论文投稿百科

钠离子电池安全性研究论文题目

发布时间:2024-07-07 01:18:54

钠离子电池安全性研究论文题目

负极:锂电子电池最核心的是石墨,钠离子电池核心用硬碳,硬碳这个材料里面有一些微孔。正极:跟锂的电池类似,结构也是一样。钠离子电池有非常重要的氧化物,我们目前主要做三元,磷酸矾钠钠离子电池类似磷酸铁锂正极材料,性能非常好,容量大改120mA/g,法国科学院创业团队在做,磷酸铁钠不具备商业化价值。还有普鲁士蓝路线,非常便宜,不到1万一吨,原料廉价易得,但结晶水不容易去掉。隔膜:用主流的隔膜完全没有问题。电解液:将六氟磷酸锂换成六氟磷酸钠,六氟磷酸钠价格不会波动,规模化后会便宜稳定很多。溶剂:目前用的是碳酸酯,跟锂离子电池一模一样,跟锂离子电池充放电原理也一模一样。碳酸丙烯酯在锂离子电池中没有办法用,钠离子电池中可以用,低温性能非常好。总结而言,对隔膜影响最小,对电解液、正极、负极、钠盐跟锂离子电池相比有很大变化。4.能量密度120wh/kg是成组还是单体?(1)单体目前能做到120wh每公斤,工艺再成熟一点的话,做到130至140问题不大,成组打折大概80%-90%。5.钠离子电池主要市场?(1)目前发展钠离子电池不是为了替代锂离子电池,作为储能增量市场发展,基站电动自行车等对能量密度需求不高的领域是钠离子电池主要市场。(2)高端电动汽车市场上难以替换锂离子电池。6.单位体积能量密度跟磷酸铁锂相比怎样? 跟磷酸铁锂相近,目前还未生产,都在做样机,目前大概低20%-30%。7.钠离子电池产业链准备比较充分,为什么还没有看到钠离子电池的量产?(1)技术成熟有一个过程,其价格会比锂离子电池贵;(2)材料成本考虑,硬碳量比较小,还未规模化。8.将来钠电池大规模量产,正极技术路线看好哪个?(1)铜状氧化物的镍铁锰和铜铁锰体系,可能会有一些衍生物,成熟度比较高。(2)普鲁士蓝,非常有优势,但短板也巨大。9.钠离子电池和锂离子电池制造工艺上区别?(1)制造工艺上非常接近,几乎不用改任何设备和东西,只要在工艺上做一些微调。如果有一条锂离子电池生产线,可以同步直接生产钠离子电池是一点问题都没有的;(2)在技术上有一点配方区别;10.钠离子电池量产存在哪些问题?(1)产业成熟度不够,正极材料、负极材料、电解液需要规模化供货生产;宁德时代会推动钠离子电池的发展。11.按照目前产业化规模发展的水平,到哪些时间段,能够做到与锂离子电池成本相当?(1)目前磷酸铁锂大概在5毛钱-6毛钱一瓦时,不考虑研发投入、原材料的成本,按正常的采购的话,目前我们大概算起来在5毛多钱一瓦时,情况比较理想。(2)原材料、正极材料、负极材料和电解液配合配套上去,可能三年左右时间会真正应用到规模上去,而且比磷酸铁锂电池要便宜,能不能到2毛钱每瓦时,可能需要一些时间,按照宁德时代推的速度,大概2-3年。12.钠离子电池安全性怎么样?热失控上跟磷酸铁锂相比怎么样?(1)样机做出来前,我们认为钠离子活性更高,认为早期钠离子电池安全性不如锂离子电池。(2)电池做出来以后,我们做了很多测试,包括穿刺、碰撞和短路,发现热安全性比磷酸铁锂好,钠离子电池拆开后,钠离子会迅速失活,迅速氧化,当然也会起火,但相比锂离子电池要好一点。(3)至于后面的变化,我们仍在研究。但目前的数据显示安全性比锂离子电池好一点。13.钠离子电池是否会跟动力电池有分层?(1)做钠离子电池不是去替代锂离子电池,而是部分取代,因为钠离子电池能量密度一定追不上高镍三元,中高端电动车市场能量密度需求比较高。(2)我们国家锂资源70%都需要进口,国外对中国锂资源进口会影响锂离子电池生产,钠离子电池是对锂离子电池的支撑和保障。14.跟磷酸铁锂电池相比,单体能量密度的天花板大概是什么情况?(1)铁锂的天花板已经很接近了,能做到100~180wh/kg,目前铁锂靠近极限;(2)钠离子电池可以做到200wh/kg左右,能量密度天花板高于铁锂电池,目前技术还未成熟大概可以做到130wh/kg。15.钠离子电池容器问题,EC,DMC,DEC或者EMC应用相对用量会多一点?用每个公司的技术方案不一样,但是都会用,针对低温,针对高温,针对不同的循环寿命的配方都会有一点差异区别。16.钠离子电池对隔膜生产影响不大,对其他材料生产企业影响较大,这些企业怎样转型?从设备来讲难度不大的,技术难度有一些,得有技术的一个支撑。17. 现在循环大概是4000次左右,极限的状态还能再提升到多少?如果提升之后,是不是说所有的可能的场景都能够运用?(1)循环寿命是根据材料体系、制造工艺等成熟起来,它的寿命是一步一步得到提高的。10年宁德时代动力电视循环寿命只有500~800次,目前能做到8000-10000次。(2)早期我做出来大概500次循环,目前3000次-40000次,循环寿命没有一个天花板,只要成熟了以后,会逐步提高,后面做到5000-8000次问题不是很大,我们希望能到10000次。(3)产品应用都是没有问题的,只要应用需求端忍受能量密度,体积能量密度我相信都可以用。 $宁德时代(SZ300750)$ $赣锋锂业(SZ002460)$ $比亚迪(SZ002594)$ 全部评论用户头像浅水喧哗12021-11-27 23:14不喜欢用户头像小白和韭菜最配了回复@长缨在手敢缚苍龙: 我也是这么觉得的。那么国外厂难道没有实验室。最终选择了锂肯定是有原因的。至少目前钠比不上锂技术成熟,方便普及2021-09-18 09:52不喜欢用户头像随波逐流o3m钠电池区别2021-09-17 11:55不喜欢用户头像暴利收割机回复@yangfyz: 当初锂电池你也这么说[大笑][大笑][大笑]2021-07-04 15:17不喜欢用户头像国定路M2021-05-24 07:49不喜欢用户头像时代韭菜回复@长缨在手敢缚苍龙: 还有就是为了解禁股票不塌方,2021-05-23 23:33不喜欢用户头像yangfyz能说的只有一个,有那么容易国外早成功了,最终选择锂不是没有道理的,绝不是拍拍脑袋就决定的,难道人家都傻嘛?合理的解释只有一个,目前对应的锂材料价格太高了,觉得压缩了它的利润空间,所以搞个新花样出来,吸引市场眼球,目的是为了好讨价还价!!!鄙视!