论文投稿百科

钢结构绘图员毕业论文

发布时间:2024-07-07 12:26:45

钢结构绘图员毕业论文

太长了,超过了10000字发不了。我这里先给你个英文的你加我QQ我给你中文的两部分不会弄,你加我QQ我发给你吧,加分啊395886292 <英文版> Talling building and Steel construction Although there have been many advancements in building construction technology in general. Spectacular archievements have been made in the design and construction of ultrahigh-rise buildings. The early development of high-rise buildings began with structural steel concrete and stressed-skin tube systems have since been economically and competitively used in a number of structures for both residential and commercial high-rise buildings ranging from 50 to 110 stories that are being built all over the United States are the result of innovations and development of new structual systems. Greater height entails increased column and beam sizes to make buildings more rigid so that under wind load they will not sway beyond an acceptable lateral sway may cause serious recurring damage to partitions, other architectural details. In addition,excessive sway may cause discomfort to the occupants of the building because their perception of such systems of reinforced concrete,as well as steel,take full advantage of inherent potential stiffness of the total building and therefore require additional stiffening to limit the sway. In a steel structure,for example,the economy can be defined in terms of the total average quantity of steel per square foot of floor area of the A in Fig .1 represents the average unit weight of a conventional frame with increasing numbers of stories. Curve B represents the average steel weight if the frame is protected from all lateral loads. The gap between the upper boundary and the lower boundary represents the premium for height for the traditional column-and-beam engineers have developed structural systems with a view to eliminating this premium. Systems in steel. Tall buildings in steel developed as a result of several types of structural innovations. The innovations have been applied to the construction of both office and apartment buildings. Frame with rigid belt trusses. In order to tie the exterior columns of a frame structure to the interior vertical trusses,a system of rigid belt trusses at mid-height and at the top of the building may be used. A good example of this system is the First Wisconsin Bank Building(1974) in Milwaukee. Framed tube. The maximum efficiency of the total structure of a tall building, for both strength and stiffness,to resist wind load can be achieved only if all column element can be connected to each other in such a way that the entire building acts as a hollow tube or rigid box in projecting out of the ground. This particular structural system was probably used for the first time in the 43-story reinforced concrete DeWitt Chestnut Apartment Building in Chicago. The most significant use of this system is in the twin structural steel towers of the 110-story World Trade Center building in New York Column-diagonal truss tube. The exterior columns of a building can be spaced reasonably far apart and yet be made to work together as a tube by connecting them with diagonal members interesting at the centre line of the columns and beams. This simple yet extremely efficient system was used for the first time on the John Hancock Centre in Chicago, using as much steel as is normally needed for a traditional 40-story building. Bundled tube. With the continuing need for larger and taller buildings, the framed tube or the column-diagonal truss tube may be used in a bundled form to create larger tube envelopes while maintaining high efficiency. The 110-story Sears Roebuck Headquarters Building in Chicago has nine tube, bundled at the base of the building in three rows. Some of these individual tubes terminate at different heights of the building, demonstrating the unlimited architectural possibilities of this latest structural concept. The Sears tower, at a height of 1450 ft(442m), is the world’s tallest building. Stressed-skin tube system. The tube structural system was developed for improving the resistance to lateral forces (wind and earthquake) and the control of drift (lateral building movement ) in high-rise building. The stressed-skin tube takes the tube system a step further. The development of the stressed-skin tube utilizes the façade of the building as a structural element which acts with the framed tube, thus providing an efficient way of resisting lateral loads in high-rise buildings, and resulting in cost-effective column-free interior space with a high ratio of net to gross floor area. Because of the contribution of the stressed-skin façade, the framed members of the tube require less mass, and are thus lighter and less expensive. All the typical columns andspandrel beams are standard rolled shapes,minimizing the use and cost of special built-up members. The depth requirement for the perimeter spandrel beams is also reduced, and the need for upset beams above floors, which would encroach on valuable space, is minimized. The structural system has been used on the 54-story One Mellon Bank Center in Pittburgh. Systems in concrete. While tall buildings constructed of steel had an early start, development of tall buildings of reinforced concrete progressed at a fast enough rate to provide a competitive chanllenge to structural steel systems for both office and apartment buildings. Framed tube. As discussed above, the first framed tube concept for tall buildings was used for the 43-story DeWitt Chestnut Apartment Building. In this building ,exterior columns were spaced at () centers, and interior columns were used as needed to support the 8-in . -thick (20-m) flat-plate concrete slabs. Tube in tube. Another system in reinforced concrete for office buildings combines the traditional shear wall construction with an exterior framed tube. The system consists of an outer framed tube of very closely spaced columns and an interior rigid shear wall tube enclosing the central service area. The system (Fig .2), known as the tube-in-tube system , made it possible to design the world’s present tallest (714ft or 218m)lightweight concrete building ( the 52-story One Shell Plaza Building in Houston) for the unit price of a traditional shear wall structure of only 35 stories. Systems combining both concrete and steel have also been developed, an examle of which is the composite system developed by skidmore, Owings &Merril in which an exterior closely spaced framed tube in concrete envelops an interior steel framing, thereby combining the advantages of both reinforced concrete and structural steel systems. The 52-story One Shell Square Building in New Orleans is based on this system. Steel construction refers to a broad range of building construction in which steel plays the leading role. Most steel construction consists of large-scale buildings or engineering works, with the steel generally in the form of beams, girders, bars, plates, and other members shaped through the hot-rolled process. Despite the increased use of other materials, steel construction remained a major outlet for the steel industries of the , , , Japan, West German, France, and other steel producers in the 1970s Early history. The history of steel construction begins paradoxically several decades before the introduction of the Bessemer and the Siemens-Martin (openj-hearth) processes made it possible to produce steel in quantities sufficient for structure use. Many of problems of steel construction were studied earlier in connection with iron construction, which began with the Coalbrookdale Bridge, built in cast iron over the Severn River in England in 1777. This and subsequent iron bridge work, in addition to the construction of steam boilers and iron ship hulls , spurred the development of techniques for fabricating, designing, and jioning. The advantages of iron over masonry lay in the much smaller amounts of material required. The truss form, based on the resistance of the triangle to deformation, long used in timber, was translated effectively into iron, with cast iron being used for compression , those bearing the weight of direct loading-and wrought iron being used for tension , those bearing the pull of suspended loading. The technique for passing