论文投稿百科

牛鞭效应的论文题目

发布时间:2024-07-01 12:12:17

牛鞭效应的论文题目

物流技术标准化与物流效率关系探讨 你要写的是物流管理的毕业论文,论题的范围最好小一点。论文导师要看你的论文不是写的我国物流现状,又或是国际物流的发展动向。而是具体到某个公司范围内的物流技术对于公司的影响等小范围的解析。

中外物流业发展的差距分析,比较好写,只要收集一些资料,加一些对比,喝一些论证就行啦。

一、学术论文类:(一)技术经济1、某企业技术改造面临的困难与对策研究2、某企业设备选型经济评价方法研究3、某企业新产品与新技术储备模型的构建4、企业素质评价体系研究5、某企业创新产品区域扩散分析6、某企业营运能力评价体系研究7、某企业获利能力评价体系研究8、某企业科技创新机制研究9、企业营销潜力的分析与评价10、客户满意度评估问题研究11、生产企业物流关键绩效指标体系设计和应用研究12、某企业产品销售状况预测与仿真13、企业资产素质评估体系研究14、企业组织能力建立与评价研究15、企业员工能力的构建与评价研究(二)组织管理与变革16、某企业生产柔型组织的构造研究17、某企业运用“虚拟企业”经营方式研究18、某民营企业的企业家管理行为研究19、某民营企业制度创新研究20、企业再造理论在某企业的应用研究21、某企业组织流程优化设计22、论小型某私有企业的企业文化塑造和变革23、某企业组织改造与公司战略的匹配适应性研究24、某企业文化创新与企业品牌竞争力研究25、某企业组织的发展与变革研究26、某企业发展阶段与组织结构调整研究27、某企业组织结构及形态演变研究28、某企业构建供应链组织模式研究29、论某企业的组织文化建设 30、某高校组织变革研究31、某高校组织变革与人才培养问题研究32、某企业组织学习与企业创新能力培养研究33、团队组织方式在某企业的应用研究34、企业与市场相结合的中间组织及其博弈分析35、跨地区、跨国公司跨文化沟通研究36、试论某企业组织的压力因素对工作绩效的影响37、企业组织结构与功能关系研究38、基于网络时代与经济起飞阶段的企业组织结构研究39、企业组织变革的动力机制研究40、某公司企业文化模式设计41、试论某企业过程重构(BPR)思想的产生、发展及应用42、某跨国公司在中国发展问题的剖析——市场扩张与组织结构设计43、齐齐哈尔市老工业基地企业组织变革与设计研究44、XX企业的企业文化与可持续发展研究(三)生产运营管理45、某企业定制生产模式的系统设计与管理46、网络计划技术在某企业生产中的应用研究47、某企业库存管理模式研究48、零库存管理在某企业的应用研究49、准时生产方式在某企业的应用研究50、企业的生产流程优化研究51、规模定制模式在某企业的应用研究52、柔性生产方式在某企业的应用研究53、ERP在某企业的应用研究54、某制造企业生产模式的变革研究55、某企业质量管理现状分析及对策研究56、某企业物流管理的现状分析及对策研究57、不同类型企业的生产进度控制的难点与重点58、某企业生产计划系统的研究59、某企业生产性资源的计划管理研究60、全面质量管理方法在某企业中的运用61、某集团供应链的构建及其管理62、某项目制造型企业的敏捷供应链管理研究63、某公司采购质量控制方案研究64、某公司供应链管理的问题与对策65、试论供应链管理的思想在某企业物资供应管理中的应用66、某企业物流模式的构建67、供应链管理及其若干关键技术的研究与应用68、关于某企业库存管理现状分析及对策69、关于“牛鞭效应”产生的原因及对策分析(结合某企业物流配送实际)70、试论全面质量管理思想在学校管理中的应用71、初探某服务行业的质量管理72、齐车集团物流管理与对策研究73、某连锁零售业引入第三方物流研究74、基于资源风险的XX企业供应链风险管理研究(四)人力资源75、战略性人力资源管理在XX企业的应用研究76、论某企业员工培训与发展77、提高某企业员工积极性的研究78、某企业人力资本投资与可持续发展研究79、人才测评技术在某企业招聘管理中的应用研究80、企业人力资源配置与使用研究81、企业人力资源发展战略研究82、企业员工绩效管理体系设计83、键绩效指标法在某企业绩效管理中的应用84、360度考核法在某企业的应用研究85、平衡记分卡在某企业绩效考核中的应用86、某企业绩效考核体系存在问题及对策研究87、某企业薪酬体系设计研究88、弹性薪酬制度在某企业的应用研究89、某企业薪酬管理体系存在问题及改进对策研究90、股权激励制度在某企业的应用研究91、年薪制在某企业的应用研究92、双因素理论在某企业激励机制设计中的应用研究93、“3P模式”在某企业的应用研究94、制度和文化在企业员工激励中的作用研究95、基于企业战略的绩效管理体系研究96、柔性管理思想在某企业人力资源管理中的应用研究97、某地区人才中介机构在人力资源配置中的作用研究98、某企业员工流动状况调查及其对策研究99、某企业员工激励机制存在问题分析及对策研究100、以人为本的思想在某企业薪酬体系设计中的应用101、“宽带薪酬”的思想在某企业薪酬管理中的应用研究102、某高校人力资源管理制度研究103、某高校绩效考核体系研究104、知识型员工的激励机制研究105、某企业薪酬管理制度的创新研究106、某企业人力资源管理制度的整合研究107、“能本管理”的思想在企业绩效考核体系中的应用研究108、企业并购中的人力资源整合研究109、合资企业的人力资源管理研究110、某企业人力资源管理的战略定位研究111、某企业人力资源培训模式的探析112、试论某企业职业计划在人力资源管理中的作用113、某公司(企业)绩效考核系统的探讨114、公平理论对某企业报酬系统的影响研究115、某企业应用期望理论的重点与难点探析116、某企业CEO的激励和监督机制117、某企业人力资本投资与提高人力资源质量的分析118、某企业人才激励与薪酬管理问题研究119、某企业中层以上管理人员绩效考核操作方案研究120、论某民营企业的人力资源管理121、齐市人力资源管理现状对经济发展的影响研究122、关于某企业构筑人才工程探析123、关于某企业人才招聘体系方案设计的思考(五)营销管理124、战略性品牌管理在XX企业的应用研究125、浅析几种促销手段及在XX企业中的实际应用126、客户关系管理在XX企业的应用研究127、某企业实施名牌战略研究128、某企业营销组织设计和再造研究129、企业文化的营销功能探讨130、营销活动中的公共关系分析131、微利时代的企业定价策略分析132、价值工程在企业市场营销中的应用133、中小企业的营销实践研究134、中小企业营销创新实证研究135、中小企业提升市场营销能力的策略研究136、某企业营销策略研究137、某产品促销策略研究138、我校学生消费行为特征分析139、我校营销策略研究140、齐齐哈尔市消费者生活方式与购买行为研究141、影响企业产品定价因素定量分析142、某企业的广告策略研究143、某企业营销渠道策略研究144、某企业品牌延伸的问题与对策145、某企业营销网络建设和管理问题研究146、齐市商品房市场营销策划问题研究147、电子商务的应用与模式研究148、某企业关系营销与建立顾客忠诚度的分析149、某企业营销行为中的职业道德分析150、某企业的市场营销战略151、某企业服务营销文化的分析与对策152、某企业公关与品牌形象的塑造153、某企业绿色营销中的渠道建设问题研究 154、某集团绿色营销战略研究155、某集团网络营销运作策略与效益评价研究156、某企业营销渠道的创新研究157、某公司市场分析及经营对策研究158、约束理论在供应链生产分销整合决策模型中的应用研究159、某化妆品企业的目标营销和渠道策略160、某跨国公司在华营销策略演变161、某公司营销渠道战略研究162、某企业营销安全及其预警体系研究163、某企业营销安全研究164、某科技企业的市场营销165、论某企业形象营销166、某消费品生产企业网络营销策略初探167、某钢铁企业网络营销问题研究168、数控机床企业市场营销渠道决策的研究169、制造型企业虚拟营销模式及策略的研究170、论某旅行社开展关系营销的策略171、某产品市场销售渠道研究172、初探某零售企业的价格管理方式173、某商业企业的价格管理的问题分析174、大福源市场营销策略分析175、高科技中小企业生命周期与营销策略研究176、图书经营企业营销失效的战略解决模式177、某企业营销渠道系统设计178、齐齐哈尔市移动(网通)用户消费行为细分与营销决策分析179、某企业促销行为的问题与对策180、齐大超市的消费者行为细分与营销决策分析181、某企业广告营销中的误区与对策182、某企业广告定位的主成分与对策研究183、基于生态理论的企业营销战略的抉择184、某企业营销策划的问题与对策

