论文投稿百科

函数极限论文范文

发布时间:2024-06-30 01:53:53

函数极限论文范文

根据heine定理,函数极限数列极限是可以转化的:f(x)一>a(x一>xo)的充要条件为对任何以xo为极限的数列xn!xn不等于xo,都有f(xn)一>a(n一>无穷)

2017大学数学论文范文

由于特殊函数是数学分析中的一种重要工具,因此特殊函数的学习及应用非常重要。但是特殊函数往往不是用一种方法就能解决的,它是多种方法的灵活运用,也是各种思想方法的集中体现,因此难度较大。下面是我整理的关于几类特殊函数的性质及应用的数学论文范文,欢迎大家阅读。

几类特殊函数的性质及应用

【摘要】本文将对数学分析中特殊函数,诸如伽玛函数、贝塔函数贝塞尔函数等超几何数列函数,具有特殊的性质和特点,在现实中得到大量的运用的函数。本文主要以简单介绍以上三种特殊函数性质,及其在其它领域的应用,诸如利用特殊函数求积分,利用特殊函数解相关物理学问题。本文首先以回顾学习几类常见特殊函数概念、性质,从而加深读者理解,然后以相关实例进行具体分析,从而达到灵活应用的目的。

【关键词】特殊函数;性质;应用;伽马函数;贝塔函数;贝塞尔函数;积分

1.引言

特殊函数是指一些具有特定性质的函数,一般有约定俗成的名称和记号,例如伽玛函数、贝塔函数、贝塞尔函数等。它们在数学分析、泛函分析、物理研究、工程应用中有着举足轻重的地位。许多特殊函数是微分方程的解或基本函数的积分,因此积分表中常常会出现特殊函数,特殊函数的定义中也经常会出现积分。传统上对特殊函数的分析主要基于对其的数值展开基础上。随着电子计算的发展,这个领域内开创了新的研究方法。

由于特殊函数是数学分析中的一种重要工具,因此特殊函数的学习及应用非常重要。本文归纳出特殊函数性质、利用特殊函数在求积分运算中的应用、特殊函数在物理学科方面的应用,利用Matlab软件画出一些特殊函数的图形,主要包含内容有:定义性质学习,作积分运算,物理知识中的应用,并结合具体例题进行了详细的探究和证明。

特殊函数定义及性质证明

特殊函数学习是数学分析的一大难点,又是一大重点,求特殊函数包含很多知识点,有很多技巧,教学中可引导学生以探究学习的方式进行归纳、总结;一方面可提高学生求函数极限的技能、技巧;另一方面也可培养学生的观察、分析、归类的能力,对学生的学习、思考习惯,很有益处。

特殊函数性质学习及其相关计算,由于题型多变,方法多样,技巧性强,加上无固定的规律可循,往往不是用一种方法就能解决的,它是多种方法的灵活运用,也是各种思想方法的集中体现,因此难度较大。解决这个问题的途径主要在于熟练掌握特殊函数的特性和一些基本方法。下面结合具体例题来探究特殊函数相关性质及应用。

2.伽马函数的性质及应用

伽马函数的定义:

伽马函数通常定义是:这个定义只适用于的区域,因为这是积分在t=0处收敛的条件。已知函数的定义域是区间,下面讨论Г函数的两个性质。

Г函数在区间连续。

事实上,已知假积分与无穷积分都收敛,则无穷积分在区间一致收敛。而被积函数在区间D连续。Г函数在区间连续。于是,Г函数在点z连续。因为z是区间任意一点,所以Г函数在区间连续。

,伽马函数的递推公式

此关系可由原定义式换部积分法证明如下:

这说明在z为正整数n时,就是阶乘。

由公式(4)看出是一半纯函数,在有限区域内的奇点都是一阶极点,极点为z=0,-1,-2,...,-n,....

用Г函数求积分

贝塔函数的性质及应用

贝塔函数的定义:

函数称为B函数(贝塔函数)。

已知的定义域是区域,下面讨论的三个性质:

贝塔函数的性质

对称性:=。事实上,设有

递推公式:,有事实上,由分部积分公式,,有

由对称性,

特别地,逐次应用递推公式,有

而,即

当时,有

此公式表明,尽管B函数与Г函数的定义在形式上没有关系,但它们之间却有着内在的联系。这个公式可推广为

由上式得以下几个简单公式:

用贝塔函数求积分

解:设有

(因是偶函数)

例贝塔函数在重积分中的应用

计算,其中是由及这三条直线所围成的闭区域,

解:作变换且这个变换将区域映照成正方形:。于是

通过在计算过程中使用函数,使得用一般方法求原函数较难的问题得以轻松解决。

贝塞尔函数的性质及应用

贝塞尔函数的定义

贝塞尔函数:二阶系数线性常微分方程称为λ阶的贝塞尔方程,其中y是x的未知函数,λ是任一实数。

贝塞尔函数的'递推公式

在式(5)、(6)中消去则得式3,消去则得式4

特别,当n为整数时,由式(3)和(4)得:

以此类推,可知当n为正整数时,可由和表示。

又因为

以此类推,可知也可用和表示。所以当n为整数时,和都可由和表示。

为半奇数贝塞尔函数是初等函数

证:由Г函数的性质知

由递推公式知

一般,有

其中表示n个算符的连续作用,例如

由以上关系可见,半奇数阶的贝塞尔函数(n为正整数)都是初等函数。

贝塞尔函数在物理学科的应用:

频谱有限函数新的快速收敛的取样定理,.根据具体问题,利用卷积的方法还可以调节收敛速度,达到预期效果,并且计算亦不太复杂。由一个函数的离散取样值重建该函数的取样定理是通信技术中必不可少的工具,令

称为的Fourier变换。它的逆变换是

若存在一个正数b,当是b频谱有限的。对于此类函数,只要取样间隔,则有离散取样值(这里z表示一切整数:0,)可以重建函数,

这就是Shannon取样定理。Shannon取样定理中的母函数是

由于Shannon取样定理收敛速度不够快,若当这时允许的最大取样间隔特征函数Fourier变换:

以下取样方法把贝塞尔函数引进取样定理,其特点是收敛速度快,且可根据实际问题调节收敛速度,这样就可以由不太多的取样值较为精确地确定函数。

首先建立取样定理

设:

其中是零阶贝塞尔函数。构造函数:

经计算:

利用分部积分法,并考虑到所以的Fourier变换。

通过函数卷积法,可加快收敛速度,使依据具体问题,适当选取N,以达到预期效果,此种可调节的取样定理,计算量没有增加很多。取:

类似地

经计算:

经计算得:

则有:设是的Fourier变换,

记则由离散取样值

因为,故该取样定理收敛速度加快是不言而喻的,通过比较得,计算量并没有加大,而且N可控制收敛速度。

例,利用

引理:当

因为不能用初等函数表示,所以在求定积分的值时,牛顿-莱布尼茨公式不能使用,故使用如下计算公式

首先证明函数满足狄利克雷充分条件,在区间上傅立叶级数展开式为:

(1)

其中

函数的幂级数展开式为:

则关于幂级数展开式为: (2)

由引理及(2)可得

(3)

由阶修正贝塞尔函数

其中函数,且当为正整数时,取,则(3)可化为

(4)

通过(1)(4)比较系数得

又由被积函数为偶函数,所以

公式得证。

3.结束语

本文是关于特殊函数性质学习及其相关计算的探讨,通过对特殊函数性质的学习及其相关计算的归纳可以更好的掌握特殊函数在日常学习中遇到相关交叉学科时应用,并且针对不同的实例能够应用不同的特殊函数相关性质进行证明、计算,从而更加简洁,更加合理的利用特殊函数求解相关问题。有些特殊函数的应用不是固定的,它可以通过不止一种方法来证明和计算,解题时应通过观察题目结构和类型,选用一种最简捷的方法来解题。

参考文献:

[1] 王竹溪.特殊函数概论[M].北京大学出版社,,90-91.

[2] 刘玉琏.数学分析讲义(下册)[M].高等教育出版社,2003,331.

[3] 刘玉琏.数学分析讲义(下册)[M].高等教育出版社,2003,331.

[4]王坤.贝塔函数在积分计算中的应用.[J]科技信息,2012(34)

[5] 王纪林.特殊函数与数学物理方程[M].上海交通大学出版社,2000,96-98.

[6] 陶天方.由特殊函数表达的快速取样定理 [J]. 上海大学学报(自然科学版),1997,8(4):368-371.

[7]饶从军,王成.让数学建模活动促进数学教学改革[J].中央民族大学学报(自然科学版),2004,2.

[8]赵宜宾.一类特殊函数定积分的求解[J].防灾技术高等专科学校学报,2010,1(3):38-39.

[9]董林.降次公式的探究—兼论一个猜想的证明[J].教学通报,.

[10] 李德新.利用对称原理计算定积分的三种方法[J].高等数学研究,2004,7(6):41—42.

[11]翟忠信,龚东山.高等数学的教与学[J].高等理科教育,2004(6):29—34.

[12]胡淑荣. 函数及应用[J]. 哈尔滨师范大学学报.2002,18(4):12~15.

论文为了做到层次分明、脉络清晰,常常将正文部分分成几个大的段落。这些段落即所谓逻辑段,一个逻辑段可包含几个小逻辑段,一个小逻辑段可包含一个或几个自然段,使正文形成若干层次。论文的层次不宜过多,一般不超过五级,具体如下:

高等数学是大学工科里的一门基础学科。在我学的自动化专业中更显得格外重要。经历了快一个学期的高等数学学习对这门课程有一定认识的同时,在学习的过程中遇到了各式各样的难题与困惑,因此,特对在学习中的遇到困难与将来如何更好的努力,不断提高学习这门课的能力进行了总结,希望在以后的时间里可以有所进步。

高中学习数学我经历过两个数学老师。先说说第一个数学老师吧,这是一个年轻的小伙老师,他以前是教初中的后来通过考试,升就教了高中,我们是他教的第一届的高中学生。

对于这个我第一个高中数学老师我认为他和第二个老师最大的区别就是他上课从来不用ppt,他喜欢写板书,所以每节课后我们都记下满满几页的笔记。这样的教学方式单单就我来说我是不能适应的,因为我喜欢上课跟

着老师教学的思路去学习,但是他要我们上课记下他在黑板上学习的板书,这样就导致我们光顾着去做笔记,却没有跟着他上课的思路去思考问题,不能去理解他讲的是什么,课下对着笔记我们又不记得他上课是怎么讲的。所以高中前部分我的数学一直都不好。

后来因为一些原因我们换了一个数学老师,这是一个我估计快要退休的了老师,这个老师因为教书了很多年很有教书经验,也是他后来拯救了我的高中数学。他给我们上课的第一天就要求我们一定要课前预习和课后复习。

其实之前很多老师也这么要求过我们,但是我都没有很好的去要求自己。我的这个老师虽然年龄有点大,但是一点没有影响他上课的激情,他上课很有感染力,我每节课都跟着他的思路后面去分析问题,解决问题。

