论文投稿百科

原子核期刊论文

发布时间:2024-07-07 12:23:00

原子核期刊论文

核心期刊论文格式参考

在日复一日的学习、工作生活中,大家都经常接触到论文吧,论文对于所有教育工作者,对于人类整体认识的提高有着重要的意义。一篇什么样的论文才能称为优秀论文呢?下面是我精心整理的核心期刊论文格式参考,供大家参考借鉴,希望可以帮助到有需要的朋友。

一、核心期刊论文格式,核心期刊论文字体格式要求:

标准论文字体格式的第一页:

论文题目(黑体、居中、三号字)

(空一行)

作者(宋体、小三)

(空一行)

[摘要](四号黑体)空一格打印内容(四号宋体,200-300字)………………………

(空一行)

[关键词](四号黑体)关键词内容(小四号宋体、每两个关键词之间空两格)

标准论文字体格式的第二页:

目录(居中、四号黑体)

(空一行)

(空一行)

引言(小四号宋体)…………………………………………………页码(小四号宋体)

一、标题(小四号宋体)……………………………………………………………………………页码(小四号宋体)

1.(小标题)(小四号宋体)………………………………………………………………页码(小四号宋体)

(1)(下级标题)(小四号宋体)………………………………………………………页码(小四号宋体)

二、(标题)(小四号宋体)…………………………………………………………………页码(小四号宋体)

1.(小标题)(小四号宋体)……………………………………………………………………页码(小四号宋体)

(1)(下级标题)(小四号宋体)…………………………………………………………页码(小四号宋体)

参考文献(小四号宋体)……………………………………………………………………………页码(小四号宋体)

附录(小四号宋体)………………………………………………………………………………………页码(小四号宋体)

致谢语(小四号宋体)………………………………………………页码(小四号宋体)

英文题目、摘要、关键词(小四号宋体)………………………………………………页码(小四号宋体)

第三页开始:毕业论文正文

引言(居中、四号黑体)

(空一行)

(空一行)

引言内容用小四号宋体打印

(空一行)

(空一行)

一、(标题)(居中、四号黑体)

(空一行)

(空一行)

1、(小标题)(四号宋体)

(空一行)

(1)(下级小标题)(小四号黑体)

(正文内容用小四号宋体、下同)

(空一行)

(空一行)

1、(小标题)(四号宋体)

(空一行)

(1)(下级小标题)(小四号黑体)

·

·

·

(空一行)

(空一行)

结论(内容用小四号宋体)

(空一行)

(空一行)

附录(居中、四号黑体)

附录内容(内容用小四号宋体)

(空一行)

(空一行)

参考文献(居中、四号黑体)

参考文献(内容用五号宋体)

(空一行)

(空一行)

致谢(居中、四号黑体)

(空一行)

(空一行)

致谢语(内容用小四号宋体)

(空一行)

(空一行)

最后一页

(英文题目)(居中、小四号Arial体)

(空一行)

(空一行)

摘要(小四号Arial体)(内容用五号Arial体)

关键词(小四号Arial体)(内容用五号Arial体、每个单词间空二格)

备注:1、英文译文打印格式:标题用四号黑体、内容用小四号宋体。

二、核心期刊论文格式,核心期刊论文格式要求

中文版论文格式:

标题(居中,小二黑体)

作者姓名1,作者姓名2,作者姓名3(小四号宋)

1作者单位, (邮政编码)(五号仿宋)

2作者单位, (邮政编码)(五号仿宋)

3作者单位, (邮政编码)(五号仿宋)

E-mail(小五,Times New Roman)

摘 要:本文给出了一种…(五号,楷体)页边距: 左右各:, 上下各:;页眉:, 页脚。

关键词:(3-5个)

1. 引 言(四号,宋体,加粗)

近年来。。。(正文五号宋体,段首空两汉字字符,倍行距)页边距: 左右各:, 上下各:;页眉:, 页脚:。

2. 系统介绍(同上)

一级子标题(小四号,宋体,加粗)

二级子标题(五号,宋体,加粗)

3. 。。。。。。

4. 。。。。。。

5. 结论(同上)

本文给出了。。。

参考文献(五号,黑体)

[1] , and . Personal identification based on handwriting. Pattern Recognition, 33:149-160, Jan. 2000

[2] 刘敬彬,杨丽丽,《浅谈。。。》,北京:社科文献出版社,。

(小五号宋体)

外国语专业英语论文格式规范(附样例)

A Contrastive Study between English and Chinese Idioms

(题目:二号,黑体,加粗,居中,除了英语小词外,其他单词首字母都要大写;另外:除了题目外,论文中所有英文的`字体均采用“Times New Roman”)

(学院、专业、学号、作者姓名、指导教师姓名(小四号宋体字,加粗),依次排印在论文题目下,上空二行,居中)

【Abstract】 This paper centers on the different expressions of ……

(英文摘要:上空二行;题目采用五号“Times New

Roman”字体,加粗,置于粗体方括号【】内,顶格放置;随后的内容与前面的粗体方括号【】之间空一格,不用其他任何标点符号;采用五号“Times

New Roman”字体,不加粗;单倍行距。)

【Key Words】 idiom; comparison; English; Chinese

(英文关键词:题目采用五号“Times New

Roman”字体,加粗,两个单词的首字母要大写,置于粗体方括号【】内,顶格放置;随后的内容与前面的粗体方括号【】之间空一格,不用任何其他标点符号,采用五号“Times New Roman”字体,不加粗,除了专有名词外,其他单词的首字母不大写,各单词之间用分号“;”隔开,分号之后空一格;最后一个关键词之后不用任何标点符号;单倍行距。)

1. Introduction

(顶格,除了第一个单词及专有名词外,其他单词首字母都不要大写;标题最后不用任何标点符号,上空两行)

In both English and Chinese, …. So, this essay is trying to

focus on the differences between Chinese and English idoms in terms

of their essential meaning, customary usage and typical expression

(Chang Liang, 1993:44; Li Guangling, 1999).

(段落第一行缩进4个英文字符;夹注的标注法:出现在夹注中的作者必须与文后的参考文献形成一一对应关系;注意一个或多个作者间的标点符号,时间、页码等的标注法;另外,汉语参考文献的作者要以拼音形式出现,不能出现汉语姓氏;夹注出现在标点符号之前)

2. The similarities between English idioms and Chinese idioms

In English, …. And it can be clearly seen in the below examples:

(1) I don’t know。我不知道。

(2) I am not a poet. 我不是诗人。

(正文中的例子以(1),(2)…为序号排列,直至最后一个例子;而①, ②…则为脚注或尾注的上标序号)

3. The differences between English idioms and Chinese idioms

The characteristics of English idioms

(正文章节序号编制:章的编号:1. ,2., 3.,…;节的编号:…,…;小节的编号为:,

…。小节以下层次,采用希腊数字加括号为序,如(i),(ii)…;之后再采用字母加括号,如(a),

(b),…;每章题目左顶格,小四号字,加粗;每节(及小节以下)题目左顶格,小四号字,不加粗但要斜体;所有章节的题目都单独一行,最后不加任何标点符号)

….

In conclusion, ….

The characteristics of Chinese idioms

….

Feng (1998) found some problems as shown in the following

examples (注意此句中夹注的另一种写法):

(9) We never know the worth of water till the well is dry.

(10) People take no thought of the value of time until they lose

it.

….

The analysis of the differences between English and Chinese

idioms

(i) ….

….

(ii) ….

….

4. Conclusion

….

Bibliography (References) (小四号,加粗,后面不加任何标点符号)

Sanved, ed. The Oxford book of American literary anecdotes[C]. New

York: OUP, 1981.

