论文投稿百科

低品位铝土矿草酸除铁研究论文

发布时间:2024-07-05 01:52:34

低品位铝土矿草酸除铁研究论文

草酸石英石可以有效去除水中的铁质,并且不会改变水的PH值,因此它是一种理想的净水方法。更重要的是,它能够有效吸附、捕集大离子交换树脂无法结合的微量铁离子,从而起到去除水中铁质的效果。

答,草酸石英石除铁效果,石英石是二氧化硅,对酸稳定,可以用盐酸等强酸处理,有磷酸草酸的话效果最好

石英砂中含有较高的二氧化硅,通常含量在95%以上,用于玻璃制造等,但是对三氧化二铁的含量要求比较严格,越低越好。石英砂中的铁通常是以氧化物(主要是三氧化二铁)的形式附在石英砂的表面上,由于草酸是一种弱酸,酸性太弱,无法除掉石英砂表面上的三氧化二铁。如果必须采用化学法除铁,建议采用稀盐酸,浓度可以试验一下。处理后的石英砂可以用少量水洗一下,废水收集起来,补充少量盐酸后可以再使用,防止废水污染。

本人从智网上找的 有PDF格式 这是从上面转下来的 统磁体以单原子或离子为构件,三维磁有序化主要来自通过化学键传递的磁相互作用,其制备采用冶金学或其一、引 言他物理方法;而分子磁体以分子或离子为构件,在临界 作为一种新型的软材料,分子基材料(molecule2based温度以下的三维磁有序化主要来源于分子间的相互作materials)在近年来材料科学的研究中已成为化学家、物用,其制备采用常规的有机或无机化学合成方法.由于理学家以及生物学家非常重视的新兴科学领域[1].分子在分子磁体中没有伸展的离子键、共价键和金属键,因基材料的定义是,通过分子或带电分子组合出主要具有而很容易溶于常规的有机溶剂,从而很容易得到配合物分子框架结构的有用物质.顾名思义,分子基磁性材料的单晶,有利于进行磁性与晶体结构的相关性研究,有(molecule2based magnetic materials) ,通称分子磁性材料,利于对磁性机制的理论研究.作为磁性材料,分子铁磁是具有磁学物理特征的分子基材料.当然,分子磁性材体具有体积小、相对密度轻、结构多样化、易于复合加工料是涉及化学、物理、材料和生命科学等诸多学科的新成型等优点,有可能作为制作航天器、微波吸收隐身、电兴交叉研究领域.主要研究具有磁性、磁性与光学或电磁屏蔽和信息存储的材料.导等物理性能相结合分子体系的设计、合成.我们认为, 分子磁性研究始于理论探索.早在 1963 年McCo2分子磁性材料是在结构上以超分子化学为主要特点的、nnel[2]就提出有机化合物可能存在铁磁性,并提出了分在微观上以分子磁交换为主要性质的、具有宏观磁学特子间铁磁偶合的机制.1967 年,他又提出了涉及从激发征并可能应用的一类物质.态到基态电子转移的分子离子之间产生稳定铁磁偶合 分子铁磁体是具有铁磁性质的分子化合物,它在临的方法[3].同年,Wickman[4]在贝尔实验室合成了第一个界温度(Tc)下具有自发磁化等特点.分子磁体有别于传分子铁磁体.之后,科学家们相继报道了一些类铁磁性统的不易溶解的金属、金属合金或金属氧化物磁体.传质的磁性化合物,但直到1986年前,这些合成的磁性化·15 ·? 1994-2008 China Academic Journal Electronic Publishing House. All rights reserved. 专题综述Ziran Zazhi 合物没有表现出硬铁磁所具有的磁滞特征.1986 年,材料理论的精确预言和计算是相当困难的,而且,分子Miller等人[5]将二茂铁衍生物[Fe(Cp3)2](Cp3为五甲基磁性材料中包含的原子和分子基团更多,空间结构的基环戊二稀)与四氰基乙烯自由基(TCNE)经电荷转移合对称性更复杂,局部的磁交换的途径也体现出多样性,成了第一个分子铁磁体[Fe(Cp3)2]+[TCNE] ,其转换温使得目前的研究还处于实验经验的积累和定性的解释度 T上.尽管如此,科学家们对分子磁交换的机制进行了大c= K.与此同时,Kahn 等人[6]报道了具有铁磁性的MnCu(pbaOH)·(H量的研究,提出了许多近似理论模型,并基于这些模型2O)3分子化合物.从此,分子磁体的研究引起了人们的广泛关注,分子基磁性材料也应和大量的实验数据,在磁性与结构的关系研究中取得了运而生.一定的进展.对于一些对称性较高的体系,根据自旋相 开始,由于分子间的磁相互作用较弱,分子磁体的互作用的 Hamilton可由量子力学求出磁化率的解析形转换温度式T,然后根据实验数据计算出磁偶合系数 J 值,探索随c通常远远低于室温,难于达到应用的要求.结构的变化关系.对于对称性较差及组成较为复杂的体但是,第一个室温分子磁体V(TCNE)2·xCH2Cl2在1991系,自旋 Hamilton 的解析解很难求出.此时可用 Monte年由Manriquez[7]报道出后,虽然是一个不稳定的电荷转Carlo方法对物理过程进行模拟,求出磁偶合系数 J[10].移钒配合物,但近年来,分子磁性的研究已取得了令人 根据产生磁性的具体类型,磁交换机制主要通过以鼓舞的进展,Verdauger[8,9]报道了 Tc高达340 K的稳定下途径来实现:类普鲁士蓝的分子铁磁体. (1) 磁轨道正交 根据 Kahn等人的分子轨道理论,顺磁离子A与B之间的磁相互作用(J)由两部分贡献组二、分子磁性中的物理基础成,即铁磁贡献和反铁磁贡献,J = JF+ JAF.当A中未成对电子所占据的磁轨道与B中未成对电子所占据的磁 分子磁体的磁性来源于分子中具有未成对电子离轨道互相重叠时,它们之间的相互作用为反铁磁偶合,子之间的偶合,这些偶合相互作用既来自分子内,也可重叠积分越大,反铁磁偶合越强;当A与B中未成对电来自于分子间.分子内的自旋- 自旋相互作用往往通过子所占据的磁轨道正交时,它们之间的相互作用为铁磁“化学桥”来实现磁超相互作用.所以,分子磁性材料兼偶合.如图(1)中(a)、(b)所示.如果铁磁偶合与反铁磁偶具磁偶极- 偶极相互作用和超相互作用,故该类材料的合同时存在,通常反铁磁偶合强于铁磁偶合,因此只有磁性比常规的无机磁性材料表现出更丰富多彩的磁学当 JAF为零时,A与B间才为铁磁偶合.如在CsNiⅡ[CrⅢ性质.(CN)6]·2H2O[9]中,CrⅢ的磁轨道具有t2g对称性,而NiⅡ 根据铁磁体理论,要使材料产生铁磁性,首先体系的磁轨道具有e的原子或离子必须是顺磁性的g对称性,二者互为正交轨道,因而呈现,其次它们间的相互作用铁磁性偶合( T是铁磁性的.对于分子磁性材料,一个分子内往往包含c=90 K).当磁轨道正交时,铁磁偶合的一个或多个顺磁中心,即自旋载体,按照 Heisenberg 理大小依赖于轨道间的距离.论,两个自旋载体之间的磁交换作用可用以下等效Ham2 (2) 异金属反铁磁偶合 对于两个具有不同自旋的ilton算符来表示:顺磁金属离子,SA≠SB若A与B间存在磁相互作用,有^H两种情况:当A与B 间的磁相互作用为短程铁磁偶合ex= - 2J^S1^S2(1)其中时,总自旋 SJ 为交换积分,表示两个自旋载体间磁相互作用的T= SA+ SB;当A与B间的磁相互作用为反类型和大小. J 为正值时为铁磁性偶合,自旋平行的状态铁磁偶合时,总自旋 Sr=| SA- SB| (如图1中(c) (d)所为基态;J 为负值时为反铁磁性偶合,自旋反平行为基示).顺磁离子A和B间的磁相互作用大多为反铁磁偶态.如对分子磁性材料:A- X- B 体系(A,B 为顺磁中合.当为反铁磁偶合时,若 Sr= SB,则 Sr=0;若 SA与心,X为化学桥) ,X作为超交换的媒介使A和B发生磁SB不相等,则有净自旋,当在转换温度以下,净自旋有性偶合,设 SA= SB=1P2,则当反铁磁偶合时,分子基态序排列,使体系呈现亚铁磁性.因此,利用异金属之间反用单重态和三重态的能量差来表示:J = E铁磁偶合是构建高自旋分子的另一条有效途径.如CsMnS- ET. 磁相互作用研究的目的在于了解磁交换的机理,寻[Cr(CN)6] ,Mn2+的自旋为 SA=5P2,而Cr3+的自旋为 SB找磁性与结构之间的关系,并反过来指导分子磁性材料=3P2,二者之间产生反铁磁偶合,净自旋 ST= SA- SB的设计和合成.和通常的磁性材料一样,对分子基磁性=1P2,在低于转换温度( Tc=90 K)时,配合物表现为亚1·6 ·? 1994-2008 China Academic Journal Electronic Publishing House. All rights reserved. 自 然 杂 志 24卷1期专题综述铁磁性[11].以分为下面几类:1. 有机自由基分子磁体 化合物中不含任何带磁性的金属离子,大多由 C,H,O,N四种有机元素组成的磁体材料.其自旋载体为有机自由基,如氮氧自由基.McConnel 早在1963 年就提出有机化合物内存在铁磁偶合的机制[2].制备方法采用有机合成方法.由于它们具有有机材料特殊的物理、化学图性能,因而是更具应用前景的分子铁磁材料.但直到今1 相同自旋之间的偶合:(a) 铁磁偶合;(b) 反铁磁偶合; 不同自旋之间的偶合:(c) 铁磁偶合;(d) 亚铁磁偶合日,纯有机分子磁体的转换温度仍极低,和有机超导材料一样,在小于50 K的低温区.日本科学家在这方面的 (3) 电荷转移 对给体- 受体电荷转移类配合物,工作做得很好.目前,得到广泛研究并进行了结构标定如[FeCp32]+[TCNE]-,基态时,[FeCp32]+的自旋为1P2,的有机铁磁体主要有氮氧自由基及其衍生物[14]、C60[TCNE]-的自旋也为1P2.在这样一个系统中,由于电荷(TDAE)(TDAE为四(二甲胺基) - 1,2- 亚乙基)[15]等.转移,形成激发三重态.在[FeCp32]+与[TCNE]-交替排列形成的链中,阳离子与前后两个[TCNE]-等距离,它2. 金属- 有机自由基分子磁体的e2g电子可向前后两个[TCNE]转移,形成 S =1的激发 化合物中含有带磁性的过渡金属或稀土金属离子,态.基态激发态混合后,降低了体系能量,使自旋取向沿同时也含有机自由基的基团,故有两种以上的自旋载体着一条链形成.如果每个链的取向都是平行的,且链间存在,并发生相互作用,由这种金属或金属配合物与自和链内[FeCp32]+与[TCNE]-位置相当,那么e2g电子可由基两种自旋载体组装的化合物,也可以构建分子铁磁以在链间传递,从而进一步稳定了体系,导致了相邻链体.其中有些是有机金属与自由基形成的电荷 转移盐的自旋平行取向,产生宏观的铁磁性现象[12].体系. (4) 有机自由基与多自由基 自从1991 年日本京 美国的Miller和Epstein教授在这个体系中作出了卓都大学的 Takahashi 等[13]成功地合成了基于 C、H、O、N越的贡献,首先他们发现了[M(Cp32][TCNZ](Z=Q或四种元素组成的有机铁磁体,使人们认识到含有氮氧自E,TCNE为四氰基乙烯,TCNQ为四氰代对苯醌二甲烷,M由基的有机化合物也是制备分子铁磁体的一条有效途(C3p)2为环戊二烯金属衍生物)[12]. 如,[Fe(Cp3)2]径.氮氧自由基与金属配合物形成的磁偶合体系已成为[TCNZ]为一变磁体(它有一反铁磁基态,但在临界外场分子铁磁体研究领域的一个重要方面.为1500Oe时,转变为具有高磁矩的类铁磁态) ,它由[Fe(Cp3)2]+阳离子与[TCNQ]-阴离子交替排列形成平行三、分子基磁性材料的分子设计和目的一维链,每一个离子均有一未成对的电子自旋[16].磁 前热点研究体系有序要求在整体上的自旋偶合,因此,直径较小的[TC2NE]-将比[TCNQ]-有较大的电子密度,预期将有利于 分子磁体的设计与合成实质上是一个在化学反应自旋偶合.实际情况证明了这一点,[Fe(Cp3中分子自组装的过程.选择合适的高自旋载体(砖头) ,2)]+[TC2NE]-由阳离子与阴离子交替排列构成一维链,在 K这可以是金属离子或具有自旋不为零的有机自由基,通以下表现为磁有序过非磁性的有机配体等桥梁基团作为构筑元件(石灰),在 T=2 K时,其矫顽力为1 000Oe,,超过了传统磁存储材料的值[17]以一定的方式无限长地联接起来.为了提高磁有序温度,,如通过脱溶剂法处理、改变抗衡离子或改变配体等途径他们又开创了M[TCNE],形成分子内部间x·yS(M=V,Mn,Fe,Ni,Co;S为的强相互作用和单元间弱相互作用的超分子结构.