高分子/纳米磁性材料和生物磁性研究高分子/纳米磁性材料的微波特性以及生物磁性。9.磁性材料的超精细相互作用利用穆斯堡尔波谱学等核技术,结合电子结构计算,研究磁性材料微观磁性与宏观磁性的内在联系。

有呀 IEM China 2010第十一届中国国际磁性材料及生产技术展览会IEM China 2010第十一届中国国际磁性材料及生产技术展览会The 11th China International Exhibition of Magnetic Materials时间:2010年5月17-19 地点:上海光大会展中心(漕宝路78号)邀 请 函 Invitation主办单位:中电元协磁性材料与器件行业分会中国电子材料协会磁性材料分会磁性材料及器件专业情报网工信部磁性元件质量监督检验中心全国磁性元件与铁氧体材料标准化技术委员会中国电子科技集团公司第九研究所承办单位:上海星辉展览服务有限公司中国西南应用磁学研究所西磁科技咨询中心协办单位:浙江省磁性材料行业协会台湾磁性技术协会台湾电机电子工业同业公会日本电子材料工业会支持单位:中国电子科技集团公司指定媒体:《磁性材料及器件》杂志 ◎市场背景我国是世界磁性材料生产大国。多年来,磁性材料在电子产业出口创汇中一直发挥着重要的作用,也是少数几个长期保持贸易顺差的产品之一。预计未来几年,中国市场需要永磁铁氧体50万吨,软磁铁氧体20万吨,钕铁硼磁体5万吨,约占全球市场的50%,世界磁材生产巨头纷纷来华投资设厂。进入2010年,随着全球经济的复苏以及中国经济的发展,华东地区已经成为全球磁性材料最重要的生产、出口和需求集聚地。IEM CHINA是由中国磁性材料工业最具影响力的社会团体主办的专业展会,也是亚洲规模最大、内容最丰富的磁性材料工业盛会。IEM CHINA的成功源于国家磁性材料专业机构作强力后盾,行业厂家的积极响应和参与,国际业界的积极支持,国内生产、加工以及应用领域的高度关注,以及组织单位的专业化服务。2009年第十届IEM展会共吸引了来自中国、日本、美国、英国、德国、意大利、韩国以及中国香港、中国台湾地区等国内外二百多家企业参展,展场面积近五千平方米。为期三天的展会共接待参观观众14043人次,其中包括来自全国24个省(自治区/直辖市)和美国、德国、法国、意大利、瑞士、日本、韩国、中国香港、中国台湾等14个国家和地区的1107名海外观众。IEM 2010召开正值上海世博会举办期间,期待与您共商磁材!共享世博!◎展会优势⊙最具影响力的主办单位:由中国磁性材料工业最具影响力的专业社会团体和科研院所联合举办,目的是集中优势,办好实事,使广大企业受益;⊙十年经验积累:持续主办历年的IEM展会,熟悉磁性材料及其用户行业全面情况,多年积累的专业观众数据库是参展商实际展出效果的有力保障。⊙最具吸引力的城市:作为中国经济中心,上海已成为中国第一会展城市。在上海举办专业展会,将真正吸引全国各地的专业观众。同时上海也是世界500强企业在中国的大本营,上海的专业展会将吸引最多的海外采购商。⊙高层次的技术交流:同期由协会举办的高层次技术研讨会和学术交流会已经成为国内外专业人士一年一度的大聚会。⊙专题报告:上海是中国汽车零部件最大的生产基地和销售市场,本次展会将以汽车电子市场为主题,邀请专家作专题报告。⊙著名企业参与:国内外参加过IEM CHINA的著名企业有:横店东磁、天通电子、中科三环、北矿磁材、杭州永磁、金川电子、宁波韵升、安泰科技、成都银河、广东江粉、中钢天源、安徽龙磁、绵阳开元、宁波科宁达、宁波永久、东阳李磁、南湖电子、英洛华、烟台正海、沈阳中北通磁、津滨磁电、捷磁集团、深圳福义乐、TDK、FDK、NICERAMIC、EPSON、VAC、MAGNEQUENCH、尼欧联、秀峰、乔智电子、阿诺德、中山高雅等。◎展览范围1、永磁材料:稀土永磁材料、铁氧体永磁、铝镍钴、粘结永磁;2、软磁材料:软磁铁氧体材料、金属软磁、非晶纳米晶软磁、抗电磁干扰材料与器件(EMI,EMC);3、生产磁材的专用制备:干粉压机、烧结炉、粉碎机、混料机、搅拌机、烘干机、球磨机、切割机、切片机、充磁机、真空烧结炉设备、平面磨床、超声波清洗机、磁性材料工模具等;4、生产磁性材料用的仪器、仪表和控制、检测技术与设备:如激光粒度分析仪、X荧光分析仪、粉碎混合度分析仪、磁强计、磁粉控伤仪及相关检测仪器;5、生产磁材用的各种原材料、辅助材料:氧化铁、氧化锰、氧化锌、氧化镍、锶、钡、钕、其他稀土金属、软磁粉料、永磁预烧料;6、永磁电机及其它永磁相关应用产品;7、电源及电子变压器等及其它软磁相关应用产品。◎收费标准1、标准展位:3x3=9平米国内企业: ¥7800元/个 合资企业:¥10800元/个 国外企业:USD 650元/ m2备注:标准配置为三面高围板、展位内地毯、眉板(公司中英名称)、一桌二椅、10A/220V插座、二只射灯;2、光地租赁:最少18平米起租国内企业: ¥800元/m2 合资企业:¥1000元/m2 国外企业:USD 600元/m2备注:参展商自行设计布置,组委会只提供光地。3、其它收费项目:1)技术研讨会和产品推介会:60分钟/每场¥6000元(根据企业需求,主办方组织专业人士到会)2)会刊广告:封面:¥15000元 封底:¥10000元 封二:¥8000元 封三:¥6000元扉页:¥8000元 彩页:¥5000元 单色:¥2000元 文字:¥1000元3)其它广告:门票: ¥5000元/万张 资料袋:¥5000元/千个 胸卡:¥10000元/全场条幅: ¥5000/展期/条 气球: ¥5000元/展期/个 拱门:¥6000元/展期/个◎参展程序1、展位分配原则:先报名、先付款、先安排,参展单位的展位最终确认以收到展位费用为准;2、填写好“参展报名表”并加盖公章传真至组织单位以获确认;3、参展单位应在展位确认后及时支付参展费用;4、本届展会截止报名日期为:2010年4月17日。欲了解更多展会详情,请联络:上海星辉展览服务有限公司地址:上海市光新路128号阳光大厦2608室邮编:200061电话:0086-21- 62242250转605传真:0086-21-23010599联系人:高先生

关于磁性材料的期刊

自己看下面的,选自己合适的。

电路与系统你看行不行

下面都是材料学的刊物,很多哟。序号 杂志全名 中译名1 NATURE 自然2 SCIENCE 科学3 SURFACE SCIENCE REPORTS 表面科学报告4 PROGRESS IN MATERIALS SCIENCE 材料科学进展5 PROGRESS IN SURFACE SCIENCE 表面科学进展6 PHYSICAL REVIEW LETTERS 物理评论快报7 MATERIALS SCIENCE & ENGINEERING R-REPORTS 材料科学与工程报告8 ADVANCES IN POLYMER SCIENCE 聚合物科学发展9 ADVANCED MATERIALS 先进材料10 ANNUAL REVIEW OF MATERIALS SCIENCE 材料科学年度评论11 APPLIED PHYSICS LETTERS 应用物理快报12 PROGRESS IN POLYMER SCIENCE 聚合物科学进展13 CHEMISTRY OF MATERIALS 材料化学14 PHYSICAL REVIEW B 物理评论B15 ADVANCES IN CHEMICAL PHYSICS 物理化学发展16 JOURNAL OF MATERIALS CHEMISTRY 材料化学杂志17 ACTA MATERIALIA 材料学报18 MRS BULLETIN 材料研究学会(美国)公告19 BIOMATERIALS 生物材料20 CARBON 碳21 SURFACE SCIENCE 表面科学22 JOURNAL OF APPLIED PHYSICS 应用物理杂志23 CHEMICAL VAPOR DEPOSITION 化学气相沉积24 JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 生物医学材料研究25 IEEE JOURNAL OF QUANTUM ELECTRONICS IEEE量子电子学杂志26 CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE 固态和材料科学的动态27 DIAMOND AND RELATED MATERIALS 金刚石及相关材料28 ULTRAMICROSCOPY 超显微术29 EUROPEAN PHYSICAL JOURNAL B 欧洲物理杂志 B30 JOURNAL OF THE AMERICAN CERAMIC SOCIETY 美国陶瓷学会杂志31 APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING 应用物理A-材料科学和进展32 NANOTECHNOLOGY 纳米技术33 JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B 真空科学与技术杂志B34 JOURNAL OF MATERIALS RESEARCH 材料研究杂志35 PHILOSOPHICAL MAGAZINE A-PHYSICS OF CONDENSED MATTER STRUCTURE DEFECTS AND MECHANICAL PROPERTIES 哲学杂志A凝聚态物质结构缺陷和机械性能物理36 INTERNATIONAL JOURNAL OF NON-EQUILIBRIUM PROCESSING 非平衡加工技术国际杂志37 JOURNAL OF NEW MATERIALS FOR ELECTROCHEMICAL SYSTEMS 电化学系统新材料杂志38 JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS 真空科学与技术A真空表面和薄膜39 DENTAL MATERIALS 牙齿材料40 JOURNAL OF ELECTRONIC MATERIALS 电子材料杂志41 JOURNAL OF NUCLEAR MATERIALS 核材料杂志42 INTERNATIONAL MATERIALS REVIEWS 国际材料评论43 JOURNAL OF NON-CRYSTALLINE SOLIDS 非晶固体杂志44 JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS 磁学与磁性材料杂志45 OPTICAL MATERIALS 光学材料46 IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY IEEE应用超导性会刊47 METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIAL 冶金与材料会刊A——物理冶金和材料48 THIN SOLID FILMS 固体薄膜49 JOURNAL OF PHYSICS D-APPLIED PHYSICS 物理杂志D——应用物理50 INTERMETALLICS 金属间化合物51 PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS 哲学杂志B-凝聚态物质统计力学52 SURFACE & COATINGS TECHNOLOGY 表面与涂层技术53 JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 生物材料科学—聚合物版54 MATERIALS RESEARCH INNOVATIONS 材料研究创新55 BIOMETALS 生物金属56 INTERNATIONAL JOURNAL OF PLASTICITY 塑性国际杂志57 SMART MATERIALS & STRUCTURES 智能材料与结构58 ADVANCES IN IMAGING AND ELECTRON PHYSICS 成像和电子物理发展59 SYNTHETIC METALS 合成金属60 JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE 材料科学杂志—医用材料61 SCRIPTA MATERIALIA 材料快报62 COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING 复合材料 A应用科学与制备63 MODERN PHYSICS LETTERS A 现代物理快报A64 SEMICONDUCTOR SCIENCE AND TECHNOLOGY 半导体科学与技术65 JOURNAL OF THE EUROPEAN CERAMIC SOCIETY 欧洲陶瓷学会杂志66 APPLIED SURFACE SCIENCE 应用表面科学67 MATERIALS TRANSACTIONS JIM 日本金属学会材料会刊68 PHYSICA STATUS SOLIDI A-APPLIED RESEARCH 固态物理A——应用研究69 MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECH 材料科学与工程B—先进技术用固体材料70 CORROSION SCIENCE 腐蚀科学71 JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS 固体物理与化学杂志72 JOURNAL OF ADHESION SCIENCE AND TECHNOLOGY 粘着科学与技术杂志73 INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS 耐火金属和硬质材料国际杂志74 SURFACE AND INTERFACE ANALYSIS 表面与界面分析75 INTERNATIONAL JOURNAL OF INORGANIC MATERIALS 无机材料国际杂志76 SURFACE REVIEW AND LETTERS 表面评论与快报77 MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROST 材料科学和工程A—结构材料的性能、组织与加工78 NANOSTRUCTURED MATERIALS 纳米结构材料79 IEEE TRANSACTIONS ON ADVANCED PACKAGING IEEE高级封装会刊80 INTERNATIONAL JOURNAL OF FATIGUE 疲劳国际杂志81 JOURNAL OF ALLOYS AND COMPOUNDS 合金和化合物杂志82 JOURNAL OF NONDESTRUCTIVE EVALUATION 无损检测杂志83 MATERIALS SCIENCE & ENGINEERING C-BIOMIMETIC AND SUPRAMOLECULAR SYSTEMS 材料科学与工程C—仿生与超分子系统84 JOURNAL OF ELECTROCERAMICS 电子陶瓷杂志85 ADVANCED ENGINEERING MATERIALS 先进工程材料86 IEEE TRANSACTIONS ON MAGNETICS IEEE磁学会刊87 PHYSICA STATUS SOLIDI B-BASIC RESEARCH 固态物理B—基础研究88 JOURNAL OF THERMAL SPRAY TECHNOLOGY 热喷涂技术杂志89 MECHANICS OF COHESIVE-FRICTIONAL MATERIALS 粘着磨损材料力学90 ATOMIZATION AND SPRAYS 雾化和喷涂91 COMPOSITES SCIENCE AND TECHNOLOGY 复合材料科学与技术92 NEW DIAMOND AND FRONTIER CARBON TECHNOLOGY 新型金刚石和前沿碳技术93 MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING 材料科学与工程中的建模与模拟94 INTERNATIONAL JOURNAL OF THERMOPHYSICS 热物理学国际杂志95 JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY 溶胶凝胶科学与技术杂志96 HIGH PERFORMANCE POLYMERS 高性能聚合物97 MATERIALS CHEMISTRY AND PHYSICS 材料化学与物理98 METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS 冶金和材料会刊B—制备冶金和材料制备科学99 COMPOSITES PART B-ENGINEERING 复合材料B工程100 CEMENT AND CONCRETE RESEARCH 水泥与混凝土研究101 JOURNAL OF COMPOSITE MATERIALS 复合材料杂志102 JOURNAL OF MATERIALS SCIENCE 材料科学杂志103 JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME 工程材料与技术杂志—美国机械工程师学会会刊104 MATERIALS RESEARCH BULLETIN 材料研究公告105 JOM-JOURNAL OF THE MINERALS METALS & MATERIALS SOCIETY 矿物、金属和材料学会杂志106 JOURNAL OF BIOMATERIALS APPLICATIONS 生物材料应用杂志107 FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES 工程材料与结构的疲劳与断裂108 JOURNAL OF ADHESION 粘着杂志109 COMPUTATIONAL MATERIALS SCIENCE 计算材料科学110 IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING IEEE半导体制造会刊111 MECHANICS OF COMPOSITE MATERIALS AND STRUCTURES 复合材料和结构力学112 PHASE TRANSITIONS 相变113 MATERIALS LETTERS 材料快报114 EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS 欧洲物理杂志—应用物理115 PHYSICA B 物理B116 ADVANCED COMPOSITES LETTERS 先进复合材料快报117 POLYMER COMPOSITES 聚合物复合材料118 CORROSION 腐蚀119 PHYSICS AND CHEMISTRY OF GLASSES 玻璃物理与化学120 JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS 材料科学杂志—电子材料121 COMPOSITE INTERFACES 复合材料界面122 AMERICAN CERAMIC SOCIETY BULLETIN 美国陶瓷学会公告123 APPLIED COMPOSITE MATERIALS 应用复合材料124 RESEARCH IN NONDESTRUCTIVE EVALUATION 无损检测研究125 PROGRESS IN CRYSTAL GROWTH AND CHARACTERIZATION OF MATERIALS 晶体生长和材料表征进展126 JOURNAL OF COMPUTER-AIDED MATERIALS DESIGN 计算机辅助材料设计杂志127 CERAMICS INTERNATIONAL 国际陶瓷128 POLYMER TESTING 聚合物测试129 ADVANCED PERFORMANCE MATERIALS 先进性能材料 130 SEMICONDUCTORS 半导体131 URNAL OF BIOACTIVE AND COMPATIBLE POLYMERSJO 生物活性与兼容性聚合物杂志132 HIGH TEMPERATURE MATERIALS AND PROCESSES 高温材料和加工133 ADVANCES IN POLYMER TECHNOLOGY 聚合物技术发展134 COMPOSITE STRUCTURES 复合材料结构135 JOURNAL OF THE CERAMIC SOCIETY OF JAPAN 日本陶瓷学会杂志136 BIO-MEDICAL MATERIALS AND ENGINEERING 生物医用材料与工程137 INTERNATIONAL JOURNAL OF MODERN PHYSICS B 现代物理国际杂志B138 INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS 理论物理国际杂志139 INTEGRATED FERROELECTRICS 集成铁电材料140 MAGAZINE OF CONCRETE RESEARCH 混凝土研究杂志141 ACI MATERIALS JOURNAL 美国混凝土学会材料杂志142 JOURNAL OF MATERIALS SCIENCE LETTERS 材料科学杂志快报143 FERROELECTRICS 铁电材料144 BULLETIN OF MATERIALS SCIENCE 材料科学公告145 MATERIALS SCIENCE FORUM 材料科学论坛146 JSME INTERNATIONAL JOURNAL SERIES A-SOLID MECHANICS AND MATERIAL ENGINEERIN 日本机械工程学会国际杂志系列A-固体力学与材料工程147 MATERIALS CHARACTERIZATION 材料表征148 SYNTHESIS AND REACTIVITY IN INORGANIC AND METAL-ORGANIC CHEMISTRY 无机物及金属—有机物化学的合成和反应149 MATERIALS AT HIGH TEMPERATURES 高温材料150 HIGH TEMPERATURES-HIGH PRESSURES 高温—高压151 JOURNAL OF COMPOSITES TECHNOLOGY & RESEARCH 复合材料技术与研究杂志152 ACI STRUCTURAL JOURNAL 美国混凝土学会结构杂志153 MATERIALS & DESIGN 材料与设计154 MATERIALS AND STRUCTURES 材料与结构155 MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING 半导体加工的材料科学156 BRITISH CERAMIC TRANSACTIONS 英国陶瓷会刊157 MECHANICS OF COMPOSITE MATERIALS 复合材料力学158 JOURNAL OF COATINGS TECHNOLOGY 涂层技术杂志159 JOURNAL OF REINFORCED PLASTICS AND COMPOSITES 增强塑料和复合材料杂志160 MATERIALS AND CORROSION-WERKSTOFFE UND KORROSION 材料与腐蚀161 SCIENCE IN CHINA SERIES E-TECHNOLOGICAL SCIENCES 中国科学E技术科学162 CEMENT & CONCRETE COMPOSITES 水泥与混凝土复合材料163 MATERIALS EVALUATION 材料评价164 POLYMERS & POLYMER COMPOSITES 聚合物与聚合物复合材料165 JOURNAL OF MATERIALS SYNTHESIS AND PROCESSING 料合成与加工杂志166 ADVANCED COMPOSITE MATERIALS 先进复合材料167 INTERNATIONAL JOURNAL OF MATERIALS & PRODUCT TECHNOLOGY 材料与生产技术国际杂志168 JOURNAL