学术论文百科

论文中常见的统计学错误有哪些表现

发布时间:2024-07-05 17:32:36

论文中常见的统计学错误有哪些表现

弃真错误是指放弃了真实的、成立的结论。而存伪是保留了不成立的、错误的结论。二者是统计检验中的两个错误。

学好了数学或者成为了一个优秀的程序员绝对不等于对统计学有很好的了解。还有一些案例中显示有扎实的统计能力的优秀科学家也不一定总是在统计方面能做好——科学家也是人,他们也会在统计学领域犯错,这里有些例子: 非常草率的处理数据,例如:数据误读,错误标注,未能正确清理数据,合并不正确项,不存档等等。 对概率论的理解不足,过分依赖少数概率分布,如常态。 对取样理论和取样方法的无知:从一个小的自选择样本推广到一个大的异质群体就是一个例子。对数据加权的误解也很常见。第三个例子使用复杂抽样方法时,将数据视为一个简单的随机样本。 对统计推断的把握不严,如混淆统计意义和实际意义。另一个例子是对人口数据进行重要性测试。例如,如果我们对A国有五十年的季度GDP数据,这200个数据点是该时间段内国家的人口数据,而不是人口的样本。例如,进行t检验,看看线性趋势是否与零有统计学上的差异,在这种情况下是没有意义的。 利用机会寻找重大差异(p-hacking),却不考虑已经进行的显著性测试的数量。 在学术期刊上,要获得学术期刊的认可,通常需要达到统计上的重要性,而出版偏倚是一个严重的后果。 Meta-Analysis (Borenstein et ) 和Methodsof Meta-Analysis (Schmidt and Hunter)这2本书中的对应方法很管用值得一看。 从一个没有被复制甚至交叉验证的单一研究中得出戏剧性的结论。 对贝叶斯统计,非参数统计,心理计量学和潜在变量模型的理解太表面。 对分析时间序列和纵向数据的方法,以及空间统计和多层次混合模型理解不充分。 许多工具,如支持向量机和人工神经网络,以及数据挖掘和预测分析中常用的Boosting和bagging等概念,对许多尚未开发的科学领域有潜在的实用价值。 没有对广义线性模型方程给予足够的关注,例如忽略交互术语。 在量化回归、回归样条、广义相加模型或其他方法时,对一组特定的数据进行线性化。 不理解(或忽略)重要的统计假设。回归分析被普遍滥用。 测量误差:统计显着性测试不考虑测量误差,但测量误差可能会对统计模型的解释造成很大影响。 忽略回归到平均值:一个非常古老而又非常危险的错误! 出于各种动机对连续变量进行分类,以满足统计假设,但这样做是不对的。另一个原因是它是一种输出结果的方法——一些“效应”是年龄真正的代理或年龄大大缓和。连续年龄有时被故意地分组到广泛的年龄范围,使其效果减弱。这样,一个不负责任的研究者可以得出结论:他们试图建立的效果在控制年龄后是“显着的”。 已经知道结果后才提出假设:这个现象很普遍,以至于“人人都做,所以没关系”。 用数据子集支持一个假设:“调整”数据直到它支持一个假设。 混淆因果关系:对因果机制的误解并不罕见。 埋藏在评论里的错误:有成千上万的“学术”出版物,但很少有期刊审稿人是具备专业的统计知识。 将模拟数据当作实际数据处理,并将计算机模拟解释为使用真实数据的实验。 基于假设而不是数据来进行粗略的估计,这在学术文献中很常见,我们很少注意到。随机模型有时也被误解为确定性模型。 试图 “从石头里挤血” :当数据越少,研究人员就越要 “填写空白”。有许多(通常是复杂的)方法来处理过少的数据量,但都增加了进入建模过程的主观性。反过来,这也为不负责人的科学家提供了更多的余地。 元分析和倾向分数分析的不当使用。 “从小见大”——用少量信息去证实假设。 不跟上统计数据的最新发展,不与专业统计人员交流。这是上面列出的许多问题的根本原因。