展开2021-05-23 23:093不喜欢用户头像杭州战神回复@骑蜗牛逛A股: 你还悟道呢,还不允许别人学习?2021-05-23 22:141不喜欢用户头像骑蜗牛逛A股都在写“学习”,个人感觉学习个毛线,这么爱学习,早上名牌大学当基金经理了!2021-05-23 21:201不喜欢用户头像长缨在手敢缚苍龙别想了,你当全世界科学家都是傻子吗,锂好钠好这是经过科学无数次验证的,宁德时代这次说钠信息扩大化明显就是空头狗们取锂电筹码的伎俩;那些踏空锂电的空头机构们就是急了2021-05-23 21:058不喜欢加载更多评论封面图片专刊雪球专刊 特别版雪球特别版——段永平投资问答录(投资逻辑篇)段永平:著名企业家,小霸王品牌缔造者, 步步高创始人,vivo和OPPO 联合创始人,网易丁磊生命中的贵人,拼多多黄峥的人生导师。他同时也是著名投资人,早期投资网易获100倍以上回报,目前重仓茅台、苹果等优质公司查看专刊大盘解析收评01-03【A股2023迎开门红,两市超4200股收涨;数字经济板块掀涨停潮,信创、数据要素、软件等轮番领涨;蒙脱石散概念发酵;锂电、光储等赛道股午后表现亮眼】 三大股指早盘小幅走低后持续走升,截至收盘,沪指涨,深成指涨,创业板指涨。两市全天成交7888亿,超4200股收涨,北向资金净卖出5亿元。午评01-03【沪指涨,收复3100点,两市超4000股上涨;数字经济板块持续飙涨,软件、信创、数据要素等集体走强;酒店、旅游板块大幅下挫,西安旅游跌停】 数字经济板块持续飙涨,软件、信创、数据要素等集体走强,新冠特效药板块再度活跃,蒙脱石散概念发酵,证券板块不振,酒店、旅游板块大幅下挫。 截止午盘,沪指涨,深成涨,创业板指涨;两市半日成交4672亿,超4000股上涨。北向资金半日净卖出10亿。盘前必读01-03A股今日迎2023年首秀!机构表示做多窗口即将开启;上海称目前未发现境外输入毒株和XBB的本土传播;元旦假期全国交通出行持续回暖;比亚迪12月新能源汽车销量继续创新高;基金年度业绩榜单出炉,前两名均被万家基金包揽,第三名花落金元顺安。热门文章男人重仓买入一支股票,下跌了30%,整天唉声叹气。妻子见状问明原因后,觉得自己有办法,于是在低价时抄底买入丈夫之前的股票,认为这样不但解套而且还能大赚一笔。可是妻子买入后,过了几天,该股又跌了20%,现在夫妻俩一起唉声叹气。在股市中,很多人都抄过底,当然我不否认有...澄明若镜266评我有一个的35年大计陈达美股投资211评突然发现,中国年轻人对“出国游”的态度开始变了!这段时间,随着逐渐“放开”,出国游成为了很多年轻人讨论的话题,但意外发现,风向似乎已经变了,年轻人对“出国游”突然不再像以前那般向往,这是怎么了?的确有人说,现在放开了,终于可以出国游了。但看到更多的是,很多人感叹,终于可...朱邦凌185评还有人在考虑三四线城市继续放量,拯救房地产,做大梦呢呀?现在房地产开始最起码要修养生息5年左右,这五年还得解决人口增长问题。没有新的婴儿潮,不要提房地产的大增长,都是bullshit$碧桂园(02007)$南山赵思思184评缺血,太缺血了!上午做了一台现在想起来有点后怕的手术。32岁小伙子因为尿血三天住院,查血常规,60 g/l(正常男性至少得120以上),B超、CT只能看见膀胱里面巨大血块,找不到病因!想先输血稳定下来进一步检查明白,输血科回电:医院A型血只剩8袋,急诊手术都用不上,你确定要用?!这下可难办了...颜值能破一万点181评很多投资者纠结周期。我持有老窖和神华。关于白酒的周期,煤炭的周期,让很多投资者都很担心,其中也不乏长期关注我的球友。我们都知道万物皆有周期。但我们同时也应该知道:万物皆不同各自周期的经历和结果并不一样。这轮地产周期,大家都明白了一个道理:在周期高峰期过度融...一MAN159评明年货币未必会宽松的,今年没少放了,复苏要让今年放的高能货币流通起来。超额储蓄10万亿,其中明年释放1w亿消费增量,给社零总额带来弹性1%,这1w亿增量其实还有不少要去到家庭防疫与医疗保健开支里。老龄化到了加速阶段,这个超额储蓄放不放的出来是说不准的事情,咱们国家的老龄化年...metalslime155评【心如死灰,没有心气】一生积德行善,为何最近厄运缠身?没有勇气了。期待弱鸡股反弹就像等着中彩票……导火索应该是上周四晚上公布的客户第二天平盘开太弱,说明资金对此无感,之后全天走弱跌-4%,今天又-6%……上周五舍不得割肉,最后变-4%,上周五-4%不割今天-6%割……你...莫贫137评【936章】 收评 做了一些新年调仓 低位加泰格 高位减中软减亨通 启动开仓中颖 尾盘杀入中矿lweein134评$华泰证券(SH601688)$ 华泰证券致投资者一封信股民朋友们:谢谢多年来对我们的大力支持。这几年股市比较低迷,佣金收入下滑比较厉害,我们自营业务也一般。所以这两年的业绩也很平凡。2018年,我们从资本市场增发了140亿。2022年,我们又很幸运从瑞交所融到了近17亿美金。老李头88888125评科普贴:无视可转债,我们将再次错过二十年前的房地产小卡叔125评燃油车已经死了,朋友们。你们去4s店看一下燃油车,尤其是合资燃油车,用某车评的人的话说,就是进入了大型考古现场,分不清2022年的车,还是2012年的车,乃至2005的车。燃油车不仅过去十年变化不大,将来十年更加变化不大。没有哪个车企愿意再给燃油车投入更多的研发费用、营销费...非主流价投老师123评经济复苏比预期快的多,本来很多人想是半年复苏,现在看年前很多行业就会出现报复性消费增长昆山法律122评$华泰证券(SH601688)$证监会新闻发言人答记者问。问:近期,有上市证券公司公告实施再融资,请问证监会如何评价?答:我们关注到有关上市证券公司再融资行为。我们一直倡导证券公司自身必须聚焦主责主业,树牢合规风控意识,坚持稳健经营,走资本节约型、高质量发...不容然后见君子120评周一复盘。今天开门红,下午比上午强。上证站稳60日线,放量中阳线,周一看一周,起码这周还是值得期待的。MACD有金叉迹象,KDJ金叉到高位,第一目标3170附近,到了大概率有回踩。今天最好的还是量能起来了,早盘也说了,说明交易的人数在增加。板块方面,数据确权,国资云,信创,数字货币大涨,...欲说还休99116评老有人说“互联网行业吸血实体经济”。我:?????????陈达美股投资116评一个小故事教会你什么时候卖出股票宝儿在努力呀115评【机构看好2023年股市,我们该怎么看?】每到此时,人们喜欢为今年找找方向,听听专家意见。近期不少机构公开发声,看好明年股市表现;券商报告也唱多为主;方向上则普遍偏好持续成长的新能源、半导体、军工等高端制造,以及受益于经济修复的消费、医药等。看好的理由主要是经济复苏、政策宽...就叫姜诚113评在适合自己的赛道上努力奔跑闯关东了吧112评打开App评论写