OF MATERIALS IN CIVIL ENGINEERING 土木工程材料杂志169 HIGH TEMPERATURE MATERIAL PROCESSES 高温材料加工170 CONSTRUCTION AND BUILDING MATERIALS 结构与建筑材料171 HIGH TEMPERATURE 高温172 RARE METAL MATERIALS AND ENGINEERING 稀有金属材料与工程173 INORGANIC MATERIALS 无机材料174 SCIENCE AND TECHNOLOGY OF WELDING AND JOINING 焊接科学与技术175 MATERIALS AND MANUFACTURING PROCESSES 材料与制造工艺176 FERROELECTRICS LETTERS SECTION 铁电材料快报177 JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY 材料科学与技术杂志178 JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE 材料工程与性能杂志179 METALS AND MATERIALS INTERNATIONAL 国际金属及材料180 GLASS TECHNOLOGY 玻璃技术181 JOURNAL OF MATERIALS PROCESSING TECHNOLOGY 材料加工技术杂志182 JOURNAL OF POLYMER MATERIALS 聚合物材料杂志183 ADVANCED POWDER TECHNOLOGY 先进粉末技术184 JOURNAL OF ADVANCED MATERIALS 先进材料杂志185 SYNTHESE 合成186 GLASS SCIENCE AND TECHNOLOGY-GLASTECHNISCHE BERICHTE 玻璃科学与技术187 JOURNAL OF TESTING AND EVALUATION 测试及评价杂志188 MATERIALS SCIENCE AND TECHNOLOGY 材料科学与技术189 POWDER METALLURGY AND METAL CERAMICS 粉末冶金及金属陶瓷190 MATERIALS SCIENCE 材料科学191 MATERIALS TECHNOLOGY 材料技术192 ADVANCED MATERIALS & PROCESSES 先进材料及工艺193 RARE METALS 稀有金属194 JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION 武汉理工大学学报-材料科学版195 PLATING AND SURFACE FINISHING 电镀和表面修整196 JOURNAL OF INORGANIC MATERIALS 无机材料杂志197 MATERIALS WORLD 材料世界198 METAL SCIENCE AND HEAT TREATMENT 金属科学及热处理199 METALL 金属200 MATERIALS PERFORMANCE 材料性能 201 JOURNAL OF MATERIALS PROCESSING & MANUFACTURING SCIENCE 材料加工与制造科学杂志202 SCIENCE AND ENGINEERING OF COMPOSITE MATERIALS 复合材料科学与工程203 IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES IEEE元件及封装技术会刊204 JOCCA-SURFACE COATINGS INTERNATIONAL JOCCA—国际表面涂层205 ADVANCED FUNCTIONAL MATERIALS 先进功能材料 206 ANNUAL REVIEW OF MATERIALS RESEARCH 材料研究年度评论207 MATERIALS TRANSACTIONS 材料会刊

磁性材料及器件杂志社

有呀 IEM China 2010第十一届中国国际磁性材料及生产技术展览会IEM China 2010第十一届中国国际磁性材料及生产技术展览会The 11th China International Exhibition of Magnetic Materials时间:2010年5月17-19 地点:上海光大会展中心(漕宝路78号)邀 请 函 Invitation主办单位:中电元协磁性材料与器件行业分会中国电子材料协会磁性材料分会磁性材料及器件专业情报网工信部磁性元件质量监督检验中心全国磁性元件与铁氧体材料标准化技术委员会中国电子科技集团公司第九研究所承办单位:上海星辉展览服务有限公司中国西南应用磁学研究所西磁科技咨询中心协办单位:浙江省磁性材料行业协会台湾磁性技术协会台湾电机电子工业同业公会日本电子材料工业会支持单位:中国电子科技集团公司指定媒体:《磁性材料及器件》杂志 ◎市场背景我国是世界磁性材料生产大国。多年来,磁性材料在电子产业出口创汇中一直发挥着重要的作用,也是少数几个长期保持贸易顺差的产品之一。预计未来几年,中国市场需要永磁铁氧体50万吨,软磁铁氧体20万吨,钕铁硼磁体5万吨,约占全球市场的50%,世界磁材生产巨头纷纷来华投资设厂。进入2010年,随着全球经济的复苏以及中国经济的发展,华东地区已经成为全球磁性材料最重要的生产、出口和需求集聚地。IEM CHINA是由中国磁性材料工业最具影响力的社会团体主办的专业展会,也是亚洲规模最大、内容最丰富的磁性材料工业盛会。IEM CHINA的成功源于国家磁性材料专业机构作强力后盾,行业厂家的积极响应和参与,国际业界的积极支持,国内生产、加工以及应用领域的高度关注,以及组织单位的专业化服务。2009年第十届IEM展会共吸引了来自中国、日本、美国、英国、德国、意大利、韩国以及中国香港、中国台湾地区等国内外二百多家企业参展,展场面积近五千平方米。为期三天的展会共接待参观观众14043人次,其中包括来自全国24个省(自治区/直辖市)和美国、德国、法国、意大利、瑞士、日本、韩国、中国香港、中国台湾等14个国家和地区的1107名海外观众。IEM 2010召开正值上海世博会举办期间,期待与您共商磁材!共享世博!◎展会优势⊙最具影响力的主办单位:由中国磁性材料工业最具影响力的专业社会团体和科研院所联合举办,目的是集中优势,办好实事,使广大企业受益;⊙十年经验积累:持续主办历年的IEM展会,熟悉磁性材料及其用户行业全面情况,多年积累的专业观众数据库是参展商实际展出效果的有力保障。⊙最具吸引力的城市:作为中国经济中心,上海已成为中国第一会展城市。在上海举办专业展会,将真正吸引全国各地的专业观众。同时上海也是世界500强企业在中国的大本营,上海的专业展会将吸引最多的海外采购商。⊙高层次的技术交流:同期由协会举办的高层次技术研讨会和学术交流会已经成为国内外专业人士一年一度的大聚会。⊙专题报告:上海是中国汽车零部件最大的生产基地和销售市场,本次展会将以汽车电子市场为主题,邀请专家作专题报告。⊙著名企业参与:国内外参加过IEM CHINA的著名企业有:横店东磁、天通电子、中科三环、北矿磁材、杭州永磁、金川电子、宁波韵升、安泰科技、成都银河、广东江粉、中钢天源、安徽龙磁、绵阳开元、宁波科宁达、宁波永久、东阳李磁、南湖电子、英洛华、烟台正海、沈阳中北通磁、津滨磁电、捷磁集团、深圳福义乐、TDK、FDK、NICERAMIC、EPSON、VAC、MAGNEQUENCH、尼欧联、秀峰、乔智电子、阿诺德、中山高雅等。◎展览范围1、永磁材料:稀土永磁材料、铁氧体永磁、铝镍钴、粘结永磁;2、软磁材料:软磁铁氧体材料、金属软磁、非晶纳米晶软磁、抗电磁干扰材料与器件(EMI,EMC);3、生产磁材的专用制备:干粉压机、烧结炉、粉碎机、混料机、搅拌机、烘干机、球磨机、切割机、切片机、充磁机、真空烧结炉设备、平面磨床、超声波清洗机、磁性材料工模具等;4、生产磁性材料用的仪器、仪表和控制、检测技术与设备:如激光粒度分析仪、X荧光分析仪、粉碎混合度分析仪、磁强计、磁粉控伤仪及相关检测仪器;5、生产磁材用的各种原材料、辅助材料:氧化铁、氧化锰、氧化锌、氧化镍、锶、钡、钕、其他稀土金属、软磁粉料、永磁预烧料;6、永磁电机及其它永磁相关应用产品;7、电源及电子变压器等及其它软磁相关应用产品。