第一类错误是:零假设H0实际上是正确的,却被否定了。第二类错误则是:H0实际上是错的,却没有被否定。假设检验系指拒绝或保留零假设的判断,又称显著性检定。在选择否定域并计算检验统计量之后,完成最后一道手续,即根据试验或样本结果决定假设的取与舍。如果结果落在否定域内,将在已知犯第一类错误概率的条件下,否定零假设。反之,如果结果落在否定域外,则不否定零假设,与此同时,就有了犯第二类错误的危险。扩展资料统计检验亦称“假设检验”。根据抽样结果,在一定可靠性程度上对一个或多个总体分布的原假设作出拒绝还是不拒绝(予以接受)结论的程序。决定常取决于样本统计量的数值与所假设的总体参数是否有显著差异。这时称差异显著性检验。检验的推理逻辑为具有概率性质的反证法。例如,在参数假设检验中,当对总体分布的参数作出原假设 H0 后,先承认总体与原假设相同, 然后根据样本计算一个统计量,并求出该统计量的分布,再给定一个小概率(一般为 05,01 等,视情况而定),确定拒绝原假设 H0 的区域(拒绝域)。参考资料来源:百度百科——统计检验

第一类错误,又叫拒真错误,即本来原假设是正确的,而根据样本得出的统计量的值落入了拒绝域,根据检验拒绝了正确的原假设。第二类错误,又叫受伪错误,即本来原假设是错误的,而根据样本得出的统计量的值落入了接受域,不能拒绝原假设,接受了(确切地说是不拒绝)原本错误的原假设。

论文中常见的统计学错误有哪些

第一类错误是:零假设H0实际上是正确的,却被否定了。第二类错误则是:H0实际上是错的,却没有被否定。假设检验系指拒绝或保留零假设的判断,又称显著性检定。在选择否定域并计算检验统计量之后,完成最后一道手续,即根据试验或样本结果决定假设的取与舍。如果结果落在否定域内,将在已知犯第一类错误概率的条件下,否定零假设。反之,如果结果落在否定域外,则不否定零假设,与此同时,就有了犯第二类错误的危险。扩展资料统计检验亦称“假设检验”。根据抽样结果,在一定可靠性程度上对一个或多个总体分布的原假设作出拒绝还是不拒绝(予以接受)结论的程序。决定常取决于样本统计量的数值与所假设的总体参数是否有显著差异。这时称差异显著性检验。检验的推理逻辑为具有概率性质的反证法。例如,在参数假设检验中,当对总体分布的参数作出原假设 H0 后,先承认总体与原假设相同, 然后根据样本计算一个统计量,并求出该统计量的分布,再给定一个小概率(一般为 05,01 等,视情况而定),确定拒绝原假设 H0 的区域(拒绝域)。参考资料来源:百度百科——统计检验

1、第一类错误(Ⅰ类错误)也称为 α错误,是指当虚无假设(H0)正确时,而拒绝H0所犯的错误。这意味着研究者的结论并不正确,即观察到了实际上并不存在的处理效应。可能产生原因:样本中极端数值;采用决策标准较宽松。2、第二类错误(Ⅱ类错误)也称为β错误,是指虚无假设错误时,反而接受虚无假设的情况,即没有观察到存在的处理效应。可能产生的原因:实验设计不灵敏;样本数据变异性过大;处理效应本身比较小。扩展资料:统计检验的统计量:完成了上述工作之后,接下来就是做一次与理想试验尽量相同的实际抽样(比如实际做一次重复抛掷硬币的试验),并从获取的样本资料算出检验统计量。检验统计量是关于样本的一个综合指标,但与第九章参数估计中将要讨论的统计量有所不同,它不用作估测,而只用作检验。统计检验判定:假设检验系指拒绝或保留零假设的判断,又称显著性检定。在选择否定域并计算检验统计量之后,完成最后一道手续,即根据试验或样本结果决定假设的取与舍。如果结果落在否定域内,将在已知犯第一类错误概率的条件下,否定零假设。反之,如果结果落在否定域外,则不否定零假设,与此同时,就有了犯第二类错误的危险。参考资料来源:百度百科——假设检验中的两类错误