钠离子电池不可能完全替代锂电池。锂离子是最轻的金属材料。

单从能力密度和循环寿命这两点来看,钠电池很难取代锂电池,但因为钠离子电池成本优势,前景依然非常广阔,新能源车还处在快速增长期,锂资源匮乏拖了整个产业后腿,但是钠电池崛起后,可以作为锂电池的补充。

可以加速新能源车的普及,待钠电池产业链成熟后,低速电动车、A0级汽车等低端车型会使用钠离子电池,高端车依然使用锂离子电池,钠电池依然无法取代锂电池的地位,除非锂资源枯竭。

拓展资料:

钠离子电池的优点:成本低,锂在地壳中是非常稀缺的资源,地壳中锂元素的含量只有,海水中含有大量锂元素,但提取非常困难,成本非常高,而钠元素在地壳中含量高,海水中含量更高,且提取要容易很多。钠离子电池成本优势极其明显。

安全性,钠电池化学性质比锂电池稳定很多,安全性更高,不易自燃,所以在快充过程中,钠离子电池风险更小,可以适应更高充电功率,据说钠离子电池常温下降0-80%只需要15分钟,而且钠离子电池抗寒性更好,载低温-20摄氏度环境中,电动车续航会有较大幅度提升。

缺点:能量密度低,电池能量密度低,相同重量的电池,钠离子电池续航里程只有三元锂电池的67%,对于计较续航里程的消费者来说,钠离子续航里程太短,尽量缩小与锂电池的差距。

循环寿命短,磷酸铁锂电池循环寿命6000次,三元锂电池循环寿命3000次,而钠离子电池的循环寿命只有1500次,仅是磷酸铁锂电池的,如果钠离子电池循环寿命没有突破的话,消费者肯定不会买单。

1.钠资源丰富

随着新能源汽车市场高速发展,锂电池需求不断攀升,国内锂资源供给处于紧张状态,产业链公司争抢锂资源。在锂资源紧张的背景下,钠离子电池战略意义凸显。钠资源分布于全球各地,完全不受资源和地域的限制,钠离子电池相比锂离子电池有非常大的资源优势。

2.钠离子电池具有成本优势

钠电池成本优势使其更有经济性。锂电池负极只能使用铜箔,而钠电池则可以在正极负极都使用铝箔,单Kwh钠电池消耗铝箔量将较锂电池翻倍,同时铝箔价格更低,有望进一步降低钠电池材料成本。

3.钠离子电池安全性高

由于钠离子电池的内阻比锂电池高,所以其在短路的情况下瞬时发热量少,温升较低,热失控温度高于锂电池,具备更高的安全性。另一方面,锂电池在低温下充电会析锂,而钠电池却不会发生析出,故钠离子电池拥有更宽的工作温度范围。钠离子电池可以在-40℃到80℃的温度区间正常工作,-20℃的环境下容量保持率接近90%,高低温性能优于锂离子电池。

钠离子电池优缺点如下:

优点是钠离子资源丰富,地球上拥有钠资源储量丰富、分布广泛,相比锂电池材料,获取资源方便,有利于将产业最大。成本低廉,随着纳离子电池批量生产后,价格会越来越便宜,这正是钠离子资源丰富、开采成本低。安全性高,钠离子电池安全性高不易起火和爆炸。

缺点是钠离子电池能量密度较低,供应链需要完善目前,锂离子电池非常完善,而钠离子电池算是新产业,还是落后于锂离子电池,整个供应链上缺少强有力的企业做保障,供应链还有待完善。

钠离子电池

钠离子电池(Sodium-ion battery)是一种二次电池(充电电池),主要依靠钠离子在正极和负极之间移动来工作,与锂离子电池工作原理相似。2018年12月,南京理工大学夏晖教授与中外团队合作,首创结构设计和调控方法,在锰基正极材料研究方面取得重要进展。

2021年8月,工信部发布公告有关部门将支持钠离子电池加速创新成果转化,支持先进产品量产能力建设。同时根据产业发展进程适时完善有关产品目录,促进性能优异、符合条件的钠离子电池在新能源电站、交通工具、通信基站等领域加快应用。

钠离子电池安全性研究现状论文

钠离子电池优缺点如下:

优点是钠离子资源丰富,地球上拥有钠资源储量丰富、分布广泛,相比锂电池材料,获取资源方便,有利于将产业最大。成本低廉,随着纳离子电池批量生产后,价格会越来越便宜,这正是钠离子资源丰富、开采成本低。安全性高,钠离子电池安全性高不易起火和爆炸。

缺点是钠离子电池能量密度较低,供应链需要完善目前,锂离子电池非常完善,而钠离子电池算是新产业,还是落后于锂离子电池,整个供应链上缺少强有力的企业做保障,供应链还有待完善。

钠离子电池

钠离子电池(Sodium-ion battery)是一种二次电池(充电电池),主要依靠钠离子在正极和负极之间移动来工作,与锂离子电池工作原理相似。2018年12月,南京理工大学夏晖教授与中外团队合作,首创结构设计和调控方法,在锰基正极材料研究方面取得重要进展。

2021年8月,工信部发布公告有关部门将支持钠离子电池加速创新成果转化,支持先进产品量产能力建设。同时根据产业发展进程适时完善有关产品目录,促进性能优异、符合条件的钠离子电池在新能源电站、交通工具、通信基站等领域加快应用。

发展前景不好说,因为钠离子资源广泛,价格低,但是容量密度较小,各有各的优点,两种电池所应用的领域肯定是不同的,取之长避之短

钠离子电池毕业论文

7月29日宁德时代发布了一款革命性电池:15分钟充电80%;零下20度放电不衰减。

可能有人就问了,不就是电池嘛,怎么就革命啦?

大家可能知道,现在制约电动汽车发展短板之一就是充电太慢,影响长途出行,以至于有人把电动汽车说成买菜车。每到冬天,电动汽车的续航就大打折扣,有些甚至只有标称里程的一半。而该电池则完美解决了上述问题,并且这款电池比锂电池价格低30%,也就是说不仅解决了锂电动车低温衰减和充电慢的问题,还大幅度降低了成本,你说这是不是革命性电池?