◎收费标准1、标准展位:3x3=9平米国内企业: ¥7800元/个 合资企业:¥10800元/个 国外企业:USD 650元/ m2备注:标准配置为三面高围板、展位内地毯、眉板(公司中英名称)、一桌二椅、10A/220V插座、二只射灯;2、光地租赁:最少18平米起租国内企业: ¥800元/m2 合资企业:¥1000元/m2 国外企业:USD 600元/m2备注:参展商自行设计布置,组委会只提供光地。3、其它收费项目:1)技术研讨会和产品推介会:60分钟/每场¥6000元(根据企业需求,主办方组织专业人士到会)2)会刊广告:封面:¥15000元 封底:¥10000元 封二:¥8000元 封三:¥6000元扉页:¥8000元 彩页:¥5000元 单色:¥2000元 文字:¥1000元3)其它广告:门票: ¥5000元/万张 资料袋:¥5000元/千个 胸卡:¥10000元/全场条幅: ¥5000/展期/条 气球: ¥5000元/展期/个 拱门:¥6000元/展期/个◎参展程序1、展位分配原则:先报名、先付款、先安排,参展单位的展位最终确认以收到展位费用为准;2、填写好“参展报名表”并加盖公章传真至组织单位以获确认;3、参展单位应在展位确认后及时支付参展费用;4、本届展会截止报名日期为:2010年4月17日。欲了解更多展会详情,请联络:上海星辉展览服务有限公司地址:上海市光新路128号阳光大厦2608室邮编:200061电话:0086-21- 62242250转605传真:0086-21-23010599联系人:高先生

Journal of Magnetic Materials and Devices 提问本身有问题,ISTP库是收国际会议论文集的。你说的这个期刊不是EI或SCI来源刊。ISTP 是Index to Scientific & Technical Proceedings的简称,ISTP中文名字叫:《科技会议录索引》,创刊于1978年,由美国科学情报研究所出版。本会议索引收录生命科学、物理化学、农业生物和环境科学、工程技术、管理信息、教育发展、社科人文和应用科学等学科的会议文献,包括一般性会议、座谈会、研究会、讨论会、发表会等。

关于磁性材料研究的论文

本人从智网上找的 有PDF格式 这是从上面转下来的 统磁体以单原子或离子为构件,三维磁有序化主要来自通过化学键传递的磁相互作用,其制备采用冶金学或其一、引 言他物理方法;而分子磁体以分子或离子为构件,在临界 作为一种新型的软材料,分子基材料(molecule2based温度以下的三维磁有序化主要来源于分子间的相互作materials)在近年来材料科学的研究中已成为化学家、物用,其制备采用常规的有机或无机化学合成方法.由于理学家以及生物学家非常重视的新兴科学领域[1].分子在分子磁体中没有伸展的离子键、共价键和金属键,因基材料的定义是,通过分子或带电分子组合出主要具有而很容易溶于常规的有机溶剂,从而很容易得到配合物分子框架结构的有用物质.顾名思义,分子基磁性材料的单晶,有利于进行磁性与晶体结构的相关性研究,有(molecule2based magnetic materials) ,通称分子磁性材料,利于对磁性机制的理论研究.作为磁性材料,分子铁磁是具有磁学物理特征的分子基材料.当然,分子磁性材体具有体积小、相对密度轻、结构多样化、易于复合加工料是涉及化学、物理、材料和生命科学等诸多学科的新成型等优点,有可能作为制作航天器、微波吸收隐身、电兴交叉研究领域.主要研究具有磁性、磁性与光学或电磁屏蔽和信息存储的材料.导等物理性能相结合分子体系的设计、合成.我们认为, 分子磁性研究始于理论探索.早在 1963 年McCo2分子磁性材料是在结构上以超分子化学为主要特点的、nnel[2]就提出有机化合物可能存在铁磁性,并提出了分在微观上以分子磁交换为主要性质的、具有宏观磁学特子间铁磁偶合的机制.1967 年,他又提出了涉及从激发征并可能应用的一类物质.态到基态电子转移的分子离子之间产生稳定铁磁偶合 分子铁磁体是具有铁磁性质的分子化合物,它在临的方法[3].同年,Wickman[4]在贝尔实验室合成了第一个界温度(Tc)下具有自发磁化等特点.分子磁体有别于传分子铁磁体.之后,科学家们相继报道了一些类铁磁性统的不易溶解的金属、金属合金或金属氧化物磁体.传质的磁性化合物,但直到1986年前,这些合成的磁性化·15 ·? 1994-2008 China Academic Journal Electronic Publishing House. All rights reserved. 专题综述Ziran Zazhi 合物没有表现出硬铁磁所具有的磁滞特征.1986 年,材料理论的精确预言和计算是相当困难的,而且,分子Miller等人[5]将二茂铁衍生物[Fe(Cp3)2](Cp3为五甲基磁性材料中包含的原子和分子基团更多,空间结构的基环戊二稀)与四氰基乙烯自由基(TCNE)经电荷转移合对称性更复杂,局部的磁交换的途径也体现出多样性,成了第一个分子铁磁体[Fe(Cp3)2]+[TCNE] ,其转换温使得目前的研究还处于实验经验的积累和定性的解释度 T上.尽管如此,科学家们对分子磁交换的机制进行了大c= K.与此同时,Kahn 等人[6]报道了具有铁磁性的MnCu(pbaOH)·(H量的研究,提出了许多近似理论模型,并基于这些模型2O)3分子化合物.从此,分子磁体的研究引起了人们的广泛关注,分子基磁性材料也应和大量的实验数据,在磁性与结构的关系研究中取得了运而生.一定的进展.对于一些对称性较高的体系,根据自旋相 开始,由于分子间的磁相互作用较弱,分子磁体的互作用的 Hamilton可由量子力学求出磁化率的解析形转换温度式T,然后根据实验数据计算出磁偶合系数 J 值,探索随c通常远远低于室温,难于达到应用的要求.结构的变化关系.对于对称性较差及组成较为复杂的体但是,第一个室温分子磁体V(TCNE)2·xCH2Cl2在1991系,自旋 Hamilton 的解析解很难求出.此时可用 Monte年由Manriquez[7]报道出后,虽然是一个不稳定的电荷转Carlo方法对物理过程进行模拟,求出磁偶合系数 J[10].移钒配合物,但近年来,分子磁性的研究已取得了令人 根据产生磁性的具体类型,磁交换机制主要通过以鼓舞的进展,Verdauger[8,9]报道了 Tc高达340 K的稳定下途径来实现:类普鲁士蓝的分子铁磁体. (1) 磁轨道正交 根据 Kahn等人的分子轨道理论,顺磁离子A与B之间的磁相互作用(J)由两部分贡献组二、分子磁性中的物理基础成,即铁磁贡献和反铁磁贡献,J = JF+ JAF.当A中未成对电子所占据的磁轨道与B中未成对电子所占据的磁 分子磁体的磁性来源于分子中具有未成对电子离轨道互相重叠时,它们之间的相互作用为反铁磁偶合,子之间的偶合,这些偶合相互作用既来自分子内,也可重叠积分越大,反铁磁偶合越强;当A与B中未成对电来自于分子间.分子内的自旋- 自旋相互作用往往通过子所占据的磁轨道正交时,它们之间的相互作用为铁磁“化学桥”来实现磁超相互作用.所以,分子磁性材料兼偶合.如图(1)中(a)、(b)所示.如果铁磁偶合与反铁磁偶具磁偶极- 偶极相互作用和超相互作用,故该类材料的合同时存在,通常反铁磁偶合强于铁磁偶合,因此只有磁性比常规的无机磁性材料表现出更丰富多彩的磁学当 JAF为零时,A与B间才为铁磁偶合.如在CsNiⅡ[CrⅢ性质.(CN)6]·2H2O[9]中,CrⅢ的磁轨道具有t2g对称性,而NiⅡ 根据铁磁体理论,要使材料产生铁磁性,首先体系的磁轨道具有e的原子或离子必须是顺磁性的g对称性,二者互为正交轨道,因而呈现,其次它们间的相互作用铁磁性偶合( T是铁磁性的.对于分子磁性材料,一个分子内往往包含c=90 K).当磁轨道正交时,铁磁偶合的一个或多个顺磁中心,即自旋载体,按照 Heisenberg 理大小依赖于轨道间的距离.