论文投稿百科

复变函数积分方法论文开题报告

发布时间:2024-07-08 23:49:48

复变函数积分方法论文开题报告

复变函数论的发展简况 复变函数论产生于十八世纪。1774年,欧拉在他的一篇论文中考虑了由复变函数的积分导出的两个方程。而比他更早时,法国数学家达朗贝尔在他的关于流体力学的论文中,就已经得到了它们。因此,后来人们提到这两个方程,把它们叫做“达朗贝尔-欧拉方程”。到了十九世纪,上述两个方程在柯西和黎曼研究流体力学时,作了更详细的研究,所以这两个方程也被叫做“柯西-黎曼条件”。 复变函数论的全面发展是在十九世纪,就像微积分的直接扩展统治了十八世纪的数学那样,复变函数这个新的分支统治了十九世纪的数学。当时的数学家公认复变函数论是最丰饶的数学分支,并且称为这个世纪的数学享受,也有人称赞它是抽象科学中最和谐的理论之一。 为复变函数论的创建做了最早期工作的是欧拉、达朗贝尔,法国的拉普拉斯也随后研究过复变函数的积分,他们都是创建这门学科的先驱。 后来为这门学科的发展作了大量奠基工作的要算是柯西、黎曼和德国数学家维尔斯特拉斯。二十世纪初,复变函数论又有了很大的进展,维尔斯特拉斯的学生,瑞典数学家列夫勒、法国数学家彭加勒、阿达玛等都作了大量的研究工作,开拓了复变函数论更广阔的研究领域,为这门学科的发展做出了贡献。 复变函数论在应用方面,涉及的面很广,有很多复杂的计算都是用它来解决的。比如物理学上有很多不同的稳定平面场,所谓场就是每点对应有物理量的一个区域,对它们的计算就是通过复变函数来解决的。 比如俄国的茹柯夫斯基在设计飞机的时候,就用复变函数论解决了飞机机翼的结构问题,他在运用复变函数论解决流体力学和航空力学方面的问题上也做出了贡献。 复变函数论不但在其他学科得到了广泛的应用,而且在数学领域的许多分支也都应用了它的理论。它已经深入到微分方程、积分方程、概率论和数论等学科,对它们的发展很有影响。复变函数论的内容 复变函数论主要包括单值解析函数理论、黎曼曲面理论、几何函数论、留数理论、广义解析函数等方面的内容。 如果当函数的变量取某一定值的时候,函数就有一个唯一确定的值,那么这个函数解就叫做单值解析函数,多项式就是这样的函数。 复变函数也研究多值函数,黎曼曲面理论是研究多值函数的主要工具。由许多层面安放在一起而构成的一种曲面叫做黎曼曲面。利用这种曲面,可以使多值函数的单值枝和枝点概念在几何上有非常直观的表示和说明。对于某一个多值函数,如果能作出它的黎曼曲面,那么,函数在离曼曲面上就变成单值函数。 黎曼曲面理论是复变函数域和几何间的一座桥梁,能够使我们把比较深奥的函数的解析性质和几何联系起来。近来,关于黎曼曲面的研究还对另一门数学分支拓扑学有比较大的影响,逐渐地趋向于讨论它的拓扑性质。 复变函数论中用几何方法来说明、解决问题的内容,一般叫做几何函数论,复变函数可以通过共形映象理论为它的性质提供几何说明。导数处处不是零的解析函数所实现的映像就都是共形映象,共形映像也叫做保角变换。共形映象在流体力学、空气动力学、弹性理论、静电场理论等方面都得到了广泛的应用。 留数理论是复变函数论中一个重要的理论。留数也叫做残数,它的定义比较复杂。应用留数理论对于复变函数积分的计算比起线积分计算方便。计算实变函数定积分,可以化为复变函数沿闭回路曲线的积分后,再用留数基本定理化为被积分函数在闭合回路曲线内部孤立奇点上求留数的计算,当奇点是极点的时候,计算更加简洁。 把单值解析函数的一些条件适当地改变和补充,以满足实际研究工作的需要,这种经过改变的解析函数叫做广义解析函数。广义解析函数所代表的几何图形的变化叫做拟保角变换。解析函数的一些基本性质,只要稍加改变后,同样适用于广义解析函数。 广义解析函数的应用范围很广泛,不但应用在流体力学的研究方面,而且象薄壳理论这样的固体力学部门也在应用。因此,近年来这方面的理论发展十分迅速。 从柯西算起,复变函数论已有170多年的历史了。它以其完美的理论与精湛的技巧成为数学的一个重要组成部分。它曾经推动过一些学科的发展,并且常常作为一个有力的工具被应用在实际问题中,它的基础内容已成为理工科很多专业的必修课程。现在,复变函数论中仍然有不少尚待研究的课题,所以它将继续向前发展,并将取得更多应用。