一类错误是原假设Ho为真却被我们拒绝了,犯这种错误的概率用α表示,所以也称α错误或弃真错误;另一类错误是原假设为伪我们却没有拒绝,犯这种错误的概率用β表示,所以也称β错误或取伪错误

按产生统计误差的性质来分有:空间误差、时间误差、方法误差和人为误差四种统计误差按工作环节来分有:源头误差、中间环节误差和最终误差三种

论文中常见的统计学错误有哪些情况

计学,可以说无处不在,我们每个人的日常生活都会受到统计学的影响。但是很多人,即使受过统计学的正规训练,也会在不知不觉之间犯一些常见的分析错误。下面这篇文章,我就和大家分享一些现实生活中比较常见的统计研究错误。 参照组(Control group)那天我恰好在网上看到一篇文章,叫做《眼保健操对于保护眼睛有作用么?》。作者的观点是眼保健操没有什么作用,列举的证据是眼保健操在中国的学校里推行了50多年,小学生和中学生的近视率大大上升了,而非下降。因此作者得出结论:眼保健操对视力有害。乍一看,好像确实是这么回事:50多年前我们开始在学校里要求学生们做眼保健操。但是现在孩子们的近视率,则要比当时的那些孩子的近视率高出很多。但是如果就因为这个而得出眼保健操没用的结论,则是谬之大矣。主要原因在于:没有参照组。和建国初那时候的孩子们相比,现在的孩子由于功课压力,在室内花的时间(读书,做作业,上补习班等)大幅度增长,用眼的“诱惑”也大大增加,比如电视,电脑,手机等等。因此无论是否做眼保健操,现在孩子的视力肯定都不及当时的孩子。这也不是中国独有的现象,日本,韩国,新加坡等国的情况也类似。而这些国家都没有眼保健操。如果要真正研究眼保健操对于保护视力是否有效,那么就应该通过参照组来对比。研究人员应该找到两组情况类似的样本(比如同一个学校里的孩子)进行研究。这两组样本的区别除了他们是否做眼保健操以外,在其他方面越相似越好。然后通过一定时间的跟踪调查,研究人员才可能得出更加客观和可靠的研究结果。1747年,苏格兰医生James Lind在一艘名叫Salisbury的船上成功的找到了治疗坏血病的方法:就是通过吃橙子和柠檬补充维他命C。而他找到该疗法的关键就是运用了参照组实验方法。坏血病是一种非常可怕的疾病。坏血病的发病特征包括皮下出血(因此腿会变黑),极度疲劳,牙床腐烂,肌肉变软。长期出海的船员和海盗是坏血病的多发人群。James Lind使用的参照组实验是这样进行的。在Salisbury这艘船上,Lind医生找到了12个坏血病严重程度差不多的病人,将他们两人一组分成6组。对于这6组病人,Lind医生给予了他们6种不同的治疗方法,包括橙子,柠檬,苹果酒,醋和盐水等。后来Lind医生发现,食用橙子和柠檬的那组病人的恢复速度显然比其他组别要快很多,因此得出结论橙子和柠檬可以治疗坏血病。现在我们知道,橙子中的维他命C才是坏血病的克星。Lind医生通过参照组实验获得的这项重要发现,帮助挽救了成千上万的水手的生命。如果没有参照组这个重要的分析方法,Lind医生能否找到正确的解药要打一个大问号。当时,Lind医生一度怀疑坏血病的病因和啤酒有关。Lind医生观察到,每次船上的啤酒被喝光时,往往也伴之以坏血病的大面积流行。但事实上,啤酒喝光,和坏血病盛行,只是一个巧合而已。因为坏血病往往多发于长期航海旅途中,而在海上旅行久了,啤酒自然也会被喝完。如果不通过参照组方法去分析真正的原因,那么就可能得出啤酒能够治疗坏血病这样错误的结论。在我们阅读分析一些统计研究报告时,一个很重要的地方就是要看该研究有没有参照组进行对比。如果研究只是比较了几个变量之间的关系而缺乏参照组进行对照,那么该研究的结论就值得怀疑。 随机取样(Random Sampling)下面来讲讲“随机取样(Random Sampling)”这个问题。在现实中,我们经常面对的问题是,需要研究的样本量太大,无法收集到完整的数据。比如我们想要了解全国十几亿人的想法,或者想要知道所有沿海城市的中产阶级的消费偏好,等等。要想精确的回答这些问题,我们就需要随机抽取一些代表性样本,通过样本的表现来推测整体的特征。如何确保收集到的样本真正“随机”,是一个技术含量很高的问题。在这方面有很多失败的例子可供我们学习。1936年,美国的总统选举大战在罗斯福(FDR)和兰登(Alf Landon)之间展开。在选举投票前,当时一家非常大的调查机构Literary Digest发出了1千万张明信片来收集美国人的投票倾向。在这1千万张明信片中,Literary Digest收到了2百万份回复。在这些回复中,绝大部分人都倾向于选兰登。因此Literary Digest得出结论:兰登将赢得总统选举。当时还有另外一家新成立不久的调查公司,名叫Gallup。Gallup没有Literary Digest那么大的预算。他们只是有针对性的选了几千个受访者做了民意调查,并得出罗斯福将会赢得总统大选的结论。