论,两个自旋载体之间的磁交换作用可用以下等效Ham2 (2) 异金属反铁磁偶合 对于两个具有不同自旋的ilton算符来表示:顺磁金属离子,SA≠SB若A与B间存在磁相互作用,有^H两种情况:当A与B 间的磁相互作用为短程铁磁偶合ex= - 2J^S1^S2(1)其中时,总自旋 SJ 为交换积分,表示两个自旋载体间磁相互作用的T= SA+ SB;当A与B间的磁相互作用为反类型和大小. J 为正值时为铁磁性偶合,自旋平行的状态铁磁偶合时,总自旋 Sr=| SA- SB| (如图1中(c) (d)所为基态;J 为负值时为反铁磁性偶合,自旋反平行为基示).顺磁离子A和B间的磁相互作用大多为反铁磁偶态.如对分子磁性材料:A- X- B 体系(A,B 为顺磁中合.当为反铁磁偶合时,若 Sr= SB,则 Sr=0;若 SA与心,X为化学桥) ,X作为超交换的媒介使A和B发生磁SB不相等,则有净自旋,当在转换温度以下,净自旋有性偶合,设 SA= SB=1P2,则当反铁磁偶合时,分子基态序排列,使体系呈现亚铁磁性.因此,利用异金属之间反用单重态和三重态的能量差来表示:J = E铁磁偶合是构建高自旋分子的另一条有效途径.如CsMnS- ET. 磁相互作用研究的目的在于了解磁交换的机理,寻[Cr(CN)6] ,Mn2+的自旋为 SA=5P2,而Cr3+的自旋为 SB找磁性与结构之间的关系,并反过来指导分子磁性材料=3P2,二者之间产生反铁磁偶合,净自旋 ST= SA- SB的设计和合成.和通常的磁性材料一样,对分子基磁性=1P2,在低于转换温度( Tc=90 K)时,配合物表现为亚1·6 ·? 1994-2008 China Academic Journal Electronic Publishing House. All rights reserved. 自 然 杂 志 24卷1期专题综述铁磁性[11].以分为下面几类:1. 有机自由基分子磁体 化合物中不含任何带磁性的金属离子,大多由 C,H,O,N四种有机元素组成的磁体材料.其自旋载体为有机自由基,如氮氧自由基.McConnel 早在1963 年就提出有机化合物内存在铁磁偶合的机制[2].制备方法采用有机合成方法.由于它们具有有机材料特殊的物理、化学图性能,因而是更具应用前景的分子铁磁材料.但直到今1 相同自旋之间的偶合:(a) 铁磁偶合;(b) 反铁磁偶合; 不同自旋之间的偶合:(c) 铁磁偶合;(d) 亚铁磁偶合日,纯有机分子磁体的转换温度仍极低,和有机超导材料一样,在小于50 K的低温区.日本科学家在这方面的 (3) 电荷转移 对给体- 受体电荷转移类配合物,工作做得很好.目前,得到广泛研究并进行了结构标定如[FeCp32]+[TCNE]-,基态时,[FeCp32]+的自旋为1P2,的有机铁磁体主要有氮氧自由基及其衍生物[14]、C60[TCNE]-的自旋也为1P2.在这样一个系统中,由于电荷(TDAE)(TDAE为四(二甲胺基) - 1,2- 亚乙基)[15]等.转移,形成激发三重态.在[FeCp32]+与[TCNE]-交替排列形成的链中,阳离子与前后两个[TCNE]-等距离,它2. 金属- 有机自由基分子磁体的e2g电子可向前后两个[TCNE]转移,形成 S =1的激发 化合物中含有带磁性的过渡金属或稀土金属离子,态.基态激发态混合后,降低了体系能量,使自旋取向沿同时也含有机自由基的基团,故有两种以上的自旋载体着一条链形成.如果每个链的取向都是平行的,且链间存在,并发生相互作用,由这种金属或金属配合物与自和链内[FeCp32]+与[TCNE]-位置相当,那么e2g电子可由基两种自旋载体组装的化合物,也可以构建分子铁磁以在链间传递,从而进一步稳定了体系,导致了相邻链体.其中有些是有机金属与自由基形成的电荷 转移盐的自旋平行取向,产生宏观的铁磁性现象[12].体系. (4) 有机自由基与多自由基 自从1991 年日本京 美国的Miller和Epstein教授在这个体系中作出了卓都大学的 Takahashi 等[13]成功地合成了基于 C、H、O、N越的贡献,首先他们发现了[M(Cp32][TCNZ](Z=Q或四种元素组成的有机铁磁体,使人们认识到含有氮氧自E,TCNE为四氰基乙烯,TCNQ为四氰代对苯醌二甲烷,M由基的有机化合物也是制备分子铁磁体的一条有效途(C3p)2为环戊二烯金属衍生物)[12]. 如,[Fe(Cp3)2]径.氮氧自由基与金属配合物形成的磁偶合体系已成为[TCNZ]为一变磁体(它有一反铁磁基态,但在临界外场分子铁磁体研究领域的一个重要方面.为1500Oe时,转变为具有高磁矩的类铁磁态) ,它由[Fe(Cp3)2]+阳离子与[TCNQ]-阴离子交替排列形成平行三、分子基磁性材料的分子设计和目的一维链,每一个离子均有一未成对的电子自旋[16].磁 前热点研究体系有序要求在整体上的自旋偶合,因此,直径较小的[TC2NE]-将比[TCNQ]-有较大的电子密度,预期将有利于 分子磁体的设计与合成实质上是一个在化学反应自旋偶合.实际情况证明了这一点,[Fe(Cp3中分子自组装的过程.选择合适的高自旋载体(砖头) ,2)]+[TC2NE]-由阳离子与阴离子交替排列构成一维链,在 K这可以是金属离子或具有自旋不为零的有机自由基,通以下表现为磁有序过非磁性的有机配体等桥梁基团作为构筑元件(石灰),在 T=2 K时,其矫顽力为1 000Oe,,超过了传统磁存储材料的值[17]以一定的方式无限长地联接起来.为了提高磁有序温度,,如通过脱溶剂法处理、改变抗衡离子或改变配体等途径他们又开创了M[TCNE],形成分子内部间x·yS(M=V,Mn,Fe,Ni,Co;S为的强相互作用和单元间弱相互作用的超分子结构.通过溶剂分子) 另外一类电荷转换盐分子磁体的研究工调控无限分子P分子单元(或链、层)间磁相互作用的类型作[18].并发现第一个室温以上的分子磁体V[TCNE]x·和大小,组装成低维或三维铁磁体.但就目前来说,除选yCH2Cl2,其 Tc高达400 K.值得一提的是,在常温下它显择合适的高自旋载体和桥联配体外,控制分子在晶格中示出矫顽力超过无机磁体,薄膜材料也在积极的研究堆砌方式也十分重要.中,已接近应用.遗憾的是,这类化合物的结构至今仍是 按照自旋载体和产生的磁性不同,分子磁性材料可不清楚.近年来,Miller等对[MnⅢTPP]+[TCNE]-(H2TPP·17 ·? 1994-2008 China Academic Journal Electronic Publishing House. All rights reserved. 专题综述Ziran Zazhi 为中心四苯卟啉)类分子磁体也进行了广泛的研究.有物在低温下,能够被光激发而发生从铁磁体到顺磁体的关的综述论文可参考文献[12]和[19].可逆转跃迁,是非常有实际应用的特性. Mn( Ⅱ) - 氮氧自由基链状配合物Mn(hfac)2(NIT2 草酸根桥联的双核或异双核金属配位物分子磁体Me)[20](hfac是六氟乙酰丙酮,NITMe 为2- 甲基- 4,4,一直吸引着人们的注意.具有D3对称性的[MⅢ(ox)3]3-5,5- 四甲基咪唑啉- 1- 氧基- 3- 氧化物自由基,Tc是一个非常有用的建造单元.它在3个不同的方向上都=7. 8 K) 及 Cu ( Ⅱ) 自由基配合物 [Cu (hfac)2]有“钩子”,能轻而易举地把别的金属离子拉进来而形成(NIT[21]多维的金属离子交替排列,从而成为二维或三维分子磁pPy)2(NITpPy为2- (2’吡啶 - 4,4,5,5- 四甲基咪唑啉- 1- 氧基- 3- 氧化物)是另一类的金属- 有体.如A[MⅡMⅢCr(ox)3](A =N(n - C4H9)+4、N( n -机自由基分子磁体.近年来,这类分子铁磁体的研究进C6H5)+4等) ,当MⅢ=Cr( Ⅲ) ,MⅡ为Mn(Ⅱ) ,Cu( Ⅱ) ,Co展很大,已由单自由基- 金属配合物扩展到多自由基-(Ⅱ) ,Fe( Ⅱ)和Ni( Ⅱ)时,其 Tc分别为6,7,10,12,14金属配合物.由于多自由基较单自由基有更多的自旋中K[26];当MⅢ=Fe( Ⅲ) ,MⅡ为Fe(Ⅱ) ,Ni(Ⅱ) ,Co( Ⅱ)时,心和配位方式,并且与金属配位更易形成多维结构的优Tc=30~50 K[27].