用留数定理,tanz=sinz/cosz 在 IzI=2内有两个一级极点 z=π/2 和 z=-π/2,则积分结果为-4πi。

4.1.3复变函数项级数定义4.3设{fn(z)}(n=1, 2, …)为一复变函数列,其中各项均在复数域D上有定义,称表达式∑∞〖〗n=1fn(z)=f1(z)+f2(z)+…+fn(z)+…(4.2)为复变函数项级数.该级数的前n项和Sn(z)=f1(z)+f2(z)+…+fn(z)为级数的部分和.若z0为D上的固定点,limn→∞Sn(z)=S(z0),则称复变函数项级数()在z0点收敛,z0称为级数∑∞〖〗n=1fn(z)的一个收敛点,收敛点的集合称为级数∑∞〖〗n=1fn(z)的收敛域.若级数∑∞〖〗n=1fn(z)在z0点发散,则称z0为级数∑∞〖〗n=1fn(z)的发散点,发散点的集合称为级数∑∞〖〗n=1fn(z)的发散域.若对D内的任意点z,都有limn→∞Sn(z)=S(z),则称级数∑∞〖〗n=1fn(z)在D内处处收敛.并称S(z)为级数的和函数.下面我们重点讨论一类特别的解析函数项级数——幂级数,它是复变函数项级数中最简单的情形.4.2幂级数〖〗在复变函数项级数的定义中,若取fn(z)=an(z-z0)n或fn(z)=anzn(n=1, 2, …),就得到函数项级数的特殊情形∑∞〖〗n=0an(z-z0)n=a0+a1(z-z0)+a2(z-z0)2+…+an(z-z0)n+… (4.3)或∑∞〖〗n=0anzn=a0+a1z+a2z2+…+anzn+…(4.4)形如()或()的级数称为幂级数,其中,a0, a1, …, an, …和z0均为复常数.在级数(4.3)中,令z-z0=ξ,则化为式(4.4)的形式,称级数(4.4)为幂级数的标准形式,式(4.3)称为幂级数的一般形式.为方便,今后我们以幂级数的标准形式(4.4)为主来讨论,相关结论可平行推广到幂级数的一般形式(4.3).4.2.1幂级数的收敛性关于幂级数收敛问题,我们先介绍下面的定理.定理4.5(Abel定理)若幂级数∑∞〖〗n=0anzn在z=z0(≠0)处收敛,则此级数在|z|<|z0|内绝对收敛(即∑∞〖〗n=0|anzn|收敛);若在z=z0处发散,则在|z|>|z0|内级数发散.证若∑∞〖〗n=0anzn在z=z0(≠0)处收敛,即级数∑∞〖〗n = 0anzn0收敛,所以limn→∞anzn0=0因而,存在常数M>0使得对所有的n,有|anzn0|<M当|z|<|z0|时,|anzn|=|anz0|z〖〗z0n<Mz〖〗z0n,而级数∑∞〖〗n=0z〖〗z0n收敛,所以,∑∞〖〗n=0anzn绝对收敛.若∑∞〖〗n=0anzn在z=z0(≠0)发散,假设存在一点z1,使得当|z1|>|z0|时,∑∞〖〗n = 0anzn1收敛.则由上面讨论可知,∑∞〖〗n = 0anzn0收敛,与已知∑∞〖〗n = 0anzn0发散矛盾!因此,∑∞〖〗n=0anzn在|z|>|z0|发散.由Abel定理,我们可以确定幂级数的收敛范围,对于一个幂级数来说,它的收敛情况有以下三种情形:(1) 对所有正实数z=x, ∑∞〖〗n=0anxn都收敛,由Abel定理,∑∞〖〗n=0anzn在复平面上处处绝对收敛;(2) 对所有的正实数x,∑∞〖〗n=0anxn(x≠0)发散,由Abel定理,∑∞〖〗n=0anzn在复平面内除原点z=0外处处发散;(3) 既存在使级数收敛的正实数x1>0,也存在使级数发散的正实数x2>0,即z=x1时级数∑∞〖〗n = 0anxn1收敛,z=x2时级数∑∞〖〗n = 0anxn2发散.由Abel定理,∑∞〖〗n=0anzn在|z|≤x1内,级数绝对收敛,在|z|≥x2内级数发散.在情形(3)中,可以证明,一定存在一个有限的正数R,使得幂级数∑∞〖〗n=0anzn在圆|z|<R内绝对收敛,在|z|>R时发散,则称R为幂级数的收敛半径,称|z|<R为幂级数的收敛圆.约定在第一种情形,R=∞;第二种情形,R=0.而对于幂级数∑∞〖〗n=0an(z-z0)n,收敛圆是以z0为圆心,R为半径的圆:|z-z0|<R.至于在收敛圆的圆周|z|=R(或|z-z0|=R)上,∑∞〖〗n=0anzn或∑∞〖〗n=0an(z-z0)n的收敛性较难判断,可视具体情况而定.关于幂级数收敛半径的求法,同实函数的幂级数类似,可以用比值法和根植法.定理4.6( 幂级数收敛半径的求法)设幂级数∑∞〖〗n=0anzn,若下列条件之一成立:(1) (比值法)limn→∞an+1〖〗an=L;(2) (根值法)limn→∞n〖〗|an|=L.则幂级数∑∞〖〗n=0anzn的收敛半径R=1〖〗L.证明从略.当L=0时,R=∞;当L=∞时,R=0.例4.4求下列幂级数的收敛半径:(1) ∑∞〖〗n=1zn〖〗n3(讨论圆周上情形);(2) ∑∞〖〗n=1(z-1)n〖〗n(讨论z=0, 2的情形);(3) ∑∞〖〗n=0(cosin)zn.解(1)因为limn→∞an+1〖〗an=limn→∞1〖〗(n+1)3〖〗1〖〗n3=limn→∞n〖〗n+13=1或者limn→∞n 〖〗|an|=limn→∞n〖〗1〖〗n3=limn→∞1〖〗n〖〗n3=1所以,收敛半径R=1,从而级数的收敛圆为|z|<1.由于在圆周|z|=1,级数∑∞〖〗n=1zn〖〗n3=∑∞〖〗n=11〖〗n3收敛(p级数,p=3>1),所以,级数在圆周|z|=1上也收敛.因此,所给级数的收敛范围为|z|≤1.(2) 由于limn→∞an+1〖〗an=limn→∞1〖〗(n+1)〖〗1〖〗n=limn→∞n〖〗n+1=1,故收敛半径R=1,从而它的收敛圆为|z-1|<1.在圆周|z-1|=1上,当z=0时,原级数成为∑∞〖〗n=1(-1)n1〖〗n(交错级数),所以收敛;当z=2时,原级数为∑∞〖〗n=11〖〗n,发散.表明在收敛圆周上,既有收敛点又有发散点.(3) 由于an=cosin=1〖〗2(en-e-n),所以limn→∞an+1〖〗an=limn→∞en+1-e-(n+1)〖〗en-e-n=limn→∞en(e-e-2n-1)〖〗en(1-e-2n)=e故收敛半径为R=1〖〗e.例4.5求幂级数∑∞〖〗n=1(-1)n1+sin1〖〗n-n2zn的收敛半径.解因为limn→∞n〖〗(-1)n1+sin1〖〗n-n2=limn→∞1+sin1〖〗n-n=limn→∞1+sin1〖〗n1〖〗sin1〖〗n-sin1〖〗n〖〗1〖〗n=e-1故所求收敛半径为R=e.例4.6求幂级数∑∞〖〗n=1(-i)n-1(2n-1)〖〗2nz2n-1的收敛半径.解记fn(z)=(-i)n-1(2n-1)〖〗2nz2n-1,则limn→∞fn+1(z)〖〗 fn(z)=limn→∞(2n+1)2n|z|2n+1〖〗(2n-1)2n+1|z|2n-1=1〖〗2|z|2当1〖〗2|z|2<1时,即|z|<2时,幂级数绝对收敛;当1〖〗2|z|2>1时,即|z|>2时,幂级数发散.所以,该幂级数的收敛半径为R=2.4.2.2幂级数的运算和性质和实函数的幂级数类似,复变函数的幂级数也可以进行加、减、乘等运算.设幂级数∑∞〖〗n=0anzn=S1(z), ∑∞〖〗n=0bnzn=S2(z),收敛半径分别为R1、 R2,则∑∞〖〗n=1anzn±∑∞〖〗n=1bnzn=∑∞〖〗n=0(an±bn)zn=S1(z)±S2(z),|z|<R(4.5)∑∞〖〗n=1anzn∑∞〖〗n=1bnzn=∑∞〖〗 n=0(anb0+an-1b1+…+a0bn)zn=S1(z)S2(z), |z|<R(4.6)其中,R=min(R1,R2).复变函数的幂级数还可以进行复合运算.设h(z)在D内解析,且|h(z)|<R, z∈D,则f(h(z))在D内解析,且f(h(z))=∑∞〖〗n=0anhn(z), z∈D.在f(z)的幂级数展开中,可以用z的一个函数h(z)去代换展开式中的z,这在后面解析函数的级数展开中经常用到.幂级数∑∞〖〗n=oanzn在其收敛圆|z|<R内,还具有如下性质:(1) 它的和函数S(z)=∑∞〖〗n=0anzn在|z|<R内解析;(2) 在收敛圆内幂级数可逐项求导,即S′(z)=∑∞〖〗n=1nanzn-1, |z|<R;(4.7)(3)在收敛圆内幂级数可逐项积分,即∫CS(z)dz=∑∞〖〗n=0∫Canzndz=∑∞〖〗n=0an〖〗n+1zn+1,(4.8)|z|<R,C 为|z|<R内的简单曲线.