弃真错误是指放弃了真实的、成立的结论。而存伪是保留了不成立的、错误的结论。二者是统计检验中的两个错误。

学好了数学或者成为了一个优秀的程序员绝对不等于对统计学有很好的了解。还有一些案例中显示有扎实的统计能力的优秀科学家也不一定总是在统计方面能做好——科学家也是人,他们也会在统计学领域犯错,这里有些例子: 非常草率的处理数据,例如:数据误读,错误标注,未能正确清理数据,合并不正确项,不存档等等。 对概率论的理解不足,过分依赖少数概率分布,如常态。 对取样理论和取样方法的无知:从一个小的自选择样本推广到一个大的异质群体就是一个例子。对数据加权的误解也很常见。第三个例子使用复杂抽样方法时,将数据视为一个简单的随机样本。 对统计推断的把握不严,如混淆统计意义和实际意义。另一个例子是对人口数据进行重要性测试。例如,如果我们对A国有五十年的季度GDP数据,这200个数据点是该时间段内国家的人口数据,而不是人口的样本。例如,进行t检验,看看线性趋势是否与零有统计学上的差异,在这种情况下是没有意义的。 利用机会寻找重大差异(p-hacking),却不考虑已经进行的显著性测试的数量。 在学术期刊上,要获得学术期刊的认可,通常需要达到统计上的重要性,而出版偏倚是一个严重的后果。 Meta-Analysis (Borenstein et ) 和Methodsof Meta-Analysis (Schmidt and Hunter)这2本书中的对应方法很管用值得一看。 从一个没有被复制甚至交叉验证的单一研究中得出戏剧性的结论。 对贝叶斯统计,非参数统计,心理计量学和潜在变量模型的理解太表面。 对分析时间序列和纵向数据的方法,以及空间统计和多层次混合模型理解不充分。 许多工具,如支持向量机和人工神经网络,以及数据挖掘和预测分析中常用的Boosting和bagging等概念,对许多尚未开发的科学领域有潜在的实用价值。 没有对广义线性模型方程给予足够的关注,例如忽略交互术语。 在量化回归、回归样条、广义相加模型或其他方法时,对一组特定的数据进行线性化。 不理解(或忽略)重要的统计假设。回归分析被普遍滥用。 测量误差:统计显着性测试不考虑测量误差,但测量误差可能会对统计模型的解释造成很大影响。 忽略回归到平均值:一个非常古老而又非常危险的错误! 出于各种动机对连续变量进行分类,以满足统计假设,但这样做是不对的。另一个原因是它是一种输出结果的方法——一些“效应”是年龄真正的代理或年龄大大缓和。连续年龄有时被故意地分组到广泛的年龄范围,使其效果减弱。这样,一个不负责任的研究者可以得出结论:他们试图建立的效果在控制年龄后是“显着的”。 已经知道结果后才提出假设:这个现象很普遍,以至于“人人都做,所以没关系”。 用数据子集支持一个假设:“调整”数据直到它支持一个假设。 混淆因果关系:对因果机制的误解并不罕见。 埋藏在评论里的错误:有成千上万的“学术”出版物,但很少有期刊审稿人是具备专业的统计知识。 将模拟数据当作实际数据处理,并将计算机模拟解释为使用真实数据的实验。 基于假设而不是数据来进行粗略的估计,这在学术文献中很常见,我们很少注意到。随机模型有时也被误解为确定性模型。 试图 “从石头里挤血” :当数据越少,研究人员就越要 “填写空白”。有许多(通常是复杂的)方法来处理过少的数据量,但都增加了进入建模过程的主观性。反过来,这也为不负责人的科学家提供了更多的余地。 元分析和倾向分数分析的不当使用。 “从小见大”——用少量信息去证实假设。 不跟上统计数据的最新发展,不与专业统计人员交流。这是上面列出的许多问题的根本原因。