点,多自由基—金属配位物的研究已成为分子磁体研究 草胺酸根合铜[Cu(opba)]2-、[Cu(pba)]2-及[Cu的热点之一[22].(pbaOH)]2-含有未配位基团,可作为形成多核配合物的前体.此前体具有两个桥基,易与Mn2+、Fe2+等阳离子3.金属配合物的分子磁体形成异双金属链而构成一维链状配合物,链内通过铁磁 金属配合物分子磁体是目前研究得最广泛、最深入或反铁磁偶合得到铁磁链或亚铁磁链,链间的铁磁或反的一类分子磁体,其自旋载体为过渡金属.在其构建单铁磁偶合导致材料的宏观磁性表现为铁磁或反铁磁性.元中,可以形成单核、双核及多核配合物.由这些高自旋这类分子磁体转变温度低,如由双草酰胺桥联的锰铜配的配位物进行适当的分子组装,可以形成一维、二维及合物MnCu(pbaOH)(H2O)3,Tc= K[28].三维分子磁体,可以形成链状或层状结构.根据桥联配 除此之外,近十年来化学家们对由三叠氮(N3)配体位体的不同,这类分子磁体主要包括草胺酸类、草酰胺桥联的多维化合物产生了极大的兴趣,这是因为三叠氮类、草酸根类、二肟类、氰根类等几种类型.配体主要以两种方式连接金属离子,见图2,分别对应反 报告的第一个这种类型的分子磁体是中间自旋 S =铁磁偶合和铁磁偶合,便于对分子磁性的设计.单独由3P2的FeⅢ(S2CNEt2)2Cl[4],在温度为 K以下表现为三叠氮配体桥联或混入其他有机桥联配体,可构成一磁有序,但无磁滞现象.接着便是基于双金属的低温铁维,二维和三维的配位聚合物,形成独特的磁学性质并磁有序材料[CrⅢ(NH3)6]3+[FeⅢCl6]3-( Tc= K和在一定温度下构成分子磁体[29].这方面,我国的南京大亚铁磁有序材料[CrⅢ(NH3)6]3+[CrⅢ(CN)6]3-( Tc=2.学和南开大学也做出了很好的工作[30,31].85 K) ,它们同样不具有磁滞现象[23,24]. 近年来,由法国科学家Verdaguer发现普鲁士蓝类配合物所表现出的较高的转换温度,大的矫顽力,使得普鲁士蓝类磁性配合物越来越吸引人们的注意[25].普鲁士蓝类分子磁体是基于构筑元件M(CN)k-6与简单金属离子通过氰根桥联的类双金属配合物,双金属离子均处于八面体配位环境,并通过氰桥连接成三维网络.其组成形式为 Mk[M’(CN)6]l·nH2O 或 AMk[M’(CN)6]l·nH2O(M和M’为不同的顺磁性,化合物为铁磁体,如图2 三叠氮配体和金属离子以及对应的磁交换Cu3[Cr(CN)6]2·15H2O( Tc= 66 K) 、Cu3[Fe(CN)6]2·12H4. 单分子磁体(Single2Molecular Magnets)2O(Tc=14 K) 、Ni3[Cr(CN)6]2·14H2O( Tc=23 K)均为铁磁体.若两个金属离子磁轨道重叠,它们之间的磁 以上情况都是分子被连接成聚合物后产生非常强偶合为反铁磁性,化合物为反铁磁体或亚铁磁体,如的分子间相互作用.从另一个角度,若分子间相互作用(Net4)[V(CN)6]·2H2O( Tc=230 K) 、CrⅡ3[CrⅢ很小可忽略,则分子被隔离成一个个独立的磁分子.当(CN)6]2·10H2O( Tc=240 K)[25].有价值的是,这类化合分子内含有多个自旋离子中心并发生磁偶合时,则总分1·8 ·? 1994-2008 China Academic Journal Electronic Publishing House. All rights reserved. 自 然 杂 志 24卷1期专题综述子的磁矩决定于磁偶合后的最低能态,这时就可能出现域.如在本文中提到的:转换温度超过室温的分子基铁基态为自旋数较高的稳定态,在磁场的作用下产生准连磁和亚铁磁体材料的发现;具有高自旋的多核配合物在续的激发态能级.所以整个分子的磁矩在外场下,沿外低温下表现出磁性的单分子磁体的发现;在室温以上具场的方向偏转时需要克服一个较大的势垒,这种势垒来有大的磁滞现象的自旋交叉配合物的发现;分子基磁体自零场分裂的磁各向异性.有时也称这种现象为自旋阻的光磁、热磁效应;以及分子基磁体的 GMR、CMR效应挫(spinfrustration)[32].这种依赖于外磁场的双稳态(bist2等.所有这些成果都预示着分子磁性材料光明的未来.ability)被看作是新一代信息材料应用的基础.目前所发 相比于传统的磁性材料,由于广泛的化学选择性,现的单分子磁体主要包括Mn12和Mn14离子簇、Fe8离子可以从分子级别上对分子磁性材料进行修饰和改良;作簇和 V为磁性材料4离子簇等三类,如基态为 S = 10 的 Mn12O12,分子铁磁体具有体积小、相对密度小、能耗(O[33]小及结构的多样化等优点,其制备的方法大多为常规的2CMe)16(H2O)4.有意义的是,当这种单分子体积大到一定值时,可被认为是一种尺寸单一的可磁化的纳化学方法,便于做成各种形态的产品,所体现的性质有米材料,具有不可估量的应用前景.些是传统的磁性材料不可替代的.已发现这类新物质可能成为各类高科技材料,特别是新一代的信息存储5. 自旋交叉配合物材料. 众所周知 当然,当配合物分子内的自旋离子中心减少到,作为一种新生的材料,有很多方面仍需要进仅一个时一步研究和改进,这也是我国科学家在基础研究和应用,分子间的相互作用又很小,配合物显示出独立离子的特性科学走向世界前列的良机.可以预见,在未来的发展中,,为近似理想的顺磁性.具有3d4- 3d7电子配置的过渡金属配合物分子基磁性材料将可能在:①高,在八面体配位结构下,电子Tc温度的分子磁体;②在五个d电子轨道上的排布,可能会受到配位场e提高材料的物理稳定性;③透明的绝缘磁体;④易变、易g和t2g加工的分子磁体轨道之间的能隙Δ大小的影响;⑤和其他物理性能结合的复合磁性材,当Δ平均电子对能p相料近时;⑥超硬和超软磁体; ⑦液体磁体等方面着重探索和,化合物的自旋态可能由于某些外界条件的微扰,得到发展可呈现高自旋态与低自旋态的交叉转变[34].(.最典型的是2000年8月29日收到)一些Fe(Ⅱ)配合物,发生高自旋态5T1 Alivisatos A. P. ,Barbara P. F. ,Castleman A. W. ,et. al. Adv. Ma22(S =2,顺磁性)与ters. ,1998;10:1297低自旋态1A1(S =0,抗磁性)的转变,伴随自旋相变,化2 McConnel . J. Chem. Phys. ,1963;39:1910合物可能有结构甚至和颜色的变化.有一些的转变温度3 McConnel . Proc. . Welch Found. Chem. ;11:144还在常温区,如[Fe(Htrz)4 Wickman . ,Trozzolo . ,Williams . ,et. al. Phys. Rev. ,3- 3x(NH2trz)3x](ClO4)2·H2O1967;155:563(trz=1,2,4 三唑类) ,在常温下从紫色(低自旋)随温度5 Miller . ,Calabrese . ,Epstein . ,et. al. J. Chem. Soc. ,上升转为白色(高自旋).成为另一种新的可利用的双稳Chem. Commun,1986;10266 Pei Y. ,Verdauger M. ,Kahn O. ,et al. J. Am. Chem. Soc. ,1986;态现象[35].1984年,Decurtins等人首次观察到光诱导自108:7428旋交叉效应[36],并随后在低温下利用光对自旋态的激发7 . ,Yee . ,Mclean . ,et al. Science,1991;252:和调控进行了深入研究,期望能用作纳秒级的快速光开14158 FerlayS. ,Mallsah T. ,Ouahes R. ,et al. Nature,1995;378:701关和存储器[34].