XX,“关于英语的偏离否定”[J] 。《外国语文》,1993,4:44。

XXX,“否定之否定新说”[J] 。《英语辅导》,1998,6:11。

XXX,“不完全否定浅析” [J] 。《大学英语》,2000,30:30。

论文最后的参考文献中所有文献的排列顺序:

核心期刊发表论文格式,核心期刊论文格式尾注要求 :按照编号顺序。夹注:英文文献----网络文献----汉语文献,各个文献的先后以作者的姓氏字母或拼音为序,不用单独加序号或编号;每个参考文献的第二行起必须缩进4个英文字符;倍行距;另外,与文中的夹注对应

一、标题(不超过20个字):三号黑体居中,可以分成1或2行;段后空一行

二、作者姓名(两人以上,以逗号分隔):4号仿宋体居中,段后空行

三、作者单位、邮编:小4号宋体居中,段后空一行

四、摘要、关键词:“摘要”二字(小四号黑体),摘要内容要小四号宋体,段后空一行;“关键词”三字(小四号黑体),摘要内容要小四号宋体,段后空一行,关键词数量为3~5个,每一关键词之间用分号分开,最后一个关键词后不打标点符号。

五、中图分类号、文献标志码、文章编号(小四号黑体)

六、正文(小四号宋体。行距20磅,字符间距为标准)

1(顶格)一级标题,4号黑体,段前段后1行

(顶格)二级标题,5号黑体,段前段后行

(顶格)三级标题,5号楷体,段前段后行

七、图(图题配英文翻译,距正文段后行)(图题位于图下方;中文用6号宋体,加粗,英文用6号Times New Roman,加粗;英文采用段后行)

八、表(表题配英文翻译,距正文段前行。表中量与单位之间用“/”分隔)(三线表)(表题位于表上方;中文用6号宋体,加粗,英文用6号Times New Roman,加粗;中文采用段前行)

九、参考文献(配英文翻译)(标题:小5号黑体,内容:6号宋体)