但是,这种电池并不是新鲜物,早在四五十年前就已经有人开始研究了,名字叫钠离子电池。当年钠电池和锂电池是同步发展的,只不过跟锂电池相比,钠电池的能量密度太低,被锂电池淘汰了。

那为什么宁德时代又把它当成宝贝似的推出来呢?原因有二:

第一:资源危机

锂电池的主要原料是锂,1台电动汽车要用掉约60kg锂,而全球已探明的锂资源储量只有8000万吨,并且中国锂资源只占全球总量的6%,80%的锂资源依赖进口,我们经历了石油卡脖子数十年,可不能在新能源领域再重蹈覆辙。而且近年来锂的价格不断上涨,锂电池的成本也就居高不下。

而钠电池就不一样了,钠资源太多了,钠在地壳中的丰度达到,是锂的400多倍。储量丰富而且分布广泛,根本不受地域限制。我们每天吃的盐都知道吧,那个就叫钠盐,盐多便宜,如果钠离子电池大规模应用,完全不用担心钠资源问题。

第二:宁德时代依靠锂电池做到全球第一,而锂资源匮乏、锂电池充电电慢、高低温性不佳、安全性较差,且正在被以比亚迪为首的磷酸铁锂电池追赶,磷酸铁锂成本低,安全性好,宁德时代能不着急吗?最终研究了一番,于是又把钠离子电池搬了出来。

毕竟,钠离子电池除了能量密度低以外,其它的全是优点,比如他充电快、低温环境下不会像锂电池一样衰减,而且安全性好,成本又低。那宁德时代怎么解决他的能量密度问题呢,首先宁德时代已经把钠离子电池的电芯能量密度提高到了160Wh/Kg,其次又把钠电池和锂电池组合在一起,通过BMS精准管理,取长补短,相辅相成。这种电池一旦量产,电动车的成本立马大幅下降,必然为新能源汽车带来一次革命性的改变。

铂族锂电池 回答,请采纳

钠电池的缺点和不足有寿命短、放电快。

钠离子电池是一种二次电池(充电电池),主要依靠钠离子在正极和负极之间移动来工作,与锂离子电池工作原理相似。2018年12月,南京理工大学夏晖教授与中外团队合作,首创结构设计和调控方法,在锰基正极材料研究方面取得重要进展。

钠离子电池研究最早开始于上世纪八十年代前后,早期被设计开发出来的电极材料如MoS2、TiS2以及NaxMO2电化学性能不理想,发展非常缓慢。寻找合适的钠离子电极材料是钠离子储能电池实现实际应用的关键之一。

2010年以来,根据钠离子电池特点设计开发了一系列正负极材料,在容量和循环寿命方面有很大提升,如作为负极的硬碳材料、过渡金属及其合金类化合物,作为正极的聚阴离子类、普鲁士蓝类、氧化物类材料。

特别是层状结构的NaxMO2(M= Fe、Mn、Co、V、Ti)及其二元、三元材料展现了很好的充放电比容量和循环稳定性。

成果简介

有机化合物材料环保,资源丰富,结构通用性强,组装成本低,被公认为阴极材料用于锂离子和钠离子电池。然而,有机化合物固有的较高溶解度和较低电导率材料严重影响其工业应用。 本文,青岛大学Cunguo Wang(第一作者)与中科院苏州纳米所等研究人员在《ACS Appl. Energy Mater.》期刊 发表名为“High-Performance PDB Organic Cathodes Reinforced by 3D Flower-like Carbon for Lithium-/Sodium-Ion Batteries”的论文, 研究报告了一种具有三维花状多孔碳结构(PDB/3D-FC) 的聚(2,3-二硫-1,4-苯醌)复合材料。

原位聚合方法使得PDB的分布更均匀,并且三维花状多孔碳结构防止 PDB 的积累。此外,PDB/3D-FC 的分级多孔结构为电子/离子提供了有效的传输路径。受益于理想的制造策略和精心挑选的材料中,DB/3D-FC电极在锂离子电池中显示出203 mAh g–1的优良倍率容量,在钠离子电池中显示出183 mAh g–1的优良倍率容量。本文报道的制备策略是通用的,适用于增强其他有机电极的电化学特性材料.

图文导读

图1. 由导电碳和有机材料组装PDB/3D-FC电极的方案

图2. 形态和成分分析

方案1. 制备聚合物PDB的合成路线

图3. (a) 3D-FC 和 PDB/3D-FC 的 XPS 光谱。(b) 3D-FC 的高分辨率 N1s 光谱。(c) S 2p 和 (d) C 1s 的 PDB/3D-FC 的 XPS 光谱。

图4. 用于 LIB 的 PDB/3D-FC 阴极的电化学性能。

图5. SIBs的PDB/3D-FC阴极的电化学性能。

文献:

钠离子电池研究进展论文摘要

近期锂电池一直是作为市场主线被各路资金轮番进攻。为什么锂电成为市场上的“香饽饽”,这个大家都应该知道,也不用我再去罗列锂电的广泛用途与供需关系之间的对比。我就跟大家聊聊大家不知道的投资知识? 锂电池板块这两年广泛被大家认可,同时也得到资金推动,就拿宁德时代来说,2018年的6月上市,区间震荡了一年之后于2019年年底股价才开始缓慢上涨。 宁德时代的上涨也标志着锂电应用时代的到来。 因此也造就了宁德时代在二级市场从2019年年底的七,八十元一直涨到目前的最高价元。股价的高低也反应了市场的认可度。到这里会有朋友问? 谁知道宁德时代能涨这么高,早知道早买点放着了。 对呀?谁知道呀! 其实不是我们不知道,只是我们没有提前预判到。可能有人不服气,会问我,你预判到了?你说说下一个类比锂电池的机会是什么? 我也会很负责的跟你说下一个投资机会是——钠离子电池! 有人说:胡说!钠离子电池的性能根本比不上锂电池。 我也承认,钠离子电池本身性能来说确实比不上锂电池。但钠离子电池除了性能之外还要考虑到市场的性价比,原材料的供需关系等综合因素。这么一对比钠离子就远超锂电池有性价比优势了。 有人会问,你说的还是太笼统,能再详细点吗? 好吧!我把干货都给倒出来。 我们就先从上游材料端说起:制造锂电池的重要材料是锂矿,而锂矿目前主要集中在智利,阿根廷,澳大利亚和我国基本占了全球锂矿的九十以上,而智利与澳大利亚又是仇中的主要代表,政治风险太高;另外我国的锂矿占比虽然但真正优质的,可用的锂矿远远比这个数据要少的多。 以宁德时代,比亚迪为主导的钠离子电池替代锂电池的行为就成为摆在我国新能源电池发展的头等大事。 这还只是从政治及产业发展的角度上来佐证钠离子电池替代锂电池的因素,下面我们再从商业的角度刨析一下钠替锂的因素。钠资源量储备丰富、就已探明来说,钠的储存量是锂的406倍,我国探明的钠盐储量已经超过万亿吨。分布广泛、提炼简单,并且开采的成本也会大幅的降低。只从可采用量上来说,钠资源就可很好的支撑我们新能源产业的发展。另外,钠电池在安全性、充电速度、低温耐受方面优势也很明显。 10分钟可充至90%。钠电池在零下40摄氏度都可以正常工作。(基本国内所有地区都可用钠离子电池) 我还在权威机构文章中摘要了钠电池与锂电池的对比优势: (1)集流体材料更便宜; (2)界面离子扩散能力更好; (3)离子电导率更高; (4)高低温性能更优异; (5)安全性能更好。这些优势也支撑了钠离子电池可替代锂电池的部分应用。钠离子电池(NaCuFeMnO/软碳体系)的正极材料成本,仅为锂离子电池(磷酸铁锂/石墨体系)正极材料成本的40%左右。负极:用无烟煤制备无定形碳负极材料将有利于大幅降低电池成本。负极集流体:钠离子电池正负极集流体均为铝箔。根据测算,磷酸铁锂电池中铜箔占材料成本的15%。钠离子电池中铝箔替代铜箔后,材料成本将会减少10%左右。 看完这些数据,是不是意味着企业可以增加更多的利润空间。前期我也说了钠离子电池与锂电池相比还是有差距的,这种差距只是局限在某些实际应用范围,单从可替换的应用范围来说,2025年国内钠离子电池潜在应用场景的需求量为123GWh,以磷酸铁锂电池价格计量,对应537亿元左右的市场空间。从市场空间到应用效果,再到生产成本,再到资源储量丰富。这些因素都会加速钠替锂的时间周期。 因此钠离子电池势必会成为下一个投资的风口!在这里整理出一些布局钠离子电池的企业: (1)布局钠离子电池技术的公司,如宁德时代、鹏辉能源、圣阳股份、中国长城、欣旺达。 (2)布局钠离子电池材料技术的公司,如负极材料企业翔丰华;正极材料企业容百 科技 ;铝箔企业鼎胜新材、南山铝业、明泰铝业、万顺新材。 (3)钠资源公司,中盐化工、南风化工、百合花。

