论文投稿百科

rcnn论文题目

发布时间:2024-07-05 05:00:56

rcnn论文题目

对于目标检测方向并不是特别熟悉,本文记录一下RCNN, fast-RCNN, faster-RCNN, mask-RCNN这4篇有关目标检测的论文笔记和学习心得。

R-CNN的意思就是Region based,主要思路就是根据一张图像,提取多个region,再将每个Region输入CNN来进行特征的提取。因此RCNN就可以分为 Region proposals , Feature extraction 两个主要部分,提取的特征就可以输入任意一个分类器来进行分类。 模型的流程图如下:

在训练的时候,首先使用的是已经训练好的CNN网络作为特征提取器,但是由于预训练是在分类数据集上,因此在应用到检测之前要做finetune。也就是说,为了将用ImageNet数据集训练的网络应用到新的任务(检测),新的数据集(region)上,作者将原来的CNN最后的1000类的fc层,更改为了 层, 代表待检测的物体的类别数。然后,对于所有的region,如果它和ground truth的重叠率大于,就认为是正类。 对于分类器的训练,作者发现选择多大的IoU来区分正类和负类非常关键。并且,对于每一类,都会训练一个分类器。

框的回归非常重要,在对每一个region proposal使用分类器进行打分评价之后,作者使用一个回归器来预测一个新的框作为结果。这个回归器使用的特征是从CNN中提取的特征。回归器的训练中,输入是 region proposal 的 和ground truth的 ,目标是学习一种变换,使得region proposal通过该变换能够接近ground truth。同时,希望这种变换拥有尺度不变性,也就是说尺度变化的话,变换不会改变。 如下图所示,每一个regressor会学习一组参数,特征输入是pool 5的特征输出,拟合的目标是 。

Fast-RCNN 主要解决的问题是在RCNN中对于每一个region proposal都进行特征提取,会产生非常多的冗余计算,因此可以先对一张图像进行特征提取,再根据region proposal在相应的特征上进行划分得到对应region的特征(映射关系)。 这样便可以实现共享计算提高速度,但是与SPPnets不同,SPPnets在一副图像得到对应的特征后,从这张图像的特征上proposal对应的部分,采用空间金字塔池化,如下图:

RoI pooling的方法很简单,类似于空间金字塔pooling,它将proposal部分对应卷积层输出的特征(称之为RoI,因为用于做pooling的特征是 region of interest,也就是我们感兴趣的区域)划分成 块,然后对每一块求最大值,最终得到了一个 的特征图。可以看出,它只是空间金字塔pooling的一部分。 但是SPP-nets的空间金字塔也是可以求导的,那么它到底不好在哪里呢?因为当每一个RoI都可能来源于不同的图像的时候(R-CNN和SPPnets的训练策略是从一个batch的不同图像中,分别挑选一个proposal region),SPPNets的训练非常地低效,这种低效来源于在SPPnets的训练中,每个RoI的感受野都非常地大,很可能对应了原图的整个图像,因此,得到的特征也几乎对应了整张图像,所以输入的图像也就很大。 为了提高效率,Fast-RCNN首先选取 个图像,再从每个图像上选择 个RoI,这样的效率就比从每个图像提取一个RoI提高了 倍。

为了将分类和框回归结合起来,作者采用了多任务的loss,来进行联合的训练。具体来说就是将分类的loss和框回归的loss结合起来。网络的设计上非常直接,就是将RoI得到的特征接几个FC层后,分别接不同的输出层。对应于分类部分,特征会接一个softmax输出,用于分类,对于框回归部分,会接一个输出4维特征的输出层,然后分别计算loss,用于反向传播。loss的公式如下:

回归的target可以参考前面的R-CNN部分。

notes

为什么比fast还fast呢?主要原因是在这篇论文中提出了一个新的层:RPN(region proposal networks)用于替代之前的selective search。这个层还可以在GPU上运算来提高速度。 RPN的目的:

为了能够进行region proposal,作者使用了一个小的网络,在基础的卷积层输出的特征上进行滑动,这个网络输入大小为 ,输入后会映射(用 的卷积)为一个固定长度的特征向量,然后接两个并联的fc层(用 的卷积层代替),这两个fc层,一个为box-regressoin,一个为box-classification。如下图:

在每一个滑动窗口(可以参考 ),为了考虑到尽可能多的框的情况,作者设计了anchors来作为region proposal。anchors就是对于每一个滑动窗口的中心位置,在该位置对应的原图位置的基础上,按照不同的尺度,长宽比例框出 个不同的区域。然后根据这些anchors对应的原始图像位置以及区域,和ground truth,就可以给每一个滑动窗口的每一个anchor进行标记,也就是赋予label,满足一定条件标记为正类(比如和ground truth重叠大于一个值),一定条件为负类。对于正类,就可以根据ground truth和该anchor对应的原图的区域之间的变换关系(参考前面的R-CNN的框回归),得到回归器中的目标,用于训练。也就是论文中的loss function部分:

自然地,也就要求RPN的两个并联的FC层一个输出2k个值用于表示这k个anchor对应的区域的正类,负类的概率,另一个输出4k个值,用于表示框回归的变换的预测值。

对于整个网络的训练,作者采用了一种叫做 4-step Alternating Training 的方法。具体可以参考论文。

与之前的检测任务稍有不同,mask r-cnn的任务是做instance segmentation。因此,它需要对每一个像素点进行分类。 与Faster R-CNN不同,Faster R-CNN对每一个候选框产生两个输出,一个是类别,一个是bounding box的offset。Mask R-CNN新增加了一个输出,作为物体的mask。这个mask类似于ps中的蒙版。

与Faster R-CNN类似的是,Mask R-CNN同样采用RPN来进行Region Proposal。但是在之后,对于每一个RoI,mask r-cnn还输出了一个二值化的mask。

不像类别,框回归,输出都可以是一个向量,mask必须保持一定的空间信息。因此,作者采用FCN来从每个RoI中预测一个 的mask。

由于属于像素级别的预测问题,就需要RoI能够在进行特征提取的时候保持住空间信息,至少在像素级别上能够对应起来。因此,传统的取最大值的方法就显得不合适。 RoI Pooling,经历了两个量化的过程: 第一个:从roi proposal到feature map的映射过程。 第二个:从feature map划分成7*7的bin,每个bin使用max pooling。

为此,作者使用了RoIAlign。如下图

为了避免上面提到的量化过程

可以参考

作者使用ResNet作为基础的特征提取的网络。 对于预测类别,回归框,mask的网络使用如下图结构:

整体看完这几篇大佬的论文,虽说没有弄清楚每一个实现细节,但是大体上了解了算法的思路。可以看出,出发点都源于深度神经网络在特征提取上的卓越能力,因此一众大神试图将这种能力应用在检测问题中。从R-CNN中简单地用于特征提取,到为了提高速度减少计算的Fast R-CNN,再到为了将region proposal集成进入整个模型中,并且利用GPU加速的RPN,也就是Faster R-CNN。再到为了应用于instance segmentation任务中,设计的RoIAlign和mask。包括bounding box regression,pooling层的设计,训练方法的选择,loss的设计等等细节,无一不体现了大师们的思考和创造力。 可能在我们这些“拿来”者的眼中,这些方法都显得“理所应当”和巧妙,好用,但是,它们背后隐藏的选择和这些选择的思考却更值得我们学习。 以及,对待每一个问题,如何设计出合理的解决方案,以及方案的效率,通用性,更是应该我们努力的方向。

原文: Ren S, He K, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]// International Conference on Neural Information Processing Systems. MIT Press, 2015:91-99.