他在科研领域是非常厉害的,教授和知识学者,他拥有的专利和学术研究都很先进。

在学术研究中,他先后在原子核物理国际顶级期刊发表SCI论文40余篇,在学术研究上非常牛。

大学本科毕业论文标准格式×××××三号黑体)学 号:(××××××××三号黑体)指导教师:(××××××××三号黑体)专业:(××××××××三号黑体)年 级:(××××××××三号黑体)学 校:(××××××××三号黑体)摘要:摘要是论文内容不加注释和评论的简短陈述,应以第三人称陈述。它应具有独立性和自含性,即不阅读论文的全文,就能获得必要的信息。摘要的内容应包含与论文同等量的主要信息,供读者确定有无必要阅读全文,也供文摘等二次文献采用。摘要一般应说明研究工作目的、实验研究方法、结果和最终结论等,而重点是结果和结论。摘要中一般不用图、表、公式等,不用非公知公用的符号、术语和非法定的计量单位。摘要页置于封面页后。中文摘要一般为300汉字左右,用5号宋体,摘要应包括关键词。英文摘要是中文摘要的英文译文,英文摘要页置于中文摘要页之后。申请学位者必须有,不申请学位者可不使用英文摘要。关键词:关键词是为了文献标引工作从论文中选取出来用以表示全文主题内容信息款目的单词或术语。一般每篇论文应选取3~5个词作为关键词。关键词间用逗号分隔,最后一个词后不打标点符号。以显著的字符排在同种语言摘要的下方。如有可能,尽量用《汉语主题词表》等词表提供的规范词。目次页:目次页由论文的章、节、条、附录、题录等的序号、名称和页码组成,另起一页排在摘要页之后,章、节、小节分别以、等数字依次标出,也可不使用目次页5.主体部分格式:主体部分的编写格式由引言(绪论)开始,以结论结束。主体部分必须另页开始。序号毕业论文各章应有序号,序号用阿拉伯数字编码,层次格式为:1××××(三号黑体,居中) ××××××××××××××××××××××(内容用小四号宋体)。 ××××(小三号黑体,居左) ×××××××××××××××××××××(内容用小四号宋体)。 ××××(四号黑体,居左) ××××××××××××××××××××(内容用小四号宋体)。例子 原子核和强相互作用物质的相变[1]刘玉鑫,穆良柱,常雷1.北京大学物理系, 北京1008712.北京大学重离子物理教育部重点实验室,北京1008713.重离子加速器国家实验室理论核物理中心,兰州730000 摘要:简要回顾原子核和强相互作用物质的相结构及相变研究的现状。说明原子核和强相互作用物质的相结构和相变的研究是原子核物理、粒子物理、天体物理、宇宙学和统计物理等领域共同关心重要前沿领域,到目前为止已取得重大进展,但无论是具体实际问题还是研究方法等方面都需要系统深入的研究。关键词:原子核物理;强相互作用物质;相与相变 1 引言 100年前,爱因斯坦通过分析充满空腔的辐射系统的熵与充满空腔的气体系统的熵,提出电磁辐射由光量子组成[1,2],从而建立了光子的概念,吹响了引导人们探索微观世界的冲锋号。进一步的深入研究表明,组成物质世界的粒子可以分为强子和轻子两类,粒子间的相互作用可以分为引力作用、电磁作用、弱作用和强作用4类。参与强相互作用的粒子或具有强相互作用的系统统称为强相互作用物质(包括强子物质、夸克物质等)及其特殊形式——原子核(由有限个强子组成的系统),对原子核和强相互作用系统的相结构及相变的研究,对于认识强相互作用系统的相结构、相变,了解宇宙的起源和演化至关重要,并且可能是有限系统的统计物理的检验平台。因此,近年来关于原子核和强相互作用系统的相变的研究不仅是原子核物理、天体物理、宇宙学及粒子物理等领域研究的重要前沿课题,还引起了有限量子多体系统领域和统计物理学界的极大关注。本文简要介绍原子核及强相互作用系统的相及相变研究的现状。2 原子核的相及相变 原子核的单粒子运动与集体运动 原子核是有限数目的强子组成的束缚系统,其中的核子(质子和中子)自然具有单粒子运动,并建立壳模型成功的描述原子核的相应性质。实验上对原子核的能谱和电磁跃迁等的研究表明,原子核还具有整体运动,并建立了原子核具有形状和振动、转动等集体运动模式的概念。人们通常利用将核半径按球谐函数 展开来描述原子核的形状,并将相应的形变称为 极形变(如图1所示)。已经观测到和已经预言的原子核形状多种多样[3,4],比较重要的是四极形变,实验上已经观测到的最高极形变是16极形变[3,4]。按照壳模型和集体模型的观点, 幻数核多为球形, 而偏离满壳的核则为形变核,形变核可以细分为长椭球形、扁椭球形、三轴不对称形、梨形、香蕉形、纺锤形等。同时原子核还可能有形状共存现象。 图1 时原子核的 极形变的形状示意图(取自文献[3])Fig. 1 Sketch of the shape of a nucleus in -pole deformation with ( taken from Ref. [3] )近年来的研究表明,在较高激发能和较高角动量情况下,原子核的集体能谱消失,即出现带终结现象[5],这表明发生了由集体运动到单粒子运动的相变。 原子核的形状相变 原子核形状的研究一直是原子核结构理论中一个重要的问题,这是因为原子核形状与原子核组成成分及其两种运动形式--集体运动和单粒子运动、中子质子比、角动量、激发态能量和核环境的温度等都密切相关。例如,集体模型中计算单粒子运动时常用的变形平均势就和核形状有关,不同形状原子核的集体运动模式各不相同[6];同时原子核的形状由所有核子的空间分布决定,而且随集体运动模式的不同而变化[7]。另一方面,原子核的形状和一定的动力学对称性相联系[4],核形状变化与原子核的动力学对称性的破缺相联系。原子核的形状发生变化表明其状态和性质发生了变化,也就是发生了相变。因此,原子核的形状相结构和相变的研究是原子核结构研究的重要内容。由于形状共存可能是单粒子运动和集体运动较强耦合的结果[7],因此形状共存也是核形状研究中关注的焦点[8]。 早期对于原子核形状相变的研究大多集中在一系列同位素或同中子素的基态[4,9],基态核的形状相变普遍存在于各个质量区[3],近年来关于临界状态对称性和三相点的研究[10-16]以及对超重核的形变和形状共存的研究[17],极大地丰富了基态和形状相变的研究内容。另一方面,由于实验上g-射线探测器阵列技术的进步,使得我们不仅可以对原子核基态的形状进行研究,而且可以对激发态、尤其是高自旋态的核形状进行研究。激发态核的形变则更富含物理内容, 如超形变带、回弯现象、同核异能态等都和形变直接相关;2003年观测到的沿Yrast带出现的集体振动模式到定轴转动模式的变化表明低激发态中可能存在转动(或角动量)驱动的由球形(振动)到长椭球形(定轴转动)的形状相变[18]。 对于原子核基态形状的研究通常采用的理论模型有集体模型[6]、相互作用玻色子模型(IBM)[4]、Hartree-Fock-Bogoliubov(HFB)方法[19], 另外还可以使用热力学统计理论[20]。而对于原子核激发态的形状的研究则采用Landau相变理论[21]、有限温度推转HFB[22]、推转IBM[23]等。在这些方法中,集体模型有比较直观的几何图象,但是缺乏微观机制;而微观理论没有直接的几何图象。由于IBM既有较好的微观基础[24],又可以由相干态理论建立直观的几何图象[4],所以IBM理论在原子核的形状相变研究中得到了广泛的应用。早期利用IBM对原子核基态的形状相变的研究可以归纳为Casten三角形[4],近年来Iachello利用几何模型对原子核基态形状相变的研究将Casten三角形扩展到四面体[25],如图2所示。图中三个顶点对应IBM的U(5)、SU(3)、O(6)三种对称性极限,另一个顶点对应SU*(3)对称性(将SU(3)的生成元 中的 替换为 )。由相干态理论知,U(5)、SU(3)、SU*(3)、O(6)对称性分别对应球形、轴对称长椭球形变、轴对称扁椭球形变、g-不稳定形变[4]。并且,沿球形到g-不稳定形变的相变为二级相变,临界点附近的核态具有E(5)对称性[10];从球形区到长椭球形变区的相变为一级相变,临界点附近的核态具有X(5)对称性[11];还存在球形、长椭球形和g-不稳定形变三相共存的三相点[15,16]。此外,长椭球形变与扁椭球形变之间的临界点附近的核态具有O(6)对称性[12]、Y(5)对称性[13],也有人认为长椭球与扁椭球形状相变临界点附近的核态还可能具有Z(5)对称性[14]。理论上发现形状共存和各种临界点对称性之后,很快就在实验上找到了对应的原子核。如152Sm可能有形状共存现象[26], 与E(5)对称性对应的原子核有134Ba[27]、108Pd[28]、130Xe[29]等,与X(5)对称性对应的原子核有152Sm、154Gd、156Dy和其他N=90的同中子素链[30],与Y(5)对称性对应的原子核有166,168Er[31]等,与Z(5)对称性相对应的原子核有194Pt等[25]。同时,类似Iachello四面体的工作很快被推广到区分质子玻色子和中子玻色子的IBM-2[32],同样成功的找到了各种极限对称性之间的相变。 图2 扩展的IBM的对称性间的演化图(取自文献[25])Fig. 2 Extended sketch of the symmetries and their evolution in the IBM ( taken from Ref. [25] ) 对于角动量变化可能引起的原子核形状相变,早期的研究主要基于液滴模型[19]。近年来,人们开始利用Landau相变理论[21]、有限温度推转HFB理论[22]、推转IBM[23]、推转无规位相近似[33]以及IBM框架下考虑角动量投影的相干态方法[34,35]进行研究,结果表明即使是核的低激发态也可能存在各种形状之间的相变,并说明低激发能谱中出现振动到定轴转动的相变的机制可能是,随着角动量升高,振动逐渐减弱,转动逐渐加强,临界点以后成为很好的定轴转动。另一方面,直接从核子层次对原子核形状相变的研究也已取得进展[36]。3 强相互作用物质的相变 原子核的液气相变 早在20世纪30年代,根据实验观测到的原子核的性质,人们就对原子核的结构提出了费米气体模型和液滴模型。这说明在某些条件下,原子核呈液相,或者说其某些性质表现为液相的性质;而在另一些方面,原子核表现为气相。在这一层次上,所谓的“液相”和“气相”只是作为原子核的不同性质的唯象表述,根本没有关心这两种相之间的演化。到20世纪90年代中期,随着中高能核核碰撞研究的深入,人们研究了核核碰撞形成的系统的温度与其中核子的激发能之间的关系,最早的由德国GSI报告的结果[37]如图3所示,这一关系显然与通常物质处于液相、气相及其间相变中温度与单粒子平均能量间的关系相同,从而说明发生了液气相变。由于相变通常由热力学函数和状态方程出发进行研究,原子核的液气相变自然成为研究核物质状态方程、进而研究核天体状态及其演化的突破口。于是,美国Brookhaven国家实验室、Lawrence国家实验室、Michigan州立大学、德州农机学院、俄罗斯的Dubna、德国的GSI、法国的GANIL和LNS Saclay、意大利的del Sud国家实验室等国际大型实验室的核物理学家系统研究了中高能核核形成的系统的温度与单粒子激发能的关系、热容、高碎裂多重度、集体膨胀、有限尺寸及Fisher定律标度等[38~41],理论上发展了核玻尔兹曼方程[42]、有限系统费米子-分子动力学[43]、全反对称分子动力学[44]等方法、并利用渗渝理论[45]对这些系统进行研究,结果都表明,在一定的条件下,中高能核核碰撞形成的系统中都会出现液气相变,并说明该相变的机制是失稳分解。事实上,这些研究还都有待深化,尤其是相变的序参量、同位旋依赖性、相变的临界温度、对核天体的结构和演化的影响等都是目前研究关注的重要问题。图3 核核碰撞形成的系统的温度与单核子能量的关系(取自文献[37])Fig. 3 Relation between the temperature and the energy of single nucleon of the system formed in nucleus-nucleus collision (taken from Ref. [37]) 强相互作用物质的相变 强相互作用物质是由强子(包括重子和介子)组成的强子物质和由夸克、胶子组成的夸克物质的统称。因此,对强相互作用物质的组分、性质、相结构及相变的研究是当代原子核物理、粒子物理、天体物理和宇宙学等领域共同关注的重大课题。 我们已经知道,强子由夸克和胶子组成,并且可以形象地将之比喻为束缚有夸克和胶子的口袋,口袋内的夸克、胶子的相互作用与强相互作用真空内的作用之间的差异提供的袋常数常被用来描述束缚的强度。随着强子物质系统温度的升高,强子无规则运动的能量和其内部夸克、胶子无规则运动的能量都会升高,压强会增大;系统密度的增大也会引起压强增大,当系统的真空压不能平衡强子内部的压强时,强子将消失,夸克和胶子将成为夸克物质,也就是可以发生退禁闭相变。退禁闭形成的夸克物质可能以等离子体状态存在,从而形成夸克胶子等离子体(QGP)。另一方面,描述强相互作用的基本理论是量子色动力学(QCD),QCD具有渐近自由的性质(上述退禁闭相变正是渐近自由的结果和表现),并且零质量的费米子(夸克等)具有左旋和右旋的等价性,这种等价性称为手征对称性。然而,现实的强子世界处于低能区域,夸克是禁闭的、有质量的,并且不具有手征对称性。但当退禁闭相变发生以后,手征对称性可能恢复,从而发生手征恢复相变。再者,我们知道,由于电声作用的相互影响,声子可以为电子之间提供一个较弱的吸引力,从而形成电子库珀对,出现超导现象;由于夸克之间的特殊的相互作用道本来就是吸引的,因此夸克之间也可以形成夸克库珀对,由于夸克具有3种颜色,3种色混合或一种色与其反色混合形成无色的强子,但两个夸克形成的对却带有颜色,因此由夸克库珀对形成的凝聚状态称为色超导态[46]。根据色超导态的夸克库珀对的色味结构,色超导态具有两味色超导、色味锁定色超导等多种相(有时简单地统称之为色超导相)。目前的研究表明,强相互作用物质的相图如图4所示。图4 强相互作用物质相图(取自)Fig. 4 Phase diagram of strong interaction matter (taken from ) 由于QCD具有渐近自由的性质,因此,对于高能区的场和粒子性质,可以利用微扰QCD进行研究,并得到了很好的结果。但对于低能区域,QCD的求解问题尚没有解决,于是人们发展了QCD因子化和重求和(硬热圈展开和硬密圈展开)方法[47],并利用QCD的非微扰有效场论模型方法和唯象模型方法(Dyson-Schwinger方程、瞬子模型、整体色对称模型、手征模型、孤立子模型、夸克介子耦合模型、NJL模型、袋模型)[48~54]等对强相互作用物质进行理论研究。近年来,随着对基本原理的扩展和计算方法的发展,利用格点QCD对强相互作用物质的研究已有重大进展[55]。实验上,人们利用高能核核碰撞对强相互作用物质及其相变进行研究。目前,美国Brookhaven国家实验室的AGS和RHIC、欧洲核子中心的SPS等大型高能核核碰撞装置都已为强相互作用物质的研究作出了重大贡献,即将开始运行的欧洲核子中心的LHC和正在兴建的德国GSI的SIS将为强相互作用物质的研究揭开新的一页,我国在兰州兴建并即将运行的CSR装置也将为强相互作用物质的研究谱写新的篇章。尽管对强相互作用物质的相结构和相变的研究已取得丰硕成果,但仍有很多重大基本问题(例如手征对称性破缺和恢复的机制、过程和准确信号、费米子质量的起源、QGP的准确信号和鉴别、强子物质和夸克物质的状态方程,等等)需要研究。4 小结 综上所述,原子核和强相互作用物质的相结构和相变的研究是原子核物理、粒子物理、天体物理、宇宙学和统计物理等领域共同关心的重要前沿领域,尽管已取得重大进展,但无论是实际问题还是研究方法都需要系统深入的研究。 参考文献[1] EINSTAIN A. Ann. Phys[J]. 1905 (17): 132-148; G. N. Lewis, Nature [J]. 1926 (118): 874.[2] ZEILINGER A., WEIHS G., JENNEWEIN T., ASPELMEYER M., Nature[J]. 2005 (433): 230. [3] LUCAS R. Europhysics News[J] 2001(31).[4] IACHELLO F ,Arima A. The interacting boson model[M].Cambridge: Cambridge University Press, 1987.[5] AFANASJEV A V,FOSSAN D B, LANE G J, RAGNARSSON I., Phys. Rept[J]. 1999(322): 1.[6] BOHR A., MOTTELSON B. R. Nuclear Structure[M]( :W. A. Benjamin, 1975, 1-748.[7] GREINER W, MARUHN J. A. Nuclear Models[M] Berlin:Springer, 1996, 47-53.[8] HEYDE K, JOLIE J., FOSSION R., BAERDEMACKER S De, HELLEMANS V. Phys. Rev[J]. 2004( C 69): 054304.[9] CASTEN R. F. KUSNEZOV N. V..Phys. Rev. Lett[J]. 1999(82): 5000. Phase Transitions of Nucleus and Strong Interacting MatterLIU Yu-xin 1,2,3,MU Liang-zhu1,CHANG Lei1 1. Department of Physics, Peking University, Beijing 100871,China2. The Key Laboratory of Heavy Ion Physics at Peking University, Ministry of Education, Beijing 100871,China3. Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator, Lanzhou 730000,ChinaAbstract: We review the status of the research on the phase structure and phase transitions of nucleus and strong interacting matter briefly. It shows that the related studies are the very active current frontier commonly interested by nuclear physics, particle physics, astrophysics, cosmology, statistical physics and other areas. A lot of significant progress has been made. However, not only concrete problems but also researching approaches need to be studied Words: nucleus, strongly interacting matter, phase and phase transition