通过溶剂分子) 另外一类电荷转换盐分子磁体的研究工调控无限分子P分子单元(或链、层)间磁相互作用的类型作[18].并发现第一个室温以上的分子磁体V[TCNE]x·和大小,组装成低维或三维铁磁体.但就目前来说,除选yCH2Cl2,其 Tc高达400 K.值得一提的是,在常温下它显择合适的高自旋载体和桥联配体外,控制分子在晶格中示出矫顽力超过无机磁体,薄膜材料也在积极的研究堆砌方式也十分重要.中,已接近应用.遗憾的是,这类化合物的结构至今仍是 按照自旋载体和产生的磁性不同,分子磁性材料可不清楚.近年来,Miller等对[MnⅢTPP]+[TCNE]-(H2TPP·17 ·? 1994-2008 China Academic Journal Electronic Publishing House. All rights reserved. 专题综述Ziran Zazhi 为中心四苯卟啉)类分子磁体也进行了广泛的研究.有物在低温下,能够被光激发而发生从铁磁体到顺磁体的关的综述论文可参考文献[12]和[19].可逆转跃迁,是非常有实际应用的特性. Mn( Ⅱ) - 氮氧自由基链状配合物Mn(hfac)2(NIT2 草酸根桥联的双核或异双核金属配位物分子磁体Me)[20](hfac是六氟乙酰丙酮,NITMe 为2- 甲基- 4,4,一直吸引着人们的注意.具有D3对称性的[MⅢ(ox)3]3-5,5- 四甲基咪唑啉- 1- 氧基- 3- 氧化物自由基,Tc是一个非常有用的建造单元.它在3个不同的方向上都=7. 8 K) 及 Cu ( Ⅱ) 自由基配合物 [Cu (hfac)2]有“钩子”,能轻而易举地把别的金属离子拉进来而形成(NIT[21]多维的金属离子交替排列,从而成为二维或三维分子磁pPy)2(NITpPy为2- (2’吡啶 - 4,4,5,5- 四甲基咪唑啉- 1- 氧基- 3- 氧化物)是另一类的金属- 有体.如A[MⅡMⅢCr(ox)3](A =N(n - C4H9)+4、N( n -机自由基分子磁体.近年来,这类分子铁磁体的研究进C6H5)+4等) ,当MⅢ=Cr( Ⅲ) ,MⅡ为Mn(Ⅱ) ,Cu( Ⅱ) ,Co展很大,已由单自由基- 金属配合物扩展到多自由基-(Ⅱ) ,Fe( Ⅱ)和Ni( Ⅱ)时,其 Tc分别为6,7,10,12,14金属配合物.由于多自由基较单自由基有更多的自旋中K[26];当MⅢ=Fe( Ⅲ) ,MⅡ为Fe(Ⅱ) ,Ni(Ⅱ) ,Co( Ⅱ)时,心和配位方式,并且与金属配位更易形成多维结构的优Tc=30~50 K[27].点,多自由基—金属配位物的研究已成为分子磁体研究 草胺酸根合铜[Cu(opba)]2-、[Cu(pba)]2-及[Cu的热点之一[22].(pbaOH)]2-含有未配位基团,可作为形成多核配合物的前体.此前体具有两个桥基,易与Mn2+、Fe2+等阳离子3.金属配合物的分子磁体形成异双金属链而构成一维链状配合物,链内通过铁磁 金属配合物分子磁体是目前研究得最广泛、最深入或反铁磁偶合得到铁磁链或亚铁磁链,链间的铁磁或反的一类分子磁体,其自旋载体为过渡金属.在其构建单铁磁偶合导致材料的宏观磁性表现为铁磁或反铁磁性.元中,可以形成单核、双核及多核配合物.由这些高自旋这类分子磁体转变温度低,如由双草酰胺桥联的锰铜配的配位物进行适当的分子组装,可以形成一维、二维及合物MnCu(pbaOH)(H2O)3,Tc= K[28].三维分子磁体,可以形成链状或层状结构.根据桥联配 除此之外,近十年来化学家们对由三叠氮(N3)配体位体的不同,这类分子磁体主要包括草胺酸类、草酰胺桥联的多维化合物产生了极大的兴趣,这是因为三叠氮类、草酸根类、二肟类、氰根类等几种类型.配体主要以两种方式连接金属离子,见图2,分别对应反 报告的第一个这种类型的分子磁体是中间自旋 S =铁磁偶合和铁磁偶合,便于对分子磁性的设计.单独由3P2的FeⅢ(S2CNEt2)2Cl[4],在温度为 K以下表现为三叠氮配体桥联或混入其他有机桥联配体,可构成一磁有序,但无磁滞现象.接着便是基于双金属的低温铁维,二维和三维的配位聚合物,形成独特的磁学性质并磁有序材料[CrⅢ(NH3)6]3+[FeⅢCl6]3-( Tc= K和在一定温度下构成分子磁体[29].这方面,我国的南京大亚铁磁有序材料[CrⅢ(NH3)6]3+[CrⅢ(CN)6]3-( Tc=2.学和南开大学也做出了很好的工作[30,31].85 K) ,它们同样不具有磁滞现象[23,24]. 近年来,由法国科学家Verdaguer发现普鲁士蓝类配合物所表现出的较高的转换温度,大的矫顽力,使得普鲁士蓝类磁性配合物越来越吸引人们的注意[25].普鲁士蓝类分子磁体是基于构筑元件M(CN)k-6与简单金属离子通过氰根桥联的类双金属配合物,双金属离子均处于八面体配位环境,并通过氰桥连接成三维网络.其组成形式为 Mk[M’(CN)6]l·nH2O 或 AMk[M’(CN)6]l·nH2O(M和M’为不同的顺磁性,化合物为铁磁体,如图2 三叠氮配体和金属离子以及对应的磁交换Cu3[Cr(CN)6]2·15H2O( Tc= 66 K) 、Cu3[Fe(CN)6]2·12H4. 单分子磁体(Single2Molecular Magnets)2O(Tc=14 K) 、Ni3[Cr(CN)6]2·14H2O( Tc=23 K)均为铁磁体.若两个金属离子磁轨道重叠,它们之间的磁 以上情况都是分子被连接成聚合物后产生非常强偶合为反铁磁性,化合物为反铁磁体或亚铁磁体,如的分子间相互作用.从另一个角度,若分子间相互作用(Net4)[V(CN)6]·2H2O( Tc=230 K) 、CrⅡ3[CrⅢ很小可忽略,则分子被隔离成一个个独立的磁分子.当(CN)6]2·10H2O( Tc=240 K)[25].有价值的是,这类化合分子内含有多个自旋离子中心并发生磁偶合时,则总分1·8 ·? 1994-2008 China Academic Journal Electronic Publishing House. All rights reserved. 自 然 杂 志 24卷1期专题综述子的磁矩决定于磁偶合后的最低能态,这时就可能出现域.如在本文中提到的:转换温度超过室温的分子基铁基态为自旋数较高的稳定态,在磁场的作用下产生准连磁和亚铁磁体材料的发现;具有高自旋的多核配合物在续的激发态能级.所以整个分子的磁矩在外场下,沿外低温下表现出磁性的单分子磁体的发现;在室温以上具场的方向偏转时需要克服一个较大的势垒,这种势垒来有大的磁滞现象的自旋交叉配合物的发现;分子基磁体自零场分裂的磁各向异性.有时也称这种现象为自旋阻的光磁、热磁效应;以及分子基磁体的 GMR、CMR效应挫(spinfrustration)[32].这种依赖于外磁场的双稳态(bist2等.所有这些成果都预示着分子磁性材料光明的未来.ability)被看作是新一代信息材料应用的基础.目前所发 相比于传统的磁性材料,由于广泛的化学选择性,现的单分子磁体主要包括Mn12和Mn14离子簇、Fe8离子可以从分子级别上对分子磁性材料进行修饰和改良;作簇和 V为磁性材料4离子簇等三类,如基态为 S = 10 的 Mn12O12,分子铁磁体具有体积小、相对密度小、能耗(O[33]小及结构的多样化等优点,其制备的方法大多为常规的2CMe)16(H2O)4.有意义的是,当这种单分子体积大到一定值时,可被认为是一种尺寸单一的可磁化的纳化学方法,便于做成各种形态的产品,所体现的性质有米材料,具有不可估量的应用前景.些是传统的磁性材料不可替代的.已发现这类新物质可能成为各类高科技材料,特别是新一代的信息存储5. 自旋交叉配合物材料. 众所周知 当然,当配合物分子内的自旋离子中心减少到,作为一种新生的材料,有很多方面仍需要进仅一个时一步研究和改进,这也是我国科学家在基础研究和应用,分子间的相互作用又很小,配合物显示出独立离子的特性科学走向世界前列的良机.可以预见,在未来的发展中,,为近似理想的顺磁性.具有3d4- 3d7电子配置的过渡金属配合物分子基磁性材料将可能在:①高,在八面体配位结构下,电子Tc温度的分子磁体;②在五个d电子轨道上的排布,可能会受到配位场e提高材料的物理稳定性;③透明的绝缘磁体;④易变、易g和t2g加工的分子磁体轨道之间的能隙Δ大小的影响;⑤和其他物理性能结合的复合磁性材,当Δ平均电子对能p相料近时;⑥超硬和超软磁体; ⑦液体磁体等方面着重探索和,化合物的自旋态可能由于某些外界条件的微扰,得到发展可呈现高自旋态与低自旋态的交叉转变[34].(.最典型的是2000年8月29日收到)一些Fe(Ⅱ)配合物,发生高自旋态5T1 Alivisatos A. P. ,Barbara P. F. ,Castleman A. W. ,et. al. Adv. Ma22(S =2,顺磁性)与ters. ,1998;10:1297低自旋态1A1(S =0,抗磁性)的转变,伴随自旋相变,化2 McConnel . J. Chem. Phys. ,1963;39:1910合物可能有结构甚至和颜色的变化.有一些的转变温度3 McConnel . Proc. . Welch Found. Chem. ;11:144还在常温区,如[Fe(Htrz)4 Wickman . ,Trozzolo . ,Williams . ,et. al. Phys. Rev. ,3- 3x(NH2trz)3x](ClO4)2·H2O1967;155:563(trz=1,2,4 三唑类) ,在常温下从紫色(低自旋)随温度5 Miller . ,Calabrese . ,Epstein . ,et. al. J. Chem. Soc. ,上升转为白色(高自旋).成为另一种新的可利用的双稳Chem. Commun,1986;10266 Pei Y. ,Verdauger M. ,Kahn O. ,et al. J. Am. Chem. Soc. ,1986;态现象[35].1984年,Decurtins等人首次观察到光诱导自108:7428旋交叉效应[36],并随后在低温下利用光对自旋态的激发7 . ,Yee . ,Mclean . ,et al. Science,1991;252:和调控进行了深入研究,期望能用作纳秒级的快速光开14158 FerlayS. ,Mallsah T. ,Ouahes R. ,et al. Nature,1995;378:701关和存储器[34].我国在自旋交叉研究方面也取得了可喜9 Mallah T. ,Thiebaut S. ,VerdaguerM. ,et al. Science,1993;262:1554的成绩[37],如发现温度回滞宽度近55 K的自旋交叉化10 Zhong . ,You X. Z. ,Chen T. Y. Annual Sci Rept—suppl of J of合物[Fe(dpp)Nanjing Univ. ,, Nov19942(NCS)2]py(dpp =二吡嗪(3,2,2-,3-)邻11 Griebler . ,Babel . ,NaturforschB. Anorg. Chem. ,1982;37B菲罗啉,py=吡啶)[38],而且首次发现在快速冷却下仍保(7) :832持高自旋亚稳态,实现了不通过光诱导也能得到低温下12 . ,. Chem. Int. Ed. ,1994;33:38513 Takahashi M. ,Turek P. ,NakazawaM. ,et al. PhysLett,1991;67:746的双稳态[39].14 Chiarelli R. ,. ,Rassat A. ,et al. Nature,1993;363:14715 Allemand . ,Khemani . ,Koch A. ,et al. Science,1991;254:301四、展 望16 . ,. ,Reiff . ,et al. J. Phys. Chem. ,1987;91:4344 分子基磁性材料作为一种新型的材料,近十年来,17 . ,. ,. ,et. al. J. Am. Chem. Soc. ,1987;109:769在化学家和物理学家的努力下,在很多方面已经取得了18 Zhou P. ,. ,. ;181:71突破性的进展,迅速发展成为一门材料学科的前沿领19 . Inorg. Chem. ,2000;39:4392估计效果很不好 如果想要的话,留个邮箱,给你发过去