iron, heated to the plastic state, between rolls to form flat and rounded bars, was developed as early as 1800;by 1819 angle irons were rolled; and in 1849 the first I beams, feet () long , were fabricated as roof girders for a Paris railroad station. Two years later Joseph Paxton of England built the Crystal Palace for the London Exposition of 1851. He is said to have conceived the idea of cage construction-using relatively slender iron beams as a skeleton for the glass walls of a large, open structure. Resistance to wind forces in the Crystal palace was provided by diagonal iron rods. Two feature are particularly important in the history of metal construction; first, the use of latticed girder, which are small trusses, a form first developed in timber bridges and other structures and translated into metal by Paxton ; and second, the joining of wrought-iron tension members and cast-iron compression members by means of rivets inserted while hot. In 1853 the first metal floor beams were rolled for the Cooper Union Building in New York. In the light of the principal market demand for iron beams at the time, it is not surprising that the Cooper Union beams closely resembled railroad rails. The development of the Bessemer and Siemens-Martin processes in the 1850s and 1860s suddenly open the way to the use of steel for structural purpose. Stronger than iron in both tension and compression ,the newly available metal was seized on by imaginative engineers, notably by those involved in building the great number of heavy railroad bridges then in demand in Britain, Europe, and the . A notable example was the Eads Bridge, also known as the St. Louis Bridge, in St. Louis (1867-1874), in which tubular steel ribs were used to form arches with a span of more than 500ft (). In Britain, the Firth of Forth cantilever bridge (1883-90) employed tubular struts, some 12 ft () in diameter and 350 ft (107m) long. Such bridges and other structures were important in leading to the development and enforcement of standards and codification of permissible design stresses. The lack of adequate theoretical knowledge, and even of an adequate basis for theoretical studies, limited the value of stress analysis during the early years of the 20th century,as iccasionally failures,such as that of a cantilever bridge in Quebec in 1907, failures were rare in the metal-skeleton office buildings;the simplicity of their design proved highly practical even in the absence of sophisticated analysis techniques. Throughout the first third of the century, ordinary carbon steel, without any special alloy strengthening or hardening, was universally used. The possibilities inherent in metal construction for high-rise building was demonstrated to the world by the Paris Exposition of which Alexandre-Gustave Eiffel, a leading French bridge engineer, erected an openwork metal tower 300m (984 ft) high. Not only was the height-more than double that of the Great Pyramid-remarkable, but the speed of erection and low cost were even more so, a small crew completed the work in a few months. The first skyscrapers. Meantime, in the United States another important development was taking place. In 1884-85 Maj. William Le Baron Jenney, a Chicago engineer , had designed the Home Insurance Building, ten stories high, with a metal skeleton. Jenney’s beams were of Bessemer steel, though his columns were cast iron. Cast iron lintels supporting masonry over window openings were, in turn, supported on the cast iron columns. Soild masonry court and party walls provided lateral support against wind loading. Within a decade the same type of construction had been used in more than 30 office buildings in Chicago and New York. Steel played a larger and larger role in these , with riveted connections for beams and columns, sometimes strengthened for wind bracing by overlaying gusset plates at the junction of vertical and horizontal members. Light masonry curtain walls, supported at each floor level, replaced the old heavy masonry curtain walls, supported at each floor level , replaced the oldheavy masonry. Though the new construction form was to remain centred almost entirely in America for several decade, its impact on the steel industry was worldwide. By the last years of the 19th century, the basic structural shapes-I beams up to 20 in. ( ) in depth and Z and T shapes of lesser proportions were readily available, to combine with plates of several widths and thicknesses to make efficient members of any required size and strength. In 1885 the heaviest structural shape produced through hot-rolling weighed less than 100 pounds (45 kilograms) per foot; decade by decade this figure rose until in the 1960s it exceeded 700 pounds (320 kilograms) per foot. Coincident with the introduction of structural steel came the introduction of the Otis electric elevator in 1889. The demonstration of a safe passenger elevator, together with that of a safe and economical steel construction method, sent building heights soaring. In New York the 286-ft () Flatiron Building of 1902 was surpassed in 1904 by the 375-ft (115-m) Times Building ( renamed the Allied Chemical Building) , the 468-ft (143-m) City Investing Company Building in Wall Street, the 612-ft (187-m) Singer Building (1908), the 700-ft (214-m) Metropolitan Tower (1909) and, in 1913, the 780-ft (232-m) Woolworth Building. The rapid increase in height and the height-to-width ratio brought problems. To limit street congestion, building setback design was prescribed. On the technical side, the problem of lateral support was studied. A diagonal bracing system, such as that used in the Eiffel Tower, was not architecturally desirable in offices relying on sunlight for illumination. The answer was found in greater reliance on the bending resistance of certain individual beams and columns strategically designed into the skeletn frame, together with a high degree of rigidity sought at the junction of the beams and columns. With today’s modern interior lighting systems, however, diagonal bracing against wind loads has returned; one notable example is the John Hancock Center in Chicago, where the external X-braces form a dramatic part of the structure’s façade. World War I brought an interruption to the boom in what had come to be called skyscrapers (the origin of the word is uncertain), but in the 1920s New York saw a resumption of the height race, culminating in the Empire State Building in the 1931. The Empire State’s 102 stories (1,250ft. [381m]) were to keep it established as the hightest building in the world for the next 40 years. Its speed of the erection demonstrated how thoroughly the new construction technique had been mastered. A depot across the bay at Bayonne, ., supplied the girders by lighter and truck on a schedule operated with millitary precision; nine derricks powerde by electric hoists lifted the girders to position; an industrial-railway setup moved steel and other material on each floor. Initial connections were made by bolting , closely followed by riveting, followed by masonry and finishing. The entire job was completed in one year and 45 days. The worldwide depression of the 1930s and World War II provided another interruption to steel construction development, but at the same time the introduction of welding to replace riveting provided an important advance. Joining of steel parts by metal are welding had been successfully achieved by the end of the 19th century and was used in emergency ship repairs during World War I, but its application to construction was limited until after World War II. Another advance in the same area had been the introduction of high-strength bolts to replace rivets in field connections. Since the close of World War II, research in Europe, the ., and Japan has greatly extended knowledge of the behavior of different types of structural steel under varying stresses, including those exceeding the yield point, making possible more refined and systematic analysis. This in turn has led to the adoption of more liberal design codes in most countries, more imaginative design made possible by so-called plastic design ?The introduction of the computer by short-cutting tedious paperwork, made further advances and savings possible.