原子能类期刊

物理学报、物理学进展、高压物理学报、工程热物理学报、计算物理、原子核物理评论、原子能科学技术、中国科学(物理学, 力学, 天文学)、 光学学报 中国激光 发光学报 光子学报 声学学报 原子与分子物理学报 光谱学与光谱分析 量子电子学报 量子光学学报 物理 低温物理学报 计算物理 核聚变与等离子体物理 大学物理 波谱学杂志 光散射学报

物理学类的国家核心期刊比较多,现列出一部分如下:物理,物理学报,高压物理学报,工程热物理学报,计算物理,原子核物理评论,原子能科学技术,大学物理,中国科学(物理学, 力学, 天文学),光学学报,中国激光。声学学报,原子与分子物理学报,光谱学与光谱分析,光散射学报,量子电子学报,量子光学学报,波谱学杂志,低温物理学报,核聚变与等离子体物理。等等。

原子能科学技术与原子核物理评论哪个好?原子能科学技术与原子核物理评论,这两者都是核心期刊。不能说哪个好,哪个不好。它们只是侧重点有所不同。原子能科学技术,原子能的理论研究兼技术应用。重在推动相关技术的应用。原子核物理评论,也是理论研究兼技术应用。重在反映最新研究成果和发展趋势, 促进本学科及相关交叉学科的发展。你可视自己的特长来选择。

1.物理学报  2.光学学报  3.高能物理与核物理  4.光子学报  5.中国激光  6.物理   7.原子与分子物理学报  8.半导体学报  9.光谱学与光谱分析 10.强激光与粒子束   11.量子电子学报  12.物理学进展  13.声学学报  14.红外与毫米波学报 15.发光学报   16.核技术  17.大学物理  18.金属学报  19.低温物理学报  20.无机材料学报   21.高压物理学报  22.材料研究学报  23.波谱学杂志 24.量子光学学报   25.化学物理学报  26.计算物理 27.人工晶体学报  28.光学技术  29.原子核物理评论。

原子核物理论文

于2006年7月南开大学物理学院本科毕业,在2007年10月远赴大阪大学理学院攻读研究生学位,2011年获得日本大阪大学博士学位。先后在日本大阪大学、日本理化学研究所、北京大学、德国于利希研究中心开展博士后及访问学者研究。对于这段经历,他写到“主要是当时找不到工作”。在学术研究中,他先后在原子核物理国际顶级期刊发表SCI论文40余篇。对于刊发的期刊,他也做了备注,比如:Physics Letters B、Scientific Report,“被定义为水刊”,他还特别说明“原子核领域属于夕阳学科,基本上发不了Nature和Science”。对于担任几本国外学术期刊审稿人的原因,胡教授说,是“被人强拉进去的。”在简历中,胡教授还是天津市“131”创新型人才培养工程第三层次入选者,对于这项荣誉,他的备注是“报个名就行,在没有任何真刀真枪资助的情况下已经顺利结题”。他还表示因“承蒙各位前辈大佬的支持”担任了中国核物理学会理事。在研究方向上,胡教授罗列了5个方向,他都依次做了备注或说明“目前比较火”“实验比较少,可以随便忽悠”“原子核物理中的大数据”“这个不好说”“目前更火的,黄金时代”“目前火得一塌糊涂,其实都是为了生存”。奖池一直可以叠加,最多可以十个亿