课上简单的记一下笔记,但是不能影响我跟着他的节奏去听课,也是后来在他的帮助下高中数学成绩有了突飞猛进。对于高中的数学就做这么多的概述,接下来谈谈大学学习高等数学的心得体会。

我对高数进行了系统性的学习,不仅在知识反方面得到了充实,在思想方面也得到了提高,就我个人而言,我认为高等数学有以下几个显著特点:识记的知识相对减少,理解的知识点相对增加;不仅要求会运用所学的知识解题,还要明白其来龙去脉;联系实际多,对专业学习帮助大;教师授课速度快,课下复习与预习必不可少。

扩展资料

论文要求:

1、题名规范

题名应简明、具体、确切,能概括论文的特定内容,有助于选定关键词,符合编制题录、索引和检索的有关原则。

2、作者署名的规范

作者署名置于题名下方,团体作者的执笔人,也可标注于篇首页地脚位置。有时,作者姓名亦可标注于正文末尾。

高数学习对许多大一学生生来讲, 有些困难,成绩不理想。教师一直在苦苦思考:虽然教师在授课过程中尽了种种努力, 但还是有许多学生学习不好, 这是什么原因?调查显示:这部分学生或者学习兴趣不高,或者学习不得要领。因而, 高数学习必须充分调动学习者的积极性, 掌握合适的学习方法,才能有所收获。1 学习者要意识到学习高数的重要性, 提高学习兴趣, 变被动学习为主动学习据了解, 许多学生意识不到高数学习的重要性,他们对大学课程里学习高数的重要性不甚清楚,也没有学习的热情,更谈不上积极性了。1 . 1 数学教育具有重要的基础性作用与素质教育作用现代信息、空间技术、核能利用、基因工程、微电子、纳米材料等引领的新技术革命, 以及现代人文科学的定量分析需要以数学为主要基础。数学学科严密的定义方式、缜密的逻辑思维、全面的系统分析是辩证唯物主义思想在数学学科中的集中反映, 在大学生素质教育中起着不可替代的作用。素质表现在数学意识、数学语言、数学技能、数学思维四个方面。素质的提高有助于学生形成良好的思想道德素质,科学文化素质,生理心理素质,从而提高人的素质。这是有例子可以验证的。以北京大学地质系为例,一个系就培养了48 位中科院院士, 而这得益于李四光先生的理念——加强数理基础, 原因就是学生的工科数学基础好、逻辑思维强、头脑清晰。1 . 2 培养对高数的兴趣能激发学习热情“兴趣是最好的老师”。心理学家布鲁纳认为:“学习是主动的过程,对学生学习内因的最好的激发是对所学教材的兴趣。”“有了兴趣就会乐此不疲,好之不倦,就会挤时间学习了。”学生只有对学习感兴趣,能把心理活动指向和集中在学习的对象上,感知活跃,注意力集中,观察敏锐,记忆持久而准确,思维敏锐而丰富,强化学习的内在动力,调动学习的积极性,激发智力和创造力,提高学习效率。 提高学习高数的兴趣首先从了解数学史做起我们可以首先了解中国数学史,了解中国数学的萌芽、发展、全盛、衰弱的过程和原因;我们还可以从高数中的微积分发明的历史谈起,通过对历史的了解和感受来体会到数学的博大精深,激发探求欲望。

函数极限的研究论文

极限理论是数学分析课程的理论依据,就因为引入极限思想,微积分才有了理论根基,从而可以解决很多初等数学不能解决的实际问题.极限理论贯穿于数学分析课程的始终.因此,教学中让学生深刻理解极限理论对学好整门课程起到至关重要的作用.作者就自己多年教授数学分析课程的经验,谈谈数列极限与函数极限的联系与本质区别.1.关于数列极限数列初等数学中对数列这样定义:按照一定顺序排列的一列数称为数列.数学分教材[1]关于数列的定义:若函数f的定义域是全体正整数集N,则称f:N→R或f(n),n∈N为数列.正因为正整数集的元素可按从小到大的顺序排列,所以数列f(n)也可写作a,a,…a…,或简单地记作{a},其中a是该数列的通项.看得出来,数列就是一正整数集为定义域的函数,即所有数列的定义域都是正整数集.数列的极限的定义定义1设{a}为数列,a为定数.若对任给的正数?藓,总存在正整数N,使得当n>N时,有|a-a|<?藓,则称数列{a}收敛于a,定数a为数列{a}的极限,并记作a=.关于函数极限→∞时函数极限定义2设f为定义[a,+∞)在上的函数,A为定数,若对任给的正数?藓,存在正数M(≥a),使得当x>M时有|f(x)-A|<?藓,则称函数当x→+∞时以A为极限,记作f(x)=A.现设f为定义在U(-∞)或U(∞)上的函数,当x→-∞或x→∞时,若函数值无限地接近某定数A,则称f当x→-∞或x→∞时以A为极限,f(x)=A或f(x)=→x时函数极限定义3(函数极限的?藓-δ定义)设函数f在点x的某个空心邻域U(x;δ′)内有定义,A为定数,若对任给的正数ε,存在正数δ(<δ′),使得当0<|x-x|<δ时有|f(x)-A|<0ε,则称函数f当x→x时以A为极限,记作f(x)=A.类似可定义f(x)=A及f(x)=.数列极限与函数极限的异同及根本原因从以上定义可以看出,数列极限与函数极限有相同点也有不同点,研究二者的方法大同小异,相同点是数列极限与函数极限中当x→+∞时的类型完全相似,因此可以用相同的方法研究.二者的不同点在于,数列极限只有一种类型,就是n→∞时的极限;而函数极限细分有六种类型x→+∞;x→-∞;x→∞;x→x;x→x;x→x的极限,分类的标准是根据的趋向的不同来分类.二者的相同点源自二者都是函数,数列可以认为是特殊情况的函数,任何一个不同的数列都以正整数集为定义域;而通常意义下的函数在数学分析课程中是定义在实数范围的,其定义域可以是实数集也可以是实数集的某个子集.正因为将二者同看成函数的情况下,由于二者的定义域范围不同,导致二者极限类型的不同.数列的定义域是正整数集,那自变量的取值为1、2、3……,自变量的最小取1,因此不可能趋向于-∞,又因为数列各项必须取整数,所以它不可能趋近于某个定数,自变量n只可能有一种趋向于+∞;而通常意义下的函数是在实数范围内的讨论,因此,自变量x既可以趋近于+∞,又可以趋近于-∞;如果自变量x同时趋近于+∞和-∞时函数极限存在,则称x→∞时函数极限存在.同理,因为实数集的稠密性,自变量x会趋近于某个定数x,根据自变量x趋近于x的方向不同又可以分为x点处的左极限和右极限,于是某定点处有三种类型x→x;x→x;x→x函数极限.综上,数列是特殊的函数,正因为数列作为函数的特殊性,使数列极限相对简单并且具有相对理想的性质,收敛数列的所有性质都具有整体性;而收敛函数的所有性质都只能满足局部性质.导致二者性质差别的真正原因也在于二者作为函数定义域的范围不同.笔者认为,还要真正学透极限,一定要从本质上研究导致他们不同的原因,相同的理论完全可以通过类比的方式学习,而学习的重点应该放在二者的不同上,弄懂有什么不同,为什么不同,只有懂得了“为什么”,才能真正学懂相应知识.