随便弄弄吧 我当然就是用翻译器翻的,然后自己改改,反正老师也看不懂,没特别明显的错误就好了,还要跟老师打好关系,会让你过的

我去年毕业,有一份现成的,加我注明论文就行 376605206

钢结构期刊

《钢结构》创刊于1986年,很明显,这本不是ei。钢结构期刊是RCCSE(B+)(2020第六版),也就是武大核心目录刊,

SCI收录期刊——土木建筑工程学科 2009年SCI收录土木建筑工程学科期刊50种(注:★为SCI、A&HCI共同收录期刊): 1. ACI MATERIALS JOURNAL 《美国混凝土学会材料杂志》美国 Bimonthly ISSN: 0889-325X AMER CONCRETE INST, 38800 INTERNATIONAL WAY, COUNTRY CLUB DRIVE, PO BOX 9094, FARMINGTON HILLS, USA, MI, 48333-9094 1. Science Citation Index 2. Science Citation Index Expanded 2. ACI STRUCTURAL JOURNAL 《美国混凝土学会结构杂志》美国 Bimonthly ISSN: 0889-3241 AMER CONCRETE INST, 38800 INTERNATIONAL WAY, COUNTRY CLUB DRIVE, PO BOX 9094, FARMINGTON HILLS, USA, MI, 48333-9094 1. Science Citation Index 2. Science Citation Index Expanded 3. ADVANCED STEEL CONSTRUCTION 《钢结构进展》韩国 Quarterly (注:2008年开始被SCI收录) ISSN: 1816-112X HONG KONG INST STEEL CONSTRUCTION, HONG KONG POLYTECHNIC UNIV, DEPT CIVIL & STRUCTURAL ENGNG, HUNGHOM KOWLOON, PEOPLES R CHINA, HONG KONG, 00000 1. Science Citation Index Expanded 4. ADVANCES IN CEMENT RESEARCH 《水泥研究进展》英国 Quarterly ISSN: 0951-7197 THOMAS TELFORD PUBLISHING, THOMAS TELFORD HOUSE, 1 HERON QUAY, LONDON, ENGLAND, E14 4JD 1. Science Citation Index Expanded

这是2011最新版的建筑科学类的核心期刊 排名越靠前越好啊1 岩石力学与工程学报2 岩土工程学报3 建筑结构学报4 岩土力学5 土木工程学报6 城市规划7 工业建筑8 建筑结构9 城市规划学报10 工程地质学报11 中国给水排水12 空间结构13 建筑材料学报14 给水排水15 重庆建筑大学学报(改名为:土木建筑与环境工程)16 混凝土17 建筑科学与工程学报18 世界地震工程19 建筑学报20 暖通空调21 中国园林22 建筑钢结构进展23 防灾减灾工程学报24 混凝土与水泥制品25 西安建筑科技大学学报.自然科学版26 工程抗震与加固改造27 规划师28 地下空间与工程学报29 沈阳建筑大学学报.自然科学版30 国际城市规划31 建筑科学32 施工技术33 结构工程师

机械绘图员毕业论文

机械制图毕业论文

机械制图是个复杂的过程,下面是机械制图毕业论文,希望可以帮助到你!