试论中国企业现代物流的发展方向

牛鞭效应论文模板

其实都是心理作用啊,没什么效果的。

“牛鞭效应”是市场营销中普遍存在的高风险现象,是销售商与供应商在需求预测修正、订货批量决策、价格波动、短缺博弈、库存责任失衡和应付环境变异等方面博弈的结果。

“牛鞭效应”增大了供应商的生产、供应、库存管理和市场营销的不稳定性。企业可以从6个方面规避或化解需求放大变异的影响:即订货分级管理;加强入库管理,合理分担库存责任;缩短提前期,实行外包服务;规避短缺情况下的博弈行为;参考历史资料,适当减量修正,分批发送;提前回款期限。

牛鞭效应的背景:

最早注意到供应链中这种需求波动逐级放大现象的人是, 早在1961年他就根据系统动力学理论,对一个三阶段四节点的供应链系统进行分析,指出对于季节性商品,制造商觉察到的需求变化远远超过顾客的需求变化,供应链内部的结构、策略和相互作用是导致需求变动放大的原因。

Sterman设计了“啤酒博弈”的课堂游戏(1989),从人的行为研究出发,认为决策者对反馈信息的误解是造成这种现象的主要原因。Hau L Lee等(1997)对需求放大现象进行了全面深入的分析,总结了导致牛鞭效应的四个原因并提出了牛鞭效应的量化模型和方法。

以上内容参考:百度百科—牛鞭效应

“牛鞭效应”是市场营销中普遍存在的高风险现象,是销售商与供应商在需求预测修正、订货批量决策、价格波动、短缺博弈、库存责任失衡和应付环境变异等方面博弈的结果,增大了供应商的生产、供应、库存管理和市场营销的不稳定性。企业可以从6个方面规避或化解需求放大变异的影响:即订货分级管理;加强入库管理,合理分担库存责任;缩短提前期,实行外包服务;规避短缺情况下的博弈行为;参考历史资料,适当减量修正,分批发送;提前回款期限。营销过程中的需求变异放大现象被通俗地称为“牛鞭效应”。 (指供应链上的信息流从最终客户向原始供应商端传递时候,由于无法有效地实现信息的共享,使得信息扭曲而逐渐放大,导致了需求信息出现越来越大的波动。)

塞曼效应论文题目

正常塞曼效应的条件是,S=0,即2S+1=1是独态,也即电子为偶数并形成独态的原子,才能有正常的塞曼效应. 依据条件,氦、铍、镁、钙会出现正常塞曼效应。

电磁场与光的相互作用一直是物理学家研究的重要课题。1845年法拉第 (Michael Faraday,1791-1867)发现了磁场能改变偏振光的偏振方向,即磁致旋光效应。1875年克尔()发现各向同性的介质如玻璃等,在强电场作用下会表现出各向异性的光学性质,出现双折射现象,即电光效应。1896年荷兰塞曼(Pieter Zeeman,1865~1943)研究电磁场对光的影响,他把钠光源置于强磁场中,发现钠的谱线出现了加宽现象,即谱线发生了分裂,后称为正常塞曼效应。著名物理学家洛仑兹(Hendrik Antoon Lorentz,1853~1928)用经典电子论对这种现象进行了解释。他认为电子存在轨道磁矩,并且磁矩在空间的取向是量子化的,因此在磁场作用下能级发生分裂,谱线分裂成间隔相等的3条谱线。用正常塞曼效应测出电子荷质比,与1897年汤姆逊(Joseph John Thomson 1856-1940) 测量阴极射线的结果相同。由于塞曼效应的发现,塞曼和洛仑兹分享了1902年诺贝尔物理学奖。1897年英国普雷斯顿(Preston) ,美国的迈克耳孙(1897) ,德国的龙格(Runge,1902)和帕邢(Friedrich Paschen,1912) 都观察到光谱线有时分裂多于3条,称为反常塞曼效应。反常塞曼效应在很长时间里一直没能得到很好的解释。1921年,德国朗德(Landé)发表《论反常塞曼效应》的论文,引进朗德因子g表示原子能级在磁场作用下的能量改变比值,这一因子只与能级的量子数有关。 1925年,荷兰乌仑贝克()和古德斯米特()提出了电子自旋假设,很好地解释了反常塞曼效应。塞曼效应证实了原子具有磁矩和空间取向量子化。根据光谱线分裂的数目可知总角动量量子数J ,根据光谱线分裂的间隔可以测量g 因子,近而确定原子总轨道角动量量子数L和总自旋量子数S的数值,因此,塞曼效应是研究原子结构的重要方法之一。另外由塞曼效应可分析物质的元素组成,在科研和生产中有重要应用。