数学系开题报告范文

开题报告是随着现代科学研究活动计划性的增强和科研选题程序化管理的需要而产生的。下面是我为大家整理的数学系开题报告范文,欢迎阅读。

课题名称: 实积分与复积分的比较研究

一、课题的来源及意义

通过对《数学分析》和《复变函数》的学习,我了解到《复变函数论》中的许多知识都是在《数学分析》基础上延伸、拓展的,而复积分在很大程度上说,它就是把实积分的变量范围拓宽了,即在复数域中进行积分。积分学是在古代东西方微积分思想萌发和微积分创立前夕欧洲的思想社会背景的基础上,经过多代数学家研究、探索最终形成完整的数学理论。实积分与复积分的比较研究是值得我思考和研究的一个课题。

积分学是函数论中的一个重要内容,无论是实积分还是复积分,都是研究函数的重要工具,而且在几何、物理和工程技术上,都有着广泛的应用。复积分是复变函数论中的一个重要部分,它在研究复变函数,特别是解析函数时所起的作用远远超过实积分在研究实变函数时所起的作用。无论是在研究复变函数、微分、级数,还是它们的各方面应用,都用到复变函数的积分理论。复积分是实积分的推广,而实积分的计算又用到复积分,因此,比较研复积分和实积分性质和应用对于深刻理解复变函数的理论,并用利用这些理论来解决数学及其他学科中的各种实际问题,都是有十分重要的意义。

二、国内外发展状况及研究背景

国内许多数学家对积分学进行分析和研究,而且许多大学教师也对复积分和实积分进行研究。陇东学院数学的完巧玲就对“利用复积分计算实积分”进行了全面的研究,而且还发表过相关的论文;陕西教育学院的王仲建也发表过“实积分与复积分的联系与区别”的相关论文。国外对积分学的研究要比国内的研究更广泛和深远。实积分和复积分是积分学的具体内容,现代的积分与以前的积分有着一定的区别,但它却是在以前的基础上,经过多代数学家的完善而形成的。积分学最初起源于微积分(微积分起源于牛顿、莱布尼兹),微积分的核心概念是----极限,这个理论的`完善得力于19世纪柯西和魏尔斯特拉斯的工作。17世纪利用积分学求面积、曲线长始于开普勒,他发表了《测量酒桶体积的新科学》。托里拆利、费马、帕斯卡等数学家对以前的积分进行了缺点修补和完善使得积分更接近现代的积分。积分不仅是研究函数的工具,而且在其他方面如几何、物理和工程技术上也有广泛的应用。

三、课题研究的目标和内容

通过对实积分与复积分的比较研究这个课题的研究,熟悉和掌握实积分和复积分的概念和类型,并对其进行分类、归纳,找出它们之间的区别与联系,并了解复积分和实积分的相关应用。

(1)实积分和复积分比较研究课题的研究背景、该课题目前国内外展的状况以及该课题研究的意义等。

(2)实积分和复积分的相关概念(定积分、曲线积分)及它们的性质和计算方法。

(3)对实积分与复积分的定义、性质、计算方法、应用方面进行比较;实积分与复积分的联系(应用复积分来计算实积分,结合例题进行分析、说明)。

四、本课题研究的方法

课题将通过分析、对比、综合等方法对实积分与复积分进行比较研究,最后通过例证说明利用复积分可以解决一些实积分问题。

五、课题的进度安排:

第一阶段:搜集资料,确定选题范围,联系指导老师(20XX秋1--7周)

第二阶段:选定题目、填写开题报告,准备开题 (20XX秋8--12周)

第三阶段:指导教师指导调研、收集资料、准备撰写初稿 (20XX秋13周--20XX春6周)

第四阶段:撰写初稿、在指导老师的指导下修改论文 (20XX春7--14周)

第五阶段:提交论文,准备答辩,论文总结 (20XX春15--16周)