锂钠同族,物化性质有类似之处

锂、钠、钾同属于元素周期表ⅠA 族碱金属元素,在物理和化学性质方面有相似之处,理论上都可以作为二次电池的金属离子载体。

锂的离子半径更小、标准电势更高、比容量远远高于钠和钾,因此在二次电池方面得到了更早以及更广泛的应用。

但锂资源的全球储量有限,随着新能源 汽车 的发展对电池的需求大幅上升,资源端的瓶颈逐渐显现,由此带来的锂盐供需的周期性波动对电池企业和主机厂的经营造成负面影响,因此行业内部加快了对资源储备更加丰富、成本更低的电池体系的研究和量产进程,钠作为锂的替代品的角色出现,在电池领域得到越来越广泛的关注。

综合性能优于铅酸电池,能量密度是短板

钠离子电池与锂离子电池工作原理类似。与其他二次电池相似,钠离子电池也遵循脱嵌式的工作原理,在充电过程中,钠离子从正极脱出并嵌入负极,嵌入负极的钠离子越多,充电容量越高;放电时过程相反,回到正极的钠离子越多,放电容量越高。

能量密度弱于锂电,强于铅酸。

在能量密度方面,钠离子电池的电芯能量密度为100-160Wh/kg,这一水平远高于铅酸电池的30-50Wh/kg,与磷酸铁锂电池的120-200Wh/kg相比也有重叠的范围。

而当前量产的三元电池的电芯能量密度普遍在200Wh/kg以上,高镍体系甚至超过 250Wh/kg,对于钠电池的领先优势比较显著。

在循环寿命方面,钠电池在3000次以上,这一水平也同样远远超出铅酸电池的300次左右。

因此,仅从能量密度和循环寿命考虑,钠电池有望首先替代铅酸和磷酸铁锂电池主打的启停、低速电动车、储能等市场,但较难应用于电动 汽车 和消费电子等领域,在这两大领域锂电仍将是主流选择。

安全性高,高低温性能优异。

钠离子电池的内阻比锂电池高,在短路的情况下瞬时发热量少,温升较低,热失控温度高于锂电池,具备更高的安全性。因此针对过 充过 放、短路、针刺、挤压等测试,钠电池能够做到不起火、不爆炸。

另一方面,钠离子电池可以在-40 到80 的温度区间正常工作,-20 的环境下容量保持率接近90%,高低温性能优于其他二次电池。

倍率性能好,快充具备优势。

依赖于开放式3D结构,钠离子电池具有较好的倍率性能,能够适应响应型储能和规模供电,是钠电在储能领域应用的又一大优势。

在快充能力方面,钠离子电池的充电时间只需要10分钟左右,相比较而言,目前量产的三元锂电池即使是在直流快充的加持下,将电量从20%充至80%通常需要30分钟的时间,磷酸铁锂需要45分钟左右。

资源端:克服锂电瓶颈

锂电池面临资源瓶颈,钠资源相对丰富。锂的地壳资源丰度仅为。

根据美国地质调查局的报告,随着锂矿资源勘探力度增加,2020年全球锂矿储量提高到 2100万吨锂金属当量(折合碳酸锂亿吨),同比增长;若按照每辆电动车使用50kg碳酸锂测算且不考虑碳酸锂的其他下游市场,当前锂储量仅能够满足20亿辆车的需求,因此存在资源端的瓶颈。

分区域看,全球主要锂矿资源国锂储量均有不同程度的提高,澳大利亚和中国增加较多,其中澳大利亚锂储量由2019年的280万吨提高到470万吨锂金属当量,而2020年中国锂储量则大幅提升50%至150万吨锂金属当量。

总体来看,智利和澳大利亚仍为全球前两大锂资源拥有国,2020年分别约占全球锂资源储量的和。

与之相比,钠资源的地壳丰度为,是锂资源的440倍,同时分布广泛,提炼简单,钠离子电池在资源端具有较强的优势。

锂价上涨带来企业成本端的扰动。

从短期来看,由于2021年开始锂的需求增长,而上游锂矿供给有所收缩以及去库存,锂矿以及锂盐价格在2020年见底,2021年上半年价格回升幅度较大;从长期来看,锂资源存在产能瓶颈引发市场对于锂价中枢上移的预期。

