论文投稿百科

基于目标检测的论文复现

发布时间:2024-07-07 08:54:29

基于目标检测的论文复现

论文原文:

YOLO(you only look once)是继RCNN、faster-RCNN之后,又一里程碑式的目标检测算法。yolo在保持不错的准确度的情况下,解决了当时基于深度学习的检测中的痛点---速度问题。下图是各目标检测系统的检测性能对比:

如果说faster-RCNN是真正实现了完全基于深度学习的端到端的检测,那么yolo则是更进一步,将 目标区域预测 与 目标类别判断 整合到单个神经网络模型中。各检测算法结构见下图:

每个网格要预测B个bounding box,每个bounding box除了要回归自身的位置之外,还要附带预测一个confidence值。这个confidence代表了所预测的box中含有object的置信度和这个box预测的有多准两重信息,其值是这样计算的:

其中如果有object落在一个grid cell里,第一项取1,否则取0。第二项是预测的bounding box和实际的groundtruth之间的IoU值。

每个bounding box要预测(x, y, w, h)和confidence共5个值,每个网格还要预测一个类别信息,记为C类。即SxS个网格,每个网格除了要预测B个bounding box外,还要预测C个categories。输出就是S x S x (5*B+C)的一个tensor。(注意:class信息是针对每个网格的,即一个网格只预测一组类别而不管里面有多少个bounding box,而confidence信息是针对每个bounding box的。)

举例说明: 在PASCAL VOC中,图像输入为448x448,取S=7,B=2,一共有20个类别(C=20)。则输出就是7x7x30的一个tensor。整个网络结构如下图所示:

在test的时候,每个网格预测的class信息和bounding box预测的confidence信息相乘,就得到每个bounding box的class-specific confidence score:

等式左边第一项就是每个网格预测的类别信息,第二三项就是每个bounding box预测的confidence。这个乘积即encode了预测的box属于某一类的概率,也有该box准确度的信息。

得到每个box的class-specific confidence score以后,设置阈值,滤掉得分低的boxes,对保留的boxes进行NMS(非极大值抑制non-maximum suppresssion)处理,就得到最终的检测结果。

1、每个grid因为预测两个bounding box有30维(30=2*5+20),这30维中,8维是回归box的坐标,2维是box的confidence,还有20维是类别。其中坐标的x,y用bounding box相对grid的offset归一化到0-1之间,w,h除以图像的width和height也归一化到0-1之间。

2、对不同大小的box预测中,相比于大box预测偏一点,小box预测偏一点肯定更不能被忍受的。而sum-square error loss中对同样的偏移loss是一样。为了缓和这个问题,作者用了一个比较取巧的办法,就是将box的width和height取平方根代替原本的height和width。这个参考下面的图很容易理解,小box的横轴值较小,发生偏移时,反应到y轴上相比大box要大。其实就是让算法对小box预测的偏移更加敏感。

3、一个网格预测多个box,希望的是每个box predictor专门负责预测某个object。具体做法就是看当前预测的box与ground truth box中哪个IoU大,就负责哪个。这种做法称作box predictor的specialization。

4、损失函数公式见下图:

在实现中,最主要的就是怎么设计损失函数,坐标(x,y,w,h),confidence,classification 让这个三个方面得到很好的平衡。简单的全部采用sum-squared error loss来做这件事会有以下不足:

解决方法:

只有当某个网格中有object的时候才对classification error进行惩罚。只有当某个box predictor对某个ground truth box负责的时候,才会对box的coordinate error进行惩罚,而对哪个ground truth box负责就看其预测值和ground truth box的IoU是不是在那个cell的所有box中最大。

作者采用ImageNet 1000-class 数据集来预训练卷积层。预训练阶段,采用网络中的前20卷积层,外加average-pooling层和全连接层。模型训练了一周,获得了top-5 accuracy为(ImageNet2012 validation set),与GoogleNet模型准确率相当。

然后,将模型转换为检测模型。作者向预训练模型中加入了4个卷积层和两层全连接层,提高了模型输入分辨率(224×224->448×448)。顶层预测类别概率和bounding box协调值。bounding box的宽和高通过输入图像宽和高归一化到0-1区间。顶层采用linear activation,其它层使用 leaky rectified linear。

作者采用sum-squared error为目标函数来优化,增加bounding box loss权重,减少置信度权重,实验中,设定为\lambda _{coord} =5 and\lambda _{noobj}= 。

作者在PASCAL VOC2007和PASCAL VOC2012数据集上进行了训练和测试。训练135轮,batch size为64,动量为,学习速率延迟为。Learning schedule为:第一轮,学习速率从缓慢增加到(因为如果初始为高学习速率,会导致模型发散);保持速率到75轮;然后在后30轮中,下降到;最后30轮,学习速率为。

作者还采用了dropout和 data augmentation来预防过拟合。dropout值为;data augmentation包括:random scaling,translation,adjust exposure和saturation。

YOLO模型相对于之前的物体检测方法有多个优点:

1、 YOLO检测物体非常快

因为没有复杂的检测流程,只需要将图像输入到神经网络就可以得到检测结果,YOLO可以非常快的完成物体检测任务。标准版本的YOLO在Titan X 的 GPU 上能达到45 FPS。更快的Fast YOLO检测速度可以达到155 FPS。而且,YOLO的mAP是之前其他实时物体检测系统的两倍以上。

2、 YOLO可以很好的避免背景错误,产生false positives

不像其他物体检测系统使用了滑窗或region proposal,分类器只能得到图像的局部信息。YOLO在训练和测试时都能够看到一整张图像的信息,因此YOLO在检测物体时能很好的利用上下文信息,从而不容易在背景上预测出错误的物体信息。和Fast-R-CNN相比,YOLO的背景错误不到Fast-R-CNN的一半。

3、 YOLO可以学到物体的泛化特征

当YOLO在自然图像上做训练,在艺术作品上做测试时,YOLO表现的性能比DPM、R-CNN等之前的物体检测系统要好很多。因为YOLO可以学习到高度泛化的特征,从而迁移到其他领域。

尽管YOLO有这些优点,它也有一些缺点:

1、YOLO的物体检测精度低于其他state-of-the-art的物体检测系统。

2、YOLO容易产生物体的定位错误。

3、YOLO对小物体的检测效果不好(尤其是密集的小物体,因为一个栅格只能预测2个物体)。

复现论文就是抄袭别人的论文的一种说法在文章的不同地方出现。

复现可以是相同的词重复出现,也可以是用不同的词表达相同的意思。当代,论文常用来指进行各个学术领域的研究和描述学术研究成果的文章,简称之为论文。它既是探讨问题进行学术研究的一种手段,又是描述学术研究成果进行学术交流的一种工具。它包括学年论文、毕业论文、学位论文、科技论文、成果论文等。

在文章的不同地方出现。复现可以是相同的词重复出现,也可以是用不同的词表达相同的意思。当代,论文常用来指进行各个学术领域的研究和描述学术研究成果的文章,简称之为论文。它既是探讨问题进行学术研究的一种手段,又是描述学术研究成果进行学术交流的一种工具。它包括学年论文、毕业论文、学位论文、科技论文、成果论文等。

词语相似度概念:

词语相似度是词语间语义相似紧密程度的一种定量度量,也就是词语间语义关系的数量化。在信息检索中,当用户输入一个关键字,我们可以通过查询与之语义相似的众多词语来提高检索的精确率和召回率。

词语的语义相似度也可以被应用在词义排歧和构造统计语言的上下文环境进行统计,然而由于数据稀疏问题存在,我们很可能只能得到很少的上下文信息,这时可以选择与待排歧词语义相似度最高并且具有比较可靠统计信息的词语的统计信息来作为该词的统计信息,从而避免数据稀疏带来的麻烦。

基于yolov5的目标检测论文

1 简介

针对无人机捕获场景的目标检测是最近比较流行的一项任务。由于无人机在不同高度飞行,目标尺度变化较大,这样给模型的优化也带来了很大的负担。此外,在无人机进行高速低空飞行时,也会带来密集目标的运动模糊问题。

图1 小目标与密集问题

为了解决上述2个问题,本文提出了 TPH-YOLOv5 。 TPH-YOLOv5 在YOLOv5的基础上增加了一个prediction heads 来检测不同尺度的目标。然后通过探索Self-Attention的预测潜力使用了Transformer Prediction Heads(TPH)代替原来的prediction heads。同时作者还集成了卷积块Attention模型(CBAM)来寻找密集场景下的注意力区域。

为了进一步改进 TPH-YOLOv5 ,作者还提供了大量有用的策略,如数据增强、多尺度测试、多模型集成和使用额外的分类器。

在VisDrone2021数据集上的大量实验表明,TPH-YOLOv5在无人机捕获场景上具有良好的性能和可解释性。在DET-test-challenge数据集上,TPH-YOLOv5的AP结果为,比之前的SOTA方法(DPNetV3)提高了。在VisDrone Challenge 2021中,TPH-YOLOv5与YOLOv5相比提高了约7%。

本文的贡献如下:

2 前人工作总结 Data Augmentation

数据增强的意义主要是扩展数据集,使模型对不同环境下获得的图像具有较高的鲁棒性。

Photometric和geometric被研究人员广泛使用。对于Photometric主要是对图像的色相、饱和度和值进行了调整。在处理geometric时主要是添加随机缩放、裁剪、平移、剪切和旋转。