六、参考文献

[1] 钟玉泉. 复变函数论[M]. 第3版.北京:高等教育出版社,2004

[2] 华东师范大学数学系. 数学分析[M].第3版.高等教育出版社,2001

[3] 四川大学数学系. 高等数学(第4册)[M].北京:高等教育出版社,2002

[4] 严子谦, 等. 数学分析(第一册)[M].北京:高等教育出版社,2004

[5] 孙清华, 赵德修. 新编复变函数题解[M]. 武汉:华中科技大学出版社,2002

[6] 王仲建. 实积分与复积分的联系与区别[N]. 陕西教育学院学报,1995,25:73-79

[7] 完巧玲. 利用复积分计算实积分[N]. 菏泽学院学报,2010,32(2):1673—2103

[8] 李敏,王昭海. 巧用复变函数积分证明实积分[J]. 数学教学与研究考试周刊,2009,41

[9] 金云娟. 解析函数唯一性定理在复积分上的应用[N]. 丽水学院学报,2009,31(5)

[10] 崔冬玲. 复积分的计算方法[J]. 淮南师范学院学报,2006,3:6-9

毕业论文复变函数的积分

1、楼主的这两道题,涉及到:

A、复变函数积分,转化为留数的计算;

B、然后又转化为求导计算;

第一道题,需要求导一次;第二次不需要求导。

.

2、具体解答如下,如有疑问,欢迎追问,有问必答。

.

3、若点击放大,图片更加清晰。

.

.

求复变函数的积分

在复变函数的分析理论中,复积分是研究解析函数的重要工具,解析函数的许多重要性质都要利用复积分来表述和证明的,因此,对复积分及其计算的研究显得尤为重要。本文介绍了复变函数积分常规的计算方法、利用级数法、拉普拉斯变换法及对数留数与辐角原理进行复积分计算方法。利用这些方法可以使一些复杂的复积分计算变得简单、快捷。接下来要介绍计算复积分的常见的一些方法。

注:柯西积分公式与解析函数的无穷可微性在计算复积分时的主要区别在于被积函数分母的次数,

二者在计算时都常与柯西积分定理相结合。

复变函数中求积分的方法有哪些?1、柯西积分定理;2、柯西积分公式;3、高阶导数公式;4、复合闭路定理;5、留数定理(留数的计算可以用定理或洛朗展开),这个方法是最重要的,柯西积分公式和高阶导数公式其实都是留数定理的特例。希望可以帮到你,不明白可以追问,如果解决了问题,请点下面的"选为满意回答"按钮。

积分上限函数的论文开题报告

A=20B=4

文末附开题报告万能模板,不会的宝子们直接套模板!!每年到了写毕业论文的时候,翟某某都会被拎出来骂一通,虽然说以前各高校对论文也有一定的要求,但是自从翟某某事件后,高校对学术不端这块更加严查了,以至于很多高校在开题报告上都审查的非常严格。有的同学一个开题报告修改了不下五次,简直太惨了!!一、什么是开题报告?开题报告其实就是论文的一个精简版介绍,确定论文主题的大方向,帮助读者更好的理解论文。开题报告需详细说明论文的大纲,讲明课题的研究目的、意义,以及论文所需要引用的文献;需说明研究课题的可行性与创新性以及介绍本人所研究课题的初步方案。二、开题报告的主要组成部分(1)开题报告封面——包含论文题目、系别、专业、年级、姓名和导师。论文的题目要准确规范,题目不要过长,一般20字以内最佳。以简洁专业的术语表明论文研究的核心内容。开题报告一般不使用副标题。(2)论文研究的背景、目的和意义——你为什么要做这个研究,研究它的价值是什么。这个可以先结合现实情况去进行论述,指出现实中存在的问题,需要去做研究解决。然后就论文研究的实际作用、预期达到的结果以及该研究的理论意义和实践意义进行阐述。(3)国内外研究现状——文献综述部分,就该研究课题的发展历史,以及前人的研究成果、发展趋势、问题等综合进行比较分析,然后提出自己的见解。(4)论文研究方法、研究内容——将文中的研究方法逐一列举出来,并按照你如何使用该方法进行阐述。研究内容将大纲再进行深入阐述一遍即可。(5)研究条件和可能存在的问题——对当下该研究的现状及成果进行分析,确定该课题将采用的研究方法以及在研究过程中可能会存在的问题。(6)预期的结果——该课题研究最终要达到的目的,以及实际解决了哪些问题。(7)论文拟撰写的主要内容——就是论文大纲,篇幅不宜过长,但要把计划研究的课题、准备如何研究、理论适用等主要问题说清楚。(8)论文工作进度安排——按照学校规定的日期合理填写进度表即可。(9)参考文献——按照学校规定的标准格式列出即可,参考文献的目录,中文文献不少于10篇、英文文献不少于5篇。(10)教研室可行性论证结论——是否准许开题。三、开题报告的考核指标如下:1、研究课题的问题定位清晰。选题应结合现实实践,研究问题要具体,解决方案要有理论依据,具有普遍借鉴的意义。2、研究目标要明确,要切实剖析问题,能够用理论知识从实际解决问题。3、研究内容要具体、明确。不要假大空,要小题大做。要充分考虑不同内容点之间的系统性、有限性和适中性。4、研究方法和技术方案的可行性,要用实际数据来说话,所以必须要有数据收集方法。四、开题报告的格式要求开题报告字数和格式一般学校会有要求,以学校要求为准即可。如果学校没有固定模板,可参考网上模板(模板一)(模板二)(模板三)开题报告只是毕业论文的开始,好的开题报告对后续论文的写作是有很大帮助的,所以同学们一定要认真对待,在写论文开题报告的时候,一定要和自己的指导老师多沟通,因为导师是第一关。最后,预祝宝子们毕业论文都能顺利通过~附开题报告万能模板开题报告模板一开题报告模板二开题报告模板三