通译洛伦兹力洛伦兹力Lorentzforce磁场运点电荷作用力1895荷兰物理家.洛伦兹建立经典电论作基本假设提现已量实验证实洛伦兹力公式f=q·v×B式q、v别点电荷电量速度;B点电荷所处磁应强度洛伦兹力f=|q|vBsinθ其θvB夹角洛伦兹力向循右手螺旋定则垂直于vB构平面由v转向B右手螺旋前进向(若q负电荷则反向)由于洛伦兹力始终垂直于电荷运向所电荷作功改变运电荷速率能能改变电荷运向使偏转洛伦兹力既适用于宏观电荷适用于微观荷电粒电流元磁场所受安培力其运电荷所受洛伦兹力宏观表现导体路恒定磁场运使其磁通量变化产电势洛伦兹力结洛伦兹力产电势非静电力电场E磁场B并存则运点电荷受力电场力磁场力f=q(E+v×B)左式般称洛伦兹力公式洛伦兹力公式麦克斯韦程组及介质程起构经典电力基础许科仪器工业设备例β谱仪质谱仪粒加速器电显微镜磁镜装置霍耳器件洛伦兹力都广泛应用值指既安培力洛伦兹力宏观表现洛伦兹力运电荷作功何安培力能载流导线作功呢实际洛伦兹力起传递能量作用部阻碍电荷运作负功另部构安培力载流导线作功结仍由维持电流电源提供能量