译文参考: Faster R-CNN论文翻译——中英文对照

目标检测网络依赖于Region Proposal算法假设目标位置,通过引入Region Proposal(网络RPN),与检测网络共享全图像卷积特征,使得Region Proposals的成本近乎为零。

如下图所示,图a采用的是图像金子塔(Pyramids Of Images)方法;图b采用的是滤波器金字塔(Pyramids Of Filters)方法;图c引入“锚”盒("Anchor" Boxes)这一概念作为多尺度和长宽比的参考,其可看作回归参考金字塔(Pyramids Of Regression References)方法,该方法可避免枚举图像、多尺度滤波器和长宽比。

为了将RPN与Fast R-CNN相结合,本文提出了一种新的训练策略:在region proposal任务和目标检测任务之间交替进行微调,同时保持proposals的固定。该方案能够快速收敛,两个任务之间并共享具有卷积特征的统一网络。

Faster R-CNN由两个模块组成:

RPN以任意大小的图像作为输入,输出一组矩形的目标proposals,每个proposals都有一个目标得分。在实验中,假设两个网络(RPN和Fast R-CNN)共享一组共同的卷积层,并研究了具有5个共享卷积层的 Zeiler和Fergus模型(ZF) ,以及具有13个共享卷积层的 Simonyan和Zisserman模型(VGG-16) 。

为了生成region proposals,对最后的共享卷积层输出的卷积特征图谱使用一个小网络。该网络以卷积特征图谱的 空间窗口作为输入,且每个滑动窗口映射到一个低维特征,所有空间位置共享全连接层。

该低维特征作为两个子全连接层———边界框回归层(box-regression layer, reg)和边界框分类层(box-classification layer, cls)的输入,其卷积核均为 大小。

对于每个滑动窗口位置,可同时预测多个region proposals,最大region proposals数为 。因此,reg层具有 个输出,用于编码k个边界框的坐标;cls层具有 个得分,用于估计每个proposal是目标或不是目标的概率。

Anchors:k个proposals相对于 个参考框是参数化形式。

anchor位于滑动窗口的中心,并与尺度和长宽比相关。默认情况,使用3个尺度和3个长宽比,在每个滑动位置产生 个anchors。对于大小为 的卷积特征图谱,共产生 个anchors。

基于anchor的方法建立在anchors金字塔(pyramid of anchors)上,参考多尺度和长宽比的anchor盒来分类和回归边界框,用于解决多尺度和多长宽比问题。

为了训练RPN,为每个anchor分配一个二值标签。

正标签:

负标签:IoU值低于。

对Fast R-CNN中的多任务损失进行最小化。图像的损失函数为:

其中, 是mini-batch数据中anchor的索引, 是第i个anchor作为目标的预测概率。若anchor为正标签,真值 ;反之, 。 是表示预测边界框4个参数化坐标的向量, 是正真值框的向量。分类损失 为两个类别的对数损失;回归损失 ,其中 为在 Fast R-CNN 一文中定义的鲁棒损失函数(平滑 )。 表示回归损失仅对正anchor激活,否则被禁用( )。cls和rge层的输出分别由 和 组成。该两项使用 和 进行标准化,并使用平衡参数 加权处理。等式中cls项根据mini-batch的大小进行归一化,而reg项根据anchor位置的数据进行归一化。默认情况下, 从而使得cls和reg项的权重大致相等。

对于边界框回归,采用 Rich feature hierarchies for accurate object detection and semantic segmentation 一文中的4个坐标参数化方法:

其中, 和 表示边界框的中心坐标及其宽和高。变量 和 分别表示预测边界框、anchor和真值框。

采样策略:以图像为中心。

在图像中随机采样256个anchors,用于mini-batch数据中损失函数的计算,正负样本的比例为 。

从标准差为的零均值高斯分布中提取权重来随机初始化所有的新网络层,而共享卷积层通过预训练ImageNet分类模型来初始化。同时,调整ZF网络的所有网络层,以及VGG网络的conv3_1之上的网络,用于节省内存的使用。对于60k的mini-batch数据,学习率为;对于PASCAL VOC数据集中的20k的mini-bacth数据,学习率为。随机梯度下降算法的动量设置为,重量衰减率为。

训练具有共享特征网络的三个方法:

版权印版权标识

经典目标检测论文rcnn

对于目标检测方向并不是特别熟悉,本文记录一下RCNN, fast-RCNN, faster-RCNN, mask-RCNN这4篇有关目标检测的论文笔记和学习心得。

R-CNN的意思就是Region based,主要思路就是根据一张图像,提取多个region,再将每个Region输入CNN来进行特征的提取。因此RCNN就可以分为 Region proposals , Feature extraction 两个主要部分,提取的特征就可以输入任意一个分类器来进行分类。 模型的流程图如下:

在训练的时候,首先使用的是已经训练好的CNN网络作为特征提取器,但是由于预训练是在分类数据集上,因此在应用到检测之前要做finetune。也就是说,为了将用ImageNet数据集训练的网络应用到新的任务(检测),新的数据集(region)上,作者将原来的CNN最后的1000类的fc层,更改为了 层, 代表待检测的物体的类别数。然后,对于所有的region,如果它和ground truth的重叠率大于,就认为是正类。 对于分类器的训练,作者发现选择多大的IoU来区分正类和负类非常关键。并且,对于每一类,都会训练一个分类器。

框的回归非常重要,在对每一个region proposal使用分类器进行打分评价之后,作者使用一个回归器来预测一个新的框作为结果。这个回归器使用的特征是从CNN中提取的特征。回归器的训练中,输入是 region proposal 的 和ground truth的 ,目标是学习一种变换,使得region proposal通过该变换能够接近ground truth。同时,希望这种变换拥有尺度不变性,也就是说尺度变化的话,变换不会改变。 如下图所示,每一个regressor会学习一组参数,特征输入是pool 5的特征输出,拟合的目标是 。

Fast-RCNN 主要解决的问题是在RCNN中对于每一个region proposal都进行特征提取,会产生非常多的冗余计算,因此可以先对一张图像进行特征提取,再根据region proposal在相应的特征上进行划分得到对应region的特征(映射关系)。 这样便可以实现共享计算提高速度,但是与SPPnets不同,SPPnets在一副图像得到对应的特征后,从这张图像的特征上proposal对应的部分,采用空间金字塔池化,如下图:

RoI pooling的方法很简单,类似于空间金字塔pooling,它将proposal部分对应卷积层输出的特征(称之为RoI,因为用于做pooling的特征是 region of interest,也就是我们感兴趣的区域)划分成 块,然后对每一块求最大值,最终得到了一个 的特征图。可以看出,它只是空间金字塔pooling的一部分。 但是SPP-nets的空间金字塔也是可以求导的,那么它到底不好在哪里呢?因为当每一个RoI都可能来源于不同的图像的时候(R-CNN和SPPnets的训练策略是从一个batch的不同图像中,分别挑选一个proposal region),SPPNets的训练非常地低效,这种低效来源于在SPPnets的训练中,每个RoI的感受野都非常地大,很可能对应了原图的整个图像,因此,得到的特征也几乎对应了整张图像,所以输入的图像也就很大。 为了提高效率,Fast-RCNN首先选取 个图像,再从每个图像上选择 个RoI,这样的效率就比从每个图像提取一个RoI提高了 倍。

为了将分类和框回归结合起来,作者采用了多任务的loss,来进行联合的训练。具体来说就是将分类的loss和框回归的loss结合起来。网络的设计上非常直接,就是将RoI得到的特征接几个FC层后,分别接不同的输出层。对应于分类部分,特征会接一个softmax输出,用于分类,对于框回归部分,会接一个输出4维特征的输出层,然后分别计算loss,用于反向传播。loss的公式如下:

回归的target可以参考前面的R-CNN部分。

notes

为什么比fast还fast呢?主要原因是在这篇论文中提出了一个新的层:RPN(region proposal networks)用于替代之前的selective search。这个层还可以在GPU上运算来提高速度。 RPN的目的:

为了能够进行region proposal,作者使用了一个小的网络,在基础的卷积层输出的特征上进行滑动,这个网络输入大小为 ,输入后会映射(用 的卷积)为一个固定长度的特征向量,然后接两个并联的fc层(用 的卷积层代替),这两个fc层,一个为box-regressoin,一个为box-classification。如下图:

在每一个滑动窗口(可以参考 ),为了考虑到尽可能多的框的情况,作者设计了anchors来作为region proposal。anchors就是对于每一个滑动窗口的中心位置,在该位置对应的原图位置的基础上,按照不同的尺度,长宽比例框出 个不同的区域。然后根据这些anchors对应的原始图像位置以及区域,和ground truth,就可以给每一个滑动窗口的每一个anchor进行标记,也就是赋予label,满足一定条件标记为正类(比如和ground truth重叠大于一个值),一定条件为负类。对于正类,就可以根据ground truth和该anchor对应的原图的区域之间的变换关系(参考前面的R-CNN的框回归),得到回归器中的目标,用于训练。也就是论文中的loss function部分:

自然地,也就要求RPN的两个并联的FC层一个输出2k个值用于表示这k个anchor对应的区域的正类,负类的概率,另一个输出4k个值,用于表示框回归的变换的预测值。

对于整个网络的训练,作者采用了一种叫做 4-step Alternating Training 的方法。具体可以参考论文。

与之前的检测任务稍有不同,mask r-cnn的任务是做instance segmentation。因此,它需要对每一个像素点进行分类。 与Faster R-CNN不同,Faster R-CNN对每一个候选框产生两个输出,一个是类别,一个是bounding box的offset。Mask R-CNN新增加了一个输出,作为物体的mask。这个mask类似于ps中的蒙版。

与Faster R-CNN类似的是,Mask R-CNN同样采用RPN来进行Region Proposal。但是在之后,对于每一个RoI,mask r-cnn还输出了一个二值化的mask。

不像类别,框回归,输出都可以是一个向量,mask必须保持一定的空间信息。因此,作者采用FCN来从每个RoI中预测一个 的mask。

由于属于像素级别的预测问题,就需要RoI能够在进行特征提取的时候保持住空间信息,至少在像素级别上能够对应起来。因此,传统的取最大值的方法就显得不合适。 RoI Pooling,经历了两个量化的过程: 第一个:从roi proposal到feature map的映射过程。 第二个:从feature map划分成7*7的bin,每个bin使用max pooling。