1.物理学报 2.光学学报 3.发光学报 4.光子学报 5.低温物理学报 6.中国激光 7.原子与分子物理学报 8.声学学报 9.物理学进展10.原子核物理评论 11.物理12.量子电子学报13.高压物理学报14.光谱学与光谱分析15.量子光学学报16.大学物理17.核聚变与等离子体物理18.计算物理19.波谱学杂志20.低温与超导21.物理实验22.光散射学报都是国家中文核心的权威杂志

核物理是研究射线束的产生、探测和分析技术;以及同核能、核技术应用有关的物理问题。下面我给大家分享一些核物理学术论文,大家快来跟我一起欣赏吧。

激光核物理

摘 要 在最近十年,激光技术有了长足的进展,激光的强度超过了1022W/cm2, 激光的电场达到~4×1012V/cm.当这种高强度的激光照射在靶上时,可以产生许多由激光产生的核反应现象.在这篇 文章 中,作者回顾了这一领域的 研究 进展,并对在不远的未来激光产生 电子 ?质子?中子?X射线和正电子 发展 的潜力进行了一些讨论.

关键词 啁啾脉冲放大,粒子云,正电子发射层析术,库仑爆炸

1 什么是

最近十年中,激光技术有了显著的进展,激光强度已超过1022W/cm2,激光的电场强度达到;1012V/cm,比氢原子中电子玻尔轨道上的库仑场大759倍,相当于在原子大小上相应加上约40kV的电压,在原子核大小上相应加上约的电压,在这种很强的电场作用下,所有的原子都会在极短的时间内被电离,产生从几个MeV到几百MeV的质子,几十MeV到GeV的电子和其他粒子,以及韧致辐射和中子,这些粒子可以产生核反应,打开了核物理以及非线性相对论光学研究的新领域[1—3].

在今后的十年中,激光强度可能会提高到1026—1028W/cm2,这样高强度的激光可以将粒子加速到1012—1015eV,并将成为研究粒子物理?引力物理?非线性场论?超高压物理?天体物理和宇宙线研究中的一个有力工具[1].

超高功率超短脉冲激光技术的发展,在实验室中创造了前所未有的极端物态条件,如高电场?强磁场?高能量密度?高光压和高的电子抖动能量?高的电子加速度,这种极端的物理条件, 目前 只有在核爆中心?恒星内部?星洞边缘才能存在,在它和物质的相互作用中,产生了高度的非线性和相对论效应,产生了崭新的物 理学 领域,也为多个交叉学科前沿研究领域带来了 历史 性的机遇和拓展的空间.

2 国内外研究现状

当前国际上已经在一些实验室中建立了几十TW到几个PW的激光系统,在上世纪80年代中期,以前激光的强度长期停留在1014W/cm2左右,这是由于非线性吸收效应随着激光强度的增加而迅速增强,在80年代中期之后,由于采用了啁啾脉冲放大技术(chirped pulse amplification, CPA),激光强度提高了6—7个数量级,在CPA技术中,一个飞秒或皮秒的脉冲通过色散的光栅对在时间尺度将它展宽了3—4个数量级,这样就避免了放大器的饱和以及在很高强度时由于非线性效应产生的光学放大器件的损伤,在经过放大以后,再由另一光栅对将脉冲宽度压缩回到飞秒或皮秒宽度,以获得1019W/cm2到1022W/cm2的靶上功率密度.CPA超短脉冲TW的激光装置在法国光学 应用 研究所?瑞典Lund大学?德国Mark-Plank研究所?德国Jena大学?日本JAERI和 中国 工程物理研究院?中科院上海光学精密机械研究所?中科院物理研究所?中国原子能 科学 研究院等都建有.日本原子能研究所采用变形镜和CPA相结合的技术,运用低f值的抛物面镜,将激光聚焦于1μm的斑点,可以进一步提高焦斑上的功率密度,但是由于放大介质的单位面积上的饱和能量通量和光学元件的损伤阈值的限制,单位面积上最大的光强度?I??th?=hν3σΔν?ac2?,这个数值约为10?23?W/cm2.美国LLNL正在计划建造10?18?W(exawatt)和10?21?W(zettawatt)的激光装置,以期获得1026W/cm2 —1028W/cm2的靶上功率密度.

高强度的激光可以引起许多核反应,当激光强度I>10?18?W/cm2时,在激光电场做抖动的电子能量达到,产生了相对论等离子体.运用强激光在等离子体中产生的尾场去加速电子,如用一台紧凑型的重复频率的激光器可以产生200MeV的电子.这种激光等离子体型的加速器具有比通常电子加速器高出1000倍的加速梯度,即达到GV/m.运用高强度?单次脉冲的激光也获得了100MeV的电子,并测量到它的韧致辐射.超短超强激光还可以产生质子束,并开始运用这些质子束产生正电子发射层析术(positron emission tomography,PET)所需要的短寿命的正电子放射源,一种用激光来产生的小型化的和 经济 的质子产生器有望在未来用于质子治癌.运用超短超强激光直接产生正电子已在英国卢瑟福实验室开展,他们用重复频率的TW级的激光,打在高Z元素的靶上得到每脉冲2×107个正电子,它对于基础研究和材料科学很有用途.通过超短超强激光和氘团簇的相互作用,产生聚变反应的中子,其中子产额可以达到105中子/焦耳,激光产生中子的能量效率已达到世界上大型的激光装置的水平,它可以成为台面的中子源,由于其中子脉冲通量高,但总的中子剂量很小,适合于生物活体的中子照相和材料科学的研究.运用超短超强激光和氘化聚乙烯作用产生中子,Hilsher等人用钛宝石激光(300mJ, 50fs, 10Hz, 10?18?W/cm2) 轰击氘化聚乙烯靶,产生104中子/脉冲.运用超短超强的激光在相对论性的电子上的散射,产生几百飞秒?几十埃的硬X射线,可以用来研究材料和生命科学的一些 问题 ,这种超快的硬X射线源对于研究一些高Z物质和时间分辨的超快现象具有重要的意义.超短超强激光所产生的高能电子,在物质中产生高能X射线,可以在裂变物质铀中引起裂变,并在裂变靶中探测到许多裂变产物.在激光的强度达到1028W/cm2时,电场强度只比Schwinger场(真空击穿场强)低一个数量级,在这样的场中,由于真空的涨落被激发,激光就有可能从真空中产生正负电子对,美国Lawrence Berkerly实验室在SLAC高能加速器上,用10?18?W/cm2的激光束和聚焦性能很好的的电子束相碰撞,产生了200多个正负电子对,这是由于在反向相碰的电子和激光中,从电子的坐标系来看,激光的场强增强了Lorentz因子倍,以至于可以远远地超过Schwinger场值,直接从真空中产生一些电子对.

3 新的科学研究的 内容 ,新的交叉点

激光产生高能电子[4—7]

产生高能电子的机制有两种:第一种是在激光场作用下,电子做抖动运动,在激光强度I=10?20?W/cm2时,电子抖动运动能量能达到10MeV;第二种是由非线性效应所产生的能量比较高的部分.用300J,的激光照射在厚的金靶上,测量到的电子能谱分布基本上由两个部分组成:一部分是由有质动力产生的,它的能量在20—30MeV以下,还有一部分就是由非线性效应产生的几十MeV以至100MeV以上的高能量的电子,并和粒子云(particle in cell,PIC) 的 计算 结果符合,目前加速电子最高能量已达1GeV.能散度可达3% .