根据heine定理,函数极限数列极限是可以转化的:f(x)一>a(x一>xo)的充要条件为对任何以xo为极限的数列xn!xn不等于xo,都有f(xn)一>a(n一>无穷)

多元函数极限毕业论文

多元函数的极限一般是利用一元函数求极限的方法、换元或者迫敛准则等来求:

例如:

(x,y)->(0,0) sin(x²+y²) / (x²+y²) 令 u = x²+y²= lim(u->0) sinu / u = 1

(x,y) = x²y / (x²+y²)

∵ | x²y | / (x²+y²) ≤ (1/2) |x|

lim(x,y)->(0,0) |x| = 0

∴ lim(x,y)->(0,0) x²y / (x²+y²) = 0

记住limh趋于0[f(x+h,y)-f(x,y]/h得到的就是f'x

同理limh趋于0[f(x,y+h)-f(x,y]/h得到的就是f'y

显然这里就是-2f'x=6以及1/3f'y=2/3

扩展资料:

函数极限在区间(a-ε,a+ε)之外至多只有N个(有限个)点;所有其他的点  (无限个)都落在该邻域之内。

对于任意给定的ε>0,存在某一个正数δ,对于D上任意一点P0,只要P在P0的δ邻域与D的交集内,就有|f(P0)-f(P)|<ε,则称f关于集合D一致连续。

一致连续比连续的条件要苛刻很多。

设函数z=f(x,y)在点P0(x0,y0)的某邻域内有定义,对这个邻域中的点P(x,y)=(x0+△x,y0+△y),若函数f在P0点处的增量△z可表示为:

△z=f(x0+△x,y+△y)-f(x0,y0)=A△x+B△y+o(ρ),其中A,B是仅与P0有关的常数,ρ=〔(△x)^2+(△y)^2〕^(ρ)是较ρ高阶无穷小量,即当ρ趋于零是o(ρ)/ρ趋于零。则称f在P0点可微。

以  的极限为例,f(x) 在点  以A为极限的定义是: 对于任意给定的正数ε(无论它多么小),总存在正数  ,使得当x满足不等式  时,对应的函数值f(x)都满足不等式:  ,那么常数A就叫做函数f(x)当 x→x。时的极限。

我觉得LS回答得太随意了,我不是学数学专业的,所有帮不了你!

向量函数的极限毕业论文

给出一个点集CU,并在G上选定一个坐标系.若对于G中每一个点p,总有三维欧氏空间R3中的一个确定的向量r和它对应,则称r为定义在CU上的一个向量函数,记为;=r

例如,在平面内运动的质点在t时刻的坐标(x, y)可以描述为x = f (t), y = g(t),t∈I .这样点(x, y) = ( f (t), g(t))形成平面曲线C ,它是质点的运动路径,它用参数方程来描述.如果用r(t)表示从原点到质点在时刻t的位置P( f (t), g(t))的向量,那么r(t) = OP = { f (t), g(t)} = f (t)i + g(t)j 首先,我们通过向量值函数的分量函数来定义它的极限,然后再定义它的连续性.对于二维向量值函数r(t) = f (t)i + g(t)j,设它在t0 的某去心邻域内有定义,如果lim f(t)=a (t→t0),lim g(t)=b (t→t0)则称当t →t0 时,向量值函数r(t)的极限存在,其极限为lim r(t)=a i+b j (t→t0)如果二维向量值函数r(t) = f (t)i + g(t)j在0 t 的某邻域内有定义,且lim r(t)=r(to) (t→t0)则称向量值函数r(t)在点t0 处连续.如果r(t)在区间I 的每个点上连续,则称r(t)为区间I 上连续的向量值函数. lim r(t)=a i+b j (t→t0)其中lim f(t)=a (t→t0),lim g(t)=b (t→t0)