除了上述的全局像素增强方法外,还有一些比较独特的数据增强方法。一些研究者提出了将多幅图像结合在一起进行数据增强的方法,如MixUp、CutMix和Mosaic。

MixUp从训练图像中随机选取2个样本进行随机加权求和,样本的标签也对应于加权求和。不同于通常使用零像素mask遮挡图像的遮挡工作,CutMix使用另一个图像的区域覆盖被遮挡的区域。Mosaic是CutMix的改进版。拼接4幅图像,极大地丰富了被检测物体的背景。此外,batch normalization计算每层上4张不同图像的激活统计量。

在TPH-YOLOv5的工作中主要是结合了MixUp、Mosaic以及传统方法进行的数据增强。

Multi-Model Ensemble Method

我们都知道深度学习模型是一种非线性方法。它们提供了更大的灵活性,并可以根据训练数据量的比例进行扩展。这种灵活性的一个缺点是,它们通过随机训练算法进行学习,这意味着它们对训练数据的细节非常敏感,每次训练时可能会得到一组不同的权重,从而导致不同的预测。 这给模型带来了一个高方差 。

减少模型方差的一个成功方法是训练多个模型而不是单一模型,并结合这些模型的预测。

针对不同的目标检测模型,有3种不同的ensemble boxes方法:非最大抑制(NMS)、Soft-NMS、Weighted Boxes Fusion(WBF)。

在NMS方法中,如果boxes的overlap, Intersection Over Union(IoU)大于某个阈值,则认为它们属于同一个对象。对于每个目标NMS只留下一个置信度最高的box删除其他box。因此,box过滤过程依赖于这个单一IoU阈值的选择,这对模型性能有很大的影响。

Soft-NMS是对NMS进行轻微的修改,使得Soft-NMS在标准基准数据集(如PASCAL VOC和MS COCO)上比传统NMS有了明显的改进。它根据IoU值对相邻边界box的置信度设置衰减函数,而不是完全将其置信度评分设为0并将其删除。

WBF的工作原理与NMS不同。NMS和Soft-NMS都排除了一些框,而WBF将所有框合并形成最终结果。因此,它可以解决模型中所有不准确的预测。本文使用WBF对最终模型进行集成,其性能明显优于NMS。

Object Detection

基于CNN的物体检测器可分为多种类型:

一些检测器是专门为无人机捕获的图像设计的,如RRNet、PENet、CenterNet等。但从组件的角度来看,它们通常由2部分组成,一是基于CNN的主干,用于图像特征提取,另一部分是检测头,用于预测目标的类和Box。

此外,近年来发展起来的目标检测器往往在backbone和head之间插入一些层,人们通常称这部分为检测器的Neck。接下来分别对这3种结构进行详细介绍:

Backbone

常用的Backbone包括VGG、ResNet、DenseNet、MobileNet、EfficientNet、CSPDarknet53、Swin-Transformer等,均不是自己设计的网络。因为这些网络已经证明它们在分类和其他问题上有很强的特征提取能力。但研究人员也将微调Backbone,使其更适合特定的垂直任务。

Neck

Neck的设计是为了更好地利用Backbone提取的特征。对Backbone提取的特征图进行不同阶段的再处理和合理使用。通常,一个Neck由几个自底向上的路径和几个自顶向下的路径组成。Neck是目标检测框架中的关键环节。最早的Neck是使用上下取样块。该方法的特点是没有特征层聚合操作,如SSD,直接跟随头部后的多层次特征图。

常用的Neck聚合块有:FPN、PANet、NAS-FPN、BiFPN、ASFF、SAM。这些方法的共性是反复使用各种上下采样、拼接、点和或点积来设计聚合策略。Neck也有一些额外的块,如SPP, ASPP, RFB, CBAM。

Head

作为一个分类网络,Backbone无法完成定位任务,Head负责通过Backbone提取的特征图检测目标的位置和类别。

Head一般分为2种:One-Stage检测器和Two-Stage检测器。

两级检测器一直是目标检测领域的主导方法,其中最具代表性的是RCNN系列。与Two-Stage检测器相比One-Stage检测器同时预测box和目标的类别。One-Stage检测器的速度优势明显,但精度较低。对于One-Stage检测器,最具代表性的型号是YOLO系列、SSD和RetaNet。

Overview of YOLOv5

YOLOv5有4种不同的配置,包括YOLOv5s,YOLOv5m, YOLOv5l和YOLOv5x。一般情况下,YOLOv5分别使用CSPDarknet53+SPP为Backbone,PANet为Neck, YOLO检测Head。为了进一步优化整个架构。由于它是最显著和最方便的One-Stage检测器,作者选择它作为Baseline。

图2 THP-YOLOv5整体架构

当使用VisDrone2021数据集训练模型时,使用数据增强策略(Mosaic和MixUp)发现YOLOv5x的结果远远好于YOLOv5s、YOLOv5m和YOLOv5l, AP值的差距大于。虽然YOLOv5x模型的训练计算成本比其他3种模型都要高,但仍然选择使用YOLOv5x来追求最好的检测性能。此外,根据无人机捕获图像的特点,对常用的photometric和geometric参数进行了调整。

TPH-YOLOv5

TPH-YOLOv5的框架如图3所示。修改了原来的YOLOv5,使其专一于VisDrone2021数据集:

图3 TPH-YOLOv5模型结构 微小物体的预测头

作者统计了VisDrone2021数据集,发现它包含了很多非常小的目标,所以增加了一个用于微小物体检测的预测头。结合其他3个预测头,4头结构可以缓解剧烈的目标尺度变化带来的负面影响。如图3所示,添加的预测头(Head 1)是由low-level、高分辨率的feature map生成的,对微小物体更加敏感。增加检测头后,虽然增加了计算和存储成本,但对微小物体的检测性能得到了很大的提高。

Transformer encoder block

图4 Transformer Block

用Transformer encoder块替换了YOLOv5原版中的一些卷积块和CSP bottleneck blocks。其结构如图4所示。与CSPDarknet53中原有的bottleneck blocks相比,作者认为Transformer encoder block可以捕获全局信息和丰富的上下文信息。

每个Transformer encoder block包含2个子层。第1子层为multi-head attention layer,第2子层(MLP)为全连接层。每个子层之间使用残差连接。Transformer encoder block增加了捕获不同局部信息的能力。它还可以利用自注意力机制来挖掘特征表征潜能。在VisDrone2021数据集中,Transformer encoder block在高密度闭塞对象上有更好的性能。

基于YOLOv5,作者只在头部部分应用Transformer encoder block形成transformer Prediction head(TPH)和backbone端。因为网络末端的特征图分辨率较低。将TPH应用于低分辨率特征图可以降低计算和存储成本。此外,当放大输入图像的分辨率时可选择去除早期层的一些TPH块,以使训练过程可用。

Convolutional block attention module (CBAM)

CBAM是一个简单但有效的注意力模块。它是一个轻量级模块,可以即插即用到CNN架构中,并且可以以端到端方式进行训练。给定一个特征映射,CBAM将沿着通道和空间两个独立维度依次推断出注意力映射,然后将注意力映射与输入特征映射相乘,以执行自适应特征细化。

图5 CBAM注意力机制

CBAM模块的结构如图5所示。通过本文的实验,在不同的分类和检测数据集上将CBAM集成到不同的模型中,模型的性能得到了很大的提高,证明了该模块的有效性。

在无人机捕获的图像中,大覆盖区域总是包含令人困惑的地理元素。使用CBAM可以提取注意区域,以帮助TPH-YOLOv5抵制令人困惑的信息,并关注有用的目标对象。

Self-trained classifier

用TPH-YOLOv5对VisDrone2021数据集进行训练后,对test-dev数据集进行测试,然后通过可视化失败案例分析结果,得出TPH-YOLOv5定位能力较好,分类能力较差的结论。作者进一步探索如图6所示的混淆矩阵,观察到一些硬类别,如三轮车和遮阳三轮车的精度非常低。

图6 检测混淆矩阵

因此,作者提出了一个Self-trained classifier。首先,通过裁剪ground-truth边界框并将每个图像patch的大小调整为64 64来构建训练集。然后选择ResNet18作为分类器网络。实验结果表明,在这个Self-trained classifier的帮助下,所提方法对AP值提高了约。

4实验与结论

最终在test-set-challenge上取得了的好成绩,远远高于VisDrone2020的最高成绩。

图9 检测结果图

改进yolov5能发小论文。

主做目标检测的,正好最近在用yolov5,说点个人看法吧,不一定对。

首先yolo系列发展到现在,思想已经很成熟了,像具体的改进,其实4和5也有很多异曲同工的地方,无论是backbone还是neck。

目前很多改进yolov5发论文的,一些是在backone上做轻量化处理,一些是加入注意力机制,一些是改进neck,或者调整head,还有改损失函数或者nms过程的。

主要是因为yolo本身的思想已经很成熟了,在这个框架下的确很难做出些通用性的创新和提升。至于把各种成熟的模块塞进去发论文,这种仁者见仁智者见智吧。个人感觉还是结合某个方向改进yolo,会有方向一些。毕竟不同的数据集和尺度上,同样的改进有时候效果也是不同的。