当激光的强度增加时,光波的压力变得很大,光压推着电子往前走,光波就像一个光子耙将等离子体中的电子推到脉冲的前面积累,形成电子的“雪耙”(snow plow) ,在这种“雪耙”加速中,电子的动能得到增益.在综合了光压作用和激光场的作用后,计算得到在激光强度为I=1026W/cm2时,加速梯度可达200TeV/cm,如果加速长度达到1m,电子能量为2×10?16?eV,在I=1028W/cm2时,加速梯度可达2peV/cm,加速长度为1m时,电子能量为2×10?17?eV,可以用来研究高能物理中的许多问题.

激光产生质子束[8,9]

在激光等离子体中,在I=10?20?W/cm2的情况下,加速质子的能量可以高达58MeV.加速梯度约为1MV/μm.质子被加速的距离只有60μm左右,如何增长加速距离成为非常重要的研究内容,加速质子的机制是相当复杂的,也提出了一些加速模型的设想.实验上的研究结果已显示它存在很好的应用前景.这表现在:

(1) 激光能量转换成质子束能量的效率是高的,而且和激光的能量有关,在激光脉冲能量为10J?宽度为100fs时,转换效率为1%,当500J?500fs时,转换效率为10%,人们已经获得了10?13?质子/脉冲,质子脉冲宽度约1ps,相当于10?25?质子/秒,即?;?106A的脉冲质子流.

从 理论 到实验应该研究如何进一步提高能量转换效率的问题,尤其是当激光能量进一步提高时,转换效率是否还继续上升.

(2) 质子束的发散角比较小,观察到的横向发散角为;mrad,比通常加速器上加速的质子束的发散角小.

(3) 高能质子束的获得可能会在今后的十年中实现,按照Bulanov等人的计算结果,在I=10?23?W/cm2时,质子可以被加速到1GeV以上,在I=1026W/cm2和1028W/cm2时,质子能量可以达到100GeV和 10TeV.

(4) 目前已获得几十MeV的质子束,并已用于为PET产生?18?F等短寿命的正电子源,在英国Rutherford实验室的Vulcan装置上,在20分钟内制备了109Bq的?18?F源,已经可以用在PET上.

(5) 产生200MeV的质子,并用于质子治癌,由于它在能量沉积上的优越性能,以及整个装置可以做得小,成本低,所以在治癌应用上很有发展前景,并可应用于中子照相.目前由激光加速产生的质子的能量分散度为17%.治癌应用要求能散度≤3%左右,因此减少能散度的工作在一些实验室正在进行中.

激光产生中子[10,11]

超短超强激光加热氘团簇产生核聚变,已经产生了104中子/脉冲或105中子/焦耳,从激光的能量转换成中子的效率看,和美国LLNL上的大型激光器NOVA上的每焦耳激光的中子产额相当,比日本大阪大学的大型激光装置Gekko 12上的数值大一个数量级,因此是一种很有 发展 前景的桌面台式的中子发生器,因为这种中子源的时间宽度只有1ps,是一个高中子通量的中子源,可用于材料 科学 和中子照相.

氘的团簇在吸收激光能量后要发生库仑爆炸,应该说到现在为止对于库仑爆炸的机理理解尚不非常清楚,尤其是团簇爆炸后产生的氘分子和氘的小团簇如何产生氘-氘的聚变反应也缺乏细致的了解,在进一步的改进方面,还有发展的余地,例如,如何采用多束的超短超强激光同时照射团簇,或用大于50T的脉冲磁场去推迟热等离子体的解体时间,以增加中子产额.

利用超短超强激光和氘化聚乙烯作用来产生中子,Hilsher等人用钛宝石激光(300mJ,50fs,10Hz,10?18?W/cm2)轰击氘化聚乙烯靶也产生了104中子/脉冲,大约每焦耳的激光产生;104中子.Disdier等人用20J,400fs,5×1014W的激光辐照CD?2靶,获得107中子,每焦耳激光产生了;105中子,这是很高的中子产额,他们还要用500J,500fs,1pW的激光照射CD?2,以获得更多的中子.

在激光辐照CD?2平面靶时,除了要 研究 激光能量在CD?2靶上的能量沉积的分布外,如何充分地利用沉积的能量是一个很重要的 问题 .沉积的能量有很大一部分要转变成等离子体的动能,在平面靶的情况下,如何设计靶面形状,以最大限度地使等离子体的动能对D-D反应做贡献.

激光产生硬的超短(~100fs)X射线[12]

用超短超强激光(50mJ,)和50MeV的 电子 束散射可以产生4nm,300fs的硬X射线,虽然转换效率不高,但产生的X射线强度可以在Si表面产生衍射峰,可以用来研究Si表 面相 变过程(从固相→熔化过程)的时间分辨的研究,也可以研究蛋白质折叠动力学,蛋白质的折叠时间为1ns,用300fs的硬X射线可用来了解它的折叠过程中的状态.

激光产生正电子[13,14]

将具有几个MeV的电子,经过很好地准直后,射到一个高Z的靶上,通过Trident过程(Z+e-→Z′+2e-+e+)和Bethe-HEitler过程(Z+r→Z′+e-+e++r′)产生正电子,采用重复频率的超短超强激光和高Z靶的相互作用,每脉冲可以产生2×107个正电子,经过慢化后,储存在磁场中,它对于基础科学和材料科学的研究是很有用的.

4 主要存在的问题和 分析

这门新兴的交叉学科在国际上也只有十多年的 历史 ,但发展十分迅速,搞激光技术和原子核物理的科学家们已经开始在一起召开学术研讨会,共同参加一些实验,由于它是一个新的生长点,发展比较快,也比较容易发现一些新现象,所以合作的积极性也在日益增长.随着超短超强激光技术的发展,在粒子加速?核物理?甚至粒子物理方面可以做出一些很好的工作来.我国发展的情况有些滞后,学科之间的交叉和合作还没有真正形成,学科之间的了解和交流还不够,因此只在交叉学科的边缘上做了一些工作,按照我国在激光技术和核物理方面的力量来说,都应该有可能做出更多更好的工作. 目前 具有超短超强激光装置的研究单位并不少,但将它们运行好,做出好的物理工作的成果并不多.

国内的情况也和国际上相似存在着一个问题,即搞强激光技术的专家和搞核物理和粒子物理专家之间的交流?讨论不够,这就会 影响 这一交叉学科的发展.

从强场物理到超短超强激光技术,到 应用 于各个领域,在世界上是基础科学和技术进步相互推动,相互作用的一个范例,基础研究的需求,以及光学科学的基础,非线性科学的基础,促进了超短超强激光技术的发展,而高强度激光的发展又为物 理学 的发展提供一个崭新的世界.

参考 文献

[1] Tajima T, Mourou G. Physical Review Special Topics\|Accelerators and Beams, 2002, 5:037301

[2] Mourou G, Tajima T, Bulanov S V. Reviews of Modern Physics, 2006, 78: 309

[3] Lee mans W P et al. Nature Physics, 2006, 2: 696

[4] Thomas Katsouleas. Nature, 2004, 431: 515

[5] Mangles S P D et al. Nature, 2004, 431 :535

[6] Geddes C G R et al. Nature, 2004, 431: 538

[7] Farue J et al. Nature, 2004, 431:541

[8] Wilks S C et al. Physics of Plasma, 2001, 8:542

[9] Schwoerer H et al. Nature , 2006, 439: 445

[10] Perkins L J et al. Nuclear Fusion,2000, 40:1

[11] Zweiback J et al. Phys. Rev. Lett.,2000, 85:3640

[12] Kmetec J D et al. Phys. Rev. Lett.,1992, 68: 1527

[13] Gahn C et al. Appl. Phys. Lett., 2000,77 : 2662

[14] Gahn C et al. Phys. Rev. Lett., 1999, 83 :4772

点击下页还有更多>>>核物理学术论文

新学期开始了,在南开大学物理学院官方网站,有同学意外发现胡金牛教授介绍中自叙也有不少“社会嗑”:读博士后的原因是因为“那时候找工作难”;发布SCI论文40余篇中,有两种杂志期刊是“水刊”,变成刊物评审人是“被别人强拉进来”等描述,学生感慨他是一个“实诚教授”,它的学生们邢同学点评:“他积极向上的生活观念让我也体会到‘乐此不疲’的奋斗精神,一日为师终生从师。”