机械创新设计是一个极其重要而又困难的实践性较强的研究课题。目前创新设计方法研究虽然已取得一些成果,但创新学还处于发展初期,各种不同理论及工具不断涌现,远没有形成普遍可以接受的统一的理论体系。

本文认为,要进行机械创新设计要有两个必要条件:一是充分获取适用的知识;二是要使用符合创新设计思维并能激发创新思维的设计系统。设计过程充满了矛盾,所获取的知识应有助于矛盾的迅速解决,这就要求知识获取工具紧密集成到设计过程中,因此要统一研究知识获取工具与设计系统。另外,人类的创新设计思维模式是在长期的成功设计经验中总结形成的,因此设计系统必需符合创新设计思维规律。创新设计思维规律应作为算机辅助创新设计系统的理论基础。

基于上述考虑,本文从创新设计思维的研究出发,融合知识获取方法,研究创新设计理论,进而开发机械产品创新设计系统。

1 机械创新设计思维规律

我们常把思维的过程称为“思路”,是因为可用路径问题来说明人类思维过程。本文提出两个机械创新设计思维原则:

一是最短路径原则。设计者得到产品的功能要求后,往往首先检索出最佳设计实例,这样可以最迅速接近目标,然后运用价值工程方法,找出价值较低的极少数组件作为研究对象,再分析所得对象存在的矛盾,尝试作最小变动以解决矛盾,如矛盾没有解决则拟作更大变动或扩大研究对象范围,最后得出最优结果。通过这样途径所消耗的能量最少,体现了最短路径原则。

二是相似性联想。汤川秀树的定同理论认为,联想能力就是找出事物彼此相似性的创造力,相似性是指事物间的内在联系。

要用计算机系统来辅助设计师从自然界中发现形态各异的事物的相似性是很困难的,因此本文只研究从机械产品实例中挖掘相似性,以促进机械创新设计。

机械设计过程是从功能要求到作用原理,再到物理结构的映射过程[1]。在CBR系统中,功能要求、作用原理与物理结构可作为实例索引,因此可统称它们为索引项目。同一索引的不同类索引项目之间的联想可称为纵向联想,而不同索引的同类索引的联想可称为横向联想。

判断联想是否合理的依据是相似性,相似性由已有产品实例确定。比如,“超声波研磨机产品实例”使“超声波振动”作用原理与“研磨”功能要求纵向地产生了内在联系;又如,多种产品实例可满足同一功能要求,那么它们用于实现该功能的作用原理及物理结构具有相似性。

功能要求是联想的起点,经验丰富的设计师通常记忆有大量的设计实例,因而掌

握纵向及横向相似性,所以能迅速地进行横向及纵向的联想,能触类旁通,得出具有相似作用原理及物理结构的实例(简称相似实例)并进行组合优化,最后得到最优解。

这两项原则已被多种设计方法不自觉地采用了,基于实例推理不但能迅速接近最优解,体现最短路径原则;物场分析法(简称TRIZ)分析了上百万设计实例,确定功能要求与作用原理及物理载体的内在联系,以及不同作用原理或物理载体的可替代关系,使设计师可根据功能要求找到适当的作用原理及物理载体,体现相似性联想原则。

2 计算机辅助创新设计系统

两项创新设计思维原则充分体现在计算机辅助创新设计系统的设计中,系统还利用了多种创新设计方法及人工智能技术。计算机辅助创新设计系统的流程如图1所示,它包含如下关键技术:

实例检索

利用基于实例推理(CBR)技术时首先要深入研究它的优缺点。CBR是一种以实例为知识载体的知识供应方法。当前它仍有如下不足:首先,系统为了达到实用通常建立庞大的实例库,这导致管理困难,系统运行效率低;其次,通过检索得到的只是一个或很少实例,而其它不符合检索要求但含有适用知识的实例没有利用,支持创新的力度不够;最后,实例调整严重依赖领域知识,难度大,所以很多CBR系统简化为实例检索系统[2]。导致这三项缺点的深层原因是实例是独立的,不同实例所蕴含的知识难以组合利用。为了克服这个矛盾本文提出通过相似性联想找出相似实例,并利用遗传算法进行组合优化,实现实例知识的重用。

本系统的实例检索功能用商品化PDM系统IMAN中的产品结构与配置管理功能及搜索功能来实现,实例的可视化表示与管理依靠IMAN的产品结构树功能实现。

可视化的实例模型表达及矛盾分析

概念设计技术的发展方向为研究一种统一的设计方案表达方法[3]。文献[4]对日本学者吉川弘之提出的FBS图进行扩充,使用两个框架分别描述一个设计方案的功能层次与结构层次,并存储功能单元与结构单元的对应关系,使计算机理解产品的'结构及其功能。这种方法的缺点是结构与功能的关系不够直观,因此本系统在功能层次图与结构层次图的基础上增加功能关系图,以语义网络的方式描述结构及之间的作用关系,使结构与功能处于同一张图中,设计者可直观地理解产品原理,根据功能关系图并运用价值工程方法分析实例存在的矛盾。

实现创新的关键是正确分析产品中所存在的矛盾[5]。产品设计中的基本矛盾是产品功能成本比不能满足用户要求,它有两种表现形式,一是未能实现某些产品

功能质量目标;二是某些功能质量得到改善而某些功能质量却恶化。

矛盾分析结果用于指导新作用原理、新物理结构的联想,进而找出相似实例。

基于WEB的创新设计知识库

本系统的创新设计知识库包括作用原理库、物理结构库与实例库。当系统根据相似性搜索到新作用原理或物理结构后,相应的实例自动调出。

作用原理库与物理结构库的开发借鉴了TRIZ的成果,再针对机械领域补充整理出二百四十余种作用原理(其中包括五十余种基本措施)。在每种作用原理下分别存储多种物理结构,形成物理结构库。实例库主要针对几种常见的家电产品进行开发。