1976年诺贝尔物理学奖授予美国加利福尼亚州斯坦福直线加速器中心的里克特(Burton Richter,1931—)和美国马萨诸塞州坎伯利基麻省理工学院的丁肇中(,1936—),以表彰他们在发现一种新型的重的基本粒子中所作的先驱性工作。粒子物理学的发端可以从1932年正电子的发现说起,到了50年代,陆续发现了反质子、π介子、反Λ粒子等等三十多种新粒子,其中稳定的有七种。寿命大多长于10-16秒。后来又发现了许多寿命更短的粒子,这些粒子也叫做强子共振态,是通过强相互作用衰变的。盖尔曼的夸克模型理论,解释了这些强子共振态,其预言的Ω-粒子又被实验证实。这时粒子物理学似乎已经达到了顶峰,没有什么事情可做了。然而,正是在这一短暂的沉静时期,1974年同时有两个实验小组,宣布发现了一种寿命特别长,质量特别大的粒子。这项发现的宣布,打破了沉闷的空气,使物理学家大为惊讶,推动粒子物理学迈向新的台阶。这项新的发现就是由里克特领导的SLAC-LBL合作组所发现的ψ粒子和由丁肇中领导的MIT小组所发现的J粒子。人们统称之为J/ψ粒子。SLAC是斯坦福直线加速器中心的简称,LBL是劳伦斯伯克利实验室的简称。两家共同组成一个合作组,为SLAC正负电子对撞机(SPEAR)配制了一台取名为MarkI的磁探测器,目的是探测4GeV的正负电子束对撞后生成的新粒子,探测范围可从直到。这是当时能量最高的电子对撞机。1974年初,里克特小组发现在处截面比反常,比邻近约高30%,当时并未引起注意。同年10月,又发现在处有一反常。后来还陆续有高出3~5倍的截面。这促使他们下决心把机器调回到附近进行精确测量,11月9日终于取得了在处存在狭共振的确切证据,并命名为ψ粒子。接着,又在处发现了ψ粒子的姐妹态,ψ'粒子。里克特1931年3月22日出生于纽约。1948年进入麻省理工学院,大三时曾参加正电子素实验,开始接触到电子-正电子系统。大学的毕业论文题为“氢的二次塞曼效应”,成绩优异。研究生期间,里克特测量了水银同位素位移及其超精细结构。他在工作中要用到回旋加速器,让短寿命的Hg197同位素和氚核束轰击金。因此更加激发了对核物理和粒子物理以及所使用的加速器的兴趣。他的博士论文题目是“由氢光生π介子”。然后他在斯坦福高能物理实验室找到工作。他在这里和同事们合作,建造了一台碰撞束机器,并于1965年开始实验,结果使量子电动力学的适用性延展至小于10~11cm。在这之前,里克特就在考虑高能电子-正电子碰撞束机器能用来做些什么。他特别想研究强相互作用粒子的结构。1963年里克特来到SLAC,在SLAC主任潘诺夫斯基的鼓励下,里克特组织了一个小组制定高能电子-正电子机器的最后设计。1964年完成了初步设计,1965年向美国原子能委员会提交了一份经费申请报告,当然这只是申请经费的漫长过程的第一步,以后还为之作过多次奋斗,直到1970年才得到经费。在这期间,他和小组成员又做了其它实验,设计并制造了大型磁谱仪的整套装置的一部分,并利用它进行了一系列π介子和K介子的光生实验。里克特为了以后制作存储环作准备,下了很大力气以求保住已经成立的小组。有了经费之后,工程立即上马,着手制作大型磁探测器。1973年开始做实验,终于得到了满意的成果。如果说里克特和他的小组是以他们的执著追求精神取得了引人注目的成绩,那么,丁肇中和他的小组更是以其严谨踏实、一丝不苟的作风得到了科学上的回报。丁肇中是华裔美籍科学家,1936年1月27日出生于美国密执安州安亚柏市,父亲丁观海是工程学教授,母亲王隽英是心理学教授,他们在访美期间,生下了丁肇中,于是丁肇中从小就成了美国公民。出生后两个月,与母亲一起回到中国。由于战争的原因,直到十二岁才受到传统的教育。1956年丁肇中得奖学金入美国密执安大学,三年后获得了数学和物理学位,1962年获得物理博士学位。关于丁肇中的经历,请读他的自述:“当我20岁时,我决定到美国去接受较好的教育,我父母的朋友、密执安大学工程学院的院长.布朗,告诉我父母他很欢迎我去那儿,并到他家住宿。当时我只懂一点儿英语,而且对在美国的生活费用毫不了解,在中国,我通过看书了解到美国许多学生是通过自己劳动挣钱进入大学的,于是,我对父母说我也要这么做。1956年9月6日,我到达了美国底特律机场,身边带了100美元,当时好像已很富裕了。我感到有些害怕,因我不认识任何人,而且通信也很困难。”“由于我是靠得奖学金入学的,故我不得不努力学习以继续取得奖学金。我在三年内使自己在密执安大学获得了数学和物理学位,在1962年,在琼斯和泊尔博士指导下获得物理学博士学位。”“我作为一个福特基金会的研究员到了欧洲核子研究中心(CERN)。在那儿我很荣幸能跟柯可尼教授一起搞质子同步加速器,从他那儿学到许多物理知识。他能以简单的方法对待一个复杂的问题,做实验相当仔细,这些都给我留下了深刻的印象。”“1965年春天,我回到美国,在哥伦比亚大学任教。在那些年月里,哥伦比亚大学的物理系是一个很有刺激性的地方,我有机会观察到如:莱德曼、李政道、拉比、施瓦茨、斯坦博格、吴健雄以及其他教授的工作。他们在物理学上都具有各自的风格和相当突出的鉴别力。我在哥伦比亚短暂的几年,收益很大。”“在我到达哥伦比亚大学的第二年,在坎伯利基电子加速器上进行一项由光子同核靶碰撞产生电子正电子对的实验。看来好像有点违反量子电动力学。于是我仔细地研究了该项实验,决定重做一次。我与搞西德电子同步加速器的韦伯教授和杰茨凯商量是否可在汉堡进行正负电子对产生的实验。他们都很热情地鼓励我马上就开始实验,1966年3月,我离开了哥伦比亚大学到汉堡去进行这个实验。自那时起,我以全部精力投入到电子对及μ介子对物理、研究量子电动力学和类光粒子的产生和衰变、寻找能衰变成电子对或μ介子对的新粒子。这类实验的特点是需要高强度入射通量,需要绝对排除大量不需要的背景条件,同时又需要质量分辨率高的探测器。”“为了寻找较大质量的新粒子,我于1972年带了实验小组回到了美国,在布鲁克海文国立实验室进行实验。