考研的数学分为四种,分别是数学一、数学二、数学三、数学四 数学一是一般的理工科要考的,如计算机/材料等理工专业 数学二是对数学要求略微低一点的专业要考的,但他与数学一基本相当。如纺织专业 数学三是偏向于经济类别的考生,如经济管理 偏向概率 数学四是其它对数学要求相对低的学科。 而四种数学出题的题型相同,所占比例也相同,你很容易在网上或者书店找到某一年的考试题看一下每年出的题类型相同的。 大纲见下: 全国硕士研究生入学考试数学三考试大纲 考试科目 微积分、线性代数、概率论与数理统计 微积分 一、函数。极限、连续 考试内容 函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 反函数、复合函数、隐函数、分段函数 基本初等函数的性质及其图形 初等函数 数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小和无穷大的概念及关系 无穷小的基本性质及阶的比较 极限四则运算 极限存在的两个准则(单调有界准则和夹逼准则)两个重要极限 函数连续与间断的概念 初等函数的连续性 闭区间上连续函数的性质 考试要求 1.理解函数的概念,掌握函数的表示法. 2.了解函数的有界性、单调性、周期性和奇偶性. 3.理解复合函数、反函数、隐函数和分段函数的概念. 4.掌握基本初等函数的性质及其图形,理解初等函数的概念. 5.会建立简单应用问题中的函数关系式. 6.了解数列极限和函数极限(包括左极限与右极限)的概念. 7.了解无穷小的概念和基本性质.掌握无穷小的比较方法.了解无穷大的概念及其与无穷小的关系. 8.了解极限的性质与极限存在的两个准则.掌握极限的性质及四则运算法则,会应用两个重要极限. 9.理解函数连续性的概念(含左连续与右连续). 10. 了解连续函数的性质和初等函述的连续性. 了解闭区间上连续函数的性质(有界性、最大值与最小值定理和介值定理)及其简单应用. 二、一元函数微分学 考试内容 导数的概念 导数的几何意义和经济意义 函数的可导性与连续性之间的关系 导数的四则运算 基本初等函数的导数 复合函数、反函数和隐函数的导数 高阶导数 微分的概念和运算法则 微分中值定理及其应用 洛必达(L'Hospital)法则 函数单调性 函数的极值 函数图形的凹凸性、拐点、浙近线 函数图形的描绘 函数的最大值与最小值 考试要求 1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念). 2.掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则,掌握反函数与隐函数求导法以及对数求导法. 3.了解高阶导数的概念,会求简单函数的高阶导数. 4.了解微分的概念,导数与微分之间的关系,以及一阶微分形式的不变性,会求函数的微分. 5.理解罗尔(Rolle)定理、拉格朗日( Lagrange)中值定理、柯西(Cauchy)中值定理的条件和结论,掌握这三个定理的简单应用. 6.会用洛必达法则求极限. 7.掌握函数单调性的判别方法及其应用,掌握极值、最大值和最小值的求法(含解较简单的应用题). 8.会用导数判断函数图形的凹凸性和拐点,会求函数图形的渐近线. 9.掌握函数作图的基本步骤和方法,会作某些简单函数的图形. 三、一元函数积分学 考试内容 原函数与不定积分的概念 不定积分的基本性质 基本积分公式 不定积分的换元积分法和分部积分法 定积分的概念和基本性质 定积分中值定理 变上限定积分定义的函数及其导数 牛顿一莱布尼茨(Newton- Leibniz)公式 定积分的换元积分法和分部积分法 广义积分的概念和计算 定积分的应用 考试要求 1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握计算不定积分的换元积分法和分部积分法. 2.了解定积分的概念和基本性质,了解定积分中值定理,掌握牛顿一莱布尼茨公式,以及定积分的换元积分法和分部积分法.了解变上限定积分定义的函数并会求它的导数. 3.会利用定积分计算平面图形的面积和旋转体的体积,会利用定积分求解简单的经济应用问题. 4.了解广义积分的概念,会计算广义积分,了解广义积分(此处略)的收敛与发散的条件. 四、多元函数微积分学 考试内容 多元函数的概念 二元函数的几何意义 二元函数的极限与连续性 有界闭区域上二元连续函数的性质 多元函数的偏导数的概念与计算 多元复合函数的求导法与隐函数求导法 二阶偏导数 全微分 多元函数的极值和条件极值、最大值和最小值 二重积分的概念、基本性质和计算 无界区域上简单二重积分的计算 考试要求 1.了解多元函数的概念,了解二元函数的几何意义. 2.了解二元函数的极限与连续的直观意义,了解有界闭区域上二元连续函数的性质. 3.了解多元函数偏导数与全微分的概念,掌握求多元复合函数偏导数和全微分的方法,会用隐函数的求导法则. 4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件。会求二元函数的极值,会用拉格朗日乘数法求条件极值.会求简单多元函数的最大值和最小值,会求解一些简单的应用题. 5.了解二重积分的概念与基本性质,掌握二重积分(直角坐标、极坐标)的计算方法.会计算无界区域上的较简单的二重积分. 五、无穷级数 考试内容 常数项级数的收敛与发散的概念 收敛级数的和的概念 级数的基本性质与收敛的必要条件 几何级数与p级数以及它们的收敛性 正项级数收敛性的判别 任意项级数的绝对收敛与条件收敛 交错级数与莱布尼茨定理 幂级数及其收敛半径、收敛区间(指开区间)和收敛域 幂级数的和函数 幂级数在其收敛区间内的基本性质 简单幂级数的和函数的求法 初等函数的幂级数展开式 考试要求 1.