Yolov5 目标检测的损失函数由三部分组成,分别是矩形框预测损失函数、置信度预测损失函数以及类别预测损失函数,在上节中分析了目标检测损失函数GIoU 的缺陷及其改进,使用 CIoU 以及带有调节因子的二元交叉熵函数替代原网络的损失函数。

实验验证此次改进,与原算法结果对比如下表所示。根据上表数据可以看到,针对本文的损失函数的改进在实验时得到了 的准确率,提升了 ,可以证明对损失函数的改进可以对目标检测的性能提升提供很大帮助。

目标检测经典复现论文

原文: Scalable Object Detection using Deep Neural Networks——学术范 最近,深度卷积神经网络在许多图像识别基准上取得了最先进的性能,包括ImageNet大规模视觉识别挑战(ILSVRC-2012)。在定位子任务中获胜的模型是一个网络,它预测了图像中每个对象类别的单个边界框和置信度得分。这样的模型捕获了围绕对象的整幅图像上下文,但如果不天真地复制每个实例的输出数量,就无法处理图像中同一对象的多个实例。在这篇论文中提出了一个显著性启发的神经网络检测模型,它预测了一组与类无关的边界框,每个框有一个分数,对应于它包含任何感兴趣的对象的可能性。该模型自然地为每个类处理数量可变的实例,并允许在网络的最高级别上进行跨类泛化。 目标检测是计算机视觉的基本任务之一。一个解决这个问题的通用范例是训练在子图像上操作的对象检测器,并在所有的场所和尺度上以详尽的方式应用这些检测器。这一范例被成功地应用于经过区别训练的可变形零件模型(DPM)中,以实现检测任务的最新结果。对所有可能位置和尺度的穷举搜索带来了计算上的挑战。随着类数量的增加,这个挑战变得更加困难,因为大多数方法都训练每个类单独的检测器。为了解决这个问题,人们提出了多种方法,从检测器级联到使用分割提出少量的对象假设。 关于对象检测的文献非常多,在本节中,我们将重点讨论利用类不可知思想和解决可伸缩性的方法。 许多提出的检测方法都是基于基于部件的模型,最近由于有区别学习和精心设计的特征,已经取得了令人印象深刻的性能。然而,这些方法依赖于在多个尺度上详尽地应用零件模板,这是非常昂贵的。此外,它们在类的数量上是可伸缩的,这对像ImageNet这样的现代数据集来说是一个挑战。 为了解决前一个问题,Lampert等人使用分支绑定策略来避免计算所有可能的对象位置。为了解决后一个问题,Song et al.使用了一个低维部件基,在所有对象类中共享。基于哈希算法的零件检测也取得了良好的结果。 另一种不同的工作,与我们的工作更接近,是基于对象可以本地化的想法,而不必知道它们的类。其中一些方法建立在自底向上无阶级分割[9]的基础上。通过这种方式得到的片段可以使用自上而下的反馈进行评分。基于同样的动机,Alexe等人使用一种廉价的分类器对对象假设是否为对象进行评分,并以这种方式减少了后续检测步骤的位置数量。这些方法可以被认为是多层模型,分割作为第一层,分割分类作为后续层。尽管它们编码了已证明的感知原理,但我们将表明,有更深入的模型,充分学习可以导致更好的结果。 最后,我们利用了DeepLearning的最新进展,最引人注目的是Krizhevsky等人的工作。我们将他们的边界盒回归检测方法扩展到以可扩展的方式处理多个对象的情况。然而,基于dnn的回归已经被Szegedy等人应用到对象掩模中。最后一种方法实现了最先进的检测性能,但由于单个掩模回归的成本,不能扩展到多个类。 我们的目标是通过预测一组表示潜在对象的边界盒来实现一种与类无关的可扩展对象检测。更准确地说,我们使用了深度神经网络(DNN),它输出固定数量的包围盒。此外,它为每个盒子输出一个分数,表示这个盒子包含一个对象的网络信任度。 为了形式化上述思想,我们将i-thobject框及其相关的置信度编码为最后一网层的节点值: Bounding box: 我们将每个框的左上角和右下角坐标编码为四个节点值,可以写成vectorli∈R4。这些坐标是归一化的w. r. t.图像尺寸,以实现图像绝对尺寸的不变性。每个归一化坐标是由最后一层的线性变换产生的。 Confidence: 置信度:包含一个对象的盒子的置信度得分被编码为单个节点valueci∈[0,1]。这个值是通过最后一个隐藏层的线性变换产生的,后面跟着一个sigmoid。 我们可以组合边界盒位置sli,i∈{1,…K}为一个线性层。同样,我们可以将所有置信区间ci,i∈{1,…K}作为一个s型层的输出。这两个输出层都连接到最后一个隐藏层 在推理时,我们的算法生成kbound盒。在我们的实验中,我们使用ek = 100和K= 200。如果需要,我们可以使用置信分数和非最大抑制在推理时获得较少数量的高置信框。这些盒子应该代表对象。因此,它们可以通过后续的分类器进行分类,实现目标检测。由于盒子的数量非常少,我们可以提供强大的分类器。在我们的实验中,我们使用另一个dnn进行分类。 我们训练一个DNN来预测每个训练图像的边界框及其置信度得分,以便得分最高的框与图像的groundtruth对象框很好地匹配。假设对于一个特定的训练例子,对象被标记为boundingboxesgj,j∈{1,…,M}。在实践中,pre- dictionary的数量远远大于groundtruthboxm的数量。因此,我们试图只优化与地面真实最匹配的预测框子集。我们优化他们的位置,以提高他们的匹配度,最大化他们的信心。与此同时,我们将剩余预测的置信度最小化,这被认为不能很好地定位真实对象。为了达到上述目的,我们为每个训练实例制定一个分配问题。Wexij∈{0,1}表示赋值:xij= 1,如果第i个预测被赋值给第j个真对象。这项任务的目标可以表示为 其中,我们使用标准化边界框坐标之间的el2距离来量化边界框之间的不同。此外,我们希望根据分配x优化盒子的可信度。最大化指定预测的置信度可以表示为  最终的损失目标结合了匹配损失和信心损失 受式1的约束。α平衡了不同损失条款的贡献。 对于每个训练例子,我们通过解决一个最佳的赋值x*的预测到真实的盒子 约束执行赋值解决方案。这是二部匹配的一种变体,是一种多项式复杂度匹配。在我们的应用程序中,匹配是非常便宜的——每幅图像中标记的对象的数量少于一打,而且在大多数情况下只有很少的对象被标记。然后,通过反向传播优化网络参数。例如,反向传播算法的一阶导数计算w、r、t、l和c 尽管上述定义的损失在原则上是足够的,但三次修改使其有可能更快地达到更好的准确性。第一个修改是对地面真实位置进行聚类,并找到这样的聚类/质心,我们可以使用这些聚类/质心作为每个预测位置的先验。