A 是20啊,第一排的前后两个数一次差1,2,3,4,5,6,7.。。。。B=4啊,第二排的前后两个数之差是2

复变函数毕业论文方向

半导体物理和模电是很有关联的两门课,而对于一个学习电子科学与技术专业的学生来说,学习复变函数式相当有必要的,这点在你大四写毕业论文和以后工作的时候就可以感受的到了。其实,你现在觉得你学的很多专业知识都没有用,可到你将来要用的时候,你就知道学习这些东西的必要性了。

有一个网站叫中华论文中心,貌似有很多文章,你自己上去看下吧!

1、选题尽量与日常工作结合起来一是便于收集数据,二是通过论文写作,对考生今后工作也有帮助,一举两得。反之,选一个与工作毫不相干的题目,从头开始,只能落得个事倍功半的结果。2、选择感兴趣的题目做论文是原创性的工作,因此,考生对某个方面感兴趣,会促使自己积极主动地探讨这方面的问题,强烈的成就动机将是做一篇优秀论文的基础。3、学术类文献综述类题目尽量不要选对所有参加自学考试的考生来讲,做学术论文是一件极具挑战性的工作,绝不是想象中那样轻松。自考过程中,考生可以通过强化复习通过考试,但做研究是完全不同的过程。只有在考生花费精力查阅大量文献后,才能知道可以做什么课题,还需要考生自己去收集数据,分析数据,撰写报告。综述性论文需要查阅大量的参考文献,从选题到提交论文,一般仅有3个月时间,真正码字可能就一两个星期的时间,在这么短的时间内要查阅到写综述的参考文献,难度相当大。时间短难度大,很少考生能将这些类型的论文写得好和有一定深度。不过,如果你实力很强,那也是可以的。当然,每次没能通过论文答辩的考生,绝大部分都是选择了这些雷区类型题目,希望大家吸取教训。