为此,作者使用了RoIAlign。如下图

为了避免上面提到的量化过程

可以参考

作者使用ResNet作为基础的特征提取的网络。 对于预测类别,回归框,mask的网络使用如下图结构:

整体看完这几篇大佬的论文,虽说没有弄清楚每一个实现细节,但是大体上了解了算法的思路。可以看出,出发点都源于深度神经网络在特征提取上的卓越能力,因此一众大神试图将这种能力应用在检测问题中。从R-CNN中简单地用于特征提取,到为了提高速度减少计算的Fast R-CNN,再到为了将region proposal集成进入整个模型中,并且利用GPU加速的RPN,也就是Faster R-CNN。再到为了应用于instance segmentation任务中,设计的RoIAlign和mask。包括bounding box regression,pooling层的设计,训练方法的选择,loss的设计等等细节,无一不体现了大师们的思考和创造力。 可能在我们这些“拿来”者的眼中,这些方法都显得“理所应当”和巧妙,好用,但是,它们背后隐藏的选择和这些选择的思考却更值得我们学习。 以及,对待每一个问题,如何设计出合理的解决方案,以及方案的效率,通用性,更是应该我们努力的方向。

论文名称:Rich feature hierarchies for accurate object detection and semantic segmentation 提出时间:2014年 论文地址: 针对问题: 从Alexnet提出后,作者等人思考如何利用卷积网络来完成检测任务,即输入一张图,实现图上目标的定位(目标在哪)和分类(目标是什么)两个目标,并最终完成了RCNN网络模型。 创新点: RCNN提出时,检测网络的执行思路还是脱胎于分类网络。也就是深度学习部分仅完成输入图像块的分类工作。那么对检测任务来说如何完成目标的定位呢,作者采用的是Selective Search候选区域提取算法,来获得当前输入图上可能包含目标的不同图像块,再将图像块裁剪到固定的尺寸输入CNN网络来进行当前图像块类别的判断。 参考博客: 。 论文题目:OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks 提出时间:2014年 论文地址: 针对问题: 该论文讨论了,CNN提取到的特征能够同时用于定位和分类两个任务。也就是在CNN提取到特征以后,在网络后端组织两组卷积或全连接层,一组用于实现定位,输出当前图像上目标的最小外接矩形框坐标,一组用于分类,输出当前图像上目标的类别信息。也是以此为起点,检测网络出现基础主干网络(backbone)+分类头或回归头(定位头)的网络设计模式雏形。 创新点: 在这篇论文中还有两个比较有意思的点,一是作者认为全连接层其实质实现的操作和1x1的卷积是类似的,而且用1x1的卷积核还可以避免FC对输入特征尺寸的限制,那用1x1卷积来替换FC层,是否可行呢?作者在测试时通过将全连接层替换为1x1卷积核证明是可行的;二是提出了offset max-pooling,也就是对池化层输入特征不能整除的情况,通过进行滑动池化并将不同的池化层传递给后续网络层来提高效果。另外作者在论文里提到他的用法是先基于主干网络+分类头训练,然后切换分类头为回归头,再训练回归头的参数,最终完成整个网络的训练。图像的输入作者采用的是直接在输入图上利用卷积核划窗。然后在指定的每个网络层上回归目标的尺度和空间位置。 参考博客: 论文题目:Scalable Object Detection using Deep Neural Networks 提出时间:2014年 论文地址: 针对问题: 既然CNN网络提取的特征可以直接用于检测任务(定位+分类),作者就尝试将目标框(可能包含目标的最小外包矩形框)提取任务放到CNN中进行。也就是直接通过网络完成输入图像上目标的定位工作。 创新点: 本文作者通过将物体检测问题定义为输出多个bounding box的回归问题. 同时每个bounding box会输出关于是否包含目标物体的置信度, 使得模型更加紧凑和高效。先通过聚类获得图像中可能有目标的位置聚类中心,(800个anchor box)然后学习预测不考虑目标类别的二分类网络,背景or前景。用到了多尺度下的检测。 参考博客: 论文题目:DeepBox: Learning Objectness with Convolutional Networks 提出时间:2015年ICCV 论文地址: 主要针对的问题: 本文完成的工作与第三篇类似,都是对目标框提取算法的优化方案,区别是本文首先采用自底而上的方案来提取图像上的疑似目标框,然后再利用CNN网络提取特征对目标框进行是否为前景区域的排序;而第三篇为直接利用CNN网络来回归图像上可能的目标位置。创新点: 本文作者想通过CNN学习输入图像的特征,从而实现对输入网络目标框是否为真实目标的情况进行计算,量化每个输入框的包含目标的可能性值。 参考博客: 论文题目:AttentionNet: AggregatingWeak Directions for Accurate Object Detection 提出时间:2015年ICCV 论文地址: 主要针对的问题: 对检测网络的实现方案进行思考,之前的执行策略是,先确定输入图像中可能包含目标位置的矩形框,再对每个矩形框进行分类和回归从而确定目标的准确位置,参考RCNN。那么能否直接利用回归的思路从图像的四个角点,逐渐得到目标的最小外接矩形框和类别呢? 创新点: 通过从图像的四个角点,逐步迭代的方式,每次计算一个缩小的方向,并缩小指定的距离来使得逐渐逼近目标。作者还提出了针对多目标情况的处理方式。 参考博客: 论文题目:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition 提出时间:2014年 论文地址: 针对问题: 如RCNN会将输入的目标图像块处理到同一尺寸再输入进CNN网络,在处理过程中就造成了图像块信息的损失。在实际的场景中,输入网络的目标尺寸很难统一,而网络最后的全连接层又要求输入的特征信息为统一维度的向量。作者就尝试进行不同尺寸CNN网络提取到的特征维度进行统一。创新点: 作者提出的SPPnet中,通过使用特征金字塔池化来使得最后的卷积层输出结果可以统一到全连接层需要的尺寸,在训练的时候,池化的操作还是通过滑动窗口完成的,池化的核宽高及步长通过当前层的特征图的宽高计算得到。原论文中的特征金字塔池化操作图示如下。 参考博客 : 论文题目:Object detection via a multi-region & semantic segmentation-aware CNN model 提出时间:2015年 论文地址: 针对问题: 既然第三篇论文multibox算法提出了可以用CNN来实现输入图像中待检测目标的定位,本文作者就尝试增加一些训练时的方法技巧来提高CNN网络最终的定位精度。创新点: 作者通过对输入网络的region进行一定的处理(通过数据增强,使得网络利用目标周围的上下文信息得到更精准的目标框)来增加网络对目标回归框的精度。具体的处理方式包括:扩大输入目标的标签包围框、取输入目标的标签中包围框的一部分等并对不同区域分别回归位置,使得网络对目标的边界更加敏感。这种操作丰富了输入目标的多样性,从而提高了回归框的精度。 参考博客 : 论文题目:Fast-RCNN 提出时间:2015年 论文地址: 针对问题: RCNN中的CNN每输入一个图像块就要执行一次前向计算,这显然是非常耗时的,那么如何优化这部分呢? 创新点: 作者参考了SPPNet(第六篇论文),在网络中实现了ROIpooling来使得输入的图像块不用裁剪到统一尺寸,从而避免了输入的信息丢失。其次是将整张图输入网络得到特征图,再将原图上用Selective Search算法得到的目标框映射到特征图上,避免了特征的重复提取。 参考博客 : 论文题目:DeepProposal: Hunting Objects by Cascading Deep Convolutional Layers 提出时间:2015年 论文地址: 主要针对的问题: 本文的作者观察到CNN可以提取到很棒的对输入图像进行表征的论文,作者尝试通过实验来对CNN网络不同层所产生的特征的作用和情况进行讨论和解析。 创新点: 作者在不同的激活层上以滑动窗口的方式生成了假设,并表明最终的卷积层可以以较高的查全率找到感兴趣的对象,但是由于特征图的粗糙性,定位性很差。相反,网络的第一层可以更好地定位感兴趣的对象,但召回率降低。 论文题目:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 提出时间:2015年NIPS 论文地址: 主要针对的问题: 由multibox(第三篇)和DeepBox(第四篇)等论文,我们知道,用CNN可以生成目标待检测框,并判定当前框为目标的概率,那能否将该模型整合到目标检测的模型中,从而实现真正输入端为图像,输出为最终检测结果的,全部依赖CNN完成的检测系统呢? 创新点: 将当前输入图目标框提取整合到了检测网络中,依赖一个小的目标框提取网络RPN来替代Selective Search算法,从而实现真正的端到端检测算法。 参考博客 :