1、第一类错误又称Ⅰ型错误、拒真错误,是指拒绝了实际上成立的、正确的假设,为“弃真”的错误,其概率通常用α表示。假设检验是反证法的思想,依据样本统计量作出的统计推断,其推断结论并非绝对正确,结论有时也可能有错误,错误分为两类。2、第二类错误,Ⅱ型错误,接受了实际上不成立的H0 ,也就是错误地判为无差别,这类取伪的错误称为第二类错误,其概率用β表示。简单说就是:你的假设是错误,但你接受该假设。“第一类错误”和“第二类错误”之间的关系:1、当样本例数固定时,α愈小,β愈大;反之,α愈大,β愈小。因而可通过选定α控制β大小。要同时减小α和β,唯有增加样本例数。统计上将1-β称为检验效能或把握度(power of a test),即两个总体确有差别存在,而以α为检验水准,假设检验能发现它们有差别的能力。实际工作中应权衡两类错误中哪一个重要以选择检验水准的大小。2、做假设检验的时候会犯两种错误:第一,原假设是正确的,而你判断它为错误的;第二,原假设是错误的,而你判断它为正确的。我们分别称这两种错误为第一类错误(Type I error)和第二类错误(Type II error)。第一类错误:原假设是正确的,却拒绝了原假设。第二类错误:原假设是错误的,却没有拒绝原假设。我们常把假设检验比作法庭判案,我们想知道被告是好人还是坏人。原假设是“被告是好人”,备择假设是“被告是坏人”。法庭判案会犯两种错误:如果被告真是好人,而你判他有罪,这是第一类错误(错杀好人);如果被告真是坏人,而你判他无罪,这是第二类错误(放走坏人)。记忆方法:我们可以把第一类错误记为“以真为假”,把第二类错误记为“以假为真”。当然我们也可以将第一类错误记为“错杀好人”,把第二类错误记为“放走坏人”。在其他条件不变的情况下,如果要求犯第一类错误概率越小,那么犯第二类错误的概率就会越大。这个结论比较容易理解,当我们要求“错杀好人”的概率降低时,那么往往就会“放走坏人”。同样的,在其他条件不变的情况下,如果要求犯第二类错误概率越小,那么犯第一类错误的概率就会越大。当我们要求“放走坏人”的概率降低时,那么往往就会“错杀好人”。同样的,在其他条件不变的情况下,如果要求犯第二类错误概率越小,那么犯第一类错误的概率就会越大。当我们要求“放走坏人”的概率降低时,那么往往就会“错杀好人”。

论文中常见的统计学错误有哪些原因

中国光大(集团)总公司:  你公司《关于报送企业集团统计报表的请示》(光京字[2003]67号)收悉。经研究,现批复如下:  一、我局现行企业集团统计报表制度规定,国家试点企业集团和中央管理的企业集团统计报表由我局企业调查总队负责布置、收集。由于你公司属于中央管理的企业集团,因此你公司填报的企业集团统计报表应直接报送给我局企业调查总队,具体执行时间从今年半年报开始。  二、《北京市统计局关于完善企业集团统计报表制度的通知》(京统发[2003]85号)要求你公司向其报送集团2003年年报和半年报的有关事宜,我局企业调查总队已和北京市统计局企调队进行了沟通,北京市企业集团统计的范围不再包括你公司,其所需资料由我局企业调查总队予以提供。国家统计局办公室二○○三年九月十五日