三草酸根和铁酸钾毕业论文

该配合物可用三氯化铁直接与草酸钾反应合成。利用该配合物在0℃水中溶解度较小的特性,将溶液冷却到0℃而得到产物。合成的k3fe(c2o4)3·3h2o是一种亮绿色晶体,易溶于热水,难溶于丙酮等有机溶剂。它是光敏物质,遇光分解。

你好,谢谢你的认可。三草酸根合铁酸钾制备的反应原理:一、草酸亚铁的制备(nh4)2fe(so4)2·6h2o+h2c2o4=fec2o4·2h2o↓+(nh4)2so4+h2so4+4h2o二、三草酸根合铁酸钾的制备fec2o4·2h2o+3h2o2+6k2c2o4=4k3[fe(c2o4)3]+2fe(oh)3↓+6h2o2fe(oh)3+3h2c2o4+3k2c2o4=4k3[fe(c2o4)3]+6h2o影响三草酸根合铁酸钾产率的因素:1、温度:①fec2o4·2h2o在冷水中的溶解度较热水中大,所以用冷水洗涤fec2o4·2h2o晶体损失较大;②h2o2氧化fe2+过程温度需保持在40℃,温度过高h2o2分解、过低氧化速率过低,都会影响fe2+的氧化结果,氧化不完全,fe2+会留在fec2o4·2h2o是而降低fe3+产率。2、酸度:①用蒸馏水溶解摩尔盐,并加热,这会导致fe2+过早氧化而不能进入fec2o4·2h2o沉淀,造成损失,所以要用溶解酸性水溶解摩尔盐;②在第二步加入饱和草酸溶液时,草酸的加入量会影响溶液的ph值,ph过低,生成k2c2o4副反应严重,ph过高,fe(oh)3溶解不充分,导致产率下降。从以上分析可知,实验过程中,严格控制温度和酸度,是提高产率的关键。以上回答,希望能帮到你。

影响三草酸根合铁酸钾产率的因素:

①FeC2O4·2H2O 在冷水中的溶解度较热水中大,所以用冷水洗涤 FeC2O4·2H2O 晶体损失较大;

②H2O2氧化Fe2+过程温度需保持在40℃,温度过高H2O2分解、过低氧化速率过低都会影响Fe2+的氧化结果,氧化不完全,Fe2+ 会留在 FeC2O4·2H2O 是而降低 Fe3+ 产率。

①用蒸馏水溶解摩尔盐,并加热,这会导致 Fe2+ 过早氧化而不能进入 FeC2O4·2H2O 沉淀,造成损失,所以要用溶解酸性水溶解摩尔盐;

② 在第二步加入饱和草酸溶液时,草酸的加入量会影响溶液的 pH 值,pH 过低,生成 K2C2O4 副反应严重,pH 过高,Fe(OH)3 溶解不充分,导致产率下降。

扩展资料:

三草酸合铁酸钾的制备:

方法一

①溶解:在托盘天平上称取·7H2O晶体,放入250mL烧杯中,加入1 mol·LH2SO4 1mL,再加入H2O 15mL,加热使其溶解。

②沉淀:在上述溶液中加入1 mol·L-1H2C2O4 20mL,搅拌并加热煮沸,使形成FeC2O4·2H2O黄色沉淀,用倾泻法洗涤该沉淀3次,每次使用25 mLH2O去除可溶性杂质。

③氧化:在上述沉淀中加入10 mL饱和K2C2O4溶液,水浴加热至40℃,滴加3%H2O2溶液20mL,不断搅拌溶液并维持温度在40℃左右,使Fe(Ⅱ)充分氧化为Fe(Ⅲ)。

滴加完后,加热溶液至沸以去除过量的H2O2。

④生成配合物:保持上述沉淀近沸状态,先加入1 mol·L-1 H2C2O4 7mL,然后趁热滴加1 mol·L H2C2O41~2mL使沉淀溶解,溶液的pH值保持在4~5,此时溶液呈翠绿色。

⑤趁热将溶液过滤到一个150mL烧杯中,并使滤液控制在30mL左右,冷却放置过夜、结晶、抽滤至干即得三草酸合铁(Ⅲ)酸钾晶体。称量,计算产率,并将晶体置于干燥器内避光保存。

方法二

①用电子天平称得于烧杯中,加入100mL蒸馏水,并搅拌溶解,然后称得加入上述溶液中,搅拌均匀。

②用电子天平称得(C2O4)3·5H2O固体,加入上述溶液中,并搅拌均匀。

③将上述所得溶液放入恒温水浴锅(40℃)中,加入44mL4mol·L- 1的H2SO4,同时不断搅拌至溶液透明。

④在(3) 所得的透明溶液中加入125mL乙醇并搅拌均匀;再加入15g左右的KOH来调节pH,注意此时不能再搅拌。

⑤用表面皿盖住烧杯,将其放在暗处静置48h后会有针状晶体析出。

⑥将晶体过滤、干燥后称量,其质量为,所以产率为()×100%=78%

参考资料来源:百度百科 -三草酸合铁酸钾

1,是利用晶体颗粒长大便于过滤,2,过氧化氢被还原的产物是水;即使过量了,在加热中它也能被分解为水和氧气,对反应体系来说,不会引入任何杂质离子。而一般的氧化剂,如KMnO4、K2Cr2O7,在反应后要生成Mn2+、Cr3+,还要进行与Fe3+离子的分离,可能会影响产品的纯度。3,煮沸除去过量的H2O2,,4,单盐中应该有Fe3+离子与C2O42-离子。其中Fe3+离子可使KSCN溶液呈血红色,C2O42-离子遇CaCl2溶液会有白色沉淀生成。而[Fe(C2O4)3]3+离子的K稳很大。在其溶液中Fe3+离子与C2O42-离子的浓度极低,是配合物不会有上述两个反应发生的。