目标检测rcnn论文详解

Since we combine region proposals   with CNNs, we call our method R-CNN: Regions with CNN features. 下面先介绍R-CNN和Fast R-CNN中所用到的边框回归方法。 为什么要做Bounding-box regression? 如上图所示,绿色的框为飞机的Ground Truth,红色的框是提取的Region Proposal。那么即便红色的框被分类器识别为飞机,但是由于红色的框定位不准(IoU<),那么这张图相当于没有正确的检测出飞机。如果我们能对红色的框进行微调,使得经过微调后的窗口跟Ground Truth更接近,这样岂不是定位会更准确。确实,Bounding-box regression 就是用来微调这个窗口的。 那么经过何种变换才能从图11中的窗口P变为窗口呢?比较简单的思路就是: 注意:只有当Proposal和Ground Truth比较接近时(线性问题),我们才能将其作为训练样本训练我们的线性回归模型,否则会导致训练的回归模型不work(当Proposal跟GT离得较远,就是复杂的非线性问题了,此时用线性回归建模显然不合理)。这个也是G-CNN: an Iterative Grid Based Object Detector多次迭代实现目标准确定位的关键。 PASCAL VOC为图像识别和分类提供了一整套标准化的优秀的数据集,从2005年到2012年每年都会举行一场图像识别challenge。模型详解 RCNN全程就是Regions with CNN features,从名字也可以看出,RCNN的检测算法是基于传统方法来找出一些可能是物体的区域,再把该区域的尺寸归一化成卷积网络输入的尺寸,最后判断该区域到底是不是物体,是哪个物体,以及对是物体的区域进行进一步回归的微微调整(与深度学习里的finetune去分开,我想表达的就只是对框的位置进行微微调整)学习,使得框的更加准确。        正如上面所说的,RCNN的核心思想就是把图片区域内容送给深度网络,然后提取出深度网络某层的特征,并用这个特征来判断是什么物体(文章把背景也当成一种类别,故如果是判断是不是20个物体时,实际上在实现是判断21个类。),最后再对是物体的区域进行微微调整。实际上文章内容也说过用我之前所说的方法(先学习分类器,然后sliding windows),不过论文用了更直观的方式来说明这样的消耗非常大。它说一个深度网络(alexNet)在conv5上的感受野是195×195,按照我的理解,就是195×195的区域经过五层卷积后,才变成一个点,所以想在conv5上有一个区域性的大小(7×7)则需要原图为227×227,这样的滑窗每次都要对这么大尺度的内容进行计算,消耗可想而知,故论文得下结论,不能用sliding windows的方式去做检测(消耗一次用的不恰当,望各位看官能说个更加准确的词)。不过论文也没有提为什么作者会使用先找可能区域,再进行判断这种方式,只是说他们根据09年的另一篇论文[1],而做的。这也算是大神们与常人不同的积累量吧。中间的深度网络通过ILSVRC分类问题来进行训练,即利用训练图片和训练的分类监督信号,来学习出这个网络,再根据这个网络提取的特征,来训练21个分类器和其相应的回归器,不过分类器和回归器可以放在网络中学习,R-CNN 模型如果要拟人化比喻,那 R-CNN 肯定是 Faster R-CNN 的祖父了。换句话说,R-CNN 是一切的开端。 R-CNN,或称 Region-based Convolutional Neural Network,其工作包含了三个步骤: 1.借助一个可以生成约 2000 个 region proposal 的「选择性搜索」(Selective Search)算法,R-CNN 可以对输入图像进行扫描,来获取可能出现的目标。 2.在每个 region proposal 上都运行一个卷积神经网络(CNN)。 3.将每个 CNN 的输出都输入进:a)一个支持向量机(SVM),以对上述区域进行分类。b)一个线性回归器,以收缩目标周围的边界框,前提是这样的目标存在。 下图具体描绘了上述 3 个步骤:Abstract :                  R-CNN的两个贡献:卷积层的能力很强,可以遍历候选区域达到精确的定位。2.当有标签的数据很少的时候,我们可以事前进行有标签(别的数据集上?)的预训练作为辅助任务,然后对特定的区域进行微调。Introduction:                 这篇文章最开始是在PASCAL VOC上在图像分类和目标检测方面取得了很好的效果。                为了达到很好的效果,文章主要关注了两个问题:1.用深层网络进行目标的定位。2.如何用少量的带标签的检测数据来训练模型                 对于 对一个问题目标定位 ,通常有两个思路可以走:                      1.把定位看成回归问题。效果不是很好。                      2.建立划窗检测器。                 CNN一直采用建立划窗这个方式,但是也只是局限于人脸和行人的检测问题上。               本文使用了五个卷积层(感受野食195*195),在输入时移动步长是32*32。               除此之外,对于定位问题,我们采用区域识别的策略。                在测试阶段,本文的方法产生了大约2000个类别独立的候选区域作为cnn的输入。然           后得到一个修正后的特征向量。然后对于特定的类别用线性SVM分类器分类。我们用简             单的方法(放射图像变形)来将候选区域变成固定大小。                   对于第二个缺少标签数据的问题                     目前有一个思路就是无监督的预训练,然后再加入有监督的微调。                    作为本文最大的贡献之二:在ILSVRC数据集上,我们先进行有监督的预训练。然                  后我们在PASCAL这个小数据集上我们进行特定区域的微调。在我们的实验中,微调                  可以提升8%的mAP。                     本文的贡献;效率高                      仅仅是特别类别的计算是合乎情理的矩阵运算,和非极大值抑制算法。他们共享权                值,并且都是低维特征向量。相比于直接将区域向量作为输入,维数更低。                本文方法处理能实现目标检测,还以为实现语义分割。 2.用R-CNN进行目标检测:             有3个Model:            (1)产生独立的候选区域。            (2)CNN产生固定长度的特征向量。             (3)针对特别类别的一群svm分类器。 模块的设计 候选区域:                   之前有大量的文章都提过如果产生候选区域。本文采用SS(selective search )方法。参考文献【34】+【36】 特征抽取:                 对于每个候选区域,我们采用cnn之后得到4096维向量。 测试阶段的检测               在测试阶段,我们用选择性搜素的方式在测试图片上选取了2000个候选区域,如上图所示的步骤进行。 运行时间分析: 总之当时相比很快。 训练模型 有监督的预训练: 我们使用了大量的ILSVRC的数据集来进行预训练CNN,但是这个标签是图片层的。换句话说没有带边界这样的标签。 特定区域的微调: 我们调整VOC数据集的候选区域的大小,并且我们把ImageNet上午1000类,变成了21类(20个类别+1个背景)。我们把候选区域(和真实区域重叠的)大于的标记为正数,其他的标记为负数。然后用32个正窗口和96个负窗口组成128的mini-batch。 目标类别分类器:         对于区域紧紧的包括着目标的时候,这肯定就是正样本。对于区域里面全部都是背景的,这也十分好区分就是负样本。但是某个区域里面既有目标也有背景的时候,我们不知道如歌标记。本文为了解决这个,提出了一个阈值:IoU覆盖阈值,小于这个阈值,我们标记为负样本。大于这个阈值的我们标记为正样本。我们设置为。这个是一个超参数优化问题。我们使用验证集的方法来优化这个参数。然而这个参数对于我们的最后的性能有很大的帮助。         一旦,我们得到特征向量。因为训练数据太大了。我们采用standard hard negative mining method(标准难分样本的挖掘)。这个策略也是的收敛更快。 Results on PASCAL VOC 201012 . Visualization, ablation, and modes of error . Visualizing learned features      提出了一个非参数的方法,直接展现出我们的网络学习到了什么。这个想法是将一个特定的单元(特性)放在其中使用它,就好像它自己是一个对象检测器正确的。具体方法就是:我们在大量候选区域中,计算每个单元的激励函数。按从最高到最低排序激活输出,执行非最大值抑制,然后显示得分最高的区域。我们的方法让选定的单元“为自己说话”通过显示它所触发的输入。我们避免平均为了看到不同的视觉模式和获得洞察力为单位计算的不变性。我们可以看到来着第五个maxpooling返回的区域。第五层输出的每一个单元的接受野对应输出227*227的其中的195*195的像素区域。所以中心那个点单元有全局的视觉。. Ablation studies 实际上ablation study就是为了研究模型中所提出的一些结构是否有效而设计的实验。比如你提出了某某结构,但是要想确定这个结构是否有利于最终的效果,那就要将去掉该结构的网络与加上该结构的网络所得到的结果进行对比,这就是ablation study。 Performance layer-by-layer, without fine-tuning. 我们只观察了最后三层Performance layer-by-layer, with fine-tuning. 微调之后,fc6和fc7的性能要比pool5大得多。从ImageNet中学习的pool5特性是一般的,而且大部分的提升都是从在它们之上的特定领域的非线性分类器学习中获得的。Comparison to recent feature learning methods.              见上图 . Detection error analysis           CNN的特征比HOG更加有区分。. Bounding box regression 有了对错误的分析,我们加入了一种方法来减少我们的定位错误。我们训练了一个线性的回归模型HOG和SIFT很慢。但是我们可以由此得到启发,利用有顺序等级和多阶段的处理方式,来实现特征的计算。生物启发的等级和移不变性,本文采用。但是缺少有监督学习的算法。使得卷积训练变得有效率。第一层的卷积层可以可视化。 【23】本文采用这个模型,来得到特征向量  ImageNet Large Scale Visual Recognition Competition用了非线性的激励函数,以及dropout的方法。【34】直接将区域向量作为输入,维数较高。IoU覆盖阈值=,而本文设置为,能提高5个百分点。产生候选区域的方式:selective search 也是本文所采取的方式是结合【34】+【36】。【5】产生候选区域的方式为:限制参数最小割bounding box regression HOG-based DPM文章中的对比试验。缩略图概率。[18][26][28]文章中的对比试验。