1974年秋,我们发现了一种新的、完全出乎意料的重粒子——J粒子的证据。自那以后,找到了整族新粒子。”关于电子-正电子实验的缘起,丁肇中在领诺贝尔奖的演说词中作了如下说明:“1957年夏天,我是纽约暑期班的学生,偶然得到了赫兹堡的经典著作《原子光谱和原子结构》(1937年),从书中我第一次了解到光量子的概念和它在原子物理学中的作用,大学毕业前夕,我收到父亲送给我的圣诞礼物:阿希耶泽和贝律茨基合著的《量子电动力学》(1957年)一书的英译本。在密执安大学学习期间,我仔细读了这本书,并自己推导了书中的某些公式,后来我在哥伦比亚大学任教的年代,很有兴趣地读了特雷尔1958年的一篇论文。他指出用高能电子加速器在短距离上对量子电动力学(QED)所做的各种检验的含义。对于怎样把某一类费因曼图从3μ介子的μ介子产生中分离出来,我同布洛茨基合作进行了理论计算。”为此丁肇中和布洛茨基联名于1966年发表了一篇论文。1965年10月,丁肇中受德国汉堡德意志电子同步加速器研究中心(DESY)主任詹希克的邀请,做了e+e-对产生的第一个实验。他和他的小组使用的探测器具有如下特性:1.能利用负载循环2%~3%的10-11/s的入射光子流;2.接受度很大,不被磁铁的边缘或屏蔽物所限制,仅受闪烁计数器决定;3.所有的计数器并不直接面对靶体;4.为了排除强子对,切连科夫计数器为磁铁所分隔,使π介子与第一对计数器中的气体辐射源相互作用而放出的电子被磁铁排除,不进入第二对计数器。从第二对计数器放出的低能电子则被簇射计数器排除。这个实验的结果表示出量子电动力学正确地描述了粒子对产生过程直到10-14cm。然后,丁肇中小组转动谱仪的磁铁,使最大的粒子对质量接受区的中心在750MeV附近,他们观察到e+e-对的数量有很大的上升,明显地破坏QED。这种对QED的偏离,事实上是由强作用对e+e-产生的贡献增加而引起的。这时入射的光子产生重的类光粒子ρ介子,它再衰变为e+e-。它的衰变几率为α2的量级,为了证明情况确实是这样,他们做了另外一个实验,增加e+e-的张角,发现与QED的偏离更大。这是可以预计到的,因为当增加e+e-的张角时,QED过程比强作用过程减少得更快。约为5MeV,因此丁肇中小组研制了一个质量分辨率约为5MeV的探测器。丁肇中小组的成员们面对的是极其单调的测量工作,可是这不是一般的测量,请继续听丁肇中教授的回忆:“在有些测量中,事件率低,特别在研究大于ρ和ω介子质量范围的e+e-质谱的实验里,当加速器全负载时,e+e-对的产额约为每天一个事件。这就是说,整个实验室大约有半年光景一直专门只做这个实验,每天一个事件的事件率还意味着,往往2、3天没有事件,而在另外的日子里我们却得到2、3个事件。正是在这个实验的过程中,我们形成了每30分钟把全部电压检查一遍和每24小时通过测量QED产额来校准一次谱仪的传统。为了确保探测器工作稳定,我们还建立了物理学家跟班的惯例,甚至当加速器关机维修时也跟班,我们还从不切断电源。这样做的最终效果是,我们的计数室多年来有着与实验室的其它部分不同的基础体制。”“我们经过多年的工作后,学会了怎样操纵具有负载循环2%~3%,每秒约1011γ的高强度粒子束。同时采用具有大的质量接受度和好的质量分辨率△M≈5MeV的探测器,它能以>>108的倍数将ππ从e+e-中辨别出来。”“我们现在可以提出一个简单的问题:有多少重光子存在?它们的性质怎样?对我来说,不能想像只有三种重光子,而且它们的质量都是1GeV左右,为了解答这些问题,我同小组成员反复讨论了怎样进行实验。最后我决定1971年在布洛克海文国立实验室的30GeV质子加速器上首先做一个大型实验,把探测质量提高到5GeV,探测重光子的e+e-衰变来寻找更多的重光子。”在诺贝尔奖演说词中,丁肇中这样形容准备阶段的工作:“在建造我们的谱仪过程,及整个实验过程中,我受到很多的批评。问题在于为了达到良好的分辨率,必须要造一个非常昂贵的谱仪。一位有名望的物理学家批评说:这种谱仪只适用于寻找窄共振——但并不存在窄共振。尽管这样,我还是决定按我们原来的设计创造,因为我一般不太相信理论论证。”“1974年4月我们完成了实验的布置工作,并开始引入强大的质子束流到实验区。我们立刻发现,我们计数室里的辐射强度达每小时伦琴。这就是说,我们的物理学家24小时内将要受到最大允许的辐射年剂量。我们花了二、三个星期艰苦地寻找原因,大家为能否继续进行这项实验而担忧。”“一天,自1966年以来一直同我共事的贝克尔博士带着盖革计数器在踱步时,突然发现,辐射的大部分来自屏蔽区的一个特定的地方。经过仔细研究后,发现即使我们已经用了10000吨混凝土屏蔽块,但最重要的区域——束流制动器的顶部——却仍然根本没有被屏蔽!经此纠正之后,辐射强度降到了一个安全值,这样我们就可以进行实验了。“从4月到8月,我们做了例行的调节工作,探测器工作性能符合设计要求。我们能够利用每秒1012个质子,小型电子对谱仪也工作正常,这使我们能用纯电子束来校正探测器。”经过严格认真的反复核对,奇迹终于出现了。丁肇中回忆说:“1974年初夏,我们在4Gev~5GeV的大质量区域里测定了一些数据。然而,对这些数据所做的分析表明,只存在极少的电子-正电子对。”“在8月底,我们调整了磁铁使它能接受~4GeV的有效质量。我们立即看到了干净的、真正的电子对。”“最令人惊奇的是,大部分e+e-对在处形成一个狭峰。更详细的分析表明,它的宽度小于5MeV。”经过多方核对后,丁肇中小组确认他们发现了一个当时质量最大的新粒子。后来得知,里克特小组也发现了这一粒子。他们的实验各有特点。里克特小组是让e+e-对湮没以形成矢量介子,是一种形成实验,而丁肇中小组是利用质子束轰击铍靶,产生矢量介子,然后测量矢量介子的衰变产物,则是一种产生实验。里克特小组和丁肇中小组用不同的设备、经不同的反应过程几乎同时地发现了同一粒子,使物理学界大为惊喜。他们的发现把高能物理学带到了新的境界,因此,两年后里克特和丁肇中就分获诺贝尔物理学奖。