计学,可以说无处不在,我们每个人的日常生活都会受到统计学的影响。但是很多人,即使受过统计学的正规训练,也会在不知不觉之间犯一些常见的分析错误。下面这篇文章,我就和大家分享一些现实生活中比较常见的统计研究错误。 参照组(Control group)那天我恰好在网上看到一篇文章,叫做《眼保健操对于保护眼睛有作用么?》。作者的观点是眼保健操没有什么作用,列举的证据是眼保健操在中国的学校里推行了50多年,小学生和中学生的近视率大大上升了,而非下降。因此作者得出结论:眼保健操对视力有害。乍一看,好像确实是这么回事:50多年前我们开始在学校里要求学生们做眼保健操。但是现在孩子们的近视率,则要比当时的那些孩子的近视率高出很多。但是如果就因为这个而得出眼保健操没用的结论,则是谬之大矣。主要原因在于:没有参照组。和建国初那时候的孩子们相比,现在的孩子由于功课压力,在室内花的时间(读书,做作业,上补习班等)大幅度增长,用眼的“诱惑”也大大增加,比如电视,电脑,手机等等。因此无论是否做眼保健操,现在孩子的视力肯定都不及当时的孩子。这也不是中国独有的现象,日本,韩国,新加坡等国的情况也类似。而这些国家都没有眼保健操。如果要真正研究眼保健操对于保护视力是否有效,那么就应该通过参照组来对比。研究人员应该找到两组情况类似的样本(比如同一个学校里的孩子)进行研究。这两组样本的区别除了他们是否做眼保健操以外,在其他方面越相似越好。然后通过一定时间的跟踪调查,研究人员才可能得出更加客观和可靠的研究结果。1747年,苏格兰医生James Lind在一艘名叫Salisbury的船上成功的找到了治疗坏血病的方法:就是通过吃橙子和柠檬补充维他命C。而他找到该疗法的关键就是运用了参照组实验方法。坏血病是一种非常可怕的疾病。坏血病的发病特征包括皮下出血(因此腿会变黑),极度疲劳,牙床腐烂,肌肉变软。长期出海的船员和海盗是坏血病的多发人群。James Lind使用的参照组实验是这样进行的。在Salisbury这艘船上,Lind医生找到了12个坏血病严重程度差不多的病人,将他们两人一组分成6组。对于这6组病人,Lind医生给予了他们6种不同的治疗方法,包括橙子,柠檬,苹果酒,醋和盐水等。后来Lind医生发现,食用橙子和柠檬的那组病人的恢复速度显然比其他组别要快很多,因此得出结论橙子和柠檬可以治疗坏血病。现在我们知道,橙子中的维他命C才是坏血病的克星。Lind医生通过参照组实验获得的这项重要发现,帮助挽救了成千上万的水手的生命。如果没有参照组这个重要的分析方法,Lind医生能否找到正确的解药要打一个大问号。当时,Lind医生一度怀疑坏血病的病因和啤酒有关。Lind医生观察到,每次船上的啤酒被喝光时,往往也伴之以坏血病的大面积流行。但事实上,啤酒喝光,和坏血病盛行,只是一个巧合而已。因为坏血病往往多发于长期航海旅途中,而在海上旅行久了,啤酒自然也会被喝完。如果不通过参照组方法去分析真正的原因,那么就可能得出啤酒能够治疗坏血病这样错误的结论。在我们阅读分析一些统计研究报告时,一个很重要的地方就是要看该研究有没有参照组进行对比。如果研究只是比较了几个变量之间的关系而缺乏参照组进行对照,那么该研究的结论就值得怀疑。 随机取样(Random Sampling)下面来讲讲“随机取样(Random Sampling)”这个问题。在现实中,我们经常面对的问题是,需要研究的样本量太大,无法收集到完整的数据。比如我们想要了解全国十几亿人的想法,或者想要知道所有沿海城市的中产阶级的消费偏好,等等。要想精确的回答这些问题,我们就需要随机抽取一些代表性样本,通过样本的表现来推测整体的特征。如何确保收集到的样本真正“随机”,是一个技术含量很高的问题。在这方面有很多失败的例子可供我们学习。1936年,美国的总统选举大战在罗斯福(FDR)和兰登(Alf Landon)之间展开。在选举投票前,当时一家非常大的调查机构Literary Digest发出了1千万张明信片来收集美国人的投票倾向。在这1千万张明信片中,Literary Digest收到了2百万份回复。在这些回复中,绝大部分人都倾向于选兰登。因此Literary Digest得出结论:兰登将赢得总统选举。当时还有另外一家新成立不久的调查公司,名叫Gallup。Gallup没有Literary Digest那么大的预算。他们只是有针对性的选了几千个受访者做了民意调查,并得出罗斯福将会赢得总统大选的结论。