对于目标检测方向并不是特别熟悉,本文记录一下RCNN, fast-RCNN, faster-RCNN, mask-RCNN这4篇有关目标检测的论文笔记和学习心得。

R-CNN的意思就是Region based,主要思路就是根据一张图像,提取多个region,再将每个Region输入CNN来进行特征的提取。因此RCNN就可以分为 Region proposals , Feature extraction 两个主要部分,提取的特征就可以输入任意一个分类器来进行分类。 模型的流程图如下:

在训练的时候,首先使用的是已经训练好的CNN网络作为特征提取器,但是由于预训练是在分类数据集上,因此在应用到检测之前要做finetune。也就是说,为了将用ImageNet数据集训练的网络应用到新的任务(检测),新的数据集(region)上,作者将原来的CNN最后的1000类的fc层,更改为了 层, 代表待检测的物体的类别数。然后,对于所有的region,如果它和ground truth的重叠率大于,就认为是正类。 对于分类器的训练,作者发现选择多大的IoU来区分正类和负类非常关键。并且,对于每一类,都会训练一个分类器。

框的回归非常重要,在对每一个region proposal使用分类器进行打分评价之后,作者使用一个回归器来预测一个新的框作为结果。这个回归器使用的特征是从CNN中提取的特征。回归器的训练中,输入是 region proposal 的 和ground truth的 ,目标是学习一种变换,使得region proposal通过该变换能够接近ground truth。同时,希望这种变换拥有尺度不变性,也就是说尺度变化的话,变换不会改变。 如下图所示,每一个regressor会学习一组参数,特征输入是pool 5的特征输出,拟合的目标是 。

Fast-RCNN 主要解决的问题是在RCNN中对于每一个region proposal都进行特征提取,会产生非常多的冗余计算,因此可以先对一张图像进行特征提取,再根据region proposal在相应的特征上进行划分得到对应region的特征(映射关系)。 这样便可以实现共享计算提高速度,但是与SPPnets不同,SPPnets在一副图像得到对应的特征后,从这张图像的特征上proposal对应的部分,采用空间金字塔池化,如下图:

RoI pooling的方法很简单,类似于空间金字塔pooling,它将proposal部分对应卷积层输出的特征(称之为RoI,因为用于做pooling的特征是 region of interest,也就是我们感兴趣的区域)划分成 块,然后对每一块求最大值,最终得到了一个 的特征图。可以看出,它只是空间金字塔pooling的一部分。 但是SPP-nets的空间金字塔也是可以求导的,那么它到底不好在哪里呢?因为当每一个RoI都可能来源于不同的图像的时候(R-CNN和SPPnets的训练策略是从一个batch的不同图像中,分别挑选一个proposal region),SPPNets的训练非常地低效,这种低效来源于在SPPnets的训练中,每个RoI的感受野都非常地大,很可能对应了原图的整个图像,因此,得到的特征也几乎对应了整张图像,所以输入的图像也就很大。 为了提高效率,Fast-RCNN首先选取 个图像,再从每个图像上选择 个RoI,这样的效率就比从每个图像提取一个RoI提高了 倍。

为了将分类和框回归结合起来,作者采用了多任务的loss,来进行联合的训练。具体来说就是将分类的loss和框回归的loss结合起来。网络的设计上非常直接,就是将RoI得到的特征接几个FC层后,分别接不同的输出层。对应于分类部分,特征会接一个softmax输出,用于分类,对于框回归部分,会接一个输出4维特征的输出层,然后分别计算loss,用于反向传播。loss的公式如下:

回归的target可以参考前面的R-CNN部分。

notes

为什么比fast还fast呢?主要原因是在这篇论文中提出了一个新的层:RPN(region proposal networks)用于替代之前的selective search。这个层还可以在GPU上运算来提高速度。 RPN的目的:

为了能够进行region proposal,作者使用了一个小的网络,在基础的卷积层输出的特征上进行滑动,这个网络输入大小为 ,输入后会映射(用 的卷积)为一个固定长度的特征向量,然后接两个并联的fc层(用 的卷积层代替),这两个fc层,一个为box-regressoin,一个为box-classification。如下图:

在每一个滑动窗口(可以参考 ),为了考虑到尽可能多的框的情况,作者设计了anchors来作为region proposal。anchors就是对于每一个滑动窗口的中心位置,在该位置对应的原图位置的基础上,按照不同的尺度,长宽比例框出 个不同的区域。然后根据这些anchors对应的原始图像位置以及区域,和ground truth,就可以给每一个滑动窗口的每一个anchor进行标记,也就是赋予label,满足一定条件标记为正类(比如和ground truth重叠大于一个值),一定条件为负类。对于正类,就可以根据ground truth和该anchor对应的原图的区域之间的变换关系(参考前面的R-CNN的框回归),得到回归器中的目标,用于训练。也就是论文中的loss function部分:

自然地,也就要求RPN的两个并联的FC层一个输出2k个值用于表示这k个anchor对应的区域的正类,负类的概率,另一个输出4k个值,用于表示框回归的变换的预测值。

对于整个网络的训练,作者采用了一种叫做 4-step Alternating Training 的方法。具体可以参考论文。

与之前的检测任务稍有不同,mask r-cnn的任务是做instance segmentation。因此,它需要对每一个像素点进行分类。 与Faster R-CNN不同,Faster R-CNN对每一个候选框产生两个输出,一个是类别,一个是bounding box的offset。Mask R-CNN新增加了一个输出,作为物体的mask。这个mask类似于ps中的蒙版。

与Faster R-CNN类似的是,Mask R-CNN同样采用RPN来进行Region Proposal。但是在之后,对于每一个RoI,mask r-cnn还输出了一个二值化的mask。

不像类别,框回归,输出都可以是一个向量,mask必须保持一定的空间信息。因此,作者采用FCN来从每个RoI中预测一个 的mask。

由于属于像素级别的预测问题,就需要RoI能够在进行特征提取的时候保持住空间信息,至少在像素级别上能够对应起来。因此,传统的取最大值的方法就显得不合适。 RoI Pooling,经历了两个量化的过程: 第一个:从roi proposal到feature map的映射过程。 第二个:从feature map划分成7*7的bin,每个bin使用max pooling。

为此,作者使用了RoIAlign。如下图

为了避免上面提到的量化过程

可以参考

作者使用ResNet作为基础的特征提取的网络。 对于预测类别,回归框,mask的网络使用如下图结构:

整体看完这几篇大佬的论文,虽说没有弄清楚每一个实现细节,但是大体上了解了算法的思路。可以看出,出发点都源于深度神经网络在特征提取上的卓越能力,因此一众大神试图将这种能力应用在检测问题中。从R-CNN中简单地用于特征提取,到为了提高速度减少计算的Fast R-CNN,再到为了将region proposal集成进入整个模型中,并且利用GPU加速的RPN,也就是Faster R-CNN。再到为了应用于instance segmentation任务中,设计的RoIAlign和mask。包括bounding box regression,pooling层的设计,训练方法的选择,loss的设计等等细节,无一不体现了大师们的思考和创造力。 可能在我们这些“拿来”者的眼中,这些方法都显得“理所应当”和巧妙,好用,但是,它们背后隐藏的选择和这些选择的思考却更值得我们学习。 以及,对待每一个问题,如何设计出合理的解决方案,以及方案的效率,通用性,更是应该我们努力的方向。