了解级数的收敛与发散、收敛级数的和的概念. 2.掌握级数的基本性质和级数收敛的必要条件.掌握几何级数及p级数的收敛与发散的条件.掌握正项级数的比较判别法和比值判别法. 3.了解任意项级数绝对收敛与条件收敛的概念,以及它们之间的关系.掌握交错级数的莱布尼茨判别法. 4.会求幂级数的收敛半径、收敛区间及收敛域. 5.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项微分和逐项积分),会求简单幂级数在其收敛区间内的和函数. 6.掌提 ex,sinx,cosx,ln(1+x)与(1+x)a幂级数的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展成幂级数. 六、常微分方程与差分方程 考试内容 常微分方程的概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 二阶常系数齐次线性微分方程及简单的非齐次线性微分方程 差分与差分方程的概念 差分方程的通解与特解 一阶常系数线性差分方程 微分方程与差分方程的简单应用 考试要求 1.了解微分方程的阶及其解、通解、初始条件和特解等概念. 2.掌握变量可分离的微分方程、齐次微分方程和一阶线性微分方程的求解方法. 3.会解二阶常系数齐次线性方程. 4.会解自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程. 5.了解差分与差分方程及其通解与特解等概念. 6.掌握一阶常系数线性差分方程的求解方法. 7.会应用微分方程和差分方程求解简单的经济应用问题. 线性代数 一、行列式 考试内容 行列式的概念和基本性质 行列式按行(列)展开定理 考试要求 1.了解n阶行列式的概念,掌握行列式的性质. 2.会应用行列式的性质和行列式按行(列)展开定理计算行列式. 二、矩阵 考试内容 矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价 分块矩阵及其运算 1、理解矩阵的概念,了解单位矩阵、对角矩阵、数量矩阵、三角矩阵的定义和性质,了解对称矩阵和反对称矩阵及正交矩阵等的定义和性质。 2、掌握矩阵的线性运算、乘法,以及他们的运算规律,掌握矩阵转置的性质,了解方阵的幂,掌握方阵乘积的行列式的性质. 3.理解逆矩阵的概念,掌握逆矩阵的性质,以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求矩阵的逆. 4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,会用初等变换求矩阵的逆和秩. 5.了解分块矩阵的概念,掌握分块矩阵的运算法则. 三、向量 考试内容 向量的概念 向量的线性组合与线性表示 向量组线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 考试要求 1.了解向量的概念,掌握向量的加法和数乘运算法则. 2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法. 3.理解向量组的极大无关组的概念,掌握求向量组的极大无关组的方法. 4.了解向量组等价的概念,理解向量组的秩的概念,了解矩阵的秩与其行(列)向量组的秩之间的关系,会求向量组的秩. 四、线性方程组 考试内容 线性方程组的克莱姆(Cramer)法则 线例方程组有解和无解的判定 齐次线性方程组的基础解系和通解 非齐次线性方程组的解与相应的齐次线件方程组(导出组)的解之间的关系 非齐次线性方程组的通解 考试要求 1.会用克莱姆法则解线性方程组. 2.掌握线性方程组有解和无解的判定方法. 3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法. 4.掌握非齐次线性方程组的通解的求法,会用其特解及相应的导出组的基础解系表示齐次线性方程组的通解. 五、矩阵的特征值和特征向量 考试内容 矩阵的特征值和特征向量的概念、性质 相似矩阵的概念及性质 矩阵可对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值和特征向量及相似对角矩阵 考试要求 1、理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法. 2.理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法. 3.掌握实对称矩阵的特征值和特征向量性质. 六、二次型 考试内容 二次型及其矩阵表示 合同变换与合同矩阵 二次型的秩 惯性定理 二次型的标准报和规范形 正交变换 用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性 考试要求 1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换和合同矩阵的概念. 2.理解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理的条件和结论,会用正交变换和配方法化二次型为标准形. 3.理解正定二次型、正定矩阵的概念,掌握正定矩阵的性质. 概率论与数理统计 一、随机事件和概率 考试内容 随机事件与样本空间 事件的关系与运算 完全事件组 概率的概念 概率的基本性质 古典型概率 几何型概率 条件概率 概率的基本公式 事件的独立性 独立重复试验 考试要求 1.