看你想做什么了,如果科研的话,这三个都是必不可少的;如果想去公司就业的话(电路方面的硬件研发),模电和复函是必不可少的。

复变积分的计算方法研究论文摘要

4.1.3复变函数项级数定义4.3设{fn(z)}(n=1, 2, …)为一复变函数列,其中各项均在复数域D上有定义,称表达式∑∞〖〗n=1fn(z)=f1(z)+f2(z)+…+fn(z)+…(4.2)为复变函数项级数.该级数的前n项和Sn(z)=f1(z)+f2(z)+…+fn(z)为级数的部分和.若z0为D上的固定点,limn→∞Sn(z)=S(z0),则称复变函数项级数()在z0点收敛,z0称为级数∑∞〖〗n=1fn(z)的一个收敛点,收敛点的集合称为级数∑∞〖〗n=1fn(z)的收敛域.若级数∑∞〖〗n=1fn(z)在z0点发散,则称z0为级数∑∞〖〗n=1fn(z)的发散点,发散点的集合称为级数∑∞〖〗n=1fn(z)的发散域.若对D内的任意点z,都有limn→∞Sn(z)=S(z),则称级数∑∞〖〗n=1fn(z)在D内处处收敛.并称S(z)为级数的和函数.下面我们重点讨论一类特别的解析函数项级数——幂级数,它是复变函数项级数中最简单的情形.4.2幂级数〖〗在复变函数项级数的定义中,若取fn(z)=an(z-z0)n或fn(z)=anzn(n=1, 2, …),就得到函数项级数的特殊情形∑∞〖〗n=0an(z-z0)n=a0+a1(z-z0)+a2(z-z0)2+…+an(z-z0)n+… (4.3)或∑∞〖〗n=0anzn=a0+a1z+a2z2+…+anzn+…(4.4)形如()或()的级数称为幂级数,其中,a0, a1, …, an, …和z0均为复常数.在级数(4.3)中,令z-z0=ξ,则化为式(4.4)的形式,称级数(4.4)为幂级数的标准形式,式(4.3)称为幂级数的一般形式.为方便,今后我们以幂级数的标准形式(4.4)为主来讨论,相关结论可平行推广到幂级数的一般形式(4.3).4.2.1幂级数的收敛性关于幂级数收敛问题,我们先介绍下面的定理.定理4.5(Abel定理)若幂级数∑∞〖〗n=0anzn在z=z0(≠0)处收敛,则此级数在|z|<|z0|内绝对收敛(即∑∞〖〗n=0|anzn|收敛);若在z=z0处发散,则在|z|>|z0|内级数发散.证若∑∞〖〗n=0anzn在z=z0(≠0)处收敛,即级数∑∞〖〗n = 0anzn0收敛,所以limn→∞anzn0=0因而,存在常数M>0使得对所有的n,有|anzn0|<M当|z|<|z0|时,|anzn|=|anz0|z〖〗z0n<Mz〖〗z0n,而级数∑∞〖〗n=0z〖〗z0n收敛,所以,∑∞〖〗n=0anzn绝对收敛.若∑∞〖〗n=0anzn在z=z0(≠0)发散,假设存在一点z1,使得当|z1|>|z0|时,∑∞〖〗n = 0anzn1收敛.则由上面讨论可知,∑∞〖〗n = 0anzn0收敛,与已知∑∞〖〗n = 0anzn0发散矛盾!因此,∑∞〖〗n=0anzn在|z|>|z0|发散.由Abel定理,我们可以确定幂级数的收敛范围,对于一个幂级数来说,它的收敛情况有以下三种情形:(1) 对所有正实数z=x, ∑∞〖〗n=0anxn都收敛,由Abel定理,∑∞〖〗n=0anzn在复平面上处处绝对收敛;(2) 对所有的正实数x,∑∞〖〗n=0anxn(x≠0)发散,由Abel定理,∑∞〖〗n=0anzn在复平面内除原点z=0外处处发散;(3) 既存在使级数收敛的正实数x1>0,也存在使级数发散的正实数x2>0,即z=x1时级数∑∞〖〗n = 0anxn1收敛,z=x2时级数∑∞〖〗n = 0anxn2发散.由Abel定理,∑∞〖〗n=0anzn在|z|≤x1内,级数绝对收敛,在|z|≥x2内级数发散.在情形(3)中,可以证明,一定存在一个有限的正数R,使得幂级数∑∞〖〗n=0anzn在圆|z|<R内绝对收敛,在|z|>R时发散,则称R为幂级数的收敛半径,称|z|<R为幂级数的收敛圆.约定在第一种情形,R=∞;第二种情形,R=0.而对于幂级数∑∞〖〗n=0an(z-z0)n,收敛圆是以z0为圆心,R为半径的圆:|z-z0|<R.至于在收敛圆的圆周|z|=R(或|z-z0|=R)上,∑∞〖〗n=0anzn或∑∞〖〗n=0an(z-z0)n的收敛性较难判断,可视具体情况而定.