记者打电话南开大学,一不愿透露姓名的老师表示:“网站上的个人简介全是老师自己写的,学校不容易干预。”记者向胡教授发去访谈电子邮件,截止到投稿前无法得到回应。

自我调侃读博士后主要原因是“找工作难”

新闻记者在南开大学物理学院官方网站见到胡金牛教授的教育背景:于2006年7月南开大学物理学院大学本科毕业,在2007年10月赶赴大阪大学理学院攻读研究生学士学位,2011年得到日本大阪大学博士研究生。分别在日本大阪大学、日本理化学研究所、北京大学、德国于利希研究中心进行博士研究生及出国访问学者科学研究。针对这段经历,他提到“通常是那时候找工作难”。

在科学研究中,他分别在原子核物理国际顶级期刊发布SCI论文40余篇。针对刊登的刊物,他都做了备注名称,例如:PhysicsLettersB、ScientificReport,“被界定为水刊”,他就特别提示“原子行业归属于落日课程,大部分发不了Nature和Science”。

针对出任几本书海外学术刊物评审人的主要原因,胡教授说,是“被别人强拉进来的。”在简历上,胡教授或是天津市“131”高素质人才塑造工程项目第三层级入选者,针对此项殊荣,它的备注是“报个名就可以了,在没有任何真刀真枪支助的情形下早已成功结项”。他就表明因“承蒙各位老前辈大佬们的适用”被任命为中国核物理学会理事长。

在分析方位,胡教授列举了5个方位,他就先后进行了备注名称或表明“现阶段比较火”“试验特别少,能直接坑”“原子核物理中大数据的”“这个不好说”“现阶段更火的,辉煌时代”“现阶段火得一塌糊涂,实际上都是为了活着”。

在教育中,本科生的课它会标明“近期刚开”“偶尔会全英文教学”,针对硕士研究生的课,他就尤其标明“经常会因为选修课人少而停学”。

在成就上,他自叙是“2008年打动中国尤其奖获得者”。新闻记者留意到,2008年打动中国尤其奖获得者是整体中国人。

胡教授简明扼要自我介绍和自嘲,引起了热议:“好可爱的老师”“太实诚了啊”“真正意义上的科学精神。”“真心实意!一字一句全是!”

在光荣称号中,新闻记者见到,胡教授得到2017年南开大学出色硕士学位论文指导教师。那样,在孩子们心目中的又是怎样的品牌形象呢?记者在中国知网中检索到,胡教授引导的2017年硕士毕业论文,在其中学生们邢同学在“感谢”中点评“杨老师在学术上严谨细致,在日常生活中却不失厚道和蔼可亲。他在生活中也给了我诸多支持和协助,而积极向上的生活观念让我也体会到‘乐此不疲’的奋斗精神。一日为师终生从师,胡金牛教师科学研究与生活上风格会永远推动着我前行。”

9月17日,南开大学一名不愿透露姓名的教师电话中告知记者:“网站上的个人简介全是老师自己写的,学校不容易干预。从文章看,胡教授绝对是一名实诚的教师,导师的设计风格对于学生也会带来深刻的影响。”17日早上,记者向胡教授发去访谈电子邮件,截止到投稿前无法得到回应。

山西太原师范核心期刊

太原师范学院不错。

1、教学质量稳步提高。

学校现有教学院系20个,本科专业49个,分布在经济学、法学、教育学、文学、历史学、理学、工学、管理学、艺术学等9大学科门类。拥有国家级一流专业建设点2个,省级一流专业建设点8个;

国家级特色专业2个,省级优势和特色专业7个;国家级一流课程1门,省级精品课程11门;省级实验教学示范中心7个。

2、实践教学成果丰硕。

先后获得省级大创一等奖5项、二等奖13项、三等奖及优秀奖30项;在“兴晋挑战杯”大学生科技创新作品竞赛、“互联网+”竞赛中获得奖项41项。

行知舞蹈团登上人民大会堂“百花迎春”中国文学艺术界联欢会舞台,行知合唱团多次与国内外著名艺术家及团体合作演出;一大批学子在国家级比赛中摘金夺银、屡获佳绩。

3、学科科研水平明显提升。

学校现有1个山西省“1331工程”重点学科建设计划优势特色学科,8个省重点建设学科,2个省重点扶持学科;1个省高校思想政治工作协同育人中心(培育项目),2个省协同创新中心,1个省工程(技术)研究中心,1个省“1331工程”重点创新团队;

1个省“1331工程”工程(技术)研究中心,2个省高校人文社会科学重点研究基地,1个省高校重点实验室,1个发改委工程技术中心,5个省级新型研发机构,1个山西省教育行政执法研究基地。

主办有《太原师范学院学报》(社会科学版和自然科学版)、《教学与管理》(中文核心期刊、中国期刊方阵“双效期刊”)等学术期刊。

3、师资实力显著增强。

现有专任教师1185名,包括教授111名,副教授343名,具有博士学位教师354名,硕士学位教师507人,硕士生导师507名。教师中享受国务院政府特殊津贴专家1名;

国家“万人计划”青年拔尖人才1名,省委联系的高级专家1名,省学术技术带头人7名,省宣传文化系统“四个一批”人才5名,省教学名师11名,省高校优秀青年学术带头人6名。

校训

崇德、博学、团结、创新

崇德:“大学之道,在明明德。”“崇德”即传承优良教育传统,遵循党的教育方针,彰显了“育人为本,德育为先”的教育宗旨。

博学:语出《中庸》“博学之,审问之,笃行之”,体现了“厚基础、宽口径、重应用”的教育教学观念和人才培养模式。

团结:强调凝聚人心、凝聚力量。意味着兼容并包、海纳百川的襟怀,求同存异、和谐共生的境界。

创新:旨在与时偕行,面向未来。对于教师而言,是日新月异的期许;对于学子而言,是“苟日新、又日新、日日新”的激励。

以上内容参考:

百度百科-太原师范学院

太原师范学院-太原师范学院简介

太原师范学院一般,属于二本大学。

太原师范学院(是一所以师范教育为主,专业涵盖经济学、法学、教育学、文学、历史学、理学、工学、管理学、艺术学等九大学科门类的省属全日制普通本科高等院校。

截至2022年6月,学校设有新校区、中校区、南校区、北校区四个校区,总占地面积1884亩,其中新校区占地面积1569亩,建筑面积约55万平方米;有教学院系19个,本科专业52个。

太原师范学院学科建设

截至2020年6月,太原师范学院有6个硕士学位一级学科授权点,9个硕士专业学位授权点;拥有3个省级重点建设学科,3个省级重点扶持学科。

2021年硕士研究生招生的全日制学术学位一级学科有:中国语言文学、中国史、数学、地理学、生物学和艺术学理论,学制三年。全日制硕士专业学位类别:电子信息、艺术硕士,学制三年;教育硕士(学科教学)和旅游管理,学制两年。非全日制专业学位类别:教育硕士的教育管理,学制三年。

以上内容参考:百度百科-太原师范学院

不是核心期刊!刊名:太原师范学院学报(自然科学版)JournalofTaiyuanNormalUniversity(NaturalScienceEdition)主办:太原师范学院学报周期:季刊出版地:山西省太原市语种:中文;开本:大16开ISSN:1672-2027CN:14-1304/N历史沿革:现用刊名:太原师范学院学报(自然科学版)曾用刊名:太原师范学院学报(社会科学版);山西教育学院学报创刊时间:1998