霍尔效应题目论文

孩子你太狠了。我汗颜。

霍尔效应是根据洛伦兹力,通过外加电场,让离子偏离吸附到极板上,达到净化的目的。F=qvB,F是洛伦兹力,q是电荷量,B是磁感应强度。受力方向由左手定则判断:伸开左手,让磁感线垂直穿过手心,四指指向正电荷移动方向或负电荷移动的反方向,大拇指指向运动电荷的受力方向。

哥们,北理的吧,我也在写这个,艹,真球蛋疼

我大学毕业论文写的是<< 电动助力转向系统中传动机构的运动学和动力学分析与比较>>,如果只是一般性论文,建议写<<生活中的物理 >>,<<世纪之交谈物理学发展的方向>>,<<物理学前沿问题探索>>之类的较广泛的题目,这样比较容易,相关资料也比较好找

光电效应论文题目

19世纪后期,物理学不仅在走向那时的辉煌顶点,也开始形成正规化的教育体系。欧洲的大学纷纷告别教授各自经营小作坊的方式,成立起有规模的正式实验室。英国剑桥大学在1874年也有了物理实验室,聘请麦克斯韦为第一任教授——也就是实验室主任。麦克斯韦在任内花了很多时间整理一百年前的英国化学、物理学家卡文迪许(Henry Cavendish)大量从未发表的笔记,对这位前辈深为叹服,遂决定将实验室命名为卡文迪许实验室。当然,这个实验室的创建资金也来自卡文迪许家族的一个贵族的捐赠。1879年,年仅48岁的麦克斯韦病逝。虽然他的工作不像卡文迪许当年那样不为人所知,那时电磁波还未被证实,他的电磁、统计等理论的重大意义也没来得及被物理学界充分领会。在卡文迪许实验室接替麦克斯韦的是瑞利男爵(John William Strutt, 3rd Baron Rayleigh)。今天的人如果对他的名字有印象,多半是因为解释“天空为什么是蓝色”中不可避免会提到的“瑞利散射(Rayleigh scattering)”。瑞利的贡献远不止光散射理论。1904年,他因为发现大气中的氩元素和对气体密度的研究获得诺贝尔物理奖。1900年6月,当普朗克还在为他和维恩的黑体辐射定律得意之时,瑞利看出了内中的蹊跷:当黑体的温度升高时,辐射频谱的峰值会从红外向更高频率的可见光转移,同时各个频率上的辐射强度也应该有不同程度的增高。但在普朗克-维恩定律中,低频段的辐射强度随温度升高却会减少。瑞利觉得这不合理,因此也对普朗克夸下的海口大不以为然,认为后者所谓基于热力学定律的推导不过只是推测。瑞利自己找到一个更简单的方法。理想化的黑体在现实中是不存在的。(将近一个世纪之后,天文物理学家证实我们的宇宙作为一个整体的确是一个标准的黑体。参阅:《宇宙膨胀背后的故事(廿五):新生宇宙的第一张照片》。)19世纪的物理学家找到了一个绝妙的近似,就是在一个封闭的腔体上开一个小洞。外界经过这个洞进入腔体的辐射很难再逃出来,最终会被腔体吸收;而腔体内部的热辐射总会从洞中逸出。这样,在腔体保持一定温度下测量从洞中出来的热辐射,便可以测量黑体的频谱。在麦克斯韦揭示热辐射就是电磁波之后,瑞利觉得结合麦克斯韦、玻尔兹曼的统计理论可以直截了当地得出黑体辐射的规律:黑体的空腔内布满了电磁波,就像是一定体积内的气体,正是统计物理的用武之地。统计力学中有一个简单但强有力的“能均分定理(equipartition theorem)”:在一个处于热平衡的系统中,各个运动自由度都会具备同样的动能,与温度成正比。虽然叫做“定理”,这一法则却并不是通过严格的数学推导而来,而是基于对平衡态的理解:如果某一个自由度的动能大于另一个自由度,该系统便没有处在平衡态。动能会自动从前一自由度传送到后一个。所以,这更是一个“原理”,在19世纪末被广泛运用、接受。瑞利认为他只要好好地数一数空腔内电磁波的自由度,就可以通过能均分定理推导出黑洞的辐射频谱。这一下不打紧,他很快得出一个非常简单,同时却也异乎寻常的结论:辐射的强度与频率的平方成正比。也就是频率越高辐射越强,导致几乎所有能量都会集中在紫外等高频段。这样,如果把所有频率的辐射强度全算上,黑体辐射的总能量是无穷大。这显然是一个荒唐的结果。瑞利在他最初的论文中不得不无中生有地引进一个附加因子消除高频段的辐射强度,并强调他的推导只适用于低频段。但他的这个推导的确简单直接,是能均分定理的必然结果,比普朗克所打的包票更为靠谱。由此导致的结论清楚地表明热力学——能均分定理——出了大问题。几年后,物理学家埃伦菲斯特(Paul Ehrenfest)把它形象地称作“紫外灾难(ultraviolet catastrophe)”。也正因为这个问题的严重,开尔文勋爵把它列为物理学的第二朵乌云。瑞利直到五年后的1905年才给出完整的定量公式。但他这时又犯了一个低级错误,被年轻得多的同行金斯(Sir James Jeans)指出。因此他的公式称为“瑞利-金斯定律”。这个定律虽然简单明了,却只能在低频率极限的一个小角落里可以与实验数据符合,整体上却惨不忍睹,远远不如原始的维恩定律。绝对温度5800度的黑体辐射频谱(横坐标为频率,纵坐标为强度)。蓝色实线是普朗克定律(与实验完全符合),红色短划线为维恩定律,黄色点虚线则是瑞利-金斯定律的结果。无论是维恩还是瑞利,他们的定律都在1900年底被普朗克发表的新黑体辐射定律取代。普朗克定律因为与实验数据完美的符合而被普遍接受,没有受到什么质疑。直到五年后。×××××爱因斯坦在1905年发表的第一篇论文后来被普遍称为“光电效应论文”。其实,这篇题为《关于光的产生与变换的一个启发性观点(On a Heuristic Point of View about the Creation and Conversion of Light)》的论文有17页的篇幅,关于莱纳德的光电效应实验的解释在第14页才出现。那只是爱因斯坦列举的可以为他新观点佐证的一个例子。爱因斯坦1905年发表的“光电效应论文”。论文的主要内容其实是对普朗克五年前提出的黑体辐射理论的分析,并以此提出关于光的本质的“启发性观点”。他开篇便旗帜鲜明地指出:光的波动理论在描述纯光学现象上已经自证完美,也许永远也不会再被新的理论取代。然而,也可以想象在光的产生、变换方面,波动理论会导致一些矛盾。因此,爱因斯坦表明,对于黑体辐射、荧光、光电效应等现象,如果假设光的能量在空间是不连续的,就会容易理解得多。接着,爱因斯坦提出了他的新思想:“根据这里提出的假设,当光从一个光源向外发出时,其能量不是连续地分布到越来越广泛的空间,而是由一些有限数目的能量子组成。能量子只存在于空间中局域的点上,在运动时不会再拆分,也只能作为整体被吸收或产生。”这是一个与麦克斯韦电磁波所描述的光截然相反的概念。波动的光在空间上是连续、弥漫的,不会局域于任何点。光波传播时其能量(即光强)随着传播范围的增大会逐渐衰减(拆分),并能以任意小的份量被吸收、再发射。在光的波动说已经统治了整整一个世纪,并被无数的实验证实后,爱因斯坦竟然“复活”了牛顿的微粒说。爱因斯坦的论文分为九节。第一节的小标题是“关于黑体辐射理论的困难”。