除草剂行业研究论文

农药残留对我国农业和经济发展的影晌随着市场经济和世界经济一体化的不断推进,农药残留作为技术壁垒将严重阻碍我国农业 生产和经济发展。其影响具体表现在以下三个方面。 1、农药残留影响人民生活质量。 近年来,中国农业已进入从数量向质量的转换时期,人们的生活质量和消费水平不断提高, 对农产品质量安全的要求也越来越高, 对绿色农产品的消费日益增长,祟尚自然、绿色消费成为时尚。而农药残留是影响农产品质量安全的关键因素,也是政府部门和广大城乡居民最为关心的热点问题。从目前市售农产品来看,与人民群众的生活需求相距甚大,不少农产品中农药残留的情况令人担忧,因食物中毒事件时有发生,严重危害了人民群众的身体健康。1992~1996年据26省、市的不完全统计, 5年间全国共报告农药中毒247349例, 年均病死率,其中生产性中毒61102例,是因使用杀虫剂引起的, 又以高毒类有机磷杀虫剂甲基对硫磷和甲胺磷为主;1997至2003年全国共报告农药中毒108372例, 其中生产性中毒27511例,生活性中毒30861例,分别占总中毒例数的和。 2、农药残留严重限制我国农副产品对外贸易。 目前世界上大宗农产品普遍供大于求, 国际市场越来越关注农产品的质量, 各国对进口的农产品质、卫生、安全等技术要求愈来愈严格,尤其是欧、美、日等发达国家, 对农产品中的农药、兽药残留, 以及其它有毒、有害物质含量标谁的规定到了近乎苛刻的地步,门槛越来越高,成为了“技术壁垒”、“绿色壁垒” 。如日本对我国菠菜规定的“毒死蜱”残留量标准是不超过 , 但是对本国大量生产的萝卡规定的限量标准却高达3mg/kg,相差300倍之多。由于其具有名目繁多、复杂多变、伪装隐蔽等特点,使我国的农产品出口频频受阻,由于农药残留量超标, 被拒收、退货或销毁的现象时有发生。据统计,绿色壁垒造成我国农产品每年出口损失相当于当年出口总额的20% ,价值高达几百亿元。 3、农药残留阻碍我国绿色农业的发展。 绿色农业有狭义和广义两种理解。狭义的绿色农业是指绿色食品的生产和开发。广义的绿色农业, 有别于传统农业和现代农业, 是建立在现代科学技术基础上,充分合理利用和保护自然资源的农业生产体系,是高效、低耗、无公害的开放型农业系统。发展绿色农业是农业可持续发展的需要, 也是全球农业发展的趋势和走向。但我国农业生产现状与这一要求和趋势还不相称,原因之一即在于农药残留。食品、蔬菜等农产品因残留超标而难以跨越国外“绿色壁垒” ,在国际竞争中处于不利地位, 对发展开放型农业构成严重威胁。这种状况不改变, 我国的绿色农业建设与发展就无从谈起。 由上述可知,解决农药残留问题是保护人民生命安全,提高农产品质量,增强农产品市场竞争力,增加农民收入的关键问题。降低或消除农药残留的根本原则在于明确我国农药的发展方向,大力发展“无公害农药”。(浅谈农药工业与植保事业的和谐发展 我国是一个农业大国,农业是国民经济的基础。要在有限的人均耕地上提高农业生产水平、保护农业生态环境和增加农民收入,必须大力加强植物保护。而农药是加强植保的重要生产资料,农药企业应当在构建和谐植保,推进绿色农业,确保食品安全方面不断创造新的作为。认真探讨农药工业与植保事业和谐发展的对策,对于建设和谐社会具有重大现实意义。 一、和谐发展是农药工业与植保事业的共同追求 1. 农药工业与植保事业休戚相关。众所周知,农药是用于预防、消灭或者控制危害农业、林业的病、虫、草和其他有害生物以及调节植物、昆虫生长的产品。它是直接为植物保护服务的。农药工业为植物保护提供产品,植物保护为农药工业提供市场。农药产品的品质和质量,直接关系到植物保护的效率、效果和效益。一个好的农药产品,只有经过植保实践的试验、示范和推广,才能获得旺盛的生命力。农药企业只有为植物保护提供优质的产品和服务,才能占有广阔的植保市场,才能扩大盈利能力,才能实现持续发展。而植物保护只有依靠高效、低毒、低残留、无污染的农药,才能达到有效防治病虫害、进而实现增产增收的预期目标。由此可见,农药工业与植保事业紧密关联,相互依存。 2. 建设和谐社会要求农药工业与植保事业和谐发展。从发达国家经济发展的经验和规律看,人均国民收入超过800~1000美元之后,市场对农产品和食品的需求就开始由追求数量增长转向追求质量效益。在我国,随着经济和社会的发展,人们对生活质量的要求日益提高,农业正经受着由数量型向质量型、由产量型向效益型转变的深刻历史变革。这一变革的时代呼唤绿色,迫切要求通过和谐植保来满足和支撑无公害安全农产品生产,并保护环境不受污染。和谐植保就是要合理配置资源,实行与环境友好的农药与科学使用技术相结合,使农民在防止有害生物造成农作物预期损失中获得最大收益,并改善生活质量,达到人与自然和谐共处,保持环境、资源、经济和社会协调发展。这也是建设和谐社会的基本要求。因此,作为直接为植物保护事业提供产品及服务的农药工业,在发展方向上必须从非选择性农药转向选择性农药,从传统的有机化学物质转向“生态和谐农药”、“环境和谐农药”,开发新品必须具有安全、残留低、无公害、生物活性高、使用费用低等特性。这样,才能为构建和谐植保提供优质资源,进而为建设和谐社会作出贡献。 3.农药工业应强化和谐发展的经营理念。农药是把双刃剑。一方面对于保证农作物优质、高产具有不可或缺的作用,另一方面农药有毒有害的特性又会通过生物链危害人类生态环境和食品安全。近年来,我国农药行业有了长足进步,企业规模扩大,质量稳步提高,品种不断增加,为优质高效农业提供了强有力支撑。据报载,沈阳化工研究院自行研发的新农药氟吗啉,自2000年以来已在135万亩农作物面积上应用,为农业增效26亿元。农药对农业增收的作用可见一斑。但在目前农药生产经营中,依然存在诸多问题,如总体生产技术和工艺落后、研发能力薄弱、假冒伪劣产品屡禁不止、市场竞争秩序混乱、农药生产和使用造成的环境污染较为严重等。根据国家农药质量监督检验中心(沈阳)2004年的调查,在生产企业农药产品合格率达到85%以上,但是在市场和用户手中,产品的合格率不到45%。不合格的农药用于植保,势必影响到农业增效、农民增收;特别是假冒伪劣农药坑农害农,更是直接影响到社会的安定。去年浙江查处的“稻卷宁”案,今年江苏淮安查处的“虫病无影”假农药致4000亩小麦绝收案,山东潍坊查处的食用色素勾兑假农药案等,无不给人们留下深入的思考。正反两方面的事例说明,构建和谐植保,农药工业责无旁贷。每一个农药企业都应当强化和谐发展的理念,在构建和谐植保中主动尽责,推进农药工业与植保事业同步和谐发展。 二、农药工业企业在构建和谐植保中大有作为 1. 农药企业要自主创新,重抓新品开发,着力提高植保用药的科技含量。随着社会的进步,人们对农产品的消费需求不断提升。农药企业要适应消费者需求的变化,主动开发高科技含量的新农药,使植物保护过程实现无污染防治,从而为广大人民群众提供“放心米”、“放心菜”、“放心果”等放心食品。多年来,克胜集团潜心研究把握产业发展的政策导向和技术走势,确立了高效、低毒、低残留、友好环境的化学农药与生物农药相结合的自主创新之路。通过艰苦努力,不断推出新产品,先后承担了国家级、省级星火(火炬)项目11个,国家“双加”工程项目和农药专项项目3个。克胜面市系列产品中无剧毒、高毒和中毒农药,已有9个被农业部农技中心列为主推产品,11个被认定为无公害推荐农药品种。2003年以来,集团又抓住国家禁用高毒农药的契机,先后投入经费2000万元,研发拥有自主知识产权的全新结构的烟碱类先导化合物—IPP,使农药新品开发的层次进一步提升。目前在新建的“克胜高新技术工业园”,首批投资上亿元的项目中就有PMC、啶虫隆、己唑醇等具有一系列自主核心技术的新产品,都具有低毒、友好环境等特性。项目建成达产后,可大大减少同类产品对国外的依赖,满足国内国际市场的需求,对构建和谐植保,提高农产品品质,突破“绿色壁垒”,推进我国农产品出口创汇,都将发挥积极的促进作用。 2. 农药企业要强化管理,提升产品质量,精心打造植保用药的放心品牌。农药新品是否高效、低毒、低残留,必须到植保实践中检验,必须让农民验证。农民最讲究实惠,最信奉质量,最看中效果。作为农药企业,应当强化管理,狠抓质量,以品质铸就品牌、打造名牌。克胜集团坚持投资品质,崇尚“克己奉农,品质制胜”,通过ISO9000质量管理体系和ISO14000环境管理体系“双认证”,多途径强化员工质量意识、品牌意识,坚持“按照标准来,沿着程序走”,从基础管理抓起,抓细、抓实精益现场管理,合理定置,健全制度,强化监督,严格考核,努力实现管理“零盲点”、安全“零事故”、质量“零缺陷”。继克胜农药荣列“中国农药十大名牌”、“全国放心产品”后,2004年克胜商标又跻身“中国驰名商标”行列,成为新商标法颁布后农药行业唯一的驰名商标。集团以此为新起点,进一步深化贯标,持续改进质量管理,确保产品质量、包装质量、服务质量达到同行领先、用户放心,致力于克胜品牌青春永驻,驰名中外。近几年来,其主导产品扫螨净、蚜虱净的年产量、销售额、利税、市场占有率等经济指标高居全国农药行业同类产品榜首。 3. 农药企业要发挥优势,搞好售后服务,积极进行植保用药的技术指导。构建和谐植保,农药企业不仅要为农民提供优质产品,而且要发挥技术优势,提供关爱式服务、增值服务,让农民掌握科学防治病虫害知识,适时适量用药,既节约农本,又增强防治效果。克胜集团历来重视产品售后服务,通过市场网络,组织送技术下乡,为农民科学用药提供实实在在的技术指导。2005年克胜又开展系列性的为农服务活动,先后聘请西北农大、四川省果树研究所等院校的专家教授分乘6辆依维柯服务车,走乡串村,行程10万余公里,举办农药讲座60场,并组织农药经销商聘请当地农技人员宣讲用药知识,受到农民群众普遍欢迎。活动中还为50多名贫困生提供助学资金,向500户贫困农民赠送农药,向50个行政村赠送科技图书,为200多家农药经销商装璜店面。克胜人用为农服务的实际行动在践行“三个代表”,诠释和谐,回报社会。 4. 农药企业要清洁生产,节约社会资源,努力降低植保用药的实际成本。农药企业要采用清洁的能源和原材料,通过清洁的生产过程,制造出“清洁的产品”,实现“增效、降耗、节能、减污”目的。要消除和减少对人类健康和生态环境的影响,农药工业就必须从源头抓起,实行清洁生产,全面执行国家环境保护政策,实现经济效益、环境效益与社会效益的统一。多年来,克胜集团在“三废”治理上舍得投资。2004年在克胜高新技术工业园又投资1500万元兴建万吨污水处理厂和废弃物焚烧装置。在制造高科技含量新产品的同时,积极开发水剂、水悬浮剂、水分散粒剂等新剂型,减少甲苯、二甲苯、丙酮等溶剂用量,大大削减了农药使用对环境的不良影响。2004年以来,动力分厂全力推行循环经济,仅节水技改每年就为集团节约费用63万元,使工业用水重复利用率达95%,新水取用率下降50%。新建的废弃物焚烧炉通过回收热能再利用,全年可节煤450吨。 5. 农药企业要主动配合,打击假冒伪劣,切实维护植保用药的货真价实。目前农药市场假冒伪劣产品坑农害农的现象屡见不鲜,严重影响植保和谐、社会和谐。对此,农药企业应该主动出击,依法维权。克胜集团在获得中国驰名商标后,面临着更为艰巨的打假维权保名牌的任务。2005年集团打假办紧密配合公安、工商、技术监督、农业执法等部门干部,已先后出动近100人次,分赴各地营销市场打假,依法立案查处了5起侵犯克胜中国驰名商标专用权案件,并针对面广量大的“傍克胜”名牌产品“蚜虱净”、“扫满净”等行为,在相关厂商所在地进行面对面现场举报打击,有力地震摄了假农药生产者和经销者,为净化农药市场,维护广大农民消费者利益作出了不懈的努力。 三、进一步推进农药企业与植保事业和谐发展的构想 发展农药工业的实践使我们体会到,一个有社会责任感的农药企业,在构建和谐植保中是能够有所作为的。但构建和谐植保是一个庞大的系统工程,需要多方面的合作和全方位的支撑。农药企业要创造更大的作为,必须不断研究新情况,解决新问题。纵观世界农药发展的新趋势,分析我国农药发展的新特点,我们建议: 1. 要强化政策引导。国家要针对我国农药企业数量多、规模小、水平不一、竞争无序、竞争层面低等实际状况,抓紧制定加快农药工业发展的产业政策,通过抬高准入门槛,严格登记制度,淘汰一批;通过改革改制,整合资源,提高一批;通过倡导联合,鼓励兼并,壮大一批,从而使植保用药的质量从源头上得到保证。同时要完善农药经营的相关政策,支持农药品牌企业实行连锁经营,直接为搞好植保提供一流产品。 2. 要坚持依法管理。目前我国农药生产、使用、管理方面的法律法规还不够系统和全面,执法主体错位、缺位、争位同时并存,有法不依、执法不严、管理不到位的现象经常出现。为此,迫切期望国家借鉴国外农药管理经验,尽快制定出台《农药法》及其实施条例或办法,要从执政为民的高度,进一步强化农业执法部门依法管理的权利和责任。要根据农药有益有害的两面性特点,大力强化农药管理的法治宣传,切实营造良好的法制环境;严厉打击制假售假者,遏制“傍名牌”恶流,坚决维护农药市场秩序,保护消费者利益,促进社会和谐发展。 3. 要集聚和谐合力。我们呼吁业内同行,紧紧围绕和谐发展主题,按照“优势互补、互惠互利”的原则,谋求合作,实现共赢。一是农药企业要建立行业合作联盟,增强与国际跨国公司同台竞技的实力,提升农药产品的品质和质量。二是农药企业要与植保系统联手合作,尤其是注重发挥植保系统的技术优势、网络优势、信息优势,切实搞好农药新品的试验、示范和推广。三是农药工业企业要与流通企业牵手营销,共同承担净化市场、服务“三农”的责任,特别要重视探索建立绿色联盟,发展农资连锁新业态的路径。此外,在人才、科技、资本等领域,也要积极整合资源,不断开创团结协作、和谐发展的新局面。 (信息来源:中国植保,作者:吴重言)