了解样本空间(基本时间空间)的概念,理解随机事件的概念,掌握事件的关系及运算. 2、理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、乘法公式、全概率公式以及贝叶斯公式等基本公式. 3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念. 二、随机变量及其概率分布 考试内容 随机变量及其概率分布 随机变量的分布函数的概念及其性质 离散型随机变量的概率分布 连续型随机变量的概率密度 常见随机变量的概率分布 随机变量函数的概率分布 考试要求 1.理解随机变量及其概率分布的概念,理解分布函数F(x)=P{X<=x}(负无穷2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、超几何分布、泊松(Poisson)分布及其应用. 3.掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布. 4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布N(μ,σ2)、指数分布及其应用,其中参数为λ(λ>0)的指数分布的密度函数为f(x)=(此处略). 5.会根据自变量的概率分布求其简单函数的概率分布. 三、随机变量的联合概率分布 考试内容 随机变量联合分布函数 离散型随机变量的联合概率分布、边缘分布和条件分布 连续型随机变量的联合概率密度、边缘密度和条件密度 随机变量的独立性和相关性 常见二维随机变量的联合分布 两个及两个以上随机变量的函数的概率分布 考试要求 1.理解随机变量的联合分布函数的概念和基本性质. 2.理解随机变量的联合分布的概念、性质及其两种基本表达式:离散型联合概率分布和连续型联合概率密度.掌握两个随机变量的联合分布的边缘分布和条件分布. 3.理解随机变量的独立性及相关性的概念,掌握随机变量独立的条件;理解随机变量的不相关性与独立性的关系. 4.掌握二维均匀分布和二维正态分布,理解其中参数的概率意义. 5.会根据两个随机变量的联合概率分布求其函数的概率分布,会根据多个独立随机变量的概率分布求其函数的概率分布. 四、随机变量的数字特征 考试内容 随机变量的数学期望(均值)、方差和标准差及其性质 随机变量函数的数学期望 切比雪夫(Chebyshev)不等式 矩、协方差和相关系数及其性质 考试要求 1.理解随机变量数字特征(数学期望、方差、标准差、协方差、相关系数)的概念,并会运用数字特征的基本性质计等具体分布的数字特征,掌握常用分布的数字特征. 2.会根据随机变量的概率分布求其函数的数学期望;会根据两个随机变量联合概率分布求其函数的数学期望. 3.掌握切比雪夫不等式. 五、大数定律和中心极限定理 考试内容 切比雪夫(Chebyshev)大数定律 伯努利(Bernonlli)大数定律 辛钦(Khinchine)大数定律 棣莫弗一拉普拉斯( De Moivre- Laplace)定理(二项分布以正态分布为极限分布) 列维一林德伯格(Levy-Lindberg)定理(独立同分布随机变量列的中心极限定理) 考试要求 1.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量的大数定律)成立的条件及结论. 2.掌握棣莫弗—拉普拉斯中心极限定理、列维—林得伯格中心极限定理的结论和应用条件,并会用相关定理近似计算有关事件的概率. 六、数理统计的基本概念 考试内容 总体 个体 简单随机样本 统计量 样本均值 样本方差和样本矩 χ2分布 t分布 F分布 分位数 正态总体的常用抽样分布 考试要求 1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念.其中样本方差定义为:S2=(此处略) 2.了解产生χ2变量、t变量和F变量的典型模式;理解标准正态分布、χ2分布、t分布和F分布的分位数,会查相应的数值表. 3.掌握正态总体的抽样分布. 七、参数估计 考试内容 点估计的概念 估计量与估计值 矩估计法 最大似然估计法 估计量的评选标准 区间估计的概念 单个正态总体的均值的区间估计 单个正态总体方差和标准差的区间估计 两个正态总体的均值差和方差比的区间估计 考试要求 1.理解参数的点估计、估计量与估计值的概念;了解估计量的无偏性、有效性(最小方差性)和相合性(一致性)的概念,并会验证估计量的无偏性;会利用大数定律证明估计量的相合性. 2.掌握矩估计法(一阶、二阶矩)和最大似然估计法. 3.掌握建立未知参数的(双侧和单侧)置信区间的一般方法;掌握正态总体均值、方差、标准差、矩以及与其相联系的数字特征的置信区间的求法. 4 掌握两个正态总体的均值差和方差比及相关数字特征的置信区间的求法. 八、假设检验 考试内容 显著性检验的基本思想和步骤 假设检验的两类错误 单个及两个正态总体的均值和方差的假设检验 考试要求 1.理解“假设”的概念和基本类型;理解显著性检验的基本思想,掌握假设检验的基本步骤;会构造简单假设的显著性检验. 2.理解假设检验可能产生的两类错误,对于较简单的情形,会计算两类错误的概率. 3.了解单个和两个正态总体参数的假设检验. 试卷结构 (一)内容比例 微积分 约50% 线性代数 约25% 概率论与数理统计 约 25% (二)题型比例 境空题与选择题约 30% 解答题(包括证明题) 约70% 由于这里回答问题限制字数,所以数学四的考纲无法贴上,请你自己去查找,网上有