因此,鼓励学习算法为每个预测位置学习一个残差到一个先验。 第二个修改涉及到在匹配过程中使用这些先验:不是将N个groundtruth位置与K个预测进行匹配,而是在K个先验和groundtruth之间找到最佳匹配。一旦匹配完成,就会像之前一样计算目标的置信度。此外,位置预测损失也不变:对于任何一对匹配的(目标,预测)位置,其损失定义为groundtruth和对应于匹配先验的坐标之间的差值。我们把使用先验匹配称为先验匹配,并假设它促进了预测的多样化。  需要注意的是,尽管我们以一种与类无关的方式定义了我们的方法,但我们可以将它应用于预测特定类的对象盒。要做到这一点,我们只需要在类的边框上训练我们的模型。此外,我们可以预测每个类的kbox。不幸的是,这个模型的参数数量会随着类的数量线性增长。此外,在一个典型的设置中,给定类的对象数量相对较少,这些参数中的大多数会看到很少有相应梯度贡献的训练示例。因此,我们认为我们的两步过程——首先本地化,然后识别——是一个更好的选择,因为它允许使用少量参数利用同一图像中多个对象类型的数据 我们使用的本地化和分类模型的网络架构与[10]使用的网络架构相同。我们使用Adagrad来控制学习速率衰减,128的小批量,以及使用多个相同的网络副本进行并行分布式训练,从而实现更快的收敛。如前所述,我们在定位损失中使用先验——这些是使用训练集上的均值来计算的。我们还使用α = 来平衡局部化和置信度损失。定位器可以输出用于推断的种植区以外的坐标。坐标被映射和截断到最后的图像区域。另外,使用非最大抑制对盒进行修剪,Jaccard相似度阈值为。然后,我们的第二个模型将每个边界框分类为感兴趣的对象或“背景”。为了训练我们的定位器网络,我们从训练集中生成了大约3000万幅图像,并对训练集中的每幅图像应用以下步骤。最后,样品被打乱。为了训练我们的本地化网络,我们通过对训练集中的每一幅图像应用以下步骤,从训练集中生成了大约3000万幅图像。对于每幅图像,我们生成相同数量的平方样本,使样本总数大约为1000万。对于每幅图像,样本被桶状填充,这样,对于0 - 5%、5 - 15%、15 - 50%、50 - 100%范围内的每个比例,都有相同数量的样本,其中被包围框覆盖的比例在给定范围内。训练集和我们大多数超参数的选择是基于过去使用非公开数据集的经验。在下面的实验中,我们没有探索任何非标准数据生成或正则化选项。在所有的实验中,所有的超参数都是通过对训练集。 Pascal Visual Object Classes (VOC)挑战是最常用的对象检测算法基准。它主要由复杂的场景图像组成,其中包含了20种不同的对象类别的边界框。在我们的评估中,我们关注的是2007版VOC,为此发布了一个测试集。我们通过培训VOC 2012展示了结果,其中包含了大约。11000张图片。我们训练了一个100框的定位器和一个基于深度网络的分类器。 我们在一个由1000万作物组成的数据集上训练分类器,该数据集重叠的对象至少为 jaccard重叠相似度。这些作物被标记为20个VOC对象类中的一个。•2000万负作物与任何物体盒最多有个Jaccard相似度。这些作物被贴上特殊的“背景”类标签。体系结构和超参数的选择遵循。 在第一轮中,定位器模型应用于图像中最大-最小中心方形作物。作物的大小调整到网络输入大小is220×220。单次通过这个网络,我们就可以得到上百个候选日期框。在对重叠阈值为的非最大抑制后,保留评分最高的前10个检测项,并通过21路分类器模型分别通过网络进行分类。最终的检测分数是给定盒子的定位分数乘以分类器在作物周围的最大方形区域上评估的分数的乘积。这些分数通过评估,并用于计算精确查全曲线。 首先,我们分析了本地化器在隔离状态下的性能。我们给出了被检测对象的数量,正如Pascal检测标准所定义的那样,与生成的包围框的数量相对比。在图1中,我们展示了使用VOC2012进行训练所获得的结果。此外,我们通过使用图像的最大中心面积(max-center square crop)作为输入以及使用两个尺度(second scale)来给出结果:最大中心面积(max-center crop)的第二个尺度(select3×3windows的大小为图像大小的60%)正如我们所看到的,当使用10个边界框的预算时,我们可以用第一个模型本地化的对象,用第二个模型本地化48%的对象。这显示出比其他报告的结果更好的性能,例如对象度算法达到42%[1]。此外,这个图表显示了在不同分辨率下观察图像的重要性。虽然我们的算法通过使用最大中心作物获得了大量的对象,但当使用更高分辨率的图像作物时,我们获得了额外的提升。进一步,我们用21-way分类器对生成的包围盒进行分类,如上所述。表1列出了VOC 2007的平均精度(APs)。达到的平均AP是,与先进水平相当。注意,我们的运行时间复杂度非常低——我们只使用top10框。示例检测和全精度召回曲线分别如图2和图3所示。值得注意的是,可视化检测是通过仅使用最大中心方形图像裁剪,即使用全图像获得的。然而,我们设法获得了相对较小的对象,例如第二行和第二列的船,以及第三行和第三列的羊。 在本工作中,我们提出了一种新的方法来定位图像中的对象,该方法可以预测多个边界框的时间。该方法使用深度卷积神经网络作为基本特征提取和学习模型。它制定了一个能够利用可变数量的groundtruth位置的多箱定位成本。在“一个类一个箱”方法的情况下,对1000个盒子进行非max-suppression,使用与给定图像中感兴趣的DeepMulti-Box方法相同的准则,并学习在未见图像中预测这些位置。 我们在VOC2007和ILSVRC-2012这两个具有挑战性的基准上给出了结果,在这两个基准上,所提出的方法具有竞争力。此外,该方法能够很好地预测后续分类器将探测到的位置。我们的结果表明,deepmultibox的方法是可扩展的,甚至可以在两个数据集之间泛化,就能够预测感兴趣的定位,甚至对于它没有训练的类别。此外,它能够捕获同一类物体的多种情况,这是旨在更好地理解图像的算法的一个重要特征。 在未来,我们希望能够将定位和识别路径折叠到一个单一的网络中,这样我们就能够在一个通过网络的一次性前馈中提取位置和类标签信息。即使在其当前状态下,双通道过程(本地化网络之后是分类网络)也会产生5-10个网络评估,每个评估的速度大约为1个CPU-sec(现代机器)。重要的是,这个数字并不与要识别的类的数量成线性关系,这使得所提出的方法与类似dpm的方法非常有竞争力。