去当地卖农药的地方都有 不过可能有点贵了

因为除草剂里面所包含的成分是对某些特定植物有效的,被吸收以后发生化学反应导致杂草死亡。小稻秧可能根本吸收不了这种除草剂的化学成分或是吸收了也能快速排出,所以对小稻秧不会有伤害。但是除草剂和作物是对应的,并不是所有的除草剂都对小。

地铁铝合金车体的研究毕业论文

国际铁道车辆系统动力研究新进展瑞士Bombar山er公司,研究了采用耦合轮对机车转向架的曲线通过和稳定性优化问题。众所周知,在传统的车辆设计中,曲线通过和稳定性是一对矛盾。研究人员曾采用多种方法试图同时提高这2种基本性能,该文针对机车轮对要传递牵引力的情形,开发了一种轮对交叉耦合机构,可以分离轮对导向和牵引力传递功能,并在瑞士联邦铁路公司460系列机车上成功应用,其车轮旋削周期较以前延长3倍一4倍。 美国运输技术中心(TTCl)H.Wu研究了货车转向架心盘摩擦对曲线通过和横向稳定性的影响,并对目前采用的心盘润滑材料进行了评价。主要结果如下:(1)在正常的车辆和轨道状态下,心盘润滑条件对轮轨横向力影响很小; (2)对于采用滚动接触旁承(RSB)的货车而言,心盘摩擦因数对车辆横向稳定性有重要影响,为了降低货车蛇行危险,心盘摩擦因数最小不能低于0.3; (3)常接触旁承(CCSB)可以有效地改善货车横向稳定性,于采用常接触旁承的货车来说,心盘摩擦对车辆失稳速度影响很小; (4)仿真结果显示,常接触旁承较滚动接触旁承平均提高蛇行失稳速度约16km凡;(5)聚酯作为心盘摩擦材料具有良好的应用前景。 此外,澳大利亚昆士兰中央大学的Y.Handoko等利用VAMPIRE软件首次研究了非对称制动力对货车曲线通过性能的影响。他们简单地采用正负摇头力铁道车辆 第42卷第1期2004年1月矩来模拟非对称制动力的作用。结果表明,货车通过曲线时若施加负的摇头力矩将增大冲角和轮轨横向力,不利于曲线通过。2车辆运动稳定性研究进展 车辆非线性运动稳定性属于理论性很强的研究领域,甚至涉及浑沌、分叉等深层次概念。近2年国际上对此专题的研究仍以理论研究为主,但出现了一些新观点,如曲线上的运动稳定性、轨道体系对车辆运动稳定性的影响等。 丹麦工业大学H.True等在转向架非线性运动稳定性及分叉研究的基础上进一步分析了具有干摩擦悬挂阻尼货车轮对的动力学稳定性问题。 澳大利亚F.Xia和丹麦工业大学H.Tme研究了三大件式货车转向架的动力学问题,其主要特点是考虑了楔块二维干摩擦特性(以前均简化为一维问题),计算出了三大件式货车转向架的线性和非线性临界速度分别为102.6km凡和73.8km凡。计算结果说明三大件式货车转向架呈现浑沌运动。 澳大利亚Y.Q.Sun等强调在货车蛇行运动稳定性计算中考虑轨道离散支承模型的重要性。结果表明,考虑粘弹性轨道模型计算得出的蛇行失稳临界速度要低于不考虑轨道模型(即“刚性”轨道)之值,一般低10%以下。值得指出的是,这一工作早在2年前已由中国西南交通大学完成[:,引。他们采用车辆—轨道耦合动力学方法求解车辆临界速度,其结果是,采用中国的铁路参数,车辆临界速度差异在8%以下(考虑实际轨道弹性结构时临界速度更低),结果是类似的。该项研究结果对经典的车辆动力学计算方法(不考虑轨道结构弹性)中车辆临界速度的计算提出了质疑。因为经典方法会过高地估计车辆运行稳定性,因而是偏于危险的。 德国DLR的J.Arn01d等探讨了考虑车轮弹性对铁道车辆运行性能的影响,认为轮对结构弹性会导致较刚性轮对更大的横向振幅,因而也会影响到整车的运行性能。 波兰华沙技术大学K.noinski等认为,考虑铁道车辆在曲线轨道上的运动稳定性是必要的。而在此之前人们研究车辆运动稳定性问题一般是针对直线轨道上车辆自激振动横向稳定性,曲线轨道(半径及超高等)被认为是一种外界激扰源而抑制了自激振动,因此该文必将引起一定争论。 德国G.Schupp从理论上讨论了机械系统数值分叉分析方法在铁道车辆运动稳定性中的应用可能性。3.2国外应用情况 纽约地铁l 080节新车厢,每年补充200节新车厢;美国、加拿大、南非等国重载货物列车数千辆;美英国道比AEA铁路技术公司J.R.Evans等针对近年来英国铁路愈来愈严重的轮轨滚动接触疲劳(RCF)问题,从车辆动力学角度分析RCF产生的原因及防止途径。首先开展了准静态曲线通过仿真分析,给出了车辆悬挂设计、轮轨踏面、润滑及车速等因素对轮轨滚动接触疲劳的影响关系;其次,进行了动力学仿真分析,这更有助于确定引起RCF的接触条件,并可分析轨道几何不平顺对RCF的影响。 南非SPOORNET的R.Frohling等从理论分析和运用经验方面介绍了大轴重(30t)条件下车轮踏面磨耗及滚动接触疲劳问题。该项研究主要是结合在瑞典运营的新型货车UNO所出现的车轮磨耗严重及踏面剥离损伤问题而开展的理论分析工作,最后提出了对车轮型面重新设计的方案。 此外,法国J.B.Ayabse和H.C1\011et对半赫兹条件下轮轨接触斑的求解方法进行了研究。英国I.Persson等采用遗传算法对铁路车轮型面进行了优化,并认为该方法可以用于钢轨断面优化及轮轨型面匹配研究。4 车辆系统动力学其他领域研究进展 在本届国际会议上尚有其他一些与车辆系统动力学相关的论文进行了宣读、交流,主要包括车辆悬挂(主动)、弓网动力学及车辆空气动力学等几个方面。相对而言,这些方面的论文数量较少,但也展示了铁路车辆系统动力学研究中的一些新问题。4.1 车辆悬挂 日本M.Adac山为了同时提高车辆曲线通过性能和运动稳定性,在车辆二系悬挂中增加了辅助弹簧(横向弹簧),采用VA朋PIRE软件进行了动态仿真,结果显示,该措施可以减小高速曲线通过时车体稳态横向加速度。 中国西南交通大学邬平波等采用柔性车体模型并 考虑半主动悬挂研究了客车的动力学响应。车体模型考虑了一阶垂弯、一阶横弯和一阶扭转模态,车辆其他部件仍视为刚体。计算比较了刚体和柔性车体模型下车体的垂向、横向平稳性指标,并利用滚动振动试验台进行了半主动悬挂试验。 日本H.nunashima等试图采用二系主动悬挂来改善A(>T(自动轨道运输)车辆的乘坐舒适性。采用Ho控制理论实现横向力的主动控制,仿真结果显示A(订车辆乘坐舒适性可以得到明显提高。4.2 弓网动力学 瑞典P.Harell等针对多受电弓受流情形,研究了接触网区段叠合(图8)对弓网动力学的影响,此项研究此前未见报道。接触网叠合区 意大利S.Bru山等讨论了受电弓—接触网系统的中频、高频动态相互作用,主要分析了弓网接触力与离线之间的关系、吊杆对接触力的影响以及接触导线不规则磨耗的成因等问题。4.3 空气动力学 意大利F.Cheli等采用数值仿真和风洞试验的方法研究了给定风场下作用于铁道车辆车体上的空气动载荷及其相应的车辆响应。 日本铁道综合技术研究所M.Suzuh等采用运行试验和数值分析方法研究了列车在隧道中运行时车辆振动与空气动作用力的相互作用,以及减轻空气动力所导致的附加振动的对策。5 车辆系统动力学研究展望 综上所述,近2年来国际上铁道车辆系统动力学研究进展显著,特别是在提高车辆曲线通过性能、提高车辆运行稳定性和解决车辆微道相互作用实际问题等方面研究十分活跃,研究出许多新方法和新技术。结合这些研究进展,笔者认为今后在以下方面将会引国际铁道车辆系统动力学研究新进展 翟婉明起普遍关注并得到进一步发展: (1)随着列车向快速化及高速化方向发展,综合解决车辆直线运动稳定性和曲线通过性能的方法、途径和技术措施将会继续成为广大铁路研究人员研究的热点之一。 (2)主动控制技术是改进铁路机车车辆运行品质的有效方法,在铁路发达国家已得到广泛应用。然而,随着铁路运输与航空、公路运输竞争的进一步激化,不断提高列车运营速度并同时提高乘坐舒适性已成为现代铁路追求的目标。而实现这一目标的手段在很大程度上便是采用先进的主动控制技术。因此,这一领域发展前景广阔。 (3)轮轨接触理论研究已日臻完善,而轮轨运输系统中由于轮轨滚动接触而产生的问题越来越多。因此,如何合理运用轮轨系统动力学(车辆做道系统动力学)理论研究解决这些实际问题(如轮轨不规则磨耗、滚动接触疲劳问题),必将成为本领域研究的一个重要方面,而要解决不规则的轮轨磨耗难题,需要发展同时考虑车辆俄道高频相互作用和损伤机制的综合模型。 (4)车辆微道相互作用研究已越来越能反映铁路中的各种实际因素,今后将进一步走向实际工程应用,如高速(快速)铁路桥头过渡段轨道设计、大轴重货车对线路的动力作用研究、轮轨磨损及轨道沉陷预测、车辆榇道动态相互作用脱轨研究及安全评判标准确定等。 (5)高速列车运行过程中(特别是通过隧道时)空气动力效应对车辆振动性能的影响问题已日益受到人们的关注,是进一步改善乘坐舒适性(包括降低噪声)不可回避的研究课题。 (6)动力学仿真技术已在国际车辆系统动力学研究与应用领域得到十分广泛的应用,发挥了极大效用。各种车辆动力学仿真软件日益成熟。我国应注意这一趋势,组织开发各种大型通用动力学软件,为机车车辆动力学性能优化提供科学工具。与此同时,必须重视仿真软件的试验验证,只有经过广泛验证的软件才能用于指导生产实际。