创新设计知识库是创新设计系统的核心部件,它是一种WEB文本知识库,文本经过笔者开发的机械知识XML标记处理,使知识库建立在国际标准XML文本之上,因此可实现知识资源的异地共享,并且在此知识库之上可建立基于WEB的机械产品计算机辅助创新设计系统,满足异地协同设计的需要。

相似性的量化方法及改进的遗传算法

每种产品的结构不同,需要不定相同的遗传算法编码。本系统为了提高运行效率,采用浮点数编码方式。

在传统的遗传算法中,初始群体是通过用随机的方法来产生的[6],这具有一定的盲目性。因此本文提出利用实例的作用原理或物理结构的相似性作为筛选实例产生初始群体的依据。

实现该途径的关键在于相似性的量化也即相似度的计算方法。相似度实质是实例的关联知识,必须以一定的算法在实例集合中挖掘得到。纵向联想的相似度实质是功能目标与实现手段的关系程度,横向联想的相似度实质是实现手段的可替代关系程度。相似度越高意味着得到已有产品实例的更多支持。根据相似度来筛选初始群体就等于利用以前的设计经历,使初始群体的产生有合理的基础,因此能加快遗传算法的收敛。本文根据相似性联想原理提出如下纵向及横向联想的相似度计算方法。

设产品实例集合为C,功能元素集合为F,作用原理或物理结构元素集合为G。分别记为:C={Ci|i=1,2,?,n}; F={Fj|j=1,2,?,m}; G={Gk|k=1,2,?,q}。实例集合中的实例Ci以不同的隶属度uij及uik分别隶属于Fj及Gk。 设元素Gk到元素Fj的纵向联想相似度为rkj,则:

rkj =

又设G空间中有元素Gk和Gm。实例Cji分别以隶属度uik和uim隶属于元素Gk

和Gm,设从Gk到Gm的横向联想相似度为rkm,则:

rkm =

隶属度作为实例对象的一项属性来存储。系统根据以上算法从实例集合中挖掘相似度知识,辅助设计师从相似度较高的方向进行联想,并用于指导遗传算法初始群体的产生,从而促进设计创新。

3 结论

本文研究创新设计思维规律并用于指导机械产品创新设计系统的开发,系统的成功应用证明了关于创新设计思维规律论断的正确性以及多种新技术的可行性。系统可通过矛盾分析与联想,搜索到适用的作用原理、措施、物理结构及实例以解决矛盾,完成概念设计阶段的功能优化与原理优化,是实现机械广义优化设计方法的新成果。

我可以帮你搞定,找我聊。

钢结构硕士毕业论文

1、论文题目:要求准确、简练、醒目、新颖。2、目录:目录是论文中主要段落的简表。(短篇论文不必列目录)3、提要:是文章主要内容的摘录,要求短、精、完整。字数少可几十字,多不超过三百字为宜。4、关键词或主题词:关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。 每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。主题词是经过规范化的词,在确定主题词时,要对论文进行主题,依照标引和组配规则转换成主题词表中的规范词语。5、论文正文:(1)引言:引言又称前言、序言和导言,用在论文的开头。 引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。〈2)论文正文:正文是论文的主体,正文应包括论点、论据、 论证过程和结论。主体部分包括以下内容:a.提出-论点;b.分析问题-论据和论证;c.解决问题-论证与步骤;d.结论。6、一篇论文的参考文献是将论文在和写作中可参考或引证的主要文献资料,列于论文的末尾。参考文献应另起一页,标注方式按《GB7714-87文后参考文献著录规则》进行。中文:标题--作者--出版物信息(版地、版者、版期):作者--标题--出版物信息所列参考文献的要求是:(1)所列参考文献应是正式出版物,以便读者考证。(2)所列举的参考文献要标明序号、著作或文章的标题、作者、出版物信息。