我国在自旋交叉研究方面也取得了可喜9 Mallah T. ,Thiebaut S. ,VerdaguerM. ,et al. Science,1993;262:1554的成绩[37],如发现温度回滞宽度近55 K的自旋交叉化10 Zhong . ,You X. Z. ,Chen T. Y. Annual Sci Rept—suppl of J of合物[Fe(dpp)Nanjing Univ. ,, Nov19942(NCS)2]py(dpp =二吡嗪(3,2,2-,3-)邻11 Griebler . ,Babel . ,NaturforschB. Anorg. Chem. ,1982;37B菲罗啉,py=吡啶)[38],而且首次发现在快速冷却下仍保(7) :832持高自旋亚稳态,实现了不通过光诱导也能得到低温下12 . ,. Chem. Int. Ed. ,1994;33:38513 Takahashi M. ,Turek P. ,NakazawaM. ,et al. PhysLett,1991;67:746的双稳态[39].14 Chiarelli R. ,. ,Rassat A. ,et al. Nature,1993;363:14715 Allemand . ,Khemani . ,Koch A. ,et al. Science,1991;254:301四、展 望16 . ,. ,Reiff . ,et al. J. Phys. Chem. ,1987;91:4344 分子基磁性材料作为一种新型的材料,近十年来,17 . ,. ,. ,et. al. J. Am. Chem. Soc. ,1987;109:769在化学家和物理学家的努力下,在很多方面已经取得了18 Zhou P. ,. ,. ;181:71突破性的进展,迅速发展成为一门材料学科的前沿领19 . Inorg. Chem. ,2000;39:4392估计效果很不好 如果想要的话,留个邮箱,给你发过去

白晓建研究员和他的同事利用ORNL散裂中子源的中子,在1929年发现的一种相当简单的碘化铁材料中发现了隐藏的量子波动。这项研究表明,许多类似的磁性材料可能具有有待发现的量子特性。来源:ORNL 具有更新颖性能的先进材料几乎总是通过在原料列表中添加更多的元素来开发的。但量子研究表明,一些更简单的材料可能已经拥有了科学家们直到现在才发现的高级特性。 佐治亚理工学院和田纳西大学诺克斯维尔分校的研究人员发现了一种近一个世纪前发现的相当简单的碘化铁材料(FeI2)中隐藏的、意想不到的量子行为。在美国能源部(DOE)橡树岭国家实验室(ORNL),通过中子散射实验和理论物理计算的结合,对这种材料的行为进行了新的研究。 该团队的发现——发表在《自然物理》杂志上——解决了一个关于这种材料神秘行为的40年的谜题,并可以作为一张地图,打开在其他材料中量子现象的宝库。 “我们的发现很大程度上是出于好奇心,”该论文的第一作者白晓建(音)说。白博士在乔治亚理工学院获得博士学位,目前在ORNL做博士后研究员,在那里他用中子研究磁性材料。“我是2019年博士论文项目的一部分,偶然发现了这种碘化铁材料。我试图找到一种具有磁性三角形晶格排列的化合物,这种结构表现出所谓的‘挫败磁性’。” 在普通的磁铁中,比如冰箱上的磁铁,这种材料的电子排列成箭头一样,要么都指向同一个方向——上或下——要么在上和下之间交替。电子指向的方向叫做“自旋”。但在更复杂的材料中,如碘化铁,电子排列在一个三角形网格中,其中三个磁力点之间的磁力相互冲突,不确定指向哪个方向——因此,“磁性受挫”。 “当我阅读所有的文献时,我注意到这种化合物,碘化铁,在1929年被发现,并在70年代和80年代被深入研究,”白说。“当时,他们看到了一些奇特的,或非常规的行为模式,但他们没有真正的资源来完全理解他们为什么会看到它。”所以,我们知道有一些奇怪而有趣的问题没有得到解决,与40年前相比,我们有了更强大的实验工具,所以我们决定重新审视这个问题,希望提供一些新的见解。” 量子材料通常被描述为表现出奇异行为、违反经典物理定律的系统——比如固体材料表现出液体的行为,粒子像水一样移动,即使在冻结的温度下也不会冻结或停止运动。理解这些奇异现象是如何工作的,或者它们的潜在机制,是推进电子学和开发其他下一代技术的关键。 “在量子材料中,有两件事非常有趣:物质的相,如液体、固体和气体,以及这些相的激发,如声波。类似地,自旋波是磁性固体材料的激发,”佐治亚理工学院物理学教授Martin Mourigal说。“很长一段时间以来,我们在量子材料的 探索 一直是寻找奇异的相,但我们在这项研究中问自己的问题是:‘也许相本身不是明显的奇异,但如果它的激发是奇异的呢?’”这确实是我们的发现。” 中子是研究磁性的理想探测器,因为它们本身就像微型磁铁,可以用来与其他磁性粒子相互作用并激发它们,而不影响材料的原子结构。 当Bai还是佐治亚理工学院Mourigal的研究生时,他就开始接触中子。Mourigal是ORNL高通量同位素反应堆(HFIR)和散裂中子源(SNS)的频繁中子散射用户,已经有几年了。利用美国能源部科学办公室的用户设施来研究各种量子材料及其各种奇怪的行为。 当Bai和Mourigal将碘化铁材料暴露在一束中子中,他们期望看到一个特定的激发或能量带与来自单个电子的磁矩相关;但他们看到的不是一个,而是两个不同的量子涨落同时发出。 “中子让我们可以非常清楚地看到这种隐藏的波动,我们可以测量它的整个激发谱,但我们仍然不明白为什么我们会在一个明显的经典阶段看到这种异常行为,”白说。 为了找到答案,他们求助于理论物理学家克里斯蒂安·巴蒂斯塔,他是田纳西大学诺克斯维尔分校的林肯讲座教授,也是ORNL的舒尔·沃兰中心的副主任。舒尔·沃兰中心是一个中子科学的联合研究所,为访问研究人员提供额外的中子散射资源和专业知识。 白(上图)所拿的一小块碘化铁样品被安装并准备用于中子散射实验,该实验被用来测量材料的基本磁激励。来源:ORNL 在巴蒂斯塔和他的团队的帮助下,该团队能够对神秘的量子涨落的行为进行数学建模,在使用SNS的CORELLI和SEQUOIA仪器进行额外的中子实验后,他们能够确定导致它出现的机制。 巴蒂斯塔说:“理论预测和我们能够用中子证实的是,当两个电子之间的自旋方向翻转,它们的磁矩向相反的方向倾斜时,这种奇异的波动就会发生。”“当中子与电子的自旋相互作用时,自旋在空间中沿一定方向同步旋转。这种由中子散射引发的舞蹈产生了自旋波。” 他解释说,在不同的材料中,电子自旋可以呈现出不同的方向和自旋动作,从而产生不同种类的自旋波。在量子力学中,这一概念被称为“波粒二象性”,其中新波被视为新粒子,在正常条件下通常隐藏在中子散射中。 “从某种意义上说,我们在寻找暗粒子,”巴蒂斯塔补充说。“我们看不见它们,但我们知道它们在那里,因为我们能看到它们的影响,或者它们与我们能看到的粒子之间的相互作用。” “在量子力学中,波和粒子没有区别。我们基于波长了解粒子的行为,这就是中子允许我们测量的东西,”白说。 Mourigal把中子探测粒子的方式比作海洋表面岩石周围的波浪。 莫里格尔说:“在静止的水中,我们看不到海底的岩石,直到海浪掠过它。”只有用中子创造尽可能多的波,通过克里斯蒂安的理论,肖建才能识别出岩石,或者在这种情况下,使隐藏的波动可见的相互作用。 利用量子磁行为已经导致了技术进步,如核磁共振成像机和磁性硬盘存储,促进了个人计算。更多奇异的量子材料可能加速下一波技术浪潮。 除Bai、Mourigal和Batista外,论文的作者还包括张尚顺、邓志玲、张浩、黄庆、周海东、Matthew Stone、Alexander Kolesnikov和Ye Feng。 自他们的发现以来,该团队利用这些见解开发和测试了一系列更广泛的材料,他们预计这些材料将产生更有希望的结果。 “当我们在一种材料中引入更多的成分时,我们也会增加潜在的问题,如无序和异质性。如果我们真的想了解并创造基于材料的干净量子力学系统,回到这些简单的系统可能比我们想象的更重要。” 白说:“这就解决了碘化铁中存在了40年的神秘激发之谜。”“我们今天有优势,在大规模的中子设施的进步,如SNS,允许我们基本上探测材料的整个能量和动量空间,看看发生了什么与这些奇异的激发。 “现在我们了解了这种奇异的行为是如何在相对简单的材料中起作用的,我们可以想象在更复杂的材料中会发现什么。”这一新的理解激励了我们,也希望它能激励科学界去研究更多这类材料,这必将导致更有趣的物理学。”

相关百科
热门百科
首页
发表服务