铁道机车车辆轮轨的摩擦磨损与节能降耗摘要:阐述了铁道机车车辆轮轨摩擦磨损的现状;研究了内燃机车车轮、闸瓦和钢轨的消耗数量及相应的维修费用;指出了采用适当的新技术之后,在节能降耗方面会产生显著的经济效益。关键词:车轮;轮缘;钢轨;摩擦磨损;铁道机车车辆;节能;降耗众所周知,铁路运输是基于轮轨相互作用产生的黏着牵引力和黏着制动力以实现列车运行的,轮轨间因摩擦磨损在铁路运输中消耗的能量和能源很多,耗资也很大。随着铁路运输向高速、重载发展,因摩擦磨损所致的事故风险也在增加。轮轨接触面形成的各种损伤,不但缩短了轮轨的使用寿命,在严重磨损后还会导致轮对和钢轨失效,危及行车安全。在这方面,即使在高速铁路成功应用的国家,也曾付出过惨重代价。例如:1998年,由于轮轴的疲劳断裂而导致德国ICE高速列车脱轨,造成101人死亡,84人重伤,直接经济损失约2亿马克。与此同时,合理利用资源,实行节能降耗,是我国的一项基本战略决策。为了节约能源,降低铁路运输成本和机车车辆的制造与修理费用,对机车车辆轮轨的摩擦磨损状况,需引起高度的重视。应当采取相应的技术措施,努力将这种磨损造成的损失降低到最小程度,以达到降耗增效的目的。1铁路钢轨的磨耗据铁路工务部门统计,我国铁路有20%~30%的路段钢轨磨损率大于国外严重磨损率指标,有60%的曲线段钢轨因波磨造成严重损伤。摩擦磨损带来的损失很大。钢轨损伤的形态铁路轮轨作用关系复杂,钢轨磨耗损伤的形态主要有钢轨的压溃、侧磨、波磨、剥离等,这些占钢轨总损伤量的80%以上。随着铁路机车车辆的重载与高速化,轮轨间的摩擦磨损也日趋严重,如钢轨的压溃与波磨迅速增长,且发生较为普遍(参见图1)。钢轨的年消耗量据资料记载:“十五”期间,我国铁路钢轨用材每年基本维持在110万t左右,除新线建设之外,其中用于既有线路大修和维修消耗的钢材约为70~80万t/年。据铁道部安检司调查,2003年因钢轨损伤而更换所需的材料及人工费用约为50亿元。其中,因钢轨压溃、侧磨、波磨等导致的损伤,占钢轨总损伤量的80%以上,即40亿元左右。2机车车辆车轮的磨损车轮是铁路机车车辆的重要走行部件。在列车运行中,车轮滚动会使车轮踏面和轮缘发生磨耗,而车轮在钢轨上滑动也会造成踏面损伤。车轮损伤的形态据失效分析统计,铁道机车车辆车轮损伤的主要类型有轮缘磨耗、轮辋疲劳裂纹、热损伤、车轮踏面剥离和崩裂等(参见表1和图2)。因磨耗造成车轮部件失效的主要原因是轮轨接触应力集中、制动热应力疲劳、累积塑性流动变形、夹杂物应力集中、内部缺陷应力集中等。车轮的消耗目前,我国铁路机车、客车和货车约有500万个车轮在运营中。这里所讲的车轮消耗,主要是指磨损后车轮的维修和更换以2006年为例,全路的机车、客车和货车就消耗新轮63·1万只,平均以0·5万元/只计算,所需费用约为31·55亿元。在为完成中国工程院下达的“摩擦磨损与工程应用咨询项目”时,笔者曾于2006年11月赴北京铁路局丰台机务段进行过“铁路机车车辆关键零部件摩擦磨损”的现场调研。从丰台机务段调查了解到:以DF4型机车为例,由于车轮维修或全部更换,该段平均每台机车每年所需人工费和材料费分别为3·3万元和42·4万元,这尚不包括因修理或更换时机车的停运损失。有关该段DF4型机车的旋轮与换轮费用参见表2和表3;若按2005年全路机车保有量17 500台推算,仅机车车轮的维修费用就近5·8亿元。制动闸瓦的消耗在机车车辆制动系统的摩擦制动中,主要有踏面闸瓦制动和盘形制动。我国目前除新造的提速客车和厂修改造的25型客车采用盘形制动外,其他的机车车辆都是采用踏面制动,这对车轮的磨耗是比较严重的。铸铁闸瓦相比合成闸瓦,可以获得较高的黏着系数且摩擦系数稳定,但是磨耗快,成本较高。以丰台机务段DF4、DF4D型机车为例,在1个大修期内,每台DF4型机车需更换闸瓦8次,DF4D型机车需更换闸瓦10次。因此,每台机车的换瓦费用分别为1·2万元和1·5万元。按该段现有DF4型机车35台和DF4D型机车23台计算,这些机车在1个大修期内换瓦的总费用为76·5万3降低轮轨磨耗的技术措施我国《铁路节能技术政策》第11·1条指出:“应注意抗磨减阻材料的推广使用。在全世界生产的能量中,约有30%~40%的能量是消耗在与摩擦有关的场合;我国与摩擦有关的能源消耗约占1/3 ~1/2。任何减轻摩擦、降低磨损的措施,都会直接或间接地节约能源。”针对目前机车车辆轮轨摩擦磨损严重、修理费用高的现象,如果进一步推广应用淬火钢轨、轨面打磨、磨耗型车轮、径向转向架和安装轮轨润滑装置等现有的成熟技术,不但可以明显改善轮轨摩擦磨损的现状,而且可以节约能源和原材料,大大降低消耗,取得显著的经济效益。采用淬火钢轨与维护钢轨波磨问题是轮轨相互作用过程中极其复杂的系统问题,根据不同的线路或区段,合理地选择钢轨,有助于预防钢轨的波磨。例如:淬火钢轨就很少发生波磨,因为它有较高的强度和硬度。因此,建议在轨道波磨区段采用屈服强度较高的钢轨。此外,轨面打磨也是主要防护手段,轨面打磨可减小车体的振动和车轮对钢轨冲击力所造成的磨损。实践表明,它可延长波磨轨寿命50%以上。从调查得知,若采用淬火钢轨、侧面涂油和适时的钢轨打磨等技术,仅钢轨材料一项每年就可节约费用20亿元左右,因减磨而节约的能耗费用也是很大的。采用磨耗型车轮踏面车轮磨损失效的形式主要有踏面磨耗到限和轮缘磨耗到限。铁道部对机车车辆车轮踏面的使用与维修都有相应的标准,如《DF4型内燃机车段修规程》第3·11·6·8条中规定:踏面磨耗深度不大于7 mm;而采用轮缘高度为25 mm的磨耗型踏面时,踏面磨耗深度不大于10 mm。磨耗达到或超过这些标准,就会危及行车安全。早期的车轮踏面为锥型踏面。锥型踏面在使用初期磨损很快,当磨损到一定程度后,磨损速率开始减缓,踏面形状趋于稳定。通过长期观察和试验发现,如果在车轮踏面设计时就采用磨耗型的车轮踏面廓形,可有效地减轻轮轨接触应力,迅速降低轮轨磨耗,有效延长轮轨使用寿命。四方车辆研究所在对北京、广州、济南等铁路局的机车车轮外形轮廓实测的基础上,设计了小半径曲线区段使用的JM磨耗型车轮踏面。长期的运用结果表明,应用该外形设计后,与原锥型踏面车轮相比,轮缘减磨可达30%~70%.一些铁路局根据各自所管辖线路的特点,也分别研制了多种形式的车轮踏面。如上海铁路局研发的ST系列磨耗型踏面,就取得了很好的减磨效果(参见表5)。表5上海铁路局DF11型0072号机车车轮磨耗数据对比由表5可知,采用ST-2型踏面后,机车每万公里的轮缘磨耗率从0·304 mm降至0·190 mm,降低了38%,车轮踏面剥离的故障也明显减少。据有关资料分析:机车车辆若采用磨耗型车轮踏面,每台机车每年可节约费用1·5万元。采用径向转向架传统的机车转向架,因传递牵引力和保证直线上走行性能的需要,各轴基本上是被约束成相互平行的。在通过曲线时,这种刚性定位的轮对与钢轨之间会形成明显的冲角,从而使轮、轨都产生严重的磨耗。曲线半径越小,磨耗越严重。为降低轮、轨的磨耗,近年来国内外开展了机车径向转向架研究,并取得了很好的效果。两种不同转向架通过曲线时的运行示意图见图3。再举几个例子,以说明装用径向转向架后轮缘的磨耗情况。戚墅堰机车有限公司生产的首台装用径向转向架的DF8B型7001号机车,在上海铁路局进行的线路运用考核结果表明:与同轴重、装有传统转向架且带轮轨润滑装置的DF8B型机车相比,前者的轮缘磨耗仅为16%。【下转第8页】【上接第4页】资阳机车有限公司对径向转向架机车与传统转向架机车在曲线上的冲角也进行了对比测试。测试结果表明:仅就径向转向架冲角减少的程度而言,轮缘磨耗至少降低了45%。大连机车车辆有限公司生产的DF4D型径向转向架机车,在柳州至怀化区段的客、货运牵引数据表明,与装用传统转向架相比,机车车轮的轮缘磨耗下降了74%。据有关资料分析:若采用径向转向架技术,每台机车每年可节约费用5·8万元。安装轮轨润滑装置润滑对减磨起着十分重要的作用。我国《铁路节能技术政策》第3·6条强调指出:“内燃机车和电力机车要加装新型轮轨自动润滑装置,减少磨耗和阻力,降低机车能耗。”以丰台机务段为例,安装轮轨自动润滑装置取得了较好的效果。该段有118台机车在安装了铁道科学研究院研制的华宝2号轮轨润滑装置后,使每台机车的旋轮公里数由10万km延长至18万km,车轮寿命由30万km延长至80万km。除机车因车轮寿命延长产生的巨大社会效益和经济效益之外,每台机车每年可节省旋轮(或换轮)费用1万元。丰台机务段的118台机车,每年可直接节省旋轮(或换轮)费用118万元。按全路17 500台机车推算,每年可直接节省旋轮(或换轮)费用1·75亿元。其投入产出比为1∶20。事实说明:通过安装轮轨自动润滑装置,对轮轨进行润滑后,不但可以减缓轮缘的磨耗,而且经济效益十分可观。4结语综上所述,在铁路运输中,机车车辆轮轨的摩擦磨损已成为相当严重的问题。大量的钢轨与车轮磨损,不但增加了材料的消耗,提高了修理成本而且降低了运输的效率,增加了能源的消耗。为此提出以下建议。(1)从设计、制造到运输、修理,所有与此相关的人员,对机车车辆轮轨的摩擦磨损状况,都应当高度重视,并采取相应的对策。(2)对目前已被证实具有良好减磨效果的措施,应进一步加大推广应用力度。例如:对钢轨进行适当的热处理和打磨,开发新型闸瓦,扩大磨耗型踏面车轮、径向转向架和轮轨润滑装置的装车应用等。(3)在今后的技术引进或产品自主创新的研发中,应更加重视对产品的摩擦副及磨损件标准的研究。与此同时,应寻求和开发更适应轮轨摩擦副的新材料、新技术、新工艺,以延长关键摩擦磨损件的使用寿命,进而达到节能、降耗和增效的目的。