姓名:牛晓银;学号:20181213993;学院:计算机科学与技术 转自: 【嵌牛导读】:目标检测,也叫目标提取,是一种基于目标几何和统计特征的图像分割。随着计算机技术的发展和计算机视觉原理的广泛应用,利用计算机图像处理技术对目标进行实时跟踪研究越来越热门,对目标进行动态实时跟踪定位在智能化交通系统、军事目标检测及医学导航手术中手术器械定位等方面具有广泛的应用价值。 【嵌牛鼻子】:目标检测、检测模型、计算机视觉 【嵌牛提问】:你知道或者用过哪些目标检测算法? 【嵌牛正文】: (一)目标检测经典工作回顾 本文结构 两阶段模型因其对图片的两阶段处理得名,也称为基于区域(Region-based)的方法,我们选取R-CNN系列工作作为这一类型的代表。 R-CNN: R-CNN系列的开山之作 论文链接:  Rich feature hierarchies for accurate object detection and semantic segmentation 本文的两大贡献:1)CNN可用于基于区域的定位和分割物体;2)监督训练样本数紧缺时,在额外的数据上预训练的模型经过fine-tuning可以取得很好的效果。第一个贡献影响了之后几乎所有2-stage方法,而第二个贡献中用分类任务(Imagenet)中训练好的模型作为基网络,在检测问题上fine-tuning的做法也在之后的工作中一直沿用。 传统的计算机视觉方法常用精心设计的手工特征(如SIFT, HOG)描述图像,而深度学习的方法则倡导习得特征,从图像分类任务的经验来看,CNN网络自动习得的特征取得的效果已经超出了手工设计的特征。本篇在局部区域应用卷积网络,以发挥卷积网络学习高质量特征的能力。 R-CNN将检测抽象为两个过程,一是基于图片提出若干可能包含物体的区域(即图片的局部裁剪,被称为Region Proposal),文中使用的是Selective Search算法;二是在提出的这些区域上运行当时表现最好的分类网络(AlexNet),得到每个区域内物体的类别。 另外,文章中的两个做法值得注意。 一是数据的准备。输入CNN前,我们需要根据Ground Truth对提出的Region Proposal进行标记,这里使用的指标是IoU(Intersection over Union,交并比)。IoU计算了两个区域之交的面积跟它们之并的比,描述了两个区域的重合程度。 文章中特别提到,IoU阈值的选择对结果影响显著,这里要谈两个threshold,一个用来识别正样本(如跟ground truth的IoU大于),另一个用来标记负样本(即背景类,如IoU小于),而介于两者之间的则为难例(Hard Negatives),若标为正类,则包含了过多的背景信息,反之又包含了要检测物体的特征,因而这些Proposal便被忽略掉。 另一点是位置坐标的回归(Bounding-Box Regression),这一过程是Region Proposal向Ground Truth调整,实现时加入了log/exp变换来使损失保持在合理的量级上,可以看做一种标准化(Normalization)操作。 小结 R-CNN的想法直接明了,即将检测任务转化为区域上的分类任务,是深度学习方法在检测任务上的试水。模型本身存在的问题也很多,如需要训练三个不同的模型(proposal, classification, regression)、重复计算过多导致的性能问题等。尽管如此,这篇论文的很多做法仍然广泛地影响着检测任务上的深度模型革命,后续的很多工作也都是针对改进这一工作而展开,此篇可以称得上"The First Paper"。 Fast R-CNN: 共享卷积运算 论文链接: Fast R-CNN 文章指出R-CNN耗时的原因是CNN是在每一个Proposal上单独进行的,没有共享计算,便提出将基础网络在图片整体上运行完毕后,再传入R-CNN子网络,共享了大部分计算,故有Fast之名。 上图是Fast R-CNN的架构。图片经过feature extractor得到feature map, 同时在原图上运行Selective Search算法并将RoI(Region of Interset,实为坐标组,可与Region Proposal混用)映射到到feature map上,再对每个RoI进行RoI Pooling操作便得到等长的feature vector,将这些得到的feature vector进行正负样本的整理(保持一定的正负样本比例),分batch传入并行的R-CNN子网络,同时进行分类和回归,并将两者的损失统一起来。 RoI Pooling 是对输入R-CNN子网络的数据进行准备的关键操作。我们得到的区域常常有不同的大小,在映射到feature map上之后,会得到不同大小的特征张量。RoI Pooling先将RoI等分成目标个数的网格,再在每个网格上进行max pooling,就得到等长的RoI feature vector。 文章最后的讨论也有一定的借鉴意义: multi-loss traing相比单独训练classification确有提升 multi-scale相比single-scale精度略有提升,但带来的时间开销更大。一定程度上说明CNN结构可以内在地学习尺度不变性 在更多的数据(VOC)上训练后,精度是有进一步提升的 Softmax分类器比"one vs rest"型的SVM表现略好,引入了类间的竞争 更多的Proposal并不一定带来精度的提升 小结 Fast R-CNN的这一结构正是检测任务主流2-stage方法所采用的元结构的雏形。文章将Proposal, Feature Extractor, Object Classification&Localization统一在一个整体的结构中,并通过共享卷积计算提高特征利用效率,是最有贡献的地方。 Faster R-CNN: 两阶段模型的深度化 论文链接: Faster R-CNN: Towards Real Time Object Detection with Region Proposal Networks Faster R-CNN是2-stage方法的奠基性工作,提出的RPN网络取代Selective Search算法使得检测任务可以由神经网络端到端地完成。粗略的讲,Faster R-CNN = RPN + Fast R-CNN,跟RCNN共享卷积计算的特性使得RPN引入的计算量很小,使得Faster R-CNN可以在单个GPU上以5fps的速度运行,而在精度方面达到SOTA(State of the Art,当前最佳)。 本文的主要贡献是提出Regional Proposal Networks,替代之前的SS算法。RPN网络将Proposal这一任务建模为二分类(是否为物体)的问题。 第一步是在一个滑动窗口上生成不同大小和长宽比例的anchor box(如上图右边部分),取定IoU的阈值,按Ground Truth标定这些anchor box的正负。于是,传入RPN网络的样本数据被整理为anchor box(坐标)和每个anchor box是否有物体(二分类标签)。RPN网络将每个样本映射为一个概率值和四个坐标值,概率值反应这个anchor box有物体的概率,四个坐标值用于回归定义物体的位置。最后将二分类和坐标回归的损失统一起来,作为RPN网络的目标训练。 由RPN得到Region Proposal在根据概率值筛选后经过类似的标记过程,被传入R-CNN子网络,进行多分类和坐标回归,同样用多任务损失将二者的损失联合。 小结 Faster R-CNN的成功之处在于用RPN网络完成了检测任务的"深度化"。使用滑动窗口生成anchor box的思想也在后来的工作中越来越多地被采用(YOLO v2等)。这项工作奠定了"RPN+RCNN"的两阶段方法元结构,影响了大部分后续工作。 单阶段(1-stage)检测模型 单阶段模型没有中间的区域检出过程,直接从图片获得预测结果,也被成为Region-free方法。 YOLO 论文链接: You Only Look Once: Unified, Real-Time Object Detection YOLO是单阶段方法的开山之作。它将检测任务表述成一个统一的、端到端的回归问题,并且以只处理一次图片同时得到位置和分类而得名。 YOLO的主要优点: 快。 全局处理使得背景错误相对少,相比基于局部(区域)的方法, 如Fast RCNN。 泛化性能好,在艺术作品上做检测时,YOLO表现比Fast R-CNN好。 YOLO的工作流程如下: 1.准备数据:将图片缩放,划分为等分的网格,每个网格按跟Ground Truth的IoU分配到所要预测的样本。 2.卷积网络:由GoogLeNet更改而来,每个网格对每个类别预测一个条件概率值,并在网格基础上生成B个box,每个box预测五个回归值,四个表征位置,第五个表征这个box含有物体(注意不是某一类物体)的概率和位置的准确程度(由IoU表示)。测试时,分数如下计算: 等式左边第一项由网格预测,后两项由每个box预测,以条件概率的方式得到每个box含有不同类别物体的分数。 因而,卷积网络共输出的预测值个数为S×S×(B×5+C),其中S为网格数,B为每个网格生成box个数,C为类别数。 3.后处理:使用NMS(Non-Maximum Suppression,非极大抑制)过滤得到最后的预测框 损失函数的设计 损失函数被分为三部分:坐标误差、物体误差、类别误差。为了平衡类别不均衡和大小物体等带来的影响,损失函数中添加了权重并将长宽取根号。 小结 YOLO提出了单阶段的新思路,相比两阶段方法,其速度优势明显,实时的特性令人印象深刻。但YOLO本身也存在一些问题,如划分网格较为粗糙,每个网格生成的box个数等限制了对小尺度物体和相近物体的检测。 SSD: Single Shot Multibox Detector 论文链接: SSD: Single Shot Multibox Detector SSD相比YOLO有以下突出的特点: 多尺度的feature map:基于VGG的不同卷积段,输出feature map到回归器中。这一点试图提升小物体的检测精度。 更多的anchor box,每个网格点生成不同大小和长宽比例的box,并将类别预测概率基于box预测(YOLO是在网格上),得到的输出值个数为(C+4)×k×m×n,其中C为类别数,k为box个数,m×n为feature map的大小。 小结 SSD是单阶段模型早期的集大成者,达到跟接近两阶段模型精度的同时,拥有比两阶段模型快一个数量级的速度。后续的单阶段模型工作大多基于SSD改进展开。 检测模型基本特点 最后,我们对检测模型的基本特征做一个简单的归纳。 检测模型整体上由基础网络(Backbone Network)和检测头部(Detection Head)构成。前者作为特征提取器,给出图像不同大小、不同抽象层次的表示;后者则依据这些表示和监督信息学习类别和位置关联。检测头部负责的类别预测和位置回归两个任务常常是并行进行的,构成多任务的损失进行联合训练。 相比单阶段,两阶段检测模型通常含有一个串行的头部结构,即完成前背景分类和回归后,把中间结果作为RCNN头部的输入再进行一次多分类和位置回归。这种设计带来了一些优点: 对检测任务的解构,先进行前背景的分类,再进行物体的分类,这种解构使得监督信息在不同阶段对网络参数的学习进行指导 RPN网络为RCNN网络提供良好的先验,并有机会整理样本的比例,减轻RCNN网络的学习负担 这种设计的缺点也很明显:中间结果常常带来空间开销,而串行的方式也使得推断速度无法跟单阶段相比;级联的位置回归则会导致RCNN部分的重复计算(如两个RoI有重叠)。 另一方面,单阶段模型只有一次类别预测和位置回归,卷积运算的共享程度更高,拥有更快的速度和更小的内存占用。读者将会在接下来的文章中看到,两种类型的模型也在互相吸收彼此的优点,这也使得两者的界限更为模糊。