刘锡良,1928年6月6日生于河北省深县大寺家庄。父亲毕业于天津直隶工业专门学校机械系(即河北工学院前身),后在天津裕元纺织有限公司做技术工作。刘锡良1947年高三毕业,当年考入天津私立工商学院(后改名津沽大学)土木系,由于入学考试优异,获得特殊奖学金,解决了他经济上的困难。大学四年期间,他一直考试第一名。1951年,他在津沽大学毕业,留校做助教。在大学期间,正是天津解放前后。马沣教授治学严谨对学生要求甚高,给刘锡良留下了深刻印象。马老师上课只带一本书、几只粉笔,用英语讲课,写英文笔记,讲得深入浅出,条理清楚,刘锡良做了详尽的笔记,至今仍保存着。1948年下半年,天津即将解放,马沣老师不顾战火纷飞,仍给学生留下“单数应用力学习题”的作业,因为解放战争的炮火,多数同学并未完成这一作业。然而,刘锡良却利用在家躲避战火之机,完成了包括双数的全部作业。天津解放,刘锡良把全部作完的习题交出,同学们十分惊讶!马沣老师看到刘锡良的作业兴奋之极,推荐他给同学们补习讲课,使全班同学补考均达及格。1952年院系调整,刘锡良来到天津大学做助教。1952年10月至1954年9月,刘锡良被派往哈尔滨工业大学读研究生。1954年10月转入清华大学土木系,1955年10月他作为清华大学第一届钢结构研究生毕业,毕业论文题目是《高层钢结构》。他的研究生毕业论文是国内第一个提出高层钢结构问题的论著。论文受到答辩委员会主席茅以升,评卷人蔡方荫教授以及指导人苏联专家的好评。1956年参加天津大学副博士预试,获得优秀成绩。之后一直到1979年,在天津大学土木系钢结构教研室任讲帅、室副主任、代理主任。1979年,晋升为副教授。1986年,晋升为教授,任天津大学钢结构教研室主任、钢结构研究室主任。1990年国务院学位委员会批准他为结构工程博士生导师,并享受国务院政府特殊津贴。从1984年以来,他一直兼任天津空间网架结构开发公司总经理兼总工程师。在土木工程界,都晓得刘锡良教授在全国有”十个第一”之称,足见他在科学上的敏感性。①1955年,在苏联专家指导下,刘锡良的研究生论文选了(高层钢结构》这个题目,阅读了大量文献,写出论文,受到茅以升先生的赞扬。虽然当时建设钢结构的高层建筑,国内经济状况尚不允许,但从发展方向上提出这一课题,在科学和实践上,还是很有价值的。近几年国内已有高层钢结构建筑,并已出版这方面的规范,然而第一位写出高层钢结构论文的却是刘锡良。②1962年,刘锡良在我目第一个成功地研究设计马鞍形双曲抛物面悬索屋盖。天津大学健身房即是这样悬索结构的建筑,经1976年的大地震,仍安然大恙。③1965年,第一个研制成功焊接空心球节点网架,并应用于天津市科委礼堂屋盖上。刘锡良阅读了5种文字的外国资料,吸取了国外先进经验,结合中国实际,克服各种保守思想,冒着“白专帽子”的风险,终于研制成功。在中国举行的第十一届亚运会新建的场馆屋盖90% 以上采用了这一科研成果。由于这个“第一”,刘锡良又有“网架先驱、鼻祖、祖师爷”等称号。④1966年,刘锡良根据自己的科研成果,第一次为大学生开设了网架结构课,并为学生开设了空间网架的毕业设计题目。此后,其他兄弟院校开设空间网架课程都吸取了他的经验。⑤1970年,在刘锡良的倡议下,天津市建筑学会在全国第一个成立了网架结构推广小组,刘锡良任组长。在刘锡良亲自带领下,他们向全国建筑情报网提供书面材料,举办讲座,他夜以继日,食住简陋,利用各种宣传形式推广网架结构。近年来在他影响下,在全国各地成立了推广网架结构的协会、学会、委员会、研究中心等。可以说,20多年来,他为网架结构的普及和推广的建筑事业立下了汗马功劳,堪称我国网架结构的鼻祖。⑥刘锡良1979年出版了国内第一部专著《平板网架设计》,由中国建筑工业出版社出版。这部在国外也少见的专著,主要是刘锡良在文化大革命期间“转入地下”秘密写成的。完稿于1976年,又历经三年才正式出版。可见刘锡良是一位多么热衷于科学的人。书中编写了国内外网架的发展和现状,也撰写了刘锡良多年来的科研成果。在当时计算机尚不普及的情况下,书中简化计算和方法和图表,给设计人员带来方便。各大专院校编写讲义、指导毕业设计、进行科研、设计院搞设计以及编写网架规范,都以此书为主要参考和依据。1984年,在英国萨里大学土木系空间结构研究中心召开的第三届国际空间结构学术交流会上展出此书,获得与会者的好评。该校研究中心主任马考夫斯基教授说,这是一本很有价值的专著。⑦ 参加编制首次网架规范。1980年,由中国建筑科学研究院负责主编网架结构设计与施工规范,刘锡良是主要编写人。这种规范对指导网架设计与施工起到了重大作用。它不仅是国内第一本,而且在国际上也未见到这样全面的国家制定的规范。⑧ 培养了我国第一批空间网架结构方面的硕士研究生。刘锡良1982年开始招收研究生,此后兄弟院校才陆续招收网架结构方面的研究生。⑨ 1984年,刘锡良成立了全国第一个网架公司,也是全国第一个设计、制造和安装三位一体的联合经济实体,又是教学、科研、开发生产三者相结合的新型专业化企业。⑩刘锡良培养的研究生数目在同行中居全国高等院校之首。刘锡良教授从1982年开始招收研究生,近年来又招收博士生。目前,他共招收(含已毕业的)研究生近百名,现同时在校学习的就有32名之多,列全国空间网架专业之冠。在土木工程界,刘锡良教授始终站在科研前列,参加设计了许多大工程。1958年,他参加了南京长江大桥的设计,负责桥上部钢梁的设计,用手摇计算机工作,做出显著成绩。l978年,他参加了第8届亚运会体育馆工程的设计和研究工作。原拟建在巴基斯但,后因经费困难,改建在印度。刘锡良带领8名学生参加了这一工作,进行了理论研究和模型试验,并对施工提出了有力措施。此项工程做到了科学依据可靠、设计先进、施工万无一失,保质保量、按期完成了任务。这一工程的研究工作获得国家建筑工程总局优秀科研成果三等奖。1989年,刘锡良又研究成功一种新型装配式正放四角锥网架,除腹杆用圆管以外,可利用小角钢及圆钢等,施工简单,节省钢材。除作了实物模型实验以外,并已用于南开大学体育中心排球馆。现正准备大力推广。在此正放四角锥网架的基础上,刘锡良教授又进一步研究,将其纵向上、下弦杆件去掉,形成一种折板形网架。这种新型式网架已有10余座工程采用,前景广阔。针对圆形平面采用网架有时网格不整齐的情况,刘锡良教授又主持研究成功一种蛛网形网架,进行模型试验成功后用于天津市地铁西南角售票厅,通过鉴定达国内先进水平。刘锡良教授还对网壳结构的弹性拟壳法进行了大量分析研究,取得了可喜成果,写成论文发表在国内杂志和国内外会议论文集上。近年来,又对单层网壳结构进行几何非线性和物理非线性稳定性研究,其理论和试验量测都有较大难度。目前正大力着手这方面的研究工作。