函数极限的本科毕业论文

这个可以写一篇本科毕业论文的。

根据heine定理,函数极限数列极限是可以转化的:f(x)一>a(x一>xo)的充要条件为对任何以xo为极限的数列xn!xn不等于xo,都有f(xn)一>a(n一>无穷)

前言: 当今,在社会环境对从业人员要求具有更高学历的激励下,在各类专业人员不断进行知识更新的进程中,广泛地存在着要求提高自己的数学水平的愿望.特别对于原来只学过普通微积分课程的人来说,他们在补习各自所需要的数学知识时,因缺乏牢固的数学基础,不可避免地会遇到很多困难.本论文就是在为他们讲授数学分析理论基础课的讲义的基础上写成的.考虑到在职人员投入业余学习的时间十分有限,要他们系统地学完一门数学分析这样的大课程几乎是不可能的.一种可行而有效的做法或许是这样的--选择几个起主导作用的专题,讲授其中那些具有原则意义的概念和思想,通过举例讨论一些典型问题的解法. 序言: 自20世纪90年代后期开始,我国的高等教育改革步伐日益加快.实行5天工作制,使教学总时数减少,而新的专业课程却不断出现.在这样的情况下,对传统的专业课程应该如何处置,这样一个不能回避的问题就摆在了我们的面前.而这时,教育部师范司启动了面向21世纪教学改革计划.在我们进行"数学专业培养方案"项目的研究中,这个问题有两种方案可以选择:一是简单化的做法,或者削减必修课的数量,将一些传统的数学课程从必修课的名单中去掉,变为选修课,或者少讲内容减少课时;二是对每门课程的教学内容进行优化、整合,建立一些理论平台,减少一些繁琐的论证和计算,以达到削减课时,同时又能保证基本教学内容. 目录: 第一章 实数理论 建立实数的原则与完备有序域 * 戴德金分划说简介 无限小数与实数 实数完备性的等价命题 * 上极限与下极限 第二章 连续性 n维欧氏空间 函数概念的演进 函数极限和连续的一般定义 连续函数的整体性质 不动点与压缩映射原理简介 第三章 微分学 可微性的统一定义 可微函数的性质 微分中值定理与导函数的性质 凸函数 例题续编 第四章 积分学 定积分概念与牛顿-莱布尼兹公式 可积条件 定积分的性质 变限积分 反常积分 第五章 级数 数项级数综述 一致收敛概念的提出 一致收敛判别 一致收敛函数列(或级数)的性质 1、小学数学论文的组成 小学数学论文具有类型多样、形式活泼等特点,有的侧重于经验的总结,实验结果的阐述,包括实验过程、手段、方法和结果的记录;有的侧重于理论性的研究,包括对研究课题的提出,对研究成果的分析、推导、论证和应用等。但不论哪类论文,主要由标题、摘要、前言、正文、结论、参考文献等部分组成。 标题就是论文的总题目,是文章基本内容的缩影,古人云:“立片言以居要,乃全篇之警策。”所以拟定标题应该力求简短、明确、质朴、醒目,既要防止太冗长,又要避免太概括,使人不明了;既要防止文不对题或过于陈旧,又要避免追求新颖、空泛而没有实际的内容。 摘要一般包括本课题研究的意义,研究的内容与方法,研究的成果或价值等,便于读者迅速了解全文的概貌。所以摘要应简明扼要,引人入胜,内容全面,重点突出,且能独立使用。 前言也称引言或绪言,一般包括本课题研究的背景或起点,需要研究的问题,研究的方法、手段,研究的意义或价值。需要注意的是,对研究的意义或价值应力求实事求是,既不可拔高,也不可贬低或过分谦虚。 正文是论文的主体,作为表达作者个人研究成果的部分,所占篇幅较大,有时还必须辅以必要的小标题,应力求概念清晰,论点明确,论证严密,论据充分,具有科学性、准确性和创新性,同时条理要清楚,文字应通俗简明。 结论是对正文中所分析论证的问题加以综合,概括出基本点,这是课题解决的答案。结论作为理论分析和实验的逻辑发展,是论述的概括集中和升华,由局部到一般,由具体事实、经验,上升到理论概括,是整篇论文的归宿,所以应力求完整、准确、鲜明,还应如实指出本理论的使用范围和成果的意义,以及本文尚未解决的问题和继续研究的方向。 参考文献是反映作者严肃的科学态度和研究工作的依据,其中包括撰写该论文所参考的书籍(作者姓名、书名、版次、页数、出版者、出版年份)或期刊(作者姓名、标题、刊物名称、卷或期、页数、年份)。 2、小学数学论文的撰写过程 第一步,选题、选材。 要想写什么内容的文章,无论是理论探讨方面,还是教材教法方面和解题方法技巧方面,以及教学经验总结方面,对阐述问题的深度、广度等,要心中有数,具有明确的目的性和主题性。 无论选择哪方面的内容与具体题材,都必须力求具有先进性、针对性和实践性,要想做到这一点,首先,根据文献检索方法,尽可能多地查阅资料,掌握国内外最新研究动态。其次,深入钻研这些文献资料,看看能否得到进一步启发,有无新的见解。尽管选题可能重复,类似的题材较多,但也可以从不同侧面结合不同实例,根据不同对象写出一定的新意来,使观点更明确,方法更有效,使其先进性、针对性、实用性更强。第三,选题要从实际出发,题目大小、题材的深度和广度要恰当。 第二步,拟纲、执笔。 论文选题确定后,就要注意写好提纲,这是写好文章的基础。首先,要将内容、结构布局好,要拟定一个写作提纲,准备分几个部分,各个部分集中讲几个问题,这些部分与问题之间的关系如何,都需要进一步精心设计,使其结构严谨、层次分明,具有科学性、逻辑性。其次,要注意各种文章的特点。写理论性的文章,最好能再确定大小标题,叙述上力求论点明确,可信度强,便于别人借鉴;写教材分析方面的文章,应进行比较,提出改进意见或提示值得深入研究的问题等。 第三步,修改、定稿。 修改是文章初稿完成后的一个加工过程,它包括对论文文字的修饰,以及科学性的推敲等。论文初稿形成后,应从头至尾反复地阅读,逐句逐段推敲,审核一下文中的论点是否明确,论据是否充分,论证是否合理,结构是否严谨,计算是否正确等。一篇好的小学数学论文,应该是数文并茂。就是说,既要有好的数学内容,又要有好的文字表达。所以,文字的工夫对数学论文来说很为重要。数学论文,贵在朴实,少用浮词,免得冲淡文章的中心,文字应通俗易懂,简明扼要,用词应准确简炼,表达完整,特别是中心内容一定要阐述透彻清楚。此外,书写要规范,题号、图号、标点也要正确。修改是一项细致的工作,只有对文稿反复推敲、修改,才能消除不应有的错误。只有经过反复修改加工,文章的质量才会不断提高。

相关百科
热门百科
首页
发表服务