关于基因检测的论文题目

题目的拟定对于一篇医学论文来说至关重要,选题有意义,写出来的 文章 才有学术价值,如果选定的题目毫无意义或过于偏狭,也毫无价值可言。下面我给大家带来2021医学专业的 毕业 论文题目有哪些,希望能帮助到大家!

医学影像技术论文题目

[1]培养医学影像学生审美能力提高《医学影像检查技术》教学效果

[2]大学教材《医学影像成像原理》出版发行

[3]_版中国科技期刊引证 报告 相关数据——《中国医学影像技术》

[4]《中国医学影像技术》被数据库收录情况

[5]肺结节人工智能技术在医学影像学专业实习生教学中的初步应用

[6]基于网络资源“探究式-理实一体化”教学在超声诊断学中的应用

[7]医学物理学开放性实验教学模式探索

[8]角色扮演教学法在医学影像检查技术学临床示教中应用的研究

[9]中国超声医学的发展与展望

[10]《中国医学影像技术》被数据库收录情况

[11]医学影像实训教学大型设备拆移、软件处理探讨

[12]现代医学影像科核磁机房施工技术分析——以江苏省妇幼保健院为例[

[13]医学影像技术专业在核医学科实习过程中的问题分析及应对

[14]高职高专医学影像实训基地的建设与研究

[15]医学影像技术学中CT与MR教学分析

[16]SPOC在医学影像检查技术学教学中的应用与实践

[17]全数字化_线影像技术在医学影像科的应用价值

[18]医学影像技术专业建设初探

[19]放射测量与防护教材的改革策略

[20]OBE教学理念在《断层解剖学》课程教学改革中的研究与探索

[21]数据挖掘技术在医学影像信息系统中的应用

[22]“以赛促学、以赛促教”全面提升我校医学影像技术专业育人质量

[23]本科医学影像技术专业多维度毕业考核模式的设计与实践

[24]医学影像检查技术教学与技能大赛结合的实践

[25]医学影像技术专业CT科室实习带教 方法 探讨

[26]对医学影像技术技能大赛选手辅导的体会

[27]PBL-LBL教学模式在医学影像检查技术学上的应用探索

[28]医学影像技术专业实习生在普通放射科DR摄影的带教心得

[29]基于TBL与CBL教学法的医学影像检查技术教学研究

[30]以“器官系统为中心”的中医院校医学影像学教学探讨

[31]医学影像技术在影像临床诊断中的应用探析

[32]基于FPGA的Micro-CT采集控制系统设计

[33]医用模拟人在医学影像技术专业实训中的应用效果

[34]医学影像技术专业学生毕业实习教学模式分析

[35]基于云课堂的混合式学习在医学影像技术课程 教育 中的应用——以《盆部影像检查技术》为例

[36]20_版中国科技期刊引证报告相关数据——《中国医学影像技术》

[37]《中国医学影像技术》被数据库收录情况

[38]PBL教学法在MRI检查技术实习带教中的效果

[39]微信辅助改良式PBL教学法在医学影像学实习带教中的应用

[40]医学影像技术高素质人才的培养方式研究

[41]医学影像技术在慢性肾脏病早期肾功能评估中的研究与应用进展

[42]基于“医、教、研、赛”四维协同平台的医学影像技术专业人才培养体系建设实践

[43]基于计算机的医学影像后处理技术定位癫痫致痫灶研究进展

[44]图像增强技术在数字x射线医学影像中的应用分析

[45]基于视觉优化的医学影像数据可视化技术研究

[46]医学影像学导航技术在穿支皮瓣的应用进展

[47]安徽省职业教育先进单位 安徽省淮北卫生学校

[48]基于深度学习的医学图像分割研究进展

[49]《中国医学影像技术》被数据库收录情况

[50]20__版中国科技期刊引证报告相关数据——《中国医学影像技术》

中医论文题目

[1]胁痛中医临床实践指南

[2]发生学视角下中医肝藏实质探溯

[3]口疮中医临床实践指南

[4]基于数据挖掘中医古籍中肺热病症状及证型分布规律分析

[5]基于数据挖掘中医古籍治疗肺热病遣方用药分析[

[6]“冲气”观与中医学

[7]基于现代文献的膝骨关节炎中医证型与证素分布规律研究

[8]肝硬化腹水的中医药治疗现状

[9]疏肝健脾法治疗肝郁脾虚型卒中后抑郁的疗效meta分析

[10]基于中医传承辅助系统的脊髓损伤内治处方分析

[11]中医治未病·血管性轻度认知障碍专家共识

[12]氟骨症的中医治疗研究进展

[13]三子养亲汤加减对肺气虚型尘肺病患者中医证候的影响

[14]现代信息技术在中医四诊中的应用研究

[15]热敏灸对腰椎间盘突出症患者预后的影响观察

[16]中医综合护理在功能性消化不良患者中的应用分析

[17]基于“脾肾相关”论治疗骨质疏松症的研究进展

[18]无症状颈动脉狭窄人群认知功能障碍与中医体质分布特点研究

[19]基于数据挖掘对中医治疗慢性肾衰竭组方规律的分析

[20]温脾散穴位敷贴联合理中复元方对脾虚痰瘀型慢性萎缩性胃炎患者的临床疗效

[21]中成药在子宫腺肌病治疗中的应用研究进展

[22]中药复方治疗老年性骨质疏松症疗效Meta分析及用药规律分析

[23]基于中医传承辅助平台探讨沈舒文教授治疗慢性胃炎的用药规律

[24]中药膏方联合穴位埋线治疗支气管哮喘缓解期临床观察

[25]温阳通络方对急性心肌梗死经皮冠状动脉介入治疗术后患者心室重构和血管内皮功能的影响

[26]原发性支气管肺癌中医体质和中医证型调查研究

[27]慢性非萎缩性胃炎中医证型与幽门螺杆菌感染、胃镜像及病理表现相关性分析

[28]透刺配合热补针法治疗风寒湿阻型膝关节滑膜炎疗效及对红细胞沉降率、C反应蛋白、前列腺素E_2和滑膜动脉血流指数的影响

[29]运用中医治未病思想防治克罗恩病

[30]循证医学与中医学的 反思

[31]艾灸治疗肛肠术后尿潴留研究进展

[32]基于中医理论的智能养生餐厅探析

[33]基于文献研究与专家共识法的原发性痛经中医证候研究

[34]基于虚实辨证的补泻平衡手法治疗膝骨关节炎临床研究

[35]从“胃不和则卧不安”理论探讨失眠的辨证论治

[36]郭志华运用桔梗治疗心衰 经验

[37]谢林运用风药治疗椎动脉型颈椎病

[38]基于病历数据的中医临床能力数字化评价体系研究

[39]基于临床调查的冠心病心绞痛气虚证症状组成的文献分析

[40]安胃汤治疗功能性消化不良寒热错杂证的临床观察

医学检验免疫毕业论文题目

1、基于纳米颗粒的分子展示应用于超灵敏检测

2、SLE患者中几种新型自身抗体的检测及其临床诊断价值的探讨

3、多肽酶检测和细胞表面荧光标记的新方法研究

4、区域检验服务协同平台的设计与实现

5、胶体金喷膜仪的设计与开发

6、重庆市乡镇卫生院医疗资源的调查研究

7、基于氧化石墨烯和硫化铅纳米颗粒的荧光生物传感器研究

8、产气荚膜梭菌α毒素快速诊断金标试纸条的研制及初步应用

9、纳米粒子免疫层析法在检测异位妊娠和膀胱癌中的应用

10、现代医院检验科模块化设计研究

11、酶免工作站监控系统的设计与实现

12、乙型肝炎表面抗原胶体金免疫层析法血清快速测定的性能评估

13、基于微型压电与光谱生化分析系统的POCT新技术研究

14、长江三角洲地区犬猫皮肤真菌病调查及体外药敏试验

15、我国医学检验本科专业人才培养的问题与对策研究

16、基于电化学分子信标基因传感技术的HIV-1核酸检测新方法研究

17、Free β-hCG和PAPPA光激化学发光免疫分析试剂的研制

18、乙肝快速分析仪的研究与开发

19、阿托伐他汀对动脉粥样硬化患者外周血中PPAR γ的作用研究及相关炎症因子与动脉粥样硬化关系的建模分析

20、综合性医院医学检验资源优化管理研究

21、全自动多功能免疫检验过程关键问题的优化研究

22、HMGB1通过NF-κB激活TGF-β1诱导特发性肺纤维化发病机制的研究

23、若干病毒感染模型的动力学分析

24、现代综合医院检验中心空间设计研究

25、大型公立医院创建医学独立实验室可行性研究

26、高血压病证型与血清褪黑色素水平的相关性研究

27、医用臭氧与α-干扰素对照治疗慢性乙型病毒性肝炎

28、网织血小板在系统性红斑狼疮患者的临床应用

29、G公司第三方独立医学实验室服务营销策略研究

30、临床毛细管电泳的研究

31、基于光电检测与信息处理技术的纳米金免疫层析试条定量测试的研究

32、贫铀长期作用后的吸收分布特点及其主要蓄积器官的损伤效应研究

33、基于磁性微球的PMMA微流控免疫分析芯片系统的研究

34、hr HPV、L1壳蛋白、p16蛋白与宫颈病变的关系及诊断价值研究

35、76例急性白血病的MICM分型及预后

36、国产化学发光法诊断系统检测乙肝表面抗原的评价

37、蛋白A-藻蓝蛋白β亚基双功能蛋白的性质及其在免疫检测中的应用

38、上海市社区卫生服务中心检验开展现状及检验项目合理化设置研究

39、__ 医学检验集团发展战略研究

40、胃肠肿瘤标志物诊断大肠癌之检验医学实践

41、广州KM公司分析前流程优化方案制定

42、医学高职院校人文教育现状与对策研究

43、脑脊液中ADA、LA、CRP、LDH的检测在小儿颅内感染诊断中的价值

44、MiR210和Stat3全脑缺血大鼠脑组织的表达通过HIF-1α通路对神经元凋亡的影响

45、医学检验器材智能化物流系统的设计与运营

46、上海市嘉定区医疗机构临床实验室检验质量管理现状及对策研究

47、六西格玛管理在临床检验流程中的应用研究

48、基于纳米材料修饰的新型生物传感器检测D-二聚体

49、新城疫快速诊断金标试纸条的研制及初步应用

50、肾上腺脑白质营养不良蛋白的原核表达和肾上腺脑白质营养不良的分子诊断研究

医学专业的毕业论文题目有哪些相关文章:

★ 临床医学专业的毕业论文

★ 临床医学专业毕业论文5000字(2)

★ 临床医学专业毕业论文5000字

★ 大专临床医学毕业论文(2)

★ 医学的毕业论文

★ 临床医学生毕业论文(2)

★ 临床医学内科毕业论文(2)

★ 临床医学毕业论文范文大全

★ 本科临床医学专业毕业论文范文

★ 关于医学生的毕业论文3000字怎么写(2)

医学研究广博深繁,医学论文自然也就深奥广达。所以,拟定医学论文题目要精心琢磨,表意精确。下面我给大家带来2021本科生医学 毕业 论文题目有哪些,希望能帮助到大家!