中国铁矿石进口研究论文

铁矿石是世界钢铁工业最基本的原料,被誉为钢铁工业的"粮食".钢铁是国家的命脉,是国民经济的中流砥柱,是人类赖以生存和发展的物质保证.作为新兴市场国家的中国,钢铁资源的多寡在一定程度上影响了我国经济发展水平和综合国力

一、国内外资源状况

(一)世界铁矿资源状况

据美国地质调查局数据,2009年世界铁矿石储量为1600亿吨,比上年增长;铁金属储量为770亿吨,比上年增长。从表1中可知,巴西、俄罗斯、乌克兰、澳大利亚和中国铁金属储量合计占世界总量的,其中,俄罗斯、澳大利亚和乌克兰铁金属储量之和占世界总量的,而且这三个国家的铁矿资源品位较好,中国虽然铁矿石储量很大,但多为贫矿。

表1 2009年世界铁矿资源储量分布单位:亿吨

资料来源:Mineral Commodity Summaries,2010

(二)我国铁矿资源状况

近年,我国铁矿石储量呈缓慢下降趋势,从2001年的亿吨下降到2009年的亿吨,储量每年减少约亿吨,年均下降3%左右。基础储量变化不大,在210亿~220亿吨之间。查明资源储量呈增长趋势,从2003年起每年增加4亿~12亿吨,2003年查明资源储量亿吨,2009年增加到亿吨,六年增长了亿吨,原因是近几年矿产品价格持续走高而刺激采掘业投资力度加大,矿产资源开发规模不断扩大,进而导致资源储量消耗加快,从2005年起我国铁矿石原矿产量每年增加1亿吨以上;此外,矿业市场的活跃引发社会各方面对地质勘查投入的不断增加,新发现矿点的数量不断增加,进而增加了查明资源储量。截至2009年底,全国铁矿石储量为亿吨(其中富铁矿亿吨,占总量的),比上年减少亿吨,同比下降;基础储量为213亿吨(此数据为国内统计的,与美国地质调查局统计的储量基础220亿吨略有不同),比上年减少亿吨,同比下降。我国铁矿资源集中分布在辽宁、河北、四川、内蒙古、山东、安徽及山西,七省(区)的铁矿石基础储量合计为亿吨,约占全国总量的(表2)。

表2 2009年我国铁矿资源储量分布单位:亿吨

二、国内外生产状况

(一)世界铁矿生产状况

1.铁矿石

受世界钢铁工业发展的带动,近几年世界铁矿石产量保持增长态势。美国地质调查局统计数据显示,2004~2009年,铁矿石成品矿产量增加亿吨,年均增幅达。尽管受2008年下半年金融危机影响,全球经济陷入衰退,但2009年世界铁矿石成品矿产量仍达到亿吨,同比增幅。2009年世界铁矿石成品矿产量超过亿吨的国家有中国、巴西、澳大利亚和印度,这四个国家的产量占世界总量的;其他产量较大的国家还有俄罗斯、美国、乌克兰和南非等。近年中国、巴西、澳大利亚、印度铁矿石成品矿产量增长幅度较大(表3),主要是由于中国、印度等新兴经济体对铁矿石需求量大幅增长及高价铁矿石对市场不断形成刺激,使这些资源丰富的国家加大了对铁矿石的开发力度。

表3 2004~2009年世界铁矿石生产情况

资料来源:Mineral Commodity Summaries,2010

注:中国数据按国家统计局数据将铁矿石原矿(平均品位约28%)量折合成65%的成品矿量。

20世纪90年代以来,世界铁矿资源生产供应格局基本稳定,主要供应国家一直是巴西、澳大利亚、中国、印度、俄罗斯等资源丰富的国家,导致世界铁矿资源供应垄断不断加剧,根据美国地质调查局数据计算,排名前5位国家的产量占世界总产量的比重逐年增加,2000年为,2005年为,2009年达到(表4)。

表4 世界前5位主要铁矿生产国产量占世界比重单位:百万吨

资料来源:Mineral Commodity Summaries,2001~2010

2.生铁和粗钢

世界生铁主要生产国家和地区为中国、欧盟、日本、俄罗斯、美国、韩国、巴西和乌克兰(表5)。世界粗钢主要生产国为中国、日本、美国、俄罗斯(表6)。其中,中国生铁产量增加最快,从2004年的亿吨增加到2009年的亿吨,年均增长率为,远高于世界的平均水平。进入2008年下半年以来,美国金融危机引发了全球性的金融风暴,全球钢铁企业的生产经受严峻考验,有些国家的生铁和粗钢生产出现零增长甚至是负增长。2009年钢铁产业继续受金融危机影响,生铁产量除中国有所增加外,其他国家的产量均出现不同程度的减少,美国、德国和巴西生铁产量连续两年下降,2009年分别比上年下降、和。2009年世界各国钢铁生产也因全球金融危机的影响差异较大,中国经济的率先恢复拉动钢产量明显增长,而欧盟、美国、日本等恢复缓慢,各大钢厂的产量出现大幅下滑,粗钢产量均比上年下降超过30%。

表5 2004~2009年世界生铁生产情况

资料来源:Mineral Commodity Summaries,2010

注:中国数据来自中国统计年鉴,2005~2010。

表6 2004~2009年世界粗钢生产情况

资料来源:Mineral Commodity Summaries,2010

注:中国数据来自中国统计年鉴,2005~2010。

(二)我国铁矿生产状况

1.铁矿石多年来,我国已形成东北、华北、华东、华中、西南等钢铁工业基地和与之配套的鞍本、冀东—密怀—张宣、攀西、吕梁、长江中下游(大冶、安庆—繁昌、宁芜)、邯邢、鲁中、许昌—霍邱、包白和海南十大铁矿石生产基地。受铁矿石高价位的刺激和铁矿石产业政策的鼓励,从2004年起,我国铁矿石原矿产能迅速增长,年增量超过1亿吨。2009年铁矿石原矿产量达到亿吨,比上年增长,增速比上年回落个百分点(图1)。

图1 1992~2009年我国铁矿石原矿生产变化

2.生铁、粗钢和钢材

近年,我国生铁产量大幅增长。据中国国家统计局数据,2001~2009年,生铁产量从亿吨增长到亿吨,年均增长率为,远高于世界年均的增长率。特别是2009年,随着我国经济总体向好,生铁产量也表现出积极恢复,比上年增长。