他不知道瑞利在五年前的论文,但与瑞利一样意识到普朗克的逻辑不靠谱而独立地发现了瑞利的定律(那时瑞利还没有发表定量的公式,也还没有金斯。因此,“瑞利-金斯定律”应该被命名为“瑞利-爱因斯坦-金斯定律”)。有所不同的是,他没有像瑞利那样试图凭空找一个避免“紫外灾难”的附加因子,而是直接宣布这个结果表明经典电磁、统计理论的重大缺陷,亟需新的思维方式。这时的爱因斯坦当然比普朗克更具优势。他不仅拥有近似成立的维恩定律和实际的测量结果,还有普朗克已经拟合的,与数据天衣无缝的数学公式,即已知的“答案”。他所需要做的,不是寻求一个新的公式,而只是如何从理论上合理地诠释普朗克的结果。瑞利和爱因斯坦根据经典的能均分定理推算黑体空腔中辐射时,主要的工作便是计算各个频率上所能有的模式数目,那就是自由度。想象一根提琴的弦,当两头分别被琴和演奏者的手指固定之后,它所能演奏出的曲调——频率——是有限的。琴弦的波动频率必须能恰好在那两头没有振动。这种有固定边界的波叫做“驻波(standing wave)”。显然,在一定长度的琴弦上,驻波的波长会有限制,不可能超过弦长本身(严格来说是不能超过弦长两倍)。而反过来,波长越短,就越容易在琴弦上形成驻波。黑体辐射的空腔同样有一定大小,热辐射便是其中的驻波。因为频率是波长的倒数,空腔中辐射的频率有一个下限。但在高频部分,其驻波的数目会越来越多:自由度的数目随频率增长。这样,能均分定理给每一个自由度同样的能量,便导致辐射能随频率而增长,发生紫外灾难。认识到这一点,爱因斯坦便重新审视恰恰是在那个高频段与实验数据符合得相当好的维恩定律。他利用这个已知的定律倒推回去,赫然发现空腔里的辐射其实与普通的理想气体统计规律一致,唯一的区别只是空腔中的辐射不像气体会有一个确定的原子数目。取而代之的是一个奇异的组合:总能量除以一个参数。而这个参数不是别的,正是普朗克绝望之中引入的那个与频率成正比的最小值——量子。爱因斯坦恍然大悟。他在论文中写道:单一频率的光在热力学中表现得就如同有固定数目的能量子。因此,应该考虑光在产生、转化过程中也会表现得像分立的能量子一样。也就是说,光其实是由光量子组成。单个的光量子具有与普朗克的量子一样的能量,与光的频率成正比。它们不会再拆分,而是被整体地吸收或产生。(爱因斯坦一直把他的光微粒叫做能量子或光量子,直到1926年物理学界才开始采用一个新的名字:“光子(photon)”。)这便是他论文题目中所言的“启发性观点”。×××××爱因斯坦深知这个观点的革命性。因此,他在论文的最后几节提供了更多的证据。其中之一便是五年前曾让他欣喜若狂的光电效应。莱纳德实验发现的那一系列麦克斯韦理论无法解释的现象在这个新观点面前均迎刃而解:与光的电磁波理论不同,爱因斯坦的光量子所携带的能量取决于频率。因此紫外光的光量子能量比可见光的大很多。金属表面的电子不是在与电磁波的共振中获得能量,而是整体地吸收一个光量子的能量而逸出。在吸收一个紫外光量子足以逃逸的金属里,吸收一个可见光的光量子却未必能获得足够的能量。因此,光电效应与入射光的频率息息相关。同时,入射光的光强体现的是光量子的数目(也因此决定光的总能量)。这样,即使把紫外光的光强降低到微乎其微,只要还能有那么几个光量子能被电子吸收,就可以观察到光电效应。相反,如果可见光的光量子能量不足以“打下”电子,那么即使把光强加得再大,用再多的光量子轰击,也打不下一粒电子——因为电子一次只能吸收一粒光量子。这些莱纳德让人们摸不着头脑的结果,在爱因斯坦这里得来全不费工夫。光电效应之外,爱因斯坦还顺便解决了另一个历史问题。半个世纪以前,爱尔兰贵族斯托克斯(Sir George Stokes, 1st Baronet)研究一些能发荧光的矿石,得出结论荧光是矿石吸收了入射光之后二度发射的光。他发现,再发射的荧光的频率总会比入射光的频率低。有些矿石似乎不需要入射光就能发光,那是因为它们吸收了不可见的紫外光而转换发射出可见光。这个荧光规律(Stokes' Rule)一直令人不解:矿石吸收入射光后发出不同频率的荧光不奇怪,但为什么它们就不能发出频率更高的荧光?在爱因斯坦的新观点中,光的频率便是光量子的能量。斯托克斯的定律也就变得很显然:荧光体在吸收一个光量子再发射另一个光量子的过程中能量可能会有损失但不会增加。因此荧光的频率(能量)必然低于入射光。×××××很有意思的是,爱因斯坦这篇论文中其实没怎么涉及普朗克和他的新黑体辐射定律。他只是必要性地简单复述了一下普朗克的工作,不痛不痒地承认其结果与现有的实验完全符合。这非常不像爱因斯坦的风格。在那些年里,他已经得罪的远远不只是自己大学的教授们,还包括当时物理学界的诸多名流。就在四年前,他发现莱比锡大学的物理学家德鲁德(Paul Drude)的一个错误,立即毫不留情地去信批驳。他当时还处于失业困境,因此也没忘记同时附上一封求职信。德鲁德大度地回应,说明他没有错,而且与他同系的玻尔兹曼也同意。当然,他也没有理睬那封求职信。爱因斯坦大为光火,在私信里将德鲁德和玻尔兹曼骂得狗血淋头,发誓要发表论文狠踹这些权威的屁股。(爱因斯坦给德鲁德的信件失传,他的质疑是否成立不得而知;他随后的确发表过讨论玻尔兹曼统计理论的论文,后来自己也承认没有什么学术价值。)作为刚刚以平庸的成绩勉强大学毕业、找不到工作的社会青年,爱因斯坦的表现完美地诠释了“英勇的施瓦本人无所畏惧”形象。1905年的爱因斯坦在专利局工作时并不孤单,还有一个大学期间认识的好朋友贝索(Michele Besso)。贝索比爱因斯坦大六岁,是个工程师,后来在爱因斯坦的鼓动下也来到专利局谋生。两人情投意合,爱因斯坦只要有了新思想都会立即与贝索分享,认定后者是他最好的讨论对象。在那年后来发表的狭义相对论论文中,他还曾特意致谢了贝索的帮助。(那年的四篇划时代论文中,这是唯一的一个致谢,也凸显了爱因斯坦孤军奋战的处境。)当时不为人知的是贝索在光电效应论文中的帮助也超过了倾听和对谈:更为成熟、稳重的贝索劝说爱因斯坦删去了直接批驳普朗克的内容。20多年后,贝索曾在一封信中回顾那个年月。在已经知道这篇论文的历史性影响之后,贝索向爱因斯坦承认:“在帮助你编辑你关于量子问题的通讯时,我剥夺了你的一部分荣耀;但另一方面,我也为你争取到一个朋友:普朗克。”于是,如果没有贝索的“帮助”,爱因斯坦的论文中会如何评论普朗克成为一个历史之谜。因为没有明确与普朗克“划清界限”,爱因斯坦的论文被普遍看作普朗克率先提出的“量子论”的更进一步延伸,失去了其实际革命性的锋芒。当量子力学在20年后开始异军突起时,普朗克被普遍认为是其鼻祖。贝索因此颇为后悔,他认为这个桂冠非爱因斯坦莫属,而只是因为他而被剥夺。而他那“另一方面”也同样地合情合理。虽然施瓦本人无所畏惧,在专利局中蹉跎的爱因斯坦也真经不起同时得罪物理学界所有的泰斗。在他后来的物理生涯中,被这么争取到的朋友普朗克的确提供了相当大的帮助。(待续)转载本文请联系原作者获取授权,同时请注明本文来自程鹗科学网博客。链接地址:收藏分享分享到:

1.太阳能电池、防盗报警器和照相机的测光表都是以光电效应为基础的。 2.核能利用了这样一个物理现象:当铀原子发生裂变时,总质量的微量损失可以转变成能量,其依据正是爱因斯坦的著名等式E=Mc2。如今,核能为英国提供了25%的电力。 3.全球定位系统之所以能将物体的位置精确到米,正是根据爱因斯坦的相对论对地球卫星发出的信号进行了修正。 4.狭义相对论与量子理论相结合,指出了反物质的存在。科学家们利用正电子,即反物质“电子”,通过X射线层析照相术研究大脑活动。 5.亚原子粒子的特性是相对论的直接结果,其存在可以解释从化学元素的特性到磁铁作用的多种现象。 6.爱因斯坦1916至1917年对光子的研究为人类40年后发现激光奠定了基础。目前激光广泛应用于从DVD到激光打印机的多种产品。

关于光的本性问题很早就引起了人们的关注。微粒说1638年,法国数学家皮埃尔·伽森荻(Pierre Gassendi)提出物体是由大量坚硬粒子组成的。并在1660年出版的他所著的书中涉及到了他对于光的观点,也认为光也是由大量坚硬粒子组成的。牛顿随后对于伽森荻的这种观点进行研究,他根据光的直线传播规律、光的偏振现象,最终于1675年提出假设,认为光是从光源发出的一种物质微粒,在均匀媒质中以一定的速度传播。微粒说很容易解释光的直进性和反射现象,因为粒子与光滑平面发生碰撞的反射定律与光的反射定律相同。然而微粒说在解释一束光射到两种介质分界面处会同时反射和折射,以及几束光交叉相遇后彼此毫不妨碍的继续向前传播等现象时,却发生了很大困难。波动说罗伯特·胡克在1685年发表的《显微术》一书中,认为光是一种振动,发光体的每一振动在介质中向各个方向传播。胡克初步建立了波面和波线的概念,并把波面的思想用于对光的折射和薄膜颜色的研究。惠更斯(Christian Huygens)著《论光》更明确地提出了光是一种波动的主张,他认为光是一种介质的运动,该运动从介质的一部分以有限速度依次地向其他部分传播,他把光的传播方式与声音在空气中的传播作比较。波动说很容易能够解释微粒说不能解释的两个问题。水波可以同时发生反射和折射,并且水波的反射和折射规律和光完全相同。湖面上的激烈水波能够自由的互相穿过,通过一个窗口能够同时听到窗外几个人讲话的声音,这些都是人们熟知的波的现象。然而,早期的波动说缺乏定量的数学严密性,也缺乏对波动特性的足够说明,仍然摆脱不了几何光学的观念。同时,惠更斯所提出的波动说是把光比作像“水波”一样的机械波,即机械波的传播需要依靠介质,而光却能在真空中(即无介质)传播。牛顿并不是在根本上否认光的波动性,事实上正是牛顿首先提出了光在本质上是一种周期过程的观点,他还多次提到光可能是一种振动并与声波作对比。然而从他的著作《光学》的其他部分来看,他还是倾向于光的微粒说。突出的例子是从光的微粒说出发,根据机械粒子遵守的力学规律来解释光的反射定律和折射定律,并得出了光密介质中的光速要大于光疏介质中的光速这一与事实不符的结论。英国物理学家托马斯·杨(1773年 – 1829年)用干涉实验证明了光的波动性由于牛顿在学术界有很高的声望,致使微粒说在其后的100多年里一直占着主导地位,而波动说却发展得很慢。同时,如果要证明光具有波动性,必须设法显示出光具有干涉现象,而干涉现象的产生必须得到两列相干光,然而要得到两列相干光在当时是很困难的。直到1801年英国物理学家托马斯·杨(Thomas Young)终于用干涉实验证明了光的波动性。详见杨氏双缝干涉实验电磁说到19世纪中期,光的波动性已经得到公认,然而当时人们只了解在介质中传播的机械波,认为光波也是一种机械波。而任何机械波的传播都依靠介质,光却能在真空中传播。从太阳和其他恒星所发出的光,是通过什么介质传播过来的呢?为了说明光传播的这个问题,人们便假设在宇宙空间中到处充满着一种特殊的物质,这种物质被称作以太,光便是通过“以太”来进行传播。为了解释光波的各种性质,对于“以太”这个概念又进一步提出了种种假设。譬如,“以太”的密度极小,却具有较大的弹性等。由于对“以太”性质种种假设间存在明显的矛盾,人们很难相信存在这种物质。而为证明“以太”存在的各种实验也都以失败而告终。1846年,法拉第发现在磁场的作用下,偏振光的振动面会发生改变。这一重要的发现,表明光和电磁现象间存在着某种联系,同时将人们的目光转移到了电磁现象来考虑。19世纪60年代,麦克斯韦在研究电磁场理论时预见了电磁波的存在。同时指出电磁波是一种横波,电磁波的传播速度等于光速。麦克斯韦通过电磁波与光波的相似性质,提出假设,认为光波是一种电磁波。20多年后,赫兹用实验证实了电磁波的存在,测得电磁波的传播速度的确与光速相同,同时电磁波也能够产生反射、折射、干涉、衍射、偏振等现象,从实验中证明了光是一种电磁波。光子说光的电磁说使光的波动理论发展到相当完美的地步。但是,还是在赫兹用实验证实光的电磁说的时候,就已经发现了光电效应这一现象,而这一发现也使光的电磁说遇到了无法克服的困难。1905年爱因斯坦提出光量子论,运用光子的概念解释了光电效应。

相关百科
热门百科
首页
发表服务