本科生医学论文题目

1、临床医学本科生综合素质评价指标体系的初步研究

2、以基层就业为导向的医学本科生就业能力提升对策的研究

3、青年教师在医学院校本科生导师制中的作用

4、医学本科生对《医学科研设计》课程的认识及需求分析

5、军校医学本科生自我导向学习倾向及其影响因素分析

6、本科生《医学免疫学》课堂教学与课外活动结合的初步探讨

7、医学本科生在学期间发表科研论文的调查分析

8、江苏省医学本科生面向基层就业意愿研究

9、云南医学本科生生活质量及影响因素调查分析

10、医学本科生对临床专业课双语教学的理解和要求

11、医学本科生与专科生心理健康状况的比较

12、医学院校实行本科生导师制的思考

13、普通高等医学院校本科生导师制初探

14、医学专业本科生就业 市场调查 与分析——以广东省为例

15、科研实验室开放对培养医学本科生创新与科研能力的作用初探

16、四川大学医学本科生择业意向的调查分析

17、浅谈中医类本科生医学统计学教学体会

18、PBL教学法在医学本科生医学统计学实验教学中的应用

19、医学本科生积极心理资本与主观幸福感的相关性研究

20、少数民族医学本科生学习适应性现状及其影响因素研究

医学检验免疫毕业论文题目

1、基于纳米颗粒的分子展示应用于超灵敏检测

2、SLE患者中几种新型自身抗体的检测及其临床诊断价值的探讨

3、多肽酶检测和细胞表面荧光标记的新 方法 研究

4、区域检验服务协同平台的设计与实现

5、胶体金喷膜仪的设计与开发

6、重庆市乡镇卫生院医疗资源的调查研究

7、基于氧化石墨烯和硫化铅纳米颗粒的荧光生物传感器研究

8、产气荚膜梭菌α毒素快速诊断金标试纸条的研制及初步应用

9、纳米粒子免疫层析法在检测异位妊娠和膀胱癌中的应用

10、现代医院检验科模块化设计研究

11、酶免工作站监控系统的设计与实现

12、乙型肝炎表面抗原胶体金免疫层析法血清快速测定的性能评估

13、基于微型压电与光谱生化分析系统的POCT新技术研究

14、长江三角洲地区犬猫皮肤真菌病调查及体外药敏试验

15、我国医学检验本科专业人才培养的问题与对策研究

16、基于电化学分子信标基因传感技术的HIV-1核酸检测新方法研究

17、Free β-hCG和PAPPA光激化学发光免疫分析试剂的研制

18、乙肝快速分析仪的研究与开发

19、阿托伐他汀对动脉粥样硬化患者外周血中PPAR γ的作用研究及相关炎症因子与动脉粥样硬化关系的建模分析

20、综合性医院医学检验资源优化管理研究

21、全自动多功能免疫检验过程关键问题的优化研究

22、HMGB1通过NF-κB激活TGF-β1诱导特发性肺纤维化发病机制的研究

23、若干病毒感染模型的动力学分析

24、现代综合医院检验中心空间设计研究

25、大型公立医院创建医学独立实验室可行性研究

26、高血压病证型与血清褪黑色素水平的相关性研究

27、医用臭氧与α-干扰素对照治疗慢性乙型病毒性肝炎

28、网织血小板在系统性红斑狼疮患者的临床应用

29、G公司第三方独立医学实验室服务营销策略研究

30、临床毛细管电泳的研究

31、基于光电检测与信息处理技术的纳米金免疫层析试条定量测试的研究

32、贫铀长期作用后的吸收分布特点及其主要蓄积器官的损伤效应研究

33、基于磁性微球的PMMA微流控免疫分析芯片系统的研究

34、hr HPV、L1壳蛋白、p16蛋白与宫颈病变的关系及诊断价值研究

35、76例急性白血病的MICM分型及预后

36、国产化学发光法诊断系统检测乙肝表面抗原的评价

37、蛋白A-藻蓝蛋白β亚基双功能蛋白的性质及其在免疫检测中的应用

38、上海市社区卫生服务中心检验开展现状及检验项目合理化设置研究

39、__医学检验集团发展战略研究

口腔医学毕业论文题目

1、伴有或不伴有下颌偏斜的骨性Ⅲ类成人患者颞下颌关节形态和位置的CBCT研究

2、口腔锥形束CT对下颌牙 种植 位点线性测量精度的实验研究

3、牙龈卟啉单胞菌感染牙周膜成纤维细胞的体外实验研究

4、无牙颌种植修复临床回顾性研究及无牙颌种植固定修复咬合初步分析

5、产前暴露于纳米氧化锌对大鼠子代脑发育及成年期行为学特性的影响

6、我国入选PubMed数据库的生物医学期刊文献计量学分析

7、电针治疗对颞下颌关节紊乱综合症大鼠TNF-α、IL-1β影响的研究

8、86例腮腺多形性腺瘤外科治疗的回顾和分析

9、口腔黏膜潜在恶性疾患的临床诊治新观点

10、翼外肌在髁突矢状骨折愈合中对髁突应力分布作用的三维有限元研究

11、T-Scan应用于牙根纵裂患者咬合特征分析的初步研究

12、正畸治疗对不同类型错(牙合)畸形患者口腔健康生活质量的影响

13、成人正颌手术前后的心理特征及满意度的相关性研究

14、不同牙面处理方法对窝沟封闭剂微渗漏的影响

15、自锁托槽矫治器与直丝弓托槽矫治器排齐牙列的对比研究

16、构建3D打印牙齿模型及其形态仿真性研究

17、锥形束CT对下颌乳磨牙牙根及根管形态的研究

18、F大学口腔医学博士学位论文内容和质量研究

19、口腔医学专业人文素质 教育 现状调查及课程教学发展策略

20、口腔医学本科毕业考核中多站式考试的设计及效果评价研究

21、血链球菌细菌素对光滑念珠菌力学性质的影响

22、乳牙根中1/3折保守治疗的应用研究

23、牙髓切断术与牙髓摘除术在深龋露髓乳磨牙临床治疗中的对比研究

24、整合牙颌模型三维重构及其应用研究

25、江西省口腔医疗服务能力调查分析

26、玻璃纤维桩不同粘接方法粘接强度的系统评价和Meta分析

27、牙与固定修复体的动力学研究--振动分析和疲劳测试

28、口腔医学专业人才培养方案及系列课程综合改革研究

29、气电纺蚕丝蛋白纳米纤维的制备与组织工程研究

30、张应力诱导大鼠骨髓间充质干细胞骨向分化的实验研究

31、可摘局部义齿支架计算机辅助设计与制作的初步研究

32、磁性附着体静磁场对人牙龈成纤维细胞和人牙周膜成纤维细胞生物学效应的基础研究

33、等离子浸没注入和多弧离子镀对纯钛及钛合金表面改性的基础研究

34、口腔卫生服务现况评价与口腔卫生人力预测研究

35、自制铸钛包埋材料铸造工艺与铸钛修复体铸造精度的研究

36、口腔修复学教学及临床三维多媒体平台的建立

37、应用激光快速成形技术制作全口义齿钛基托的实验研究

38、纳米羟基磷灰石复合改性材料的制备及其抗龋性能研究

39、髁突在咬合载荷作用下的应力效应

40、磨牙烤瓷熔附金属全冠的有限元分析

2021本科生医学毕业论文题目相关 文章 :