对于企业来说,长期稳定的原材料价格对于自身的正常经营意义重大,锂价的持续上涨可能加速企业寻找性价比更高的替代品的进程。

中国锂资源对外依存度较高。

中国锂矿主要分布在青海、西藏、新疆、四川、江西、湖南等省区,形态包括锂辉石、锂云母和盐湖卤水。

受制于提锂技术、地理环境、交通条件等客观因素,长期以来中国锂资源开发较慢,主要依赖进口;近年来随着下游需求增长以及技术进步,中国锂资源开发进度有所加速。

在不考虑库存下,2020年中国锂行业对外资源依赖度超70%,维持较高水平。

发展钠离子电池具备战略意义。

中国大力发展新能源 汽车 的目的除了降低碳排放、解决环境问题之外,减少对传统化石燃料的进口依赖也是重要原因之一。

因此,若不能有效解决资源瓶颈问题,发展电动车的意义就会打一定折扣。

除了锂资源外,锂电池其他环节如钴和镍也面临进口依赖以及价格大幅波动的难题,因此发展钠离子电池具备国家层面的战略意义。

2020年,美国能源部明确将钠离子电池作为储能电池的发展体系;欧盟储能计划“电池 2030”项目将钠离子电池列在非锂离子电池体系的首位,欧盟“地平线2020研究和创新计划”更是将钠离子材料作为制造用于非 汽车 应用耐久电池的核心组件重点发展项目;国内两部委《关于加快推动新型储能发展的指导意见》提出坚持储能技术多元化,加快飞轮储能、钠离子电池等技术开展规模化试验示范。

钠离子电池已经受到越来越多国家的关注和支持。

材料端:凸显成本优势

正极材料

正极材料使用钠离子活性材料,选择呈现多样化。

正极材料是决定钠离子电池能量密度的关键因素,目前研究和有量产潜力的材料包括过渡金属氧化物体系、聚阴离子(磷酸盐或硫酸盐)体系、普鲁士蓝(铁氰化物)体系三大类。

过渡金属氧化物为当前正极材料主流选择。

层状结构过渡金属氧化物2(M 为过渡金属元素)具有较高比容量以及其与锂电池的正极材料在合成以及电池制造方面的许多相似性,是钠离子电池正极材料有潜力得到商业化生产的主流材料之一。

然而,层状结构过渡金属氧化物在充放电过程中易发生结构相变,在长循环和大电流充放电中容量衰减严重,使其具有较低的可逆容量及较差的循环寿命。

常见的改善手段主要有体相掺杂、正极材料表面包覆等。

中科海钠采用了P2型铜基层状氧化物(),显著提升正极材料的容量水平,并且电池能量密度达到145Wh/kg;

钠创新能源采用的O3型铁酸钠基三元氧化物()具有较高的克容量(超过130mAh/g)和良好的循环稳定性;

英国Faradion公司采用镍基层状氧化物材料,电池能量密度超过140Wh/kg。

磷酸钒钠是研究的主流方向之一。

聚阴离子型化合物 , Na[() ] (M 为可变价态的金属离子如Fe、V等,X为P、S等元素),具有较高电压、较高理论比容量、结构稳定等优点,但电子电导率低,限制了电池的比容量和倍率性能。

目前业界研究最多材料的主要包括磷酸铁钠、磷酸钒钠、硫酸铁钠等,并通过碳包覆以及参入氟元素提升导电性以及容量。

钠创新能源将磷酸钒钠作为重点研发的钠电池正极材料之一,中科院大连物化所已实现三氟磷酸钒钠的高效合成和应用。

普鲁士蓝材料具有更高的理论容量。

普鲁士蓝类材料,Na[()6] (为 Fe、Mn、Ni 等元素)具有开框架结构 , 有利于钠离子的快速迁移;理论上能够实现两电子反应,因此具有高的理论容量。

但在制备过程中存在结构水含量难以控制等问题,并且容易发生相变以及与电解质产生副反应导致循环性能变差。

辽宁星空钠电致力于 (CN)6的产业化研究,理论容量高达170mAh/g; 宁德时代采用普鲁士白(Nan[Fe()6])材料,创新性地对材料体相结构进行电荷重排,解决了普鲁士白在循环过程中容量快速衰减这一核心难题。

钠离子电池在材料端拥有显著的成本优势。

由于碳酸钠价格远低于碳酸锂,并且钠离子电池正极材料通常使用铜、铁等大宗金属材料,因此正极材料成本低于锂电池。

根据中科海钠官网数据,使用NaCuFeMnO/软碳体系的钠电池的正极材料成本仅为磷酸铁锂/石墨体系的锂电池正极材料成本的40%,而电池总的材料成本较后者降低 30%-40%。

负极材料

钠离子电池负极材料主要包括碳基材料(硬碳、软碳)、合金类(Sn、Sb等)、过渡金属氧化物(钛基材料)和磷酸盐材料等。

钠离子半径大于锂离子,难以嵌入石墨类材料,因此锂电池传统的石墨负极并不适用于钠电池。

合金类普遍体积变化较大,循环性能较差,而金属氧化物和磷酸盐材料容量普遍较低。 无定形碳为钠电池主流材料。

在已报道的钠离子电池负极材料中,无定型碳材料以其相对较低的储钠电位,较高的储钠容量和良好的循环稳定性等优点而成为最具应用前景的钠离子电池负极材料。

无定型碳材料的前驱体可分为软碳和硬碳前驱体,前者价格低廉,在高温下可以完全石墨化,导电性能优良;后者价格较高(10-20万元/吨),在高温下不能完全石墨化,但其碳化后得到的碳材料储钠比容量和首周效率相对较高。

以亚烟煤、烟煤、无烟煤为代表的煤基材料具有资源丰富、廉价易得、产碳率高的特点,采用煤基前驱体制备出的钠离子电池负极材料,储钠容量约220mAh/g,首周效率可达80%,是目前最具性价比的钠离子电池碳基负极材料;但该类材料存在微粉多、振实密度低、形状不规则等特性,在电芯生产过程中不利于加工。

中科海钠以亚烟煤、褐煤、烟煤、无烟煤等煤基材料为主体,沥青、石油焦、针状焦等软碳前驱体为辅材,提出一种能够改善煤基钠离子电池负极材料的加工性能和电化学性能的方法,制备工艺简单、成本低廉,能够得到微粉含量低、振实密度高的电池负极材料。

宁德时代开发了具有独特孔隙结构的硬碳材料,其具有易脱嵌、优循环的特性;比容量高达350mAh/g,与动力类石墨水平相当。

电极集流体皆为铝箔,成本更低。

在石墨基锂离子电池中,锂可以与铝反应形成合金,因此铝不能用作负极的集流体,只能用铜替代。

钠离子电池的正负极集流体都为铝箔,价格更低;根据中科海钠官网数据,使用 NaCuFeMnO/软碳体系的钠电池的集流体(铝-铝)成本仅为磷酸铁锂/石墨体系的锂电池集流体(铝-铜)成本的20%-30%。

集流体是除正极外,材料成本与锂电池差异最大的环节。

电解液

和锂离子电池相似,钠离子电池电解质主要分为液体电解质、固液复合电解质和固体电解质三大类。

一般情况下 , 液体电解质的离子电导率高于固体电解质。

在溶剂层面,酯类和醚类电解液是最常用的两种有机电解液,其中酯类电解液是锂离子电池体系的主要选择,因为其可以有效地在石墨负极表面进行钝化且高电压稳定性优于醚类电解液。

对于钠离子电池:

首先,目前主流的研发机构依然沿用了酯类溶剂,如PC、EC、DMC、EMC等,针对不 同的正负极和功能配方有所不同,且 PC 的用量占比高于锂电池;

其次,由于在醚类电解液中钠离子和醚类溶剂分子可以高度可逆地发生共插层反应,且有效地在负极材料表面构建稳定的电极/电解液界面,所以受到越来越广泛的关注和研究;

最后,水系电解液也是新的研究领域之一,以水为电解液溶剂替代传统有机溶剂,更加环保安全且成本低。

在电解质层面,锂盐将换成钠盐,如高氯酸钠(NaClO4)、六氟磷酸钠(NaPF6)等。

在添加剂层面,传统通用添加剂体系没有发生明显变化,如FEC在钠离子电池中依然被广泛应用。

其他

隔膜方面,钠离子电池和锂电池技术类似,对孔隙率的要求或有一定差异。

外形封装方面,钠离子电池也包括圆柱、软包和方形三种路线。

根据各家官网显示,中科海钠主要为圆柱和软包路线,钠创新能源则三种技术路线都有。

设备工艺方面,与锂电池区别不大,有利于钠电池沿用现成设备和工艺快速投入商业化生产。

规模化生产后成本有望低于元/Wh。

当前由于产业链缺乏配套、缺乏规模效应,钠离子电池的实际生产成本在1元/以上;政策的支持和龙头企业大力推广有望加速产业化进程,若达到当前锂电池的市场体量,成本有望降至元/Wh,与锂电池相比具备优势。

钠离子电池重回舞台,研究热度升温

钠离子电池的研究始于1970年左右,最初与锂离子电池都是电池领域科学家研究的重点方向。

20世纪80年代,锂离子的正极材料研究首先取得突破,以钴酸锂为代表,和由石墨构成的负极材料组合,让锂电池获得了极佳的性能;让两者真正分野的是索尼在1991年成功将锂电池商用化并首先应用于消费电子领域。

锂电池商用化的顺利进行反向抑制了钠离子电池技术路线的发展,当时商用的锂离子电池循环寿命能达到钠离子电池的10倍左右,两种电池的产品性能表现相去甚远,锂离子电池获取了科学家和资本、产业的绝对关注。

2010年之后,由于大规模储能市场的场景逐渐清晰以及产业界对未来锂资源可能面临供给瓶颈的担忧,钠离子电池重新进入人们的视野。

之后十年时间,全球顶尖的国家实验室和大学先后大力开展钠离子电池的研发,部分企业也开始跟进。

包括国际代表Faradion公司、国内代表机构中科海钠和钠创新能源以及锂电池代表企业宁德时代等。

Faradion英国牛津大学主导的Faradion公司成立于2011年,是全球首家从事钠离子电池研究的公司,15年开发出电池系统,材料为层状金属氧化物和硬碳体系。

之后多个国家也成立了相关机构和公司,例如法国科学院从15年开始开发磷酸钒钠电池,夏普北美研究院几乎同时开发长循环寿命的钠电池。

中科海钠

中科海钠成立于2017年,是国内首家专注于钠离子电池研发的公司,公司团队主要来自于中科院物理化学研究所。

2017年底,中科海钠研制出48V/10Ah钠离子电池组应用于电动自行车;2018年9月,公司推出首辆钠离子电池低速电动车;

2019年3月,公司自主研发的30kW/100kWh钠离子电池储能电站在江苏省溧阳市成功示范运行;2020年9月,公司钠离子电池产品实现量产,产能可达30万只/月;

2021年3月,公司完成亿元级 A 轮融资,用于搭建年产能2000吨的钠离子电池正、负极材料生产线;2021年6月,公司全球首套1MWh钠离子电池储能系统在山西太原正式投入运营。

在材料体系方面,正负极材料分别选用成本低廉的钠铜铁锰氧化物和无烟煤基软碳,电芯能量密度已接近 150 Wh/kg, 循环寿命达4000次以上,产品主要包括钠电池以及负极、电解液等配套材料。

钠创新能源

钠创新能源诞生于2018年,由上海电化学能源器件工程技术研究中心、上海紫剑化工 科技 有限公司和浙江医药股份有限公司共同发起成立,技术团队主要来自于上海交通大学。

2019年4月,正极材料中试线建成并满负荷运行;2020年10月,公司二期生产规划基地建设;2021年7月,公司与爱玛电动车联合发布电动两轮车用钠离子电池系统。

在材料体系方面,公司在铁酸钠基三元氧化物方面研究较为深入,产品主要包括钠电池以及铁基三元前驱体、三元材料、钠电电解液等。

宁德时代

宁德时代从2015年开始研发钠离子电池,研发队伍迅速扩大;2020年6月,公司宣布成立21C创新实验室,中短期主要方向为锂金属电池、固态锂电池和钠离子电池;

2021年7月,公司推出第一代钠离子电池,采用普鲁士白/硬碳体系,单体能量密度高达 160Wh/kg;常温下充电15分钟,电量可达80%以上;

在-20 C低温环境中,也拥有90%以上的放电保持率;系统集成效率可达80%以上,热稳定性远超国家强标的安全要求;

公司表示下一代钠离子电池能量密度研发目标是200Wh/kg以上。

在系统创新方面,公司开发了 AB 电池系统解决方案,即钠离子电池与锂离子电池两种电池按一定比例进行混搭,集成到同一个电池系统里,通过BMS精准算法进行不同电池体系的均衡控制。

AB电池系统解决方案既弥补了钠离子电池在现阶段的能量密度短板,也发挥出了它高功率、低温性能好的优势;以此系统结构创新为基础,可为锂钠电池系统拓展更多应用场景。公司已启动相应的产业化布局,计划2023年形成基本产业链。

剑指储能和低速车市场,潜在市场空间大

预计2025年钠离子电池潜在市场空间超200GWh。

根据上文分析,钠离子电池有望率先在对能量密度要求不高、成本敏感性较强的储能、低速交通工具以及部分低续航乘用车领域实现替代和应用。

暂不考虑电池系统层面的改进(如锂钠混搭)对应用场景的拓展,2020年全球储能、两轮车和A00车型装机量分别为14/28/,预计到2025年三种场景下的电池装机量分别为180/39/31GWh,对应2025年钠离子电池潜在市场空间为250GWh。

钠离子电池作为二次电池重要的技术路线之一,在当前对上游资源紧缺度和制造成本的关注度逐步升温的情况下,凭借资源端和成本端的优势重新得到市场的广泛关注。

但由于钠离子电池本身能量密度较低且提升空间有限,因此在行业内更多地扮演新能源细分领域替代者的角色,有望率先在对能量密度要求不高、成本敏感性较强的储能、低速交通工具以及部分低续航乘用车领域实现替代和应用,对中高端乘用车市场影响十分有限。

在龙头企业的推动下,钠离子电池的产业化进程有望加速。

行业公司:

1)布局钠离子电池相关技术的传统电池和电池材料企业。

尽管技术路线有差异,但传统的锂电龙头企业在资金和研发方面优势明显,对各种技术路线具有较高的敏感性,对钠离子电池相关技术也多有布局。

宁德时代、鹏辉能源,公司在钠电领域皆保持长期的研发投入,后者预计21年年底电池量产;杉杉股份、璞泰来、新宙邦,关注欣旺达、容百 科技 、翔丰华,上述公司在钠电池或材料领域皆有专利或研发布局。

2)投资钠离子电池企业的公司。

华阳股份,公司间接持有中科海钠的股权;浙江医药,公司持有钠创新能源40%的股权。

3)产业链重塑带来的机会。

钠离子电池的起量将带动正负极、电解液锂盐技术路线的变更,新的优秀供应商将脱颖而出。

华阳股份,公司与中科海钠既有股权关系,又有业务合作,生产的无烟煤是海钠煤基负极的重要原料之一,并且与后者合资建设正负极材料项目;中盐化工、南风化工,公司具备上游钠盐储备。

1)钠离子电池技术进步或成本下降不及预期的风险:

钠离子电池的产业化还处于初期阶段,若技术进步或者成本改善的节奏慢于预期,将影响产业化进程,导致其失去竞争优势。

2)企业推广力度不及预期的风险:

当前由于规模较小、产业链缺乏配套,钠电池生产成本较高,其规模化生产离不开龙头企业的大力推广;若未来企业的态度软化,将影响钠电池产业化进程。

3)储能、低速车市场发展不及预期的风险:

钠离子电池主要应用于储能和低速车等领域,若下游市场发展速度低于预期,将影响钠电池的潜在市场空间。

——————————————————

请您关注,了解每日最新的行业分析报告!

报告属于原作者,我们不做任何投资建议!

作者:平安证券 朱栋 皮秀 陈建文 王霖 王子越

报告原名:《电力设备行业深度报告:巨头入场摇旗“钠”喊,技术路线面临分化 》

铅酸电池的安全性研究论文

铅酸为标准水相原电池,金属铅、28%硫酸水溶液以及生成的部分硫酸铅均不可爆很安全(但硫酸铅一直沉积可能过冲造成膨胀鼓包,硫酸铅在高温时也能分解出对人体有毒的硫化物和氧化铅升华烟雾等)。锂电池内部的锂遇空气氧化和水分子均会急剧放热起火爆炸,并且制得工艺中使用的fec和nmp等有机溶剂亦可助燃不灭。

铅酸电池更安全

锂离子电池储存的总能量和其安全性是成反比的,随着电池容量的增加,电池体积也在增加,其散热性能变差,出事故的可能性将大幅增加。

而对于大容量锂离子电池,特别是汽车等用大容量锂离子电池,采用强制散热尤为重要。有时,电池本身虽然有安全控制措施,但是因为某些原因造成控制失灵,缺少安全阀或者气体来不及通过安全阀释放,电池内压便会急剧上升而引起爆炸。

铅酸电池相对安全许多它维护简单,使用寿命长,采用了有抗腐蚀结构的铅钙合金栏板VRLA电池可浮充使用10-15年。

质量稳定,可靠性高采用先进的生产工艺和严格的质量控制系统,VRLA电池的质量稳定,性能可靠。电压、容量和密封在线上进行100%检验。所有VRLA电池均通过UL安全认证。

扩展资料

“锂电池”,是一类由锂金属或锂合金为负极材料、使用非水电解质溶液的电池。1912年锂金属电池最早由Gilbert N. Lewis提出并开始研究锂离子电池。由于锂金属的化学特性非常活泼,使得锂金属的加工、保存、使用,对环境要求非常高。随着科学技术的发展,现在锂电池已经成为了主流。

铅酸电池(VRLA),是一种电极主要由铅及其氧化物制成,电解液是硫酸溶液的蓄电池。铅酸电池放电状态下,正极主要成分为二氧化铅,负极主要成分为铅;充电状态下,正负极的主要成分均为硫酸铅。

参考资料来源百度百科-锂电池

百度百科-铅酸电池

锂电池更安全从电池的安全防护角度来看,锂电池18650电芯上都设计有安全阀,不仅可以释放内部过大压力,还会物理断开电池与外界的电路连接,相当于将该电芯物理隔断,以保证电池包其它电芯的安全。另外,锂电池包通常都会配备BMS保护板,它能够精准控制电池包中每一颗电芯的状态,直接从根源上解决过充过放的问题。锂电池BMS电池管理系统就可以给电池提供十足的保护,功能就包括:充/放电高低温保护;单节过充/过放电压保护;充/放电过流保护;电芯均衡;短路保护;充电提醒等等。 相反,铅酸电池缺乏BMS系统保护。铅酸电池在安全防护上除了安全阀之外似乎就乏善可陈,BMS保护几乎不存在,很多劣质充电器甚至都无法做到充满后断电,安全保障上与锂电池相去甚远。再配上劣质充电器,不出事儿是你人品好。电动车自燃爆炸常有发生,多数都是电池充放电造成的,有专家解释,铅酸蓄电池的充电时间过长,充电到末期,两极转化为有效物质后,如果再继续充电,就会产生大量的氢、氧气体。当这种混合气体浓度在空气中占4%时,又来不及逸出,如果排气孔堵塞或气体太多,遇到明火就会发生爆炸,轻则损坏蓄电池,重则伤人、损物。也就是,铅酸电池一旦过度充电,将提高爆炸的几率。而目前市面上的铅酸电池并没有做任何的“过充保护”,这就让充电中的尤其是充电末期的铅酸电池危险性极高。最后还有一点,如果是因为意外冲撞造成电池结构遭到破坏,铅酸电池似乎比锂电池更安全一些。不过在这种等级的事故中,电池材料早已暴露在开放环境中,爆炸也就无从谈起了。总结:从电池的安全冗余设计上来看,合格的锂电池和铅酸电池都能够充分保证用户的使用安全,并不存在明显的安全性差异。究竟是锂电池好还是铅酸电池安全性更好好?现阶段来说,还是锂电池的安全系数更高,不然为什么会有那么多电动汽车选用锂电池作为汽车的动力来源呢?本人觉得想要用得安全用得长久,购买锂电池还是可靠之选!

如果是正确使用,铅酸电池是不会爆炸、着火的,如果是非正确使用,那是另说。如果错误操作造成短路或产生超大的电流,会是十分危险的。就一般正确的使用,铅酸蓄电池比锂电池更安全,近些年,出现的爆炸、着火等事故,大多发生在锂电池的使用上,而铅酸蓄电池较少发生。(铅酸蓄电池是一种历史悠久,经过长期的使用、改进,技术非常成熟,性能稳定。而锂电池的历史没有那么久,仅仅是近些年的较新型蓄电池,还需要不断的提高,完善,改进,是需要时间的。)

相关百科
热门百科
首页
发表服务