关于幂级数收敛半径的求法,同实函数的幂级数类似,可以用比值法和根植法.定理4.6( 幂级数收敛半径的求法)设幂级数∑∞〖〗n=0anzn,若下列条件之一成立:(1) (比值法)limn→∞an+1〖〗an=L;(2) (根值法)limn→∞n〖〗|an|=L.则幂级数∑∞〖〗n=0anzn的收敛半径R=1〖〗L.证明从略.当L=0时,R=∞;当L=∞时,R=0.例4.4求下列幂级数的收敛半径:(1) ∑∞〖〗n=1zn〖〗n3(讨论圆周上情形);(2) ∑∞〖〗n=1(z-1)n〖〗n(讨论z=0, 2的情形);(3) ∑∞〖〗n=0(cosin)zn.解(1)因为limn→∞an+1〖〗an=limn→∞1〖〗(n+1)3〖〗1〖〗n3=limn→∞n〖〗n+13=1或者limn→∞n 〖〗|an|=limn→∞n〖〗1〖〗n3=limn→∞1〖〗n〖〗n3=1所以,收敛半径R=1,从而级数的收敛圆为|z|<1.由于在圆周|z|=1,级数∑∞〖〗n=1zn〖〗n3=∑∞〖〗n=11〖〗n3收敛(p级数,p=3>1),所以,级数在圆周|z|=1上也收敛.因此,所给级数的收敛范围为|z|≤1.(2) 由于limn→∞an+1〖〗an=limn→∞1〖〗(n+1)〖〗1〖〗n=limn→∞n〖〗n+1=1,故收敛半径R=1,从而它的收敛圆为|z-1|<1.在圆周|z-1|=1上,当z=0时,原级数成为∑∞〖〗n=1(-1)n1〖〗n(交错级数),所以收敛;当z=2时,原级数为∑∞〖〗n=11〖〗n,发散.表明在收敛圆周上,既有收敛点又有发散点.(3) 由于an=cosin=1〖〗2(en-e-n),所以limn→∞an+1〖〗an=limn→∞en+1-e-(n+1)〖〗en-e-n=limn→∞en(e-e-2n-1)〖〗en(1-e-2n)=e故收敛半径为R=1〖〗e.例4.5求幂级数∑∞〖〗n=1(-1)n1+sin1〖〗n-n2zn的收敛半径.解因为limn→∞n〖〗(-1)n1+sin1〖〗n-n2=limn→∞1+sin1〖〗n-n=limn→∞1+sin1〖〗n1〖〗sin1〖〗n-sin1〖〗n〖〗1〖〗n=e-1故所求收敛半径为R=e.例4.6求幂级数∑∞〖〗n=1(-i)n-1(2n-1)〖〗2nz2n-1的收敛半径.解记fn(z)=(-i)n-1(2n-1)〖〗2nz2n-1,则limn→∞fn+1(z)〖〗 fn(z)=limn→∞(2n+1)2n|z|2n+1〖〗(2n-1)2n+1|z|2n-1=1〖〗2|z|2当1〖〗2|z|2<1时,即|z|<2时,幂级数绝对收敛;当1〖〗2|z|2>1时,即|z|>2时,幂级数发散.所以,该幂级数的收敛半径为R=2.4.2.2幂级数的运算和性质和实函数的幂级数类似,复变函数的幂级数也可以进行加、减、乘等运算.设幂级数∑∞〖〗n=0anzn=S1(z), ∑∞〖〗n=0bnzn=S2(z),收敛半径分别为R1、 R2,则∑∞〖〗n=1anzn±∑∞〖〗n=1bnzn=∑∞〖〗n=0(an±bn)zn=S1(z)±S2(z),|z|<R(4.5)∑∞〖〗n=1anzn∑∞〖〗n=1bnzn=∑∞〖〗 n=0(anb0+an-1b1+…+a0bn)zn=S1(z)S2(z), |z|<R(4.6)其中,R=min(R1,R2).复变函数的幂级数还可以进行复合运算.设h(z)在D内解析,且|h(z)|<R, z∈D,则f(h(z))在D内解析,且f(h(z))=∑∞〖〗n=0anhn(z), z∈D.在f(z)的幂级数展开中,可以用z的一个函数h(z)去代换展开式中的z,这在后面解析函数的级数展开中经常用到.幂级数∑∞〖〗n=oanzn在其收敛圆|z|<R内,还具有如下性质:(1) 它的和函数S(z)=∑∞〖〗n=0anzn在|z|<R内解析;(2) 在收敛圆内幂级数可逐项求导,即S′(z)=∑∞〖〗n=1nanzn-1, |z|<R;(4.7)(3)在收敛圆内幂级数可逐项积分,即∫CS(z)dz=∑∞〖〗n=0∫Canzndz=∑∞〖〗n=0an〖〗n+1zn+1,(4.8)|z|<R,C 为|z|<R内的简单曲线.