★ 2021医学类论文的题目有哪些

★ 2021医学类论文题目推荐

★ 医学专业论文选题与题目

★ 医学专业的毕业论文题目有哪些

★ 2021教育学专业毕业论文题目

★ 医学专业的论文题目参考

★ 大学生论文题目大全2021

★ 优秀论文题目大全2021

★ 医学专业的论文题目有哪些

★ 2021通信专业毕业生论文题目

目标检测论文代码实现

原文: Scalable Object Detection using Deep Neural Networks——学术范 最近,深度卷积神经网络在许多图像识别基准上取得了最先进的性能,包括ImageNet大规模视觉识别挑战(ILSVRC-2012)。在定位子任务中获胜的模型是一个网络,它预测了图像中每个对象类别的单个边界框和置信度得分。这样的模型捕获了围绕对象的整幅图像上下文,但如果不天真地复制每个实例的输出数量,就无法处理图像中同一对象的多个实例。在这篇论文中提出了一个显著性启发的神经网络检测模型,它预测了一组与类无关的边界框,每个框有一个分数,对应于它包含任何感兴趣的对象的可能性。该模型自然地为每个类处理数量可变的实例,并允许在网络的最高级别上进行跨类泛化。 目标检测是计算机视觉的基本任务之一。一个解决这个问题的通用范例是训练在子图像上操作的对象检测器,并在所有的场所和尺度上以详尽的方式应用这些检测器。这一范例被成功地应用于经过区别训练的可变形零件模型(DPM)中,以实现检测任务的最新结果。对所有可能位置和尺度的穷举搜索带来了计算上的挑战。随着类数量的增加,这个挑战变得更加困难,因为大多数方法都训练每个类单独的检测器。为了解决这个问题,人们提出了多种方法,从检测器级联到使用分割提出少量的对象假设。 关于对象检测的文献非常多,在本节中,我们将重点讨论利用类不可知思想和解决可伸缩性的方法。 许多提出的检测方法都是基于基于部件的模型,最近由于有区别学习和精心设计的特征,已经取得了令人印象深刻的性能。然而,这些方法依赖于在多个尺度上详尽地应用零件模板,这是非常昂贵的。此外,它们在类的数量上是可伸缩的,这对像ImageNet这样的现代数据集来说是一个挑战。 为了解决前一个问题,Lampert等人使用分支绑定策略来避免计算所有可能的对象位置。为了解决后一个问题,Song et al.使用了一个低维部件基,在所有对象类中共享。基于哈希算法的零件检测也取得了良好的结果。 另一种不同的工作,与我们的工作更接近,是基于对象可以本地化的想法,而不必知道它们的类。其中一些方法建立在自底向上无阶级分割[9]的基础上。通过这种方式得到的片段可以使用自上而下的反馈进行评分。基于同样的动机,Alexe等人使用一种廉价的分类器对对象假设是否为对象进行评分,并以这种方式减少了后续检测步骤的位置数量。这些方法可以被认为是多层模型,分割作为第一层,分割分类作为后续层。尽管它们编码了已证明的感知原理,但我们将表明,有更深入的模型,充分学习可以导致更好的结果。 最后,我们利用了DeepLearning的最新进展,最引人注目的是Krizhevsky等人的工作。我们将他们的边界盒回归检测方法扩展到以可扩展的方式处理多个对象的情况。然而,基于dnn的回归已经被Szegedy等人应用到对象掩模中。最后一种方法实现了最先进的检测性能,但由于单个掩模回归的成本,不能扩展到多个类。 我们的目标是通过预测一组表示潜在对象的边界盒来实现一种与类无关的可扩展对象检测。更准确地说,我们使用了深度神经网络(DNN),它输出固定数量的包围盒。此外,它为每个盒子输出一个分数,表示这个盒子包含一个对象的网络信任度。 为了形式化上述思想,我们将i-thobject框及其相关的置信度编码为最后一网层的节点值: Bounding box: 我们将每个框的左上角和右下角坐标编码为四个节点值,可以写成vectorli∈R4。这些坐标是归一化的w. r. t.图像尺寸,以实现图像绝对尺寸的不变性。每个归一化坐标是由最后一层的线性变换产生的。 Confidence: 置信度:包含一个对象的盒子的置信度得分被编码为单个节点valueci∈[0,1]。这个值是通过最后一个隐藏层的线性变换产生的,后面跟着一个sigmoid。 我们可以组合边界盒位置sli,i∈{1,…K}为一个线性层。同样,我们可以将所有置信区间ci,i∈{1,…K}作为一个s型层的输出。这两个输出层都连接到最后一个隐藏层 在推理时,我们的算法生成kbound盒。在我们的实验中,我们使用ek = 100和K= 200。如果需要,我们可以使用置信分数和非最大抑制在推理时获得较少数量的高置信框。这些盒子应该代表对象。因此,它们可以通过后续的分类器进行分类,实现目标检测。由于盒子的数量非常少,我们可以提供强大的分类器。在我们的实验中,我们使用另一个dnn进行分类。 我们训练一个DNN来预测每个训练图像的边界框及其置信度得分,以便得分最高的框与图像的groundtruth对象框很好地匹配。假设对于一个特定的训练例子,对象被标记为boundingboxesgj,j∈{1,…,M}。在实践中,pre- dictionary的数量远远大于groundtruthboxm的数量。因此,我们试图只优化与地面真实最匹配的预测框子集。我们优化他们的位置,以提高他们的匹配度,最大化他们的信心。与此同时,我们将剩余预测的置信度最小化,这被认为不能很好地定位真实对象。为了达到上述目的,我们为每个训练实例制定一个分配问题。Wexij∈{0,1}表示赋值:xij= 1,如果第i个预测被赋值给第j个真对象。这项任务的目标可以表示为 其中,我们使用标准化边界框坐标之间的el2距离来量化边界框之间的不同。此外,我们希望根据分配x优化盒子的可信度。最大化指定预测的置信度可以表示为  最终的损失目标结合了匹配损失和信心损失 受式1的约束。α平衡了不同损失条款的贡献。 对于每个训练例子,我们通过解决一个最佳的赋值x*的预测到真实的盒子 约束执行赋值解决方案。这是二部匹配的一种变体,是一种多项式复杂度匹配。在我们的应用程序中,匹配是非常便宜的——每幅图像中标记的对象的数量少于一打,而且在大多数情况下只有很少的对象被标记。然后,通过反向传播优化网络参数。例如,反向传播算法的一阶导数计算w、r、t、l和c 尽管上述定义的损失在原则上是足够的,但三次修改使其有可能更快地达到更好的准确性。第一个修改是对地面真实位置进行聚类,并找到这样的聚类/质心,我们可以使用这些聚类/质心作为每个预测位置的先验。因此,鼓励学习算法为每个预测位置学习一个残差到一个先验。 第二个修改涉及到在匹配过程中使用这些先验:不是将N个groundtruth位置与K个预测进行匹配,而是在K个先验和groundtruth之间找到最佳匹配。一旦匹配完成,就会像之前一样计算目标的置信度。此外,位置预测损失也不变:对于任何一对匹配的(目标,预测)位置,其损失定义为groundtruth和对应于匹配先验的坐标之间的差值。我们把使用先验匹配称为先验匹配,并假设它促进了预测的多样化。  需要注意的是,尽管我们以一种与类无关的方式定义了我们的方法,但我们可以将它应用于预测特定类的对象盒。要做到这一点,我们只需要在类的边框上训练我们的模型。此外,我们可以预测每个类的kbox。不幸的是,这个模型的参数数量会随着类的数量线性增长。此外,在一个典型的设置中,给定类的对象数量相对较少,这些参数中的大多数会看到很少有相应梯度贡献的训练示例。因此,我们认为我们的两步过程——首先本地化,然后识别——是一个更好的选择,因为它允许使用少量参数利用同一图像中多个对象类型的数据 我们使用的本地化和分类模型的网络架构与[10]使用的网络架构相同。我们使用Adagrad来控制学习速率衰减,128的小批量,以及使用多个相同的网络副本进行并行分布式训练,从而实现更快的收敛。如前所述,我们在定位损失中使用先验——这些是使用训练集上的均值来计算的。我们还使用α = 来平衡局部化和置信度损失。定位器可以输出用于推断的种植区以外的坐标。坐标被映射和截断到最后的图像区域。另外,使用非最大抑制对盒进行修剪,Jaccard相似度阈值为。然后,我们的第二个模型将每个边界框分类为感兴趣的对象或“背景”。为了训练我们的定位器网络,我们从训练集中生成了大约3000万幅图像,并对训练集中的每幅图像应用以下步骤。最后,样品被打乱。为了训练我们的本地化网络,我们通过对训练集中的每一幅图像应用以下步骤,从训练集中生成了大约3000万幅图像。对于每幅图像,我们生成相同数量的平方样本,使样本总数大约为1000万。对于每幅图像,样本被桶状填充,这样,对于0 - 5%、5 - 15%、15 - 50%、50 - 100%范围内的每个比例,都有相同数量的样本,其中被包围框覆盖的比例在给定范围内。训练集和我们大多数超参数的选择是基于过去使用非公开数据集的经验。在下面的实验中,我们没有探索任何非标准数据生成或正则化选项。在所有的实验中,所有的超参数都是通过对训练集。 Pascal Visual Object Classes (VOC)挑战是最常用的对象检测算法基准。它主要由复杂的场景图像组成,其中包含了20种不同的对象类别的边界框。在我们的评估中,我们关注的是2007版VOC,为此发布了一个测试集。我们通过培训VOC 2012展示了结果,其中包含了大约。11000张图片。我们训练了一个100框的定位器和一个基于深度网络的分类器。 我们在一个由1000万作物组成的数据集上训练分类器,该数据集重叠的对象至少为 jaccard重叠相似度。这些作物被标记为20个VOC对象类中的一个。•2000万负作物与任何物体盒最多有个Jaccard相似度。这些作物被贴上特殊的“背景”类标签。体系结构和超参数的选择遵循。 在第一轮中,定位器模型应用于图像中最大-最小中心方形作物。作物的大小调整到网络输入大小is220×220。单次通过这个网络,我们就可以得到上百个候选日期框。在对重叠阈值为的非最大抑制后,保留评分最高的前10个检测项,并通过21路分类器模型分别通过网络进行分类。最终的检测分数是给定盒子的定位分数乘以分类器在作物周围的最大方形区域上评估的分数的乘积。这些分数通过评估,并用于计算精确查全曲线。 首先,我们分析了本地化器在隔离状态下的性能。我们给出了被检测对象的数量,正如Pascal检测标准所定义的那样,与生成的包围框的数量相对比。在图1中,我们展示了使用VOC2012进行训练所获得的结果。此外,我们通过使用图像的最大中心面积(max-center square crop)作为输入以及使用两个尺度(second scale)来给出结果:最大中心面积(max-center crop)的第二个尺度(select3×3windows的大小为图像大小的60%)正如我们所看到的,当使用10个边界框的预算时,我们可以用第一个模型本地化的对象,用第二个模型本地化48%的对象。这显示出比其他报告的结果更好的性能,例如对象度算法达到42%[1]。此外,这个图表显示了在不同分辨率下观察图像的重要性。虽然我们的算法通过使用最大中心作物获得了大量的对象,但当使用更高分辨率的图像作物时,我们获得了额外的提升。进一步,我们用21-way分类器对生成的包围盒进行分类,如上所述。表1列出了VOC 2007的平均精度(APs)。达到的平均AP是,与先进水平相当。注意,我们的运行时间复杂度非常低——我们只使用top10框。示例检测和全精度召回曲线分别如图2和图3所示。值得注意的是,可视化检测是通过仅使用最大中心方形图像裁剪,即使用全图像获得的。然而,我们设法获得了相对较小的对象,例如第二行和第二列的船,以及第三行和第三列的羊。 在本工作中,我们提出了一种新的方法来定位图像中的对象,该方法可以预测多个边界框的时间。该方法使用深度卷积神经网络作为基本特征提取和学习模型。它制定了一个能够利用可变数量的groundtruth位置的多箱定位成本。在“一个类一个箱”方法的情况下,对1000个盒子进行非max-suppression,使用与给定图像中感兴趣的DeepMulti-Box方法相同的准则,并学习在未见图像中预测这些位置。 我们在VOC2007和ILSVRC-2012这两个具有挑战性的基准上给出了结果,在这两个基准上,所提出的方法具有竞争力。此外,该方法能够很好地预测后续分类器将探测到的位置。我们的结果表明,deepmultibox的方法是可扩展的,甚至可以在两个数据集之间泛化,就能够预测感兴趣的定位,甚至对于它没有训练的类别。此外,它能够捕获同一类物体的多种情况,这是旨在更好地理解图像的算法的一个重要特征。 在未来,我们希望能够将定位和识别路径折叠到一个单一的网络中,这样我们就能够在一个通过网络的一次性前馈中提取位置和类标签信息。即使在其当前状态下,双通道过程(本地化网络之后是分类网络)也会产生5-10个网络评估,每个评估的速度大约为1个CPU-sec(现代机器)。重要的是,这个数字并不与要识别的类的数量成线性关系,这使得所提出的方法与类似dpm的方法非常有竞争力。

相关百科
热门百科
首页
发表服务