你可以参考一下 《当代医学论文研究 》 里面很多这样子的文章

1、变量之间关系可以分为两类函数关系:反映了事物之间某种确定性关系。相关关系:两个变量之间存在某种依存关系,但二者并不是一一对应的;反映了事务间不完全确定关系;2、为什么要对相关系数进行显著性检验?实际上完全没有关系的变量,在利用样本数据进行计算时也可能得到一个较大的相关系数值(尤其是时间序列数值)。当样本数较少,相关系数就很大。当样本量从100减少到40后,相关系数大概率会上升,但上升到多少,这个就不能保证了;取决于你的剔除数据原则,还有这组数据真的可能不存在相关性;改变两列数据的顺序,不会对相关系数,和散点图(拟合的函数曲线)造成影响;对两列数据进行归一化处理,标准化处理,不会影响相关系数;我们计算的相关系数是线性相关系数,只能反映两者是否具备线性关系。相关系数高是线性模型拟合程度高的前提;此外相关系数反映两个变量之间的相关性,多个变量之间的相关性可以通过复相关系数来衡量。3、增加变量个数,R2会增大;P值,F值只要满足条件即可,不必追求其值过小。4、多重共线性与统计假设检验傻傻分不清?多重共线性与统计假设没有直接关联,但是对于解释多元回归的结果非常重要。相关系数反应两个变量之间的相关性;回归系数是假设其他变量不变,自变量变化一个单位,对因变量的影响,而存在多重共线性(变量之间相关系数很大),就会导致解释困难;比如y~x1+x2;x·1与x2存在多重共线性,当x1变化一个单位,x2不变,对y的影响;而x1与x2高度相关,就会解释没有意义。一元回归不存在多重共线性的问题;而多元线性回归要摒弃多重共线性的影响;所以要先对所有的变量进行相关系数分析,初步判定是否满足前提---多重共线性。

论文常见的格式错误有哪些表现

如果学校查重用的是知网系统,那么在知网论文查重系统中,如果格式正确的话,知网能够正确识别,就会排除论文末尾的参考文献,不参与检测,以灰色显示。如果格式错误,知网无法正确识别,就可能会被标红,从而影响重复率。参考文献格式样例:

1用分隔符,下一节,不是下一页,把引言和前面的东西分开,再把页眉页脚的那个框点出来,把链接到前一个的选择点暗掉,分隔符是菜单 插入 里的第一个2页码那个后面的数字不要有大有小,都弄成小四的,我是在样版文的目录里面改的,直接用复制粘贴3是说超级链接么,在鼠标右键呐

1,有两个办法,把引言前的部分全部剪切,放在一个单独的word文档中,引言后的部分前移变成第一页,按常规加入页码,从1开始,分开打印后后装订在一起即可,这个简单易行,非常方便;其二就是二楼所说的插入分节符的办法,可以从任意页开始,设置页码。2,选择目录,格式,制表位,全部清除,在制表位位置框中输入40(具体值根据你水平标尺上的显示确定,单位为字符),右对齐,前导符选择2,设置,确定。3,这是超链接。打开word,点“插入”-“超链接”,在地址:一栏中加上你的链接。或都打开word,按ctrl+K 快捷键,后面操作同上。

论文最主要的错误有三个:一、是词不达意:二、是结构混乱;三、是全抄别人没有自己的。

相关百科
热门百科
首页
发表服务