经典目标检测论文rcnn翻译

目标检测(object detection)是计算机视觉中非常重要的一个领域。在卷积神经网络出现之前,都利用一些传统方法手动提取图像特征进行目标检测及定位,这些方法不仅耗时而且性能较低。而在卷积神经网络出现之后,目标检测领域发生了翻天覆地的变化。最著名的目标检测系统有RCNN系列、YOLO和SSD,本文将介绍RCNN系列的开篇作RCNN。 RCNN系列的技术演进过程可参见 基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN 。 目标检测分为两步:第一步是对图像进行分类,即图像中的内容是什么;第二步则是对图像进行定位,找出图像中物体的具体位置。简单来说就是图像里面有什么,位置在哪。 然而,由于不同图片中物体出现的大小可能不同(多尺度),位置也可能不同,而且摆放角度,姿态等都可以不同,同时一张图片中还可以出现多个类别。这使得目标检测任务异常艰难。上面任务用专业的说法就是:图像识别+定位两个不同的分支分别完成不同的功能,分类和定位。回归(regression)分支与分类分支(classification)共享网络卷积部分的参数值。 还是刚才的分类识别+回归定位思路。只是现在我们提前先取好不同位置的框,然后将这个框输入到网络中而不是像思路一将原始图像直接输入到网络中。然后计算出这个框的得分,取得分最高的框。 如上,对于同一个图像中猫的识别定位。分别取了四个角四个框进行分类和回归。其得分分别为,因此右下角得分最高,选择右下角的黑框作为目标位置的预测(这里即完成了定位任务)。 这里还有一个问题——检测位置时的框要怎么取,取多大?在上面我们是在257x257的图像中取了221x221的4个角。以不同大小的窗口从左上角到右下角依次扫描的话,数据量会非常大。而且,如果考虑多尺度问题的话,还需要在将图像放缩到不同水平的大小来进行计算,这样又大大增加了计算量。如何取框这个问题可以说是目标检测的核心问题之一了,RCNN,fast RCNN以及faster RCNN对于这个问题的解决办法不断地进行优化,这个到了后面再讲。 总结一下思路: 对于一张图片,用各种大小的框将图片截取出来,输入到CNN,然后CNN会输出这个框的类别以及其位置得分。 对于检测框的选取,一般是采用某种方法先找出可能含有物体的框(也就是候选框,比如1000个候选框),这些框是可以互相重叠互相包含的,这样我们就可以避免暴力枚举所有框了。讲完了思路,我们下面具体仔细来看看RCNN系列的实现,本篇先介绍RCNN的方法。 R-CNN相比于之前的各种目标检测算法,不仅在准确率上有了很大的提升,在运行效率上同样提升很大。R-CNN的过程分为4个阶段: 在前面我们已经简单介绍了selective search方法,通过这个方法我们筛选出了2k左右的候选框。然而搜索出的矩形框大小是不同的。而在AlexNet中由于最后全连接层的存在,对于图像尺寸有固定的要求,因此在将候选框输入之前,作者对这些候选框的大小进行了统一处理——放缩到了统一大小。文章中作者使用的处理方法有两种: (1)各向异性缩放因为图片扭曲可能会对后续CNN模型训练产生影响,于是作者也测试了各向同性缩放的方法。有两种方法: 此外,作者对于bounding box还尝试了padding处理,上面的示意图中第1、3行就是结合了padding=0,第2、4行结果采用padding=16的结果。经过最后的试验,作者发现采用各向异性缩放、padding=16的精度最高。 卷积神经网络训练分为两步:(1)预训练;(2)fine-tune。 先在一个大的数据集上面训练模型(R-CNN中的卷机模型使用的是AlexNet),然后利用这个训练好的模型进行fine-tune(或称为迁移学习),即使用这个预训练好的模型参数初始化模型参数,然后在目标数据集上面进行训练。 此外,在训练时,作者还尝试采用不同层数的全连接层,发现一个全连接层比两个全连接层效果要好,这可能是因为使用两个全连接层后过拟合导致的。 另一个比较有意思的地方是:对于CNN模型,卷积层学到的特征其实就是基础的共享特征提取层,类似于传统的图像特征提取算法。而最后的全连接层学到的则是针对特定任务的特征。譬如对于人脸性别识别来说,一个CNN模型前面的卷积层所学习到的特征就类似于学习人脸共性特征,然后全连接层所学习的特征就是针对性别分类的特征了。 最后,利用训练好的模型对候选框提取特征。 关于正负样本的问题:由于选取的bounding box不可能与人工label的完全相同,因此在CNN训练阶段需要设置IOU阈值来为bounding box打标签。在文章中作者将阈值设置为,即如果候选框bounding box与人工label的区域重叠面积大于,则将其标注为物体类别(正样本),否则我们就把他当做背景类别(负样本)。 作者针对每一个类别都训练了一个二分类的SVM。这里定义正负样本的方法与上面卷积网络训练的定义方法又不相同。作者在文章中尝试了多种IoU阈值()。最后通过训练发现,IoU阈值为的时候效果最好(选择为0精度下降了4个百分点,选择精度下降了5个百分点)。即当IoU小于的时候我们将其视为负样本,否则为正样本。 目标检测问题的衡量标准是重叠面积:许多看似准确的检测结果,往往因为候选框不够准确,重叠面积很小。故需要一个位置精修步骤。在实现边界回归的过程中发现了两个微妙的问题。第一是正则化是重要的:我们基于验证集,设置λ=1000。第二个问题是,选择使用哪些训练对(P,G)时必须小心。直观地说,如果P远离所有的检测框真值,那么将P转换为检测框真值G的任务就没有意义。使用像P这样的例子会导致一个无望的学习问题。因此,只有当提案P至少在一个检测框真值附近时,我们才执行学习任务。“附近”即,将P分配给具有最大IoU的检测框真值G(在重叠多于一个的情况下),并且仅当重叠大于阈值(基于验证集,我们使用的阈值为)。所有未分配的提案都被丢弃。我们为每个目标类别执行一次,以便学习一组特定于类别的检测框回归器。 在测试时,我们对每个提案进行评分,并预测其新的检测框一次。原则上,我们可以迭代这个过程(即重新评估新预测的检测框,然后从它预测一个新的检测框,等等)。但是,我们发现迭代不会改进结果。 使用selective search的方法在测试图片上提取2000个region propasals ,将每个region proposals归一化到227x227,然后再CNN中正向传播,将最后一层得到的特征提取出来。然后对于每一个类别,使用为这一类训练的SVM分类器对提取的特征向量进行打分,得到测试图片中对于所有region proposals的对于这一类的分数,再使用贪心的非极大值抑制(NMS)去除相交的多余的框。再对这些框进行canny边缘检测,就可以得到bounding-box(then B-BoxRegression)。 参考: Rich feature hierarchies for accurate object detection and semantic segmentation. RCNN-将CNN引入目标检测的开山之作-晓雷的文章 基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN R-CNN 论文翻译

原文: Ren S, He K, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]// International Conference on Neural Information Processing Systems. MIT Press, 2015:91-99.

译文参考: Faster R-CNN论文翻译——中英文对照

目标检测网络依赖于Region Proposal算法假设目标位置,通过引入Region Proposal(网络RPN),与检测网络共享全图像卷积特征,使得Region Proposals的成本近乎为零。

如下图所示,图a采用的是图像金子塔(Pyramids Of Images)方法;图b采用的是滤波器金字塔(Pyramids Of Filters)方法;图c引入“锚”盒("Anchor" Boxes)这一概念作为多尺度和长宽比的参考,其可看作回归参考金字塔(Pyramids Of Regression References)方法,该方法可避免枚举图像、多尺度滤波器和长宽比。

为了将RPN与Fast R-CNN相结合,本文提出了一种新的训练策略:在region proposal任务和目标检测任务之间交替进行微调,同时保持proposals的固定。该方案能够快速收敛,两个任务之间并共享具有卷积特征的统一网络。

Faster R-CNN由两个模块组成:

RPN以任意大小的图像作为输入,输出一组矩形的目标proposals,每个proposals都有一个目标得分。在实验中,假设两个网络(RPN和Fast R-CNN)共享一组共同的卷积层,并研究了具有5个共享卷积层的 Zeiler和Fergus模型(ZF) ,以及具有13个共享卷积层的 Simonyan和Zisserman模型(VGG-16) 。

为了生成region proposals,对最后的共享卷积层输出的卷积特征图谱使用一个小网络。该网络以卷积特征图谱的 空间窗口作为输入,且每个滑动窗口映射到一个低维特征,所有空间位置共享全连接层。

该低维特征作为两个子全连接层———边界框回归层(box-regression layer, reg)和边界框分类层(box-classification layer, cls)的输入,其卷积核均为 大小。

对于每个滑动窗口位置,可同时预测多个region proposals,最大region proposals数为 。因此,reg层具有 个输出,用于编码k个边界框的坐标;cls层具有 个得分,用于估计每个proposal是目标或不是目标的概率。

Anchors:k个proposals相对于 个参考框是参数化形式。

anchor位于滑动窗口的中心,并与尺度和长宽比相关。默认情况,使用3个尺度和3个长宽比,在每个滑动位置产生 个anchors。对于大小为 的卷积特征图谱,共产生 个anchors。

基于anchor的方法建立在anchors金字塔(pyramid of anchors)上,参考多尺度和长宽比的anchor盒来分类和回归边界框,用于解决多尺度和多长宽比问题。

为了训练RPN,为每个anchor分配一个二值标签。

正标签:

负标签:IoU值低于。

对Fast R-CNN中的多任务损失进行最小化。图像的损失函数为:

其中, 是mini-batch数据中anchor的索引, 是第i个anchor作为目标的预测概率。若anchor为正标签,真值 ;反之, 。 是表示预测边界框4个参数化坐标的向量, 是正真值框的向量。分类损失 为两个类别的对数损失;回归损失 ,其中 为在 Fast R-CNN 一文中定义的鲁棒损失函数(平滑 )。 表示回归损失仅对正anchor激活,否则被禁用( )。cls和rge层的输出分别由 和 组成。该两项使用 和 进行标准化,并使用平衡参数 加权处理。等式中cls项根据mini-batch的大小进行归一化,而reg项根据anchor位置的数据进行归一化。默认情况下, 从而使得cls和reg项的权重大致相等。

对于边界框回归,采用 Rich feature hierarchies for accurate object detection and semantic segmentation 一文中的4个坐标参数化方法:

其中, 和 表示边界框的中心坐标及其宽和高。变量 和 分别表示预测边界框、anchor和真值框。

采样策略:以图像为中心。

在图像中随机采样256个anchors,用于mini-batch数据中损失函数的计算,正负样本的比例为 。

从标准差为的零均值高斯分布中提取权重来随机初始化所有的新网络层,而共享卷积层通过预训练ImageNet分类模型来初始化。同时,调整ZF网络的所有网络层,以及VGG网络的conv3_1之上的网络,用于节省内存的使用。对于60k的mini-batch数据,学习率为;对于PASCAL VOC数据集中的20k的mini-bacth数据,学习率为。随机梯度下降算法的动量设置为,重量衰减率为。

训练具有共享特征网络的三个方法:

版权印版权标识

目标检测算法rcnn论文解读

目标检测(object detection)是计算机视觉中非常重要的一个领域。在卷积神经网络出现之前,都利用一些传统方法手动提取图像特征进行目标检测及定位,这些方法不仅耗时而且性能较低。而在卷积神经网络出现之后,目标检测领域发生了翻天覆地的变化。最著名的目标检测系统有RCNN系列、YOLO和SSD,本文将介绍RCNN系列的开篇作RCNN。 RCNN系列的技术演进过程可参见 基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN 。 目标检测分为两步:第一步是对图像进行分类,即图像中的内容是什么;第二步则是对图像进行定位,找出图像中物体的具体位置。简单来说就是图像里面有什么,位置在哪。 然而,由于不同图片中物体出现的大小可能不同(多尺度),位置也可能不同,而且摆放角度,姿态等都可以不同,同时一张图片中还可以出现多个类别。这使得目标检测任务异常艰难。上面任务用专业的说法就是:图像识别+定位两个不同的分支分别完成不同的功能,分类和定位。回归(regression)分支与分类分支(classification)共享网络卷积部分的参数值。 还是刚才的分类识别+回归定位思路。只是现在我们提前先取好不同位置的框,然后将这个框输入到网络中而不是像思路一将原始图像直接输入到网络中。然后计算出这个框的得分,取得分最高的框。 如上,对于同一个图像中猫的识别定位。分别取了四个角四个框进行分类和回归。其得分分别为,因此右下角得分最高,选择右下角的黑框作为目标位置的预测(这里即完成了定位任务)。 这里还有一个问题——检测位置时的框要怎么取,取多大?在上面我们是在257x257的图像中取了221x221的4个角。以不同大小的窗口从左上角到右下角依次扫描的话,数据量会非常大。而且,如果考虑多尺度问题的话,还需要在将图像放缩到不同水平的大小来进行计算,这样又大大增加了计算量。如何取框这个问题可以说是目标检测的核心问题之一了,RCNN,fast RCNN以及faster RCNN对于这个问题的解决办法不断地进行优化,这个到了后面再讲。 总结一下思路: 对于一张图片,用各种大小的框将图片截取出来,输入到CNN,然后CNN会输出这个框的类别以及其位置得分。 对于检测框的选取,一般是采用某种方法先找出可能含有物体的框(也就是候选框,比如1000个候选框),这些框是可以互相重叠互相包含的,这样我们就可以避免暴力枚举所有框了。讲完了思路,我们下面具体仔细来看看RCNN系列的实现,本篇先介绍RCNN的方法。 R-CNN相比于之前的各种目标检测算法,不仅在准确率上有了很大的提升,在运行效率上同样提升很大。R-CNN的过程分为4个阶段: 在前面我们已经简单介绍了selective search方法,通过这个方法我们筛选出了2k左右的候选框。然而搜索出的矩形框大小是不同的。而在AlexNet中由于最后全连接层的存在,对于图像尺寸有固定的要求,因此在将候选框输入之前,作者对这些候选框的大小进行了统一处理——放缩到了统一大小。文章中作者使用的处理方法有两种: (1)各向异性缩放因为图片扭曲可能会对后续CNN模型训练产生影响,于是作者也测试了各向同性缩放的方法。有两种方法: 此外,作者对于bounding box还尝试了padding处理,上面的示意图中第1、3行就是结合了padding=0,第2、4行结果采用padding=16的结果。经过最后的试验,作者发现采用各向异性缩放、padding=16的精度最高。 卷积神经网络训练分为两步:(1)预训练;(2)fine-tune。 先在一个大的数据集上面训练模型(R-CNN中的卷机模型使用的是AlexNet),然后利用这个训练好的模型进行fine-tune(或称为迁移学习),即使用这个预训练好的模型参数初始化模型参数,然后在目标数据集上面进行训练。 此外,在训练时,作者还尝试采用不同层数的全连接层,发现一个全连接层比两个全连接层效果要好,这可能是因为使用两个全连接层后过拟合导致的。 另一个比较有意思的地方是:对于CNN模型,卷积层学到的特征其实就是基础的共享特征提取层,类似于传统的图像特征提取算法。而最后的全连接层学到的则是针对特定任务的特征。譬如对于人脸性别识别来说,一个CNN模型前面的卷积层所学习到的特征就类似于学习人脸共性特征,然后全连接层所学习的特征就是针对性别分类的特征了。 最后,利用训练好的模型对候选框提取特征。 关于正负样本的问题:由于选取的bounding box不可能与人工label的完全相同,因此在CNN训练阶段需要设置IOU阈值来为bounding box打标签。在文章中作者将阈值设置为,即如果候选框bounding box与人工label的区域重叠面积大于,则将其标注为物体类别(正样本),否则我们就把他当做背景类别(负样本)。 作者针对每一个类别都训练了一个二分类的SVM。这里定义正负样本的方法与上面卷积网络训练的定义方法又不相同。作者在文章中尝试了多种IoU阈值()。最后通过训练发现,IoU阈值为的时候效果最好(选择为0精度下降了4个百分点,选择精度下降了5个百分点)。即当IoU小于的时候我们将其视为负样本,否则为正样本。 目标检测问题的衡量标准是重叠面积:许多看似准确的检测结果,往往因为候选框不够准确,重叠面积很小。故需要一个位置精修步骤。在实现边界回归的过程中发现了两个微妙的问题。第一是正则化是重要的:我们基于验证集,设置λ=1000。第二个问题是,选择使用哪些训练对(P,G)时必须小心。直观地说,如果P远离所有的检测框真值,那么将P转换为检测框真值G的任务就没有意义。使用像P这样的例子会导致一个无望的学习问题。因此,只有当提案P至少在一个检测框真值附近时,我们才执行学习任务。“附近”即,将P分配给具有最大IoU的检测框真值G(在重叠多于一个的情况下),并且仅当重叠大于阈值(基于验证集,我们使用的阈值为)。所有未分配的提案都被丢弃。我们为每个目标类别执行一次,以便学习一组特定于类别的检测框回归器。 在测试时,我们对每个提案进行评分,并预测其新的检测框一次。原则上,我们可以迭代这个过程(即重新评估新预测的检测框,然后从它预测一个新的检测框,等等)。但是,我们发现迭代不会改进结果。 使用selective search的方法在测试图片上提取2000个region propasals ,将每个region proposals归一化到227x227,然后再CNN中正向传播,将最后一层得到的特征提取出来。然后对于每一个类别,使用为这一类训练的SVM分类器对提取的特征向量进行打分,得到测试图片中对于所有region proposals的对于这一类的分数,再使用贪心的非极大值抑制(NMS)去除相交的多余的框。再对这些框进行canny边缘检测,就可以得到bounding-box(then B-BoxRegression)。 参考: Rich feature hierarchies for accurate object detection and semantic segmentation. RCNN-将CNN引入目标检测的开山之作-晓雷的文章 基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN R-CNN 论文翻译