求复变函数的积分

复变函数通常作曲线积分,因此下面讨论的也是曲线积分

(1)这是形式上的变换 上式的第二行末尾可以看出,积分结果的实部和虚部都是关于函数实部和虚部的第二型曲线积分,如果有曲线C的参数方程 那么上式就可以化为定积分 当然要求x(t)和y(t)满足一阶可导另外当然第二型曲线积分可以化为第一形曲线积分,这一点不作深入讨论如果要问积分的意义是什么,关于第二型曲线积分,就可以理解为变力对做曲线运动的物体所做的功把第二型曲线积分化为定积分,就是用变力乘上路径导数得到功率,再由功率对时间积分,得到变力所做的功实变函数的积分是这样,复变函数的积分也可以这样理解

(2) 这里△zk可以看作曲线C的一个小段,那么f(zk)是该段曲线上一点的“复线密度”,因此积分的结果可以看作整段曲线的“复质量”

(3)如果积分是平面积分或者多重积分,那么通常是关于实变量的积分,这时就可以看作实部虚部分别积分即可

积分计算公式如下:1.含有a+bx的积分公式2.含有√(a+bx)的积分公式3.含有x^2±α^2的积分4.含有ax^2+b(a>0)的积分5.含有√(a^2+x^2) (a>0)的积分6.含有ax^2+b(a>0)的积分

相关百科
热门百科
首页
发表服务