这个是北大核心期刊,核心期刊都有版面费的,2000-3000吧。望采纳刊名: 教学与管理 Journal of Teaching and Management主办: 太原师范学院周期: 旬刊出版地:山西省太原市语种: 中文;开本: 16开ISSN: 1004-5872CN: 14-1024/G4邮发代号:22-103历史沿革:现用刊名:教学与管理创刊时间:1984核心期刊:中文核心期刊(2011)中文核心期刊(2008)中文核心期刊(2004)

电子期刊和核心期刊的区别

1、创办单位不同

美国的《科学引文索引》(Science Citation Index, 简称 SCI )于1957 年由美国科学信息研究所(Institute for Scientific Information, 简称 ISI)在美国费城创办,是由美国科学信息研究所(ISI)1961 年创办出版的引文数据库。

CSSCI,中文社会科学引文索引,英文全称为“Chinese Social Sciences Citation Index”。是由南京大学中国社会科学研究评价中心开发研制的数据库。

2、用处不同

SCI(科学引文索引)、EI(工程索引)、ISTP(科技会议录索引)是世界著名的三大科技文献检索系统,是国际公认的进行科学统计与科学评价的主要检索工具,其中以SCI 最为重要。SCI创办人为尤金·加菲尔德(Eugene Garfield, September 16,1925~2017)。

CSSCI,用来检索中文社会科学领域的论文收录和文献被引用情况,是我国人文社会科学评价领域的标志性工程。

3、影响不同

SCI(科学引文索引)以布拉德福(S. C. Bradford)文献离散律理论、以加菲尔德(E. Garfield)引文分析理论为主要基础,通过论文的被引用频次等的统计,对学术期刊和科研成果进行多方位的评价研究,从而评判一个国家或地区、科研单位、个人的科研产出绩效,来反映其在国际上的学术水平。

因此,SCI是目前国际上被公认的最具权威的科技文献检索工具。

CSSCI(中文社会科学引文索引)数据库已被北京大学、清华大学、中国人民大学、复旦大学、国家图书馆、中科院等众多单位包库使用,并作为地区、机构、学术、学科、项目及成果评价与评审的重要依据。

教育部已将CSSCI数据作为全国高校机构与基地评估、成果评奖、项目立项、名优期刊的评估、人才培养等方面的重要指标。

扩展资料:

所有入选CSSCI期刊/集刊必须具备以下基本条件:

1、刊载人文社会科学原创学术论文和学术评论等一次文献为主的中文学术期刊/集刊;

2、 中国大陆出版的期刊应具有CN号,港澳台及海外出版的期刊应具有ISSN号,学术集刊应具有ISBN号;

3、按既定出版周期准时出版,符合期刊编辑出版规范,文献信息著录完整、规范。

以下期刊/集刊不列为遴选范围:

1、属自然科学类期刊(集刊);

2、以刊载文艺作品、译文和知识普及性文章以及动态资讯等为主的期刊/集刊;

3、转载类、文摘类期刊和年鉴等期刊/集刊;

4、凡有下列情形的期刊/集刊不予入选:

1)存在违反国家期刊出版管理相关法律法规或条例情况的期刊;

2)存在学术不端或缺乏学术诚信行为的期刊/集刊;

3)上一年度引文差错率过高的期刊/集刊。

学术期刊参加遴选需向中心提交近两年出版的样刊。

学术集刊参加遴选需由主办单位提出申请,并提交近三年出版的样刊和“学术集刊基本信息表”。

参考资料来源:百度百科-社会科学引文索引

参考资料来源:百度百科-中文社会科学引文索引

SCI最好,    EI其次,    最后是核心期刊。记住了

首先你要弄明白3个名词的定义,也就是代表什么意思:美国《科学引文索引》(sciencecitationindex,简称sci)于1957年由美国科学信息研究所(instituteforscientificinformation,简称isi)在美国费城创办,是由美国科学信息研究所(isi)1961年创办出版的引文数据库。sci(科学引文索引)、ei(工程索引)、istp(科技会议录索引 )是世界著名的三大科技文献检索系统,是国际公认的进行科学统计与科学评价的主要检索工具,其中以sci最为重要,创办人为尤金·加菲尔德(eugenegarfield,september16,1925~)。《工程索引》theengineeringindex是供查阅工程技术领域文献的综合性情报检索刊物。简称ei,1884年创刊,年刊,1962年增出月刊本。由美国工程信息公司编辑出版。每年摘录世界工程技术期刊约3000种,还有会议文献、图书、技术报告和学位论文等,报道文摘约15万条,内容包括全部工程学科和工程活动领域的研究成果。出版形式有印刷本、缩微胶卷、计算机磁带和cd-rom光盘。文摘按标题词字顺编排,年刊配有著者、著者工作机构和主题等3种索引,以及引用出版物目录和会议目录;月刊只配有著者和主题这2种索引。另外,单独出版《工程标题词表》、《工程出版物目录》和多种专题文摘。主要特点是摘录质量较高,文摘直接按字顺排列,索引简便实用。3.期刊基本定位:从严格意义上说,期刊杂志并无国家级、省级的区分标准。因为,国家新闻出版总署早就声明:中国的出版物,只有正式和非正式之分,没有所谓国家级、省级等的等级。区分在实际生活中,许多人通常将某刊物说成是国家级的,某刊物是省级的或市级的。这种划分,在实际生活中还有一些用处。这种划分的标准,大致是:国家级期刊:一般说来,“国家级”期刊,即由党中央、国务院及所属各部门,或中国科学院、中国社会科学院、各民主党派和全国性人民团体主办的期刊及国家一级专业学会主办的会刊。另外,刊物上明确标有“全国性期刊”、“核心期刊”字样的刊物也可视为国家级刊物。省级期刊:即是由各省、自治区、直辖市的各部门、委办、厅、局、所,省级社会团体和机构以及各高等院校主办,在新闻出版部门有登记备案,国内外公开发行的学术期刊。核心期刊:简单地说,核心期刊是学术界通过一整套科学的方法,对于期刊质量进行跟踪评价,并以情报学理论为基础,将期刊进行分类定级,把最为重要的一级称之为核心期刊。(1)北京大学图书馆“中文核心期刊”、(2)南京大学“中文社会科学引文索引(cssci)来源期刊”。(3)中国科学院文献情报中心“中国科学引文数据库(cscd)来源期刊”。(4)中国科学技术信息研究所“中国科技论文统计源期刊”(又称“中国科技核心期刊”)。(5)中国社会科学院文献信息中心“中国人文社会科学核心期刊”。(6)中国人文社会科学学报学会“中国人文社科学报核心期刊”。cn类刊物:是指在我国境内注册、国内公开发行的刊物。该类刊物的刊号均标注有cn字母,人们习惯称之为cn类刊物。

CSCD跟核心期刊的具体区别:

1、期刊含盖范围不同。国内核心期刊,有七大数据库,核心期刊包括各类核心,比如cssci、中文核心、统计源核心、CSCD、EI等等,CSCD是其中的一个数据库,属于核心期刊。

2、分别是不同数据库。核心期刊也单指某一个数据库,即北大核心期刊,又名中文核心,因为这个核心在国内虽然不是最权威的,却是最普及的,所以核心期刊可以是中文核心的代名词。此时核心期刊和CSCD期刊是两个不同的数据库。

CSCD扩展版定义:

CSCD中C库代表核心,E库为扩展版。

CSCD期刊的定义:

cscd指的是中国科学引文数据库,主要负责收录我国数学、物理、化学、天文学、地学、生物学、农林科学、医药卫生、工程技术和环境科学等领域的核心期刊,国内有七大核心期刊体系,其中cscd就是其中的一种。

相关百科
热门百科
首页
发表服务