姓名:王咫毅 学号: 【嵌牛导读】CNN如此风靡,其衍生算法也是层出不穷,各种衍生算法也可以应用于各种应用场景,各类场合。本文则是了解每个衍生算法的各个使用场景、原理及方法。 【嵌牛鼻子】RCNN 目标检测 【嵌牛提问】RCNN系列算法有何区别和联系? 【嵌牛正文】 在生活中,经常会遇到这样的一种情况,上班要出门的时候,突然找不到一件东西了,比如钥匙、手机或者手表等。这个时候一般在房间翻一遍各个角落来寻找不见的物品,最后突然一拍大脑,想到在某一个地方,在整个过程中有时候是很着急的,并且越着急越找不到,真是令人沮丧。但是,如果一个简单的计算机算法可以在几毫秒内就找到你要找的物品,你的感受如何?是不是很惊奇!这就是对象检测算法(object detection)的力量。虽然上述举的生活例子只是一个很简单的例子,但对象检测的应用范围很广,跨越多个不同的行业,从全天候监控到智能城市的实时车辆检qian测等。简而言之,物体检测是强大的深度学习算法中的一个分支。 在本文中,我们将深入探讨可以用于对象检测的各种算法。首先从属于RCNN系列算法开始,即RCNN、 Fast RCNN和 Faster RCNN。在之后的文章中,将介绍更多高级算法,如YOLO、SSD等。 1.解决对象检测任务的简单方法(使用深度学习) 下图说明了对象检测算法是如何工作。图像中的每个对象,从人到风筝都以一定的精度进行了定位和识别。 下面从最简单的深度学习方法开始,一种广泛用于检测图像中的方法——卷积神经网络(CNN)。如果读者对CNN算法有点生疏,建议 阅读此文 。 这里仅简要总结一下CNN的内部运作方式: 首先将图像作为输入传递到网络,然后通过各种卷积和池化层处理,最后以对象类别的形式获得输出。 对于每个输入图像,会得到一个相应的类别作为输出。因此可以使用这种技术来检测图像中的各种对象。 1.首先,将图像作为输入; 2.然后,将图像分成不同的区域; 3.然后,将每个区域视为单独的图像; 4.将所有这些区域传递给CNN并将它们分类为各种类别; 5.一旦将每个区域划分为相应的类后,就可以组合所有这些区域来获取具有检测到的对象的原始图像: 使用这种方法会面临的问题在于,图像中的对象可以具有不同的宽高比和空间位置。例如,在某些情况下,对象可能覆盖了大部分图像,而在其他情况下,对象可能只覆盖图像的一小部分,并且对象的形状也可能不同。 基于此,需要划分大量的区域,这会花费大量的计算时间。因此,为了解决这个问题并减少区域数量,可以使用基于区域的CNN,它使用提议方法选择区域。 2.基于区域的卷积神经网络 RCNN的思想 RCNN算法不是在大量区域上工作,而是在图像中提出了一堆方框,并检查这些方框中是否包含任何对象。RCNN 使用选择性搜索从图像中提取这些框。 下面介绍选择性搜索以及它如何识别不同的区域。基本上四个区域形成一个对象:不同的比例、颜色、纹理和形状。选择性搜索在图像中识别这些模式,并基于此提出各种区域。以下是选择性搜索如何工作的简要概述: 首先, 将图像作为输入: 然后,它生成初始子分段,以便获得多个区域: 之后,该技术组合相似区域以形成更大的区域(基于颜色相似性、纹理相似性、尺寸相似性和形状兼容性): 最后,这些区域产生最终的对象位置(感兴趣的区域); 下面是RCNN检测对象所遵循的步骤的简要总结: 1.首先采用预先训练的卷积神经网络; 2.重新训练该模型模型——根据需要检测的类别数量来训练网络的最后一层(迁移学习); 3.第三步是获取每个图像的感兴趣区域。然后,对这些区域调整尺寸,以便其可以匹配CNN输入大小; 4.获取区域后,使用SVM算法对对象和背景进行分类。对于每个类,都训练一个二分类SVM; 最后,训练线性回归模型,为图像中每个识别出的对象生成更严格的边界框; [对上述步骤进行图解分析]( ): 首先,将图像作为输入: 然后,使用一些提议方法获得感兴趣区域(ROI)(例如,选择性搜索): 之后,对所有这些区域调整尺寸,并将每个区域传递给卷积神经网络: 然后,CNN为每个区域提取特征,SVM用于将这些区域划分为不同的类别: 最后,边界框回归(Bbox reg)用于预测每个已识别区域的边界框: 以上就是RCNN检测物体的全部流程。 RCNN的问题 从上节内容可以了解到RCNN是如何进行对象检测的,但这种技术有其自身的局限性。以下原因使得训练RCNN模型既昂贵又缓慢: 基于选择性搜索算法为每个图像提取2,000个候选区域; 使用CNN为每个图像区域提取特征; RCNN整个物体检测过程用到三种模型: CNN模型用于特征提取; 线性svm分类器用于识别对象的的类别; 回归模型用于收紧边界框; 这些过程相结合使得RCNN非常慢,对每个新图像进行预测需要大约40-50秒,这实际上使得模型在面对巨大的数据集时变得复杂且几乎不可能应用。 好消息是存在另一种物体检测技术,它解决了RCNN中大部分问题。 3.了解Fast RCNN RCNN的思想 RCNN的提出者Ross Girshick提出了这样的想法,即每个图像只运行一次CNN,然后找到一种在2,000个区域内共享该计算的方法。在Fast RCNN中,将输入图像馈送到CNN,CNN生成卷积特征映射。使用这些特征图提取候选区域。然后,使用RoI池化层将所有建议的区域重新整形为固定大小,以便将其馈送到全连接网络中。 下面将其分解为简化概念的步骤: 1.首先将图像作为输入; 2.将图像传递给卷积神经网络,生成感兴趣的区域; 3.在所有的感兴趣的区域上应用RoI池化层,并调整区域的尺寸。然后,每个区域被传递到全连接层的网络中; 层用于全连接网以输出类别。与softmax层一起,也并行使用线性回归层,以输出预测类的边界框坐标。 因此,Fast RCNN算法中没有使用三个不同的模型,而使用单个模型从区域中提取特征,将它们分成不同的类,并同时返回所标识类的边界框。 对上述过程进行可视化讲解: 将图像作为输入: 将图像传递给卷积神经网络t,后者相应地返回感兴趣的区域: 然后,在提取的感兴趣区域上应用RoI池层,以确保所有区域具有相同的大小: 最后,这些区域被传递到一个全连接网络,对其进行分类,并同时使用softmax和线性回归层返回边界框: 上述过程说明了Fast RCNN是如何解决RCNN的两个主要问题,即将每个图像中的1个而不是2,000个区域传递给卷积神经网络,并使用一个模型来实现提取特征、分类和生成边界框。 RCNN的问题 Fast RCNN也存在一定的问题,它仍然使用选择性搜索作为查找感兴趣区域的提议方法,这是一个缓慢且耗时的过程,每个图像检测对象大约需要2秒钟。 因此,又开发了另一种物体检测算法——Faster RCNN。 4.了解Faster RCNN . Faster RCNN的思想 Faster RCNN是Fast RCNN的修改版本,二者之间的主要区别在于,Fast RCNN使用选择性搜索来生成感兴趣区域,而Faster RCNN使用“区域提议网络”,即RPN。RPN将图像特征映射作为输入,并生成一组提议对象,每个对象提议都以对象分数作为输出。 以下步骤通常采用Faster RCNN方法: 1.将图像作为输入并将其传递给卷积神经网络,后者返回该图像的特征图; 2.在这些特征图上应用RPN,返回提议对象及其分数; 3.在这些提议对象上应用RoI池层,以将所有提案降低到相同的大小; 4.最后,将提议传递到全连接层,该层在其顶部具有softmax层和线性回归层,以对对象的边界框进行分类和输出; 这里简要解释一下RPN是如何运作的: 首先,Faster RCNN从CNN获取特征图并将它们传递到区域提议网络。RPN在这些特征图上使用滑动窗口,每个窗口生成不同形状和大小的k个方框( Anchor boxe): 方框是固定尺寸的边界箱,具有不同的形状和尺寸。对于每个方框,RPN预测两件事: 预测锚是对象的概率; 用于边界框回归器调整锚点以更好地适合物体的形状; 在有了不同形状和大小的边界框后,将其传递到RoI池层。对每个提案并对其进行裁剪,以便每个提案都包含一个对象。这就是RoI池层所做的事情,它为每个方框提取固定大小的特征图: 然后将这些特征图传递到全连接层,该层具有softmax和线性回归层,最终对对象进行分类并预测已识别对象的边界框。 RCNN的问题 上述讨论过的所有对象检测算法都使用区域来识别对象,且网络不会一次查看完整图像,而是按顺序关注图像的某些部分,这样会带来两个复杂性的问题: 该算法需要多次通过单个图像来提取到所有对象; 由于不是端到端的算法,不同的系统一个接一个地工作,整体系统的性能进一步取决于先前系统的表现效果。 链接:

相关百科
热门百科
首页
发表服务