2001~2009年,我国粗钢产量从亿吨增长到亿吨,年均增长率达到,远远高于世界的增长速度。2009年我国粗钢产量比上年增长。2009年累计粗钢表观消费量为亿吨,比上年增加11233万吨,增长,扣除库存实际消费量约亿吨,这表明国内市场总体需求旺盛。

2009年,钢材产量为亿吨,比上年增产约1亿吨,同比增长(图2)。目前,我国已经形成十大产能超过1000万吨的特大型钢铁工业基地,这些钢铁企业将通过战略重组形成我国钢铁工业的新格局。

图2 我国生铁及其冶炼产品产量变化

3.废钢

近年来,随着我国钢铁产能的快速扩大,废钢需求也稳定增长,而供给总量仍然不足。2009年受金融危机影响,国内废钢市场的总体表现为“进口激增,内需不足”,全年进口废钢1369万吨,同比增长281%,创历史新高(表7),我国进口废钢成为日本废钢市场的救星,我国需求成为东亚地区废钢市场最大的亮点;而中国与韩国进口的增加,也导致了日本出口废钢价格接连上涨。

表7 2001~2009年我国废钢产量变化情况单位:万吨

三、国内外消费状况

(一)世界铁矿消费状况

世界铁矿石消费量没有直接统计数据,但一些间接指标可以显示世界铁矿石的消费变化,这些指标包括生铁产量、直接还原铁产量、粗钢产量及铁矿石进口量等。其中,生铁产量最能反映铁矿石消费情况。

从美国地质调查局统计数据看,在2000年以前,世界生铁产量有所波动,但波动的幅度不大,说明铁矿石消费变化不大。2000~2007年,随着世界钢铁工业的发展,世界生铁产量保持强劲增长态势,从2000年的亿吨增加到2007年的亿吨,年均增幅为,这反映了世界铁矿石消费扩大的倾向(图3)。2008年受金融危机影响,世界生铁产量降为万吨,同比下降,2009年生铁产量继续大幅下降,降至亿吨,同比下降。

图3 世界生铁生产情况

粗钢产量是衡量铁矿石消费量的又一重要指标。国际钢铁协会(IISI)统计数据显示,2009年,全球粗钢产量为亿吨,同比减少;66个主要产钢国家和地区粗钢总产量为亿吨,同比减少(表8)。其中,中国产量亿吨,同比增长,中国粗钢产量不仅再次拔得头筹,且其产量比第二名到第八名的总和还多,占全球份额的,2007年为,2006年为,2005年为,2004年为,呈逐年增加态势,可见世界新增铁矿石消费量中的大部分是由中国带来的。此外,受金融危机的影响,世界各国粗钢产量均出现不同程度的下降。独联体产量比上年减少了,欧盟减少了,北美减少了,只有亚洲增加了。

表8 2008~2009年世界各地区粗钢生产情况

资料来源:IISI;中国数据来自中国统计年鉴,2010

(二)我国铁矿消费状况

近几年,我国铁矿石消费量稳步攀升,2009年铁矿石成品矿表观消费量达到了10亿吨(其中进口成品矿亿吨,国产原矿折合成品矿亿吨),已经成为世界最大的铁矿石进口国和消费国,目前铁矿石的消费量占全球铁矿石消费量的1/3左右。

2009年,我国粗钢产量为亿吨,据钢铁工业协会统计,粗钢表观消费量为亿吨,比上年增长,扣除补库存因素,粗钢实际消费量约为亿吨。这表明,在应对国际金融危机的大环境下,固定资产投资的高速增长和我国工业化、城镇化步伐的不断加快,拉动了钢材消费大幅度增长,也表明国家一揽子刺激经济计划措施有效地抵御了国际市场需求萎缩对我国钢铁业的冲击,钢铁复苏为我国率先实现经济形势回升向好作出了重要贡献。近年我国钢材产量和表观消费量变化趋势见图4。

图4 1990~2009年我国钢材产量和表观消费量变化

钢铁企业增产减收,大中型钢铁企业利润大幅下降。2009年68家重点大中型企业实现工业总产值亿元,同比下降;实现销售收入亿元,同比下降;实现利润亿元,同比下降(含投资收益和资产减值调整),12月末,68家大中型钢铁生产企业中有8家亏损,比上年减少5家,亏损面为,同比下降个百分点,亏损额为亿元,同比下降。2009年,我国钢材消费结构为:建筑业占,机械制造业占,汽车业占,轻工家电业占,船舶业占,其他工业占,交通业占,其他占。

四、国内外贸易状况

(一)国际铁矿贸易状况

铁矿石贸易量继续增加。尽管世界经济出现衰退,但2009年世界铁矿石成品矿贸易量达到创纪录的亿吨,与上年相比增长了,这主要是由中国需求增长和中国铁矿石产量增速放缓所导致的进口大幅增长所致。2009年,澳大利亚是世界最大的铁矿石出口国,出口量为亿吨,同比增长17%;巴西出口量为亿吨,同比下降3%;印度是第三大出口国,出口量为亿吨。2009年世界铁矿石海运贸易量达亿吨,同比增长11%。中国是世界最大的铁矿石进口国,约占世界进口总量的2/3。世界三大铁矿石生产商———淡水河谷、力拓、必和必拓铁矿石产量合计占世界总产量的35%,控制着世界61%的海运贸易份额。

随着世界经济全球化,近十几年来钢材的国际贸易量不断增长,占世界钢材总产量的比例不断提高。根据国际钢铁协会的统计,世界总出口量占世界钢材总产量的比例在2000年达到,世界钢产量的2/5是供产钢国之外的其他地区消费的。这一比例近几年略有降低,原因是近年来钢产量急剧增长的中国是以供应内需为主的。

(二)国内铁矿进出口贸易状况

近年来,我国钢铁工业一直持续强劲增长,对铁矿石的需求越来越大,国内生产根本无法满足其消费需要。1990年,我国消费铁矿石成品矿亿吨,到2009年消费量已经达到10亿吨,相应地,铁矿石原矿供需缺口逐年扩大。显然,消费需求已远远超出了国内的供应能力,不足部分必须依靠进口来解决。

我国粗钢生产规模仍在继续扩大,2009年粗钢产量达亿吨,同比增长。在废杂钢回收规模有限的情况下,粗钢产量的增长预示着我国铁矿石需求仍然旺盛,为了满足铁矿石的消费需要,铁矿石进口量持续增长。2009年2月起,我国铁矿石进口量连续11个月保持同比增长态势,9月份进口量首次超过6000万吨,达到6438万吨,大幅增长,随后10月、11月进口量虽高位回落,但12月再度冲高至6216万吨,激增,全年进口铁矿砂亿吨,同比增长(图5)。

图5 我国铁矿石进口量和进口金额变化趋势

受价格等因素影响,2009年我国铁矿石原矿产量为亿吨,同比仅增长,而生铁产量同比增长(增产生铁量的80%左右是靠进口铁矿石满足的),需要增加成品矿亿吨,而国产成品矿铁矿石只增产亿吨左右,需增加进口铁矿石亿吨,实际全年进口铁矿石成品矿亿吨。铁矿石超需求进口增大了铁矿石价格和海运费上涨压力。

我国铁矿石进口来源集中度仍较高。虽然我国铁矿石进口国达40个国家(地区),但澳大利亚、巴西、印度、南非四国仍是我国进口铁矿石的主要来源(表9)。2009年,澳大利亚占进口总量的、巴西占、印度占、南非占,四国合计占我国进口总量的,从俄罗斯、乌克兰、哈萨克斯坦三国进口量只占总量的,从其他国家进口占总量的。

表9 近年我国铁矿石进口区域分布表

受国际市场需求急剧下降、贸易保护主义抬头等因素影响,2009年,我国出口钢材万吨,同比下降(图6),净出口粗钢也由2008年的4766万吨下降为286万吨,减少4480万吨。从出口形势看,第四季度有所好转。2009年,列我国钢材出口前6位的国家和地区分别为韩国、欧盟25国、越南、印度、美国和泰国,向其出口均比2008年同期大幅下降,降幅为39%~80%。从总体来看,我国向欧美出口钢材比例显著下降,向东南亚出口比例上升,这说明在金融危机的形势下,我国钢材出口地区出现了新变化。我国钢材进口(入境)前6位的国家和地区分别为日本、韩国、中国台湾地区、俄罗斯、欧盟25国和哈萨克斯坦,2009年从日本、欧盟25国进口钢材量均出现了下降,降幅分别为和,而从东欧进口钢材量大幅上升,从俄罗斯和哈萨克斯坦进口钢材同比分别增长和,从韩国进口钢材同比增长。

图6 1990~2009年我国钢材进出口情况变化

五、铁矿价格走势分析

金融危机曾使得矿业资金链出现断裂,矿产品价格出现急剧下滑。铁矿石也不例外,其价格在2008年下半年经历大幅回落之后,2009年上半年一直都在震荡整理。随后,受经济回暖及我国规模进口的支撑,铁矿石价格表现出积极的上扬,从7月份开始,印度现货矿价高于国内矿价,天津港印度粉矿价格曾于8月上旬突破800元/吨,此后出现一定的回调,9月上旬甚至跌破700元/吨,但是自10月开始又出现稳步回升。12月31日,天津港印度粉矿价已经回升至900元/吨(图7)。

图7 2008年以来天津港印度粉矿CIF价格走势

六、结论

(一)世界铁矿供需趋势2009年,钢铁产业继续受金融危机影响,全球钢铁业表现为“供应略有增加,但需求不足”。据美国地质调查局数据,全球铁矿石成品矿产量比2008年增加亿吨,但生铁产量除中国有所增加外,其他国家的产量均出现不同程度的减少,美国、德国和巴西生铁产量连续两年下降;粗钢产量除了亚洲保持不足4%的增速外,其他地区均出现不同程度的下降。这些说明全球铁矿石市场需求严重萎缩。尽管世界经济出现衰退,但2009年世界铁矿石贸易量达到创纪录的亿吨,与上年相比增长了,这主要是中国强劲需求的结果,受其影响,下半年铁矿石价格表现为震荡上扬,2009年底天津港

印度粉矿价已经回升至900元/吨。

(二)我国铁矿供需趋势2009年是国内铁矿石市场变化较大的一年。上半年受金融危机拖累,钢铁业遭受重创,铁矿石市场低迷。下半年受宏观经济向好及钢铁需求扩大等因素的影响,我国铁矿石生产出现积极恢复,使得2009年铁矿石原矿产量达亿吨,同比增长,但仍不能满足炼钢需求,进口铁矿砂亿吨,比上年增长,是历史上进口增加量和增幅最大的一年。

(王海军)

相关百科
热门百科
首页
发表服务