工程绘图员的毕业论文

工程类职称论文怎么写?学术堂来告诉你:第一,在进行论文准备的环节中,一定要从自身的实际情况出发,考虑到是否满足职称评审的要求,是否符合自身的工作领域,并能结合论文选择合适的工程案例等.通过对比相关的文献资料,判断哪些论文具有较高的价值以及表达方式,更加有利于适合自身的发展.第二,在题目确定的过程中,一定要从自身的实际出发,重点如何有效进行题目的进一步细化,能有效将文章中的重点和难点进行突出表达,尽量用一句话进行有效表达.如果不能,则应重点从逻辑角度多多分析,保障能清晰化阐述出主题内容,这样就能显而易见地表达出文章的新颖点、创新点以及着眼点等.第三,进行工程类职称论文的快速撰写.通过一句话来快速进行文章主旨表达,这样就能满足快速撰写论文的要求.具体来说,在论文快速撰写的过程中,主要是根据一句话,进行按照框架的逐级展开,有效进行二级目录就可以,这样结合相关的二级目录的要求,就能完成论文相关的内容的组织以及撰写.

CAD即计算机辅助设计与制图,是指运用计算机系统辅助一项设计的建立、修改、分析或优化的过程。CAD软件必须有能接受和使其运行的物体,即硬件来支持它才能有实际意义,这样就存在了CAD系统。CAD系统是由硬件、软件组成。硬件包括处理运算设备、图形显示设备、外部存储设备、数据图形输入输出设备以及有关的信息传输等硬件平台设备、软件包括系统软件、支撑(图形、汉字等)软件和专业应用软件。我国主要使用的CAD软件是美国AUTODESK公司开发的AUTODESK软件,它是一个功能强大、易学易用、具有开放型结构的软件口不仅便于用户使用,而且系统本身可不断地扩充和完善,它被广泛地应用于微机及工作站上。因此,国内外软件开发商在此基础上进行有关工程设计专业的二次开发,如建筑行业:华远的HOUSE软件、建研院的ABD集成化软件和BICAD软件、理正的CAD软件、方圆公司的方圆三维室内设计系统等。随着CAD技术的不断发展,其覆盖的工作领域也不断地扩大,如工程设计CAD项目的管理、初步设计、分析计算、绘制工程、统计优化等。CAD技术的应用正在有力而迅速地改变着传统的工程设计方法和设计生产的管理模式。 通过多年的设计实践CAD技术以简单、快捷、存储方便等优点已在工程设计中承担着不可替代的重要作用。许多工程都应用了计算机进行辅助设计和辅助绘图,尤其建立了计算机网络辅助设计与管理后,不仅能提高设计质量,缩短设计周期,而且创造了良好的经济效益和社会效益,CAD技术的应用使工程设计人员如虎添翼,在更加广阔的天地里施展才华。但随着CAD在工程中的大量应用及其技术的成熟,它的一些缺点也暴露无遗,所以也有很多人不接受这一技术,认为它限制了建筑设计业的发展。那么CAD究竟利大于弊还是弊大于利,怎样才能对它善加利用,我们不妨对CAD的双重性做一个剖析。 1、CAD技术在工程设计中的优点 CAD技术的长处使得人们趋之若骛,它主要表现在: 劳动强度降低,图面清洁 手绘绘图,工作人员常常手里拿着几只不同粗细的墨笔,丁字尺、三角板、曲线板等工具不停的在手里更换,而且一旦画错,修改非常费事,甚至从头来过,图面修修补补显的脏乱。用CAD绘图则可以一只鼠标做你想做的任何事情。它有统一的线型库、字体库,图面整洁统一。CAD软件所提供的UNDO功能让你不必担心画错,它可以使你返回到你画错之前的那一步。你更可以在电脑系统后台运行一些音乐播放软件,一边听音乐一边工作。 CAD软件绘图真正做到方便、整洁、清洁、轻松。 设计工作的高效及设计成果的重复利用 CAD之所以高效,因其最伟大的功能之一:“COPY”。一些相近、相似的工程设计,图纸只要简单修改一下就行了,或者直接套用,而你只需按几下键盘、鼠标。CAD软件可以将建筑施工图直接转成设备底图,使水暖、电气的设计师不会在描绘设备底图上浪费时间。而且现在流行的CAD软件大多提供丰富的分类图库、通用详图,设计师需要时可以直接调入。重复工作越多,这种优势越明显。结构计算的高效,一个普通的框架结构,以往手工计算需要一个星期左右时间,用CAD快的一天就可以完成。 精度提高 建筑设计的精度一般标注到毫米,结构计算的精度也不是很高,施工时的精度更低,但对于一些特型或规模大、复杂的建筑离开了CAD困难将成倍增长。CAD在日影分析、室内声场分析、灯光照度分析等方面的计算精度、速度也是手工计算无法比拟的。 该论文转贴于 酷文网 资料保管方便 CAD软件制作的图形、图象文件可以直接存储在软盘、硬盘上,资料的保管,调用极为方便。你可以将设计项目刻录成光盘,数据至少可以保存50年。你可以将以前的图纸通过扫描仪,数字化仪输入电脑,避免资料因受潮、虫蛀以及破坏性查阅造成的不必要损失。资料的管理更有科学性,只要一台电脑就可以管理的井井有条,资料室也将告别成排的资料柜,因为一个院所从成立到现在所有的资料几张光盘就装下了。 CAD在建筑表现图上的优势 这也是CAD在建筑设计上最出风头的。CAD制作的建筑效果图其透视关系、光影关系、建筑材料的质感,都可真实再现,惟妙惟肖,在加上真实的树木、人、天空、汽车配景,几可乱真。如果在加上现场环境照片融合更有说服力。CAD制作效果图优势还在于,只要建筑的三维模型搭建完成,就可以任意指定透视角度,模型材质,快速生成多张效果图而无需从头做起,这是传统手绘效果图无法比拟的。这一切都让设计师在建筑设计上收益非浅,在向甲方推销自己的设计成果时也更有说服力。 设计理念的改变 CAD的智能化将部分取代设计师的一些设计工作,而CAD对设计的标准化、产业化起着巨大的推动作用。随着信息技术、网络技术的发展,跨地区合作设计,异地招投标、设计评审也将普及。在第一时间接受科技信息,与世界同步。通过一根电话线“在家工作”将成为可能。 2、CAD技术在工程设计中的缺点 CAD技术在给建筑设计业带来巨大效益的同时其负面作用也日益显现,值得我们深思。 CAD技术对设计思想的束缚 由于电脑屏幕尺寸的限制,设计师关注的往往是设计的局部,对全局的把握有一定影响,使得整个建筑物的比例、体量失控。CAD的精确性要求其每一笔都要有准确的数据,使得方案设计中需要的模糊性、随机性被扼杀,设计缺乏灵感。另一方面CAD软件自身功能的局限性以及设计师对CAD软件掌握的熟练程度,使得建筑师好的灵感、创意不能通过CAD表达出来,建筑师的思想、思路、灵感被束缚。 CAD技术扼杀建筑艺术 建筑是一门融科技、艺术、文化、哲学于一体的学科。建筑既是一件商品,也是一件艺术品。有关人事认为CAD技术的滥用会使建筑设计工作从一种艺术创作变为一种工业化生产,CAD引以为荣的复制、套用的高效率手段,使得设计过程本身就伤害了这一学科,而CAD的标准化、工业化使得建筑作品千篇一律,缺乏灵气、缺乏个性和人情味,建筑已经变为纯粹的商品。而最有艺术气息的手绘建筑效果图,也将要被电脑效果图取代,电脑效果图虽然正式可信,快捷方便,但它缺少手绘图所体现的个性,以及设计师笔下流露的特有的感觉。 CAD浪费资源 CAD是一项科技含量很高的技术,通常一名设计师要用半年到一年的时间才能熟练掌握CAD软件及电脑知识。可是在科技飞速发展的今天你学习的步伐永远追不上电脑、外设、CAD软件的更新、升级步伐。设计师不得不花费大量时间应付这些变化。CAD的复杂、难懂使得设计师望而却步,一些院所专门设立、配备电脑操作维修人员,甚至设立一个专门的CAD工作部,因为一个优秀的设计师不一定是CAD高手,反之亦然。CAD对人力、时间的浪费可见一斑。其次,CAD对物质财力的浪费更甚。一个院所要想实现微机制图其硬件设备如:电脑、工作站、绘图仪、复印机、扫描仪、数字化仪、数码相机、可录光驱、UPS等的投资不菲,而它们的折旧率、升级费用也很高。它的软件投资也居高不下,当然前提是使用正版软件。在国内一套建筑软件就要花费1~2万元,而水暖、电、结构、预算各专业都配齐要十几到二十几万元,在加上操作系统软件、常用办公软件其花费惊人。 CAD技术存在不可靠性 CAD技术使得设计师不得不面对计算机病毒,CAD软件本身的更新升级,电脑资料的保存等一些不可靠因素。由于上述一个或几个原因设计师就得停止工作,去解决与设计无关的问题,或者由于设计师的误操作和对CAD知识掌握不够,可能辛苦几天甚至几年的设计成果被误删、覆盖付之东流。国内某结构软件早期版本的程序错误让人汗津,岁为造成重大损失并且在后续版本得到修正,但谁又能保证现行的软件不存在问题呢。 综上所述,CAD技术给设计师带来了极大的方便,但也带来了许多负面效应。无论如何我们都应承认CAD给我们的好处,要正视它的局限性,善用它的长处。展望未来,计算机技术的发展是无止境的,我们每一位工程设计人员都将以此先进的技术为手段,在各自岗位上发挥最佳能力,并以热忱的服务、优质的设计、敬业的精神,为工程设计行业做出我们的贡